
c© 2019 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Internet of Things (OJIOT)
Volume 5, Issue 1, 2019

http://www.ronpub.com/ojiot
ISSN 2364-7108

Online Replication Strategies for
Distributed Data Stores

Niklas SemmlerA, Georgios SmaragdakisB, Anja FeldmannC

A SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany, niklas.semmler@sap.com
B TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany, georgios@inet.tu-berlin.de

C Max Planck Institute for Informatics, Campus E1 4, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany,
anja@mpi-inf.mpg.de

ABSTRACT

The rate at which data is produced at the network edge, e.g., collected from sensors and Internet of Things (IoT)
devices, will soon exceed the storage and processing capabilities of a single system and the capacity of the network.
Thus, data will need to be collected and preprocessed in distributed data stores—as part of a distributed database—
at the network edge. Yet, even in this setup, the transfer of query results will incur prohibitive costs. To further
reduce the data transfers, patterns in the workloads must be exploited. Particularly in IoT scenarios, we expect data
access to be highly skewed. Most data will be store-only, while a fraction will be popular. Here, the replication
of popular, raw data, as opposed to the shipment of partially redundant query results, can reduce the volume of
data transfers over the network. In this paper, we design online strategies to decide between replicating data from
data stores or forwarding the queries and retrieving their results. Our insight is that by profiling access patterns of
the data we can lower the data transfer cost and the corresponding response times. We evaluate the benefit of our
strategies using two real-world datasets.

TYPE OF PAPER AND KEYWORDS

Regular research paper: data transfer, online strategy, data replication, replication strategy, distributed data store

1 INTRODUCTION

Sensors and Internet of Things (IoT) devices are more
ubiquitous than ever and are increasingly integrated with
decision-making procedures across many industries [13].
They are installed and operate at the Internet edge [31].
While each individual sensor may produce only a
negligible data volume, together they generate massive
data streams. Thus, we expect a growing disparity

This paper is accepted at the International Workshop on Very
Large Internet of Things (VLIoT 2019) in conjunction with the
VLDB 2019 conference in Los Angeles, USA. The proceedings of
VLIoT@VLDB 2019 are published in the Open Journal of Internet
of Things (OJIOT) as special issue.

between the data volumes produced by these sensors
and the capacity of a single system. Moreover, the
network capacity to move all sensor data from the
network edge to the cloud may become a bottleneck.
Thus, we expect this data will have to be stored in
the fog [8]—data stores at or close to the network
edge—where it will form distributed mega-datasets [32].
Many companies have already started the design and
deployment of complex network and cloud architectures
to cope with the expected volume and management
overhead of these datasets. Deutsche Telekom recently
announced the introduction of the mobile edge cloud, a
platform for deploying application functionality at the
edge [5]. Volkswagen made a public statement that it

47

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RonPub -- Research Online Publishing

https://core.ac.uk/display/304105777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojiot


Open Journal of Internet of Things (OJIOT), Volume 5, Issue 1, 2019

AppsSensors Data Stores Infrastructure

FE
Query

Result

Potential 
Bottleneck

BE

BE

BE FE

FE Timeliness 
Requirements

Figure 1: Architecture for IoT scenario with distributed mega-datasets (front-ends and back-ends are
abbreviated as FE and BE respectively)

will network its factories and use the Amazon cloud to
improve its production line [29].

The accumulation of sensor data gives rise to an
increasing number of data-driven applications. These
applications leverage the data to improve a multitude of
processes ranging from pro-active maintenance to value-
chain management to process optimization, which is
expected to benefit many stakeholders, including end-
customers, enterprises, vendors, and governments. To
this end, each application needs to access the distributed
data stores, which may create congestion in the network.
Yet, we expect that each application will only need to
access a small fraction of the data or pre-aggregated data,
e.g., data from a limited number of sensors, data of a
given type, data summaries, data to investigate errors and
disruptions in operations. Typical for machine-generated
data, most data will be very regular and therefore of
little interest and never accessed. Overall, we expect
that data access distributions are highly skewed, where
a large fraction of the data is rarely accessed while a
small fraction is very popular. We exploit this skewed
distribution to minimize network traffic and ensure
low response times and, thus, enable such data-driven
applications for mega-datasets.

As part of our solution, we introduce a distributed
platform involving potentially many front-ends and
many back-ends, see Figure 1. The front-ends receive
and answer incoming queries from the applications (or
“Apps”) using data from the back-ends. A front-end may
forward a query to a back-end, which will process the
query using its local data store and ship the result back.
Alternatively, a front-end can ask a back-end to replicate
the necessary data to its local store and, then, use this
data to answer queries.

To take full advantage of replication and to reduce
the overhead, it is often more desirable to replicate the
partition that contains a superset of the data necessary
for processing queries instead of only the data itself.
A partition, typically, contains related data and is
a fixed data unit related to the storage organization.
Then, the replication option has one advantage and one
disadvantage. It has the advantage that it can respond to
future queries that access the same data at no additional
cost. In contrast, it has the disadvantage that replicated
partitions requires storage at the front-end, which may
only be able to store a limited number of replicas.

Depending on the size of the accessed data and size of
the query result, either option may reduce the required
transfer data volume over the network. Decomposing
the system into distributed front-ends and back-ends
enables many additional, orthogonal optimizations, such
as caching and approximate query processing (AQP) [9].
These can be used to further improve application
performance.

In this paper, we propose online strategies to decide
when to transfer data from a remote data store to a
front-end to improve the system’s overall efficiency. Our
contributions can be summarized as follows:

• We formalize the problem of choosing between
shipping or replicating data for distributed IoT data
stores with application front-ends.

• We show that this problem can be reduced to a
variation of the ski-rental problem. Based on this
insight, we propose two online replication strategies
that decide when replicating partitions should be
chosen over shipping query results.

• We evaluate the performance of our online

48



N. Semmler, G. Smaragdakis, A. Feldmann: Online Replication Strategies for Distributed Data Stores

replication strategies by applying them to two real-
world query traces. Our results show that our
proposed online strategies perform close to the
optimal offline strategy.

2 PROBLEM FORMALIZATION

Traditionally, distributed databases rather ship query
results than replicate partitions. Even modern databases
make only light use of replication. They rely either on a
static replication scheme or require explicit configuration
by a human administrator [14, 23]. Here, we use
replication as a tool to reduce the transferred data
volume, i.e., the data volume that is moved over the
network to answer queries and reduce query response
times as a side effect. In this preliminary work, we
focus on the interaction between a single front-end and
a single back-end. We also restrict this model to a read-
only workload, which is consistent with the immutable
machine and sensor data often produced in the Internet
of Things.

In the following, we specify, for every function, its
domain and the target set (the co-domain) using the →
symbol. We specify the function itself using the 7→
symbol. Where unambiguous, we omit the domain and
codomain.

2.1 Query Model

In our model, the front-end receives queries over time
from the set of possible queries Q. At any point in time
t, it receives query sets Qt where Qt ⊆ Q. We refer to
the history of received query sets as P̂Rt and the queries
received up to the point t as Q(t) where Q(t) ⊆ Q. We
assume that the back-end stores its data in partitions P
of fixed size and that the queries can be answered using
data stored in the partitions at the back-end. Partitions
can be replicated to the front-end. At any point in time
t we denote the set of replicated partitions as PRt where
PRt ⊆ P . Similar to the queries, we describe the history
of replicated partition sets up to time t with P̂Rt and all
partitions replicated at the time t with PR(t) so that PR(t) ⊆
P . For now, we assume that partitions, which have been
replicated at some point in time remain replicated. For
convenience, we summarize all variables in Table 1.

We assume the use of partitions since partitions are
often the result of optimizing for memory/disk accesses.
The common assumption is that if a row in a partition is
accessed other rows within the partition are likely to be
accessed as well. For the same reason, we see it as an
appropriate transfer unit for our model.

In this paper, we assume that the cost of replicating
a partition p is approximated by the size of the partition

Table 1: Variables

Var. Description
Q Set of queries over the whole

runtime
Qt Queries received at time t
Q̂t Sequence of query sets up to time t:

(Q1, Q2, . . . , Qt)
Q(t) Set of queries observed up to time

t:
⋃t
i=1Qi

P Set of partitions of the data
PRt Set of partitions replicated at time t
P̂Rt Sequence of partition sets

replicated up to time t:
(PR1 , P

R
2 , . . . , P

R
t )

PR(t) Set of partitions replicated up to
time t:

⋃t
i=1 P

R
i

size(p).

size: P → N+ (1)

A query q is answered using data from one or several
partitions. We refer to the contributions of each partition
p to the query result as the partition transfer volume and
result(q, p):

result: Q× P → N+
0 (2)

Thus, we can determine the overall contribution of
each partition p, or aggregate partition transfer volume,
to queries up to time t as record(Q(t), p):

record: Q× P → N+
0

(Q(t), p) 7→
∑
q∈Q(t)

result(q, p) (3)

2.2 Cost Model

The choice of the point in time at which a partition
is replicated influences the network cost in terms of
transferred data volume. At any moment t, the transfer
cost is the sum of the cost of replicating partitions and
the cost of shipping query results:

cost: Q× P → N+
0

(Qt, P
R
t ) 7→

∑
p∈PR

t

size(p) +
∑
p 6∈PR

t

∑
q∈Qt

result(q, p)

(4)

49



Open Journal of Internet of Things (OJIOT), Volume 5, Issue 1, 2019

The total cost is simply a summation of the cost up to
that moment:

total-cost: 2Q × 2P → N+
0

(Q̂t, P̂
R
t ) 7→

t∑
i=1

cost(Qi, PRi )
(5)

2.3 Strategies

The optimal point in time at which a partition should
be replicated depends on the number of queries that a
partition will receive after this point. This information is
usually unknown in advance. Thus, our problem has to
be solved online [1].

An online strategy in our model is a method which
decides which partition should be replicated at any given
moment based on the previously seen queries and its
previous decisions.

strategy: 2Q × P → P

(Q̂t, P
R
(t)) 7→ PRt+1

(6)

Two naı̈ve strategies are to use either only replication
or only shipping and disregard any knowledge gained
from previous queries.

replicate-only (RO): (Qt, PRt ) 7→ P (7)

ship-only (SO): (Qt, PRt ) 7→ ∅ (8)

Our goal is to devise strategies that improve on these
basic strategies and come close to the optimal offline
strategy. The optimal solution is to replicate partitions,
whose record accumulates, over the whole course of
time, accesses that exceed the cost of replicating the
partition—the partition size. For this purpose, we
consider finite query sequences of length n. The optimal
strategy is then:

optimal (OO): (Qt, PRt ) 7→ {p|p ∈ P
∧ record(Q(n), p) > size(p)}

(9)

For some use cases, storing the full access history of
queries may prove to be prohibitively expensive. In these
cases, only the aggregate partition transfer volume can be
stored. The strategies presented in this paper would still
work although with possibly reduced accuracy.

3 ONLINE STRATEGIES

Given that we deal with an online problem where an
optimal strategy has to be selected at any point in time
without knowledge of the future, we turn to the area
of online algorithms [18]. Our replication problem
resembles the ski rental problem [26, 18]. In this
problem, a skier faces the choice between buying a ski-
set and renting a ski-set on every day of his skiing career.
Buying the ski set has the advantage that no future cost
for renting will accrue. However, in the worst case, the
skier stops skiing on the same day (for whatever reason).
Then, the sum of money spent on buying was almost
“wasted”. Renting the ski-set in this situation would
have been cheaper. But, if she keeps on skiing, the
accumulated cost of renting can easily exceed the cost
of buying them in the long run. The third option is to
switch from renting to buying after a number of skiing
days or after a certain sum has been spent on renting.
Yet, choosing this threshold to minimize the absolute
cost in advance, without knowledge of the future, is
impossible. This ski rental problem is similar to our
problem, whereby, the small renting cost is analogous to
the cost of shipping query results, the cost of buying ski
is analogous to replicating a partition and the workload
is not known in advance.

Even though future events in the ski rental problem
are unknown, the worst-case is known and can be
summarized in the form of the competitive ratio. The
competitive ratio captures the performance of an online
algorithm in comparison to an offline one that has perfect
knowledge of the future. It can be shown [26] that buying
the ski after spending the same amount on renting, means
that the skier pays at most twice the sum an all-knowing
actor would have spent. Similarly, we too know, that
replicating a partition after a data volume equal its size
has been shipped is at most twice the cost an all-knowing
actor would have spent. To capture this, we introduce
threshold strategies with the parameter threshold τ :

threshold(τ): 2Q × P → P

(Q(t), P
R
t ) 7→ {p|p ∈ P

∧ record(Q(t), p) > τ}
(10)

The threshold strategy replicates a partition once it is
responsible for a transferred data volume equal to τ . The
ski rental strategy (SR) is one example of a threshold
strategy where the threshold is the size of the partition. If
all partitions have the same size, this is a single value. If
they have different sizes, then the threshold corresponds
to their individual sizes.

A key difference between our problem and the ski
rental problem is that our problem includes multiple

50



N. Semmler, G. Smaragdakis, A. Feldmann: Online Replication Strategies for Distributed Data Stores

partitions. We can either treat them as separate ski rental
problems or we can consider them together. In the latter
case, we may be able to estimate the distribution of
accesses over the partitions. This approach is related to
the constrained ski rental problem [25, 19, 27]. Here,
the probability for the number of skiing days is known
to follow a given probability distribution. This allows
the creation of a threshold-based strategy for the average
case in terms of the expected cost [19, 27].

Thus, we estimate the distribution of aggregate
partition transfer volumes from the history of accesses
(the record in our model) which results in the reactive
threshold strategy (RT). This is another example of
the threshold strategy, but one that uses a threshold
τ(t) which changes over time. We call threshold
strategies that use different thresholds over time dynamic
in contrast to static strategies that use only a single
threshold. For RT, the threshold is estimated from the
existing query history up to present time t.

τRT (t) 7→ argminτ

t∑
i=1

cost(Qi,

threshold(τ)(Qi−1, P
R
i−1))

(11)

Given a finite query sequence of length n, we can use
the same method to compute the optimal threshold for
this query sequence. We refer to the strategy that uses
this threshold as the optimal offline threshold strategy.
Its performance is an upper bound for all static threshold
strategies.

τOT (t) 7→ τRT (n) (12)

Table 3 summarizes all strategies and their
parameters.

4 DATASETS

Ideally, we would like to deploy and evaluate our
strategies in the real world. However, this is impossible
as IoT deployments at this scale are still emerging and
the currently existing often do not require a distributed
setting. Thus, we do a query trace-based evaluation. For
this, the query trace should (a) come from a setting with
a partitioned data store and (b) include the size of query
results by partition.

Unfortunately, traces with this degree of detail are rare
for a variety of reasons. First, current database systems,
typically, only include statistics on how often a specific
database partition was accessed. Second, even when they
can record per query accesses this feature is typically
disabled for performance reasons. Third, even if such
a trace exists it often contains private, business-critical

Table 2: ERP traces statistics

Name Trace 1 Trace 2
Table size in rows [million] 24 100
Number queries [million] 1.28 2.49
Duration [days] ≈ 3 ≈ 3
Accesses in rows [million] 34 137
Avg. rows per query 26 55

information and, hence, their owners rarely share them,
even for research purposes. Yet, the alternative of relying
on synthetic datasets also has the major disadvantage
that the data is often much more regular than in the real
world [24].

Against all these odds, we were able to get access
to two large database query traces with all required
details about the queries and the results. Both
traces were gathered by Martin Boissier et al. [7] by
instrumenting a live production SAP-based Enterprise
Resource Planning (ERP) system of a Global 2000
company. Each trace was collected using a two-step
process. In the first step, all queries to one table within
a live ERP database were recorded for a three-day time
period. To reduce the overhead on the production system
this trace was sub-sampled to only contain queries that
appeared within the first two minutes of every ten-minute
time window. The result of this step is a sequence of
queries with their timestamps. In a second step, the
queries were re-run against a copy of the live system
to determine the size of their result set, including all
rows that are part of the result set. Note, these tables, in
contrast to our assumed setting, are not immutable per se.
However, since the result rows are recorded at the level
of row ids and since these row ids are not reused, the data
is a decent approximation for our use case. Each trace
contains more than 1 million queries and accesses more
than 20 million rows, which corresponds on average to
26 resp. 55 row accesses per query for Trace 1/2. See
Table 2 for a summary.

Even though the traces were recorded from an ERP
system rather than an IoT system, we find that the access
distribution per row is highly skewed. Figure 2a depicts
the empirical cumulative distribution function (ECDF)
of the accesses per row id for both traces. Amazingly,
more than 70%/80% of the rows are never accessed at
all. More than 95% of the rows are accessed less than ten
times. Only a small fraction (less than 1%) of the rows
are very popular with more than 100 accesses. Query
result sizes are heavily skewed as well, see Figure 2b
which does not even show queries with empty result
set sizes. The result sets of more than 80% of the
queries include less than 10 rows. Hereby we note that
Trace 1 is significantly more skewed than Trace 2. In

51



Open Journal of Internet of Things (OJIOT), Volume 5, Issue 1, 2019

(a) ECDF of number of times that individual rows are accessed

(b) ECDF of result sizes per queries

Figure 2: Trace characterization

(a) Trace 1+

(b) Trace 2+

Figure 3: Heatmaps of the number of accesses to each
partition across time periods

Figure 4: ECDF of aggregate partition transfer
volumes

conclusion, the access patterns and the result sizes of
both traces are highly skewed, which supports our earlier
assumption. IoT use cases are likely to be even more
skewed and, thus, would likely give even better results
for our approach.

Recall, our presumption that data is organized in
partitions. Yet, the traces do not contain any information
about partitions. To nevertheless use the trace for our
evaluation, we add partitions to the trace, whereby each
partition contains 100K adjacent rows. Similar results
(not shown) apply for different partition sizes. When
looking at the accesses per partition over the duration
of the trace we noticed some periodic access which
resulted in repeating daily (1 AM) high volume access.
After closer investigation, we concluded that these are
likely to be the result of daily maintenance jobs and
eliminated them by replacing them with the accesses
from the previous hour. We refer to the cleaned traces
as “Trace 1+” and “Trace 2+” respectively. Figure 3a
and Figure 3b show the resulting access patterns as
heatmaps (using logarithmic scale) per partition and
hour. Frequent accesses to the same partition result
in light color entries while low frequent ones result in
dark color entries. Notice, that most entries are dark.
However, some rows are much lighter than others. These
are partitions that are frequently accessed (heavily used)
and, thus, should be replicated. Partitions that are rarely
accessed should not be replicated. Rather, the results
should be computed at the back-end and shipped to the
front-end.

Given that the distribution of row accesses is skewed
(see Figure 2a), we expect that the distribution of data
transfer over partitions is skewed as well. This is indeed
the case, see Figure 4. Note, we normalized the x-
axis with respect to the partition size. For example, for
Trace 1+ about 60% of all partitions have data transfers
less than the partition size, i.e., 100k rows. For these,
shipping the query results is the “right” strategy while
40% have a data transfer of more than the partition
size. For those, replicating the partitions is the “right”
strategy.

To highlight that this does not only apply to the full

52



N. Semmler, G. Smaragdakis, A. Feldmann: Online Replication Strategies for Distributed Data Stores

Table 3: Strategy overview

Short Strategy Description
RO replicate only Replicate immediately
SO shipping only Never replicate
SR ski rental Threshold strategy where

τ = size(p)
OT optimal thresh. Optimal offline threshold
RT reactive thresh. Choose threshold that would

have worked best for past
queries

OO optimal offline Lower bound

Figure 5: Transfer volume for all static threshold
strategies normalized to the OO (optimal offline)
strategy

trace but also for any sub-sequence of the query trace,
we also include the distribution for the first half of the
two traces (labeled Trace X+ (half)). All traces show
a significant skew. We also see a distribution shift, in
the sense that the skew decreases slightly for Trace 2+
and a bit more for Trace 1+ as the trace progresses.
Possible explanations are that these are traces from an
ERP system and not an IoT application and, thus, still
may contain some regular access patterns.

5 EVALUATION

Next, we use the traces to do a what-if evaluation of the
proposed strategies for our scenario with one back-end
(incl. data store) and one front-end. For every strategy,
we compute the transfer volume that would have been
generated between the front-end and the back-end, if this
strategy had been used. For each trace and each strategy,
we compute the total cost for the whole trace duration.
Recall, Table 3 summarizes the strategies.

To start, we consider static strategies, i.e., those
that use a fixed parameter. These include the naı̈ve
strategies ship-only (SO) and replicate-only (RO) as
well as the ski-rental (SR) and the optimal threshold
strategy (OT). Figure 5 shows the results normalized by
the cost of the optimal offline strategy (OO). A lower
bar corresponds to a smaller transfer volume. Note, all
strategies are within a factor of 2.5 of optimal. However,
the strategies that combine shipping and replication–

(a) Trace 1+

(b) Trace 2+

Figure 6: Transfer volume [in rows] for the threshold
strategy for all possible thresholds (normalized by
maximum aggregate partition transfer volume). (We
highlight the threshold of the SR strategy by a dashed
line. A threshold of 0 corresponds to RO while a
threshold of 100 corresponds to SO.)

SR (ski-rental) and the OT (optimal threshold) strategy–
perform much better for both traces. Their overhead vs.
the optimal offline algorithm is less than 34%. Indeed,
the SR strategy already saves 18% (Trace 1+) and 51%
(Trace 2+) compared to SO and saves 37% (Trace 1+)
and 43% (Trace 2+) compared to RO. This confirms our
intuition regarding exploring ski rental-based strategies.
OT further improves upon the SR strategy about 10%
(Trace 1+) and 1% (Trace 2+).

To further explore threshold strategies, we next look
at all possible threshold choices in Figure 61. Here,
the x-axis is the threshold normalized by the maximum
aggregate partition transfer volume for each trace, as
depicted in Figure 4. The transfer volume (“total-
cost”) is the sum of the cost of shipping the query
results (“ship-cost”) and the cost of replication (“repl-
cost”). Note, as the threshold increases the shpping
cost increases monotonically while the replication cost
decreases monotonically. However, since they are not
convex (concave) their sum, the replication cost can

1 RO/SO correspond to using a threshold of zero/infinity resp.

53



Open Journal of Internet of Things (OJIOT), Volume 5, Issue 1, 2019

(a) Trace 1+

(b) Trace 2+

Figure 7: Transfer volume [in rows] over time for all
strategies

have multiple local minima. This plot again confirms
our intuition that combining replication and shipping
is beneficial (local minima exist) and that the naı̈ve
strategies RO or SO are sub-optimal.

Next, we evaluate how the performance of the
strategies changes as the trace length increases, see
Figure 7. For both traces, the performance of strategies
except the naı̈ve ones (RO and SO) are very similar
for the first half of the traces. Indeed, up to this point
in time, the performance penalty of not knowing the
future (compared to the optimum offline) is less than
20%. During the second half of the trace, the access
patterns change which cause the RT strategy to send
57% (Trace 1+) and 28% (Trace 2+) more than the
optimum. We suspect that the difference is caused by
the distribution shift, as described in Section 4.

We propose the RT strategy to improve the OT/SR
strategies. However, RT assumes that the access
distribution can be approximated from the past. If a
distribution shift occurs, this may no longer be the case.
Thus, given the shift, it is not surprising that RT does not
perform as well as OT and may even be worse than SR.
However, we believe that better ways of estimating the
distribution (e.g., by using a limited time window) and
bounding the threshold should yield better performance.
We are currently in the process of further evaluating such
alternative strategies.

6 RELATED WORK

In this paper, we discuss the adaptive replication of a
partitioned data store for a dynamic workload. This work
bears similarities with the file allocation problem (FAP)
and the database allocation problem (DAP).

In the file allocation problem, a file and its copies
must be allocated in a network of computers with the
goal of either minimizing the cost or maximizing the
performance for a workload of file reads and writes.
This problem has been shown to be NP-complete by
Eswaren [17]. Solutions of the FAP can be classified
by their assumption of the workload. Most of the earlier
work on the FAP assumed a static workload [16] or a
dynamic workload, which is known in advance [20]. The
first solution on a dynamic workload, which is unknown
in advance, was presented by Wolfson et al. [34] in
1992. The problem was treated from the perspective
of competitive analysis in [4]. Bartal et al. split the
problem into separate allocation (placement of a fixed
set of file copies), migration (movement of existing
file copies) and replication (addition and deletion of
additional file copies) problems [4]. Most research on the
FAP assumed that each file could be allocated, migrated
and replicated independently. In our work, we instead
use the correlation between access of different partitions
to inform the replication decision.

The database allocation problem (DAP) defined
the same problem for database partitions (or “table
fragments”). Different to files, dependencies between
database partitions have to be considered due to integrity
and consistency constraints and for performance reasons
(e.g., joins) [30, 2]. Therefore, solutions to the DAP
often include mechanisms to re-partition the data [22]
or to estimate the template of future queries [21]. In our
work, we assume that partitions function as the smallest
unit in the storage organization that can be replicated
without incurring a prohibitive overhead. Further, we
believe that partitions, which are co-accessed, have
similar access statistics and are therefore replicated soon
after each other.

Our solution is based on earlier work on the ski rental
problem [26, 18, 25, 19, 27], i.e., the problem of deciding
at what point in time one should switch from renting to
buying a ski-set. This and similar work on the FAP [9, 3,
6] are based on competitive analysis [33], a worst-case
analysis for online algorithms. We have transferred the
problem from independent objects, ski-sets, to partitions
of a data store and from the worst-case to an average-case
analysis.

To our knowledge, no commercial database includes
an adaptive mechanism for data replication today.
Even though modern commercial databases manage far
more data than their predecessors, they use replication

54



N. Semmler, G. Smaragdakis, A. Feldmann: Online Replication Strategies for Distributed Data Stores

mostly to guarantee availability rather than improving
performance and mostly rely on manual or static
replication schemes. Often, database administrators
must either manually specify the replication factor [15]
or trigger the creation of new replicas [14, 23]. One
exception is BigTable [10], which leaves the decision to
the application. The strategies that we have proposed in
this paper can help to build a self-tuning database [12,
11, 28] that uses replication to improve its performance.
We see a strong need for such databases for future
Internet of Things deployments.

7 CONCLUSION

In large-scale IoT deployments, the data is produced at
rates that require storage and processing in distributed
databases. In this work, we look at data replication
as a mechanism to minimize the transferred data
volume in these distributed data stores. We study the
cost trade-off between shipping query results versus
replicating data partitions. To this end, we introduce
two online replication strategies that decide when and
what partitions are to be replicated. Both strategies use
a threshold similar to the solution of the classical ski
rental problem. One strategy uses a static threshold,
i.e., a single threshold over time, and the second a
dynamic threshold, i.e., a varying threshold over time.
By applying our proposed strategies to two real-life
datasets we show that they can yield significant transfer
cost reduction compared to the baseline strategies
(exclusively relying on shipping or replication). The
static strategy resulted in a reduction of transfer cost
between 18% to 51%.

As part of our future agenda, we plan to evaluate
our strategies over a more extensive parameter space
(different partition sizes, time granularities, etc.). We
are also interested in assessing the performance of our
strategies when the characteristics of the access patterns
change. Finally, we are planning to investigate the
integration of replication with caching and the inclusion
of additional performance metrics such as response
time.

ACKNOWLEDGMENTS

We want to thank Hannes Rauhe, Christian Krause,
and Daniel Johannsen from the SAP team in Potsdam
for their feedback and Martin Boissier from the Hasso
Plattner Institute for giving us access to the dataset
used in this analysis. Georgios Smaragdakis and the
dissemination efforts of this work were supported in
part by the European Research Council (ERC) grant
ResolutioNet (ERC-StG-679158).

REFERENCES

[1] S. Albers, “Online Algorithms: A Survey,”
Mathematical Programming, vol. 97, no. 1-2, pp.
3–26, 2003.

[2] P. M. Apers, “Data Allocation in Distributed
Database Systems,” ACM Transactions on
Database Systems (TODS), vol. 13, no. 3, pp.
263–304, 1988.

[3] B. Awerbuchy, Y. Bartalz, and A. Fiatx,
“Competitive Distributed File Allocation,” Theory
of Computing, pp. 164–174, 1993.

[4] Y. Bartal, A. Fiat, and Y. Rabani, “Competitive
Algorithms for Distributed Data Management,”
Journal of Computer and System Sciences, vol. 51,
no. 3, pp. 341–358, 1995.

[5] B. Baumley, “Deutsche Telekom Completes
World’s First Public Mobile Edge Network
Powered By MobiledgeX Edge-Cloud R1.0,”
MobiledgeX. [Online]. Available: https:
//www.globenewswire.com/news-release/2019/
02/19/1734346/0/en/deutsche-telekom-completes-
world-s-first-public-mobile-edge-network-
powered-by-mobiledgex-edge-cloud-r1-0.html

[6] D. L. Black and D. D. Sleator, Competitive
Algorithms for Replication and Migration
Problems. Carnegie-Mellon University.
Department of Computer Science, 1989.

[7] M. Boissier, C. A. Meyer, T. Djürken,
J. Lindemann, K. Mao, P. Reinhardt, T. Specht,
T. Zimmermann, and M. Uflacker, “Analyzing
Data Relevance and Access Patterns of Live
Production Database Systems,” in Proceedings
of the 25th ACM International on Conference on
Information and Knowledge Management, 2016,
pp. 2473–2475.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli,
“Fog Computing and Its Role in the Internet of
Things,” in Proceedings of the first edition of
the MCC workshop on Mobile cloud computing.
ACM, 2012, pp. 13–16, 3.

[9] K. Chakrabarti, M. Garofalakis, R. Rastogi, and
K. Shim, “Approximate Query Processing Using
Wavelets,” The VLDB Journal—The International
Journal on Very Large Data Bases, vol. 10, no. 2-3,
pp. 199–223, 2001.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber, “Bigtable: A Distributed Storage
System for Structured Data,” ACM Transactions on

55

https://www.globenewswire.com/news-release/2019/02/19/1734346/0/en/deutsche-telekom-completes-world-s-first-public-mobile-edge-network-powered-by-mobiledgex-edge-cloud-r1-0.html
https://www.globenewswire.com/news-release/2019/02/19/1734346/0/en/deutsche-telekom-completes-world-s-first-public-mobile-edge-network-powered-by-mobiledgex-edge-cloud-r1-0.html
https://www.globenewswire.com/news-release/2019/02/19/1734346/0/en/deutsche-telekom-completes-world-s-first-public-mobile-edge-network-powered-by-mobiledgex-edge-cloud-r1-0.html
https://www.globenewswire.com/news-release/2019/02/19/1734346/0/en/deutsche-telekom-completes-world-s-first-public-mobile-edge-network-powered-by-mobiledgex-edge-cloud-r1-0.html
https://www.globenewswire.com/news-release/2019/02/19/1734346/0/en/deutsche-telekom-completes-world-s-first-public-mobile-edge-network-powered-by-mobiledgex-edge-cloud-r1-0.html


Open Journal of Internet of Things (OJIOT), Volume 5, Issue 1, 2019

Computer Systems (TOCS), vol. 26, no. 2, p. 4,
2008.

[11] S. Chaudhuri and V. Narasayya, “Self-Tuning
Database Systems: A Decade of Progress,” in
Proceedings of the 33rd international conference
on Very large data bases. VLDB Endowment,
2007, pp. 3–14.

[12] S. Chaudhuri and V. R. Narasayya, “An Efficient,
Cost-Driven Index Selection Tool for Microsoft
SQL Server,” in VLDB, vol. 97, 1997, pp. 146–155.

[13] L. Columbus, “2018 Roundup Of
Internet Of Things Forecasts And Market
Estimates,” published: 2018-12-13,
accessed: 2019-05-04. [Online]. Available:
https://www.forbes.com/sites/louiscolumbus/
2018/12/13/2018-roundup-of-internet-of-things-
forecasts-and-market-estimates/

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild et al., “Spanner: Google’s
Globally Distributed Database,” ACM Transactions
on Computer Systems (TOCS), vol. 31, no. 3, p. 8,
2013.

[15] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s Highly Available Key-Value
Store,” in ACM SIGOPS Operating Systems
Review, vol. 41, no. 6, 2007, pp. 205–220.

[16] L. W. Dowdy and D. V. Foster, “Comparative
Models of the File Assignment Problem,” ACM
Computing Surveys (CSUR), vol. 14, no. 2, pp.
287–313, 1982.

[17] K. P. Eswaran, “Placement of Records in a File
and Fileallocation in a Computer Network,” in
Proceedings of IFIPS Conference, 1974, pp. 304–
307.

[18] A. Fiat, Online Algorithms: The State of the Art.
Springer, 1998.

[19] H. Fujiwara and K. Iwama, “Average-Case
Competitive Analyses for Ski-Rental Problems,”
Algorithmica, vol. 42, no. 1, pp. 95–107, 2005.

[20] B. Gavish and O. R. Liu Sheng, “Dynamic
File Migration in Distributed Computer Systems,”
Communications of the ACM, vol. 33, no. 2, pp.
177–189, 1990.

[21] T. Groothuyse, S. Sivasubramanian, and G. Pierre,
“Globetp: Template-Based Database Replication
for Scalable Web Applications,” in Proceedings of
the 16th international conference on World Wide
Web, 2007, pp. 301–310.

[22] J. O. Hauglid, N. H. Ryeng, and K. Nørvåg,
“DYFRAM: Dynamic Fragmentation and Replica
Management in Distributed Database Systems,”
Distributed and Parallel Databases, vol. 28, no. 2-
3, pp. 157–185, 2010.

[23] hazelcast.org, “Hazelcast IMDG Reference
Manual,” published: 2019-04-25,
accessed: 2019-05-05. [Online]. Available:
https://docs.hazelcast.org/docs/latest-dev/manual/
html-single/#consistency-and-replication-model

[24] W. W. Hsu, A. J. Smith, and H. C. Young,
“I/O Reference Behavior of Production Database
Workloads and the TPC Benchmarks—an Analysis
at the Logical Level,” ACM Trans. Database Syst.,
vol. 26, no. 1, pp. 96–143, Mar. 2001.

[25] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki,
“Empirical Studies of Competitve Spinning for a
Shared-Memory Multiprocessor,” in ACM SIGOPS
Operating Systems Review, vol. 25, no. 5, 1991, pp.
41–55.

[26] A. R. Karlin, M. S. Manasse, L. Rudolph, and
D. D. Sleator, “Competitive Snoopy Caching,”
Algorithmica, vol. 3, no. 1-4, pp. 79–119, 1988.

[27] A. Khanafer, M. Kodialam, and K. P. Puttaswamy,
“The Constrained Ski-Rental Problem and its
Application to Online Cloud Cost Optimization,” in
Proceedings of IEEE INFOCOM, 2013, pp. 1492–
1500.

[28] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi,
J. Ding, A. Kristo, G. Leclerc, S. Madden, H. Mao,
and V. Nathan, “SageDB: A Learned Database
System,” in CIDR, 2019.

[29] D. Mc Hugh, “Volkswagen to Network Factories in
the Cloud with Amazon,” published: 2019-03-27,
accessed: 2019-04-17. [Online]. Available: https://
www.reuters.com/article/us-volkswagen-amazon-
cloud/vw-to-improve-production-with-amazon-
cloud-to-network-its-factories-idUSKCN1R80RZ

[30] M. T. Özsu and P. Valduriez, Principles of
Distributed Database Systems. Springer Science
& Business Media, 2011.

[31] L. Peterson, T. Anderson, S. Katti, N. McKeown,
G. Parulkar, J. Rexford, M. Satyanarayanan,
O. Sunay, and A. Vahdat, “Democratizing the
Network Edge,” ACM SIGCOMM Computer
Communication Review, vol. 49, no. 2, May 2019.

[32] N. Semmler, G. Smaragdakis, and A. Feldmann,
“Distributed Mega-Datasets: The Need for
Novel Computing Primitives,” in 2019 IEEE
39th International Conference on Distributed
Computing Systems (ICDCS), 2019.

56

https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018-roundup-of-internet-of-things-forecasts-and-market-estimates/
https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018-roundup-of-internet-of-things-forecasts-and-market-estimates/
https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018-roundup-of-internet-of-things-forecasts-and-market-estimates/
https://docs.hazelcast.org/docs/latest-dev/manual/html-single/#consistency-and-replication-model
https://docs.hazelcast.org/docs/latest-dev/manual/html-single/#consistency-and-replication-model
https://www.reuters.com/article/us-volkswagen-amazon-cloud/vw-to-improve-production-with-amazon-cloud-to-network-its-factories-idUSKCN1R80RZ
https://www.reuters.com/article/us-volkswagen-amazon-cloud/vw-to-improve-production-with-amazon-cloud-to-network-its-factories-idUSKCN1R80RZ
https://www.reuters.com/article/us-volkswagen-amazon-cloud/vw-to-improve-production-with-amazon-cloud-to-network-its-factories-idUSKCN1R80RZ
https://www.reuters.com/article/us-volkswagen-amazon-cloud/vw-to-improve-production-with-amazon-cloud-to-network-its-factories-idUSKCN1R80RZ


N. Semmler, G. Smaragdakis, A. Feldmann: Online Replication Strategies for Distributed Data Stores

[33] D. D. Sleator and R. E. Tarjan, “Amortized
Efficiency of List Update and Paging Rules,”
Communications of the ACM, vol. 28, no. 2, pp.
202–208, 1985.

[34] O. Wolfson and S. Jajodia, “Distributed Algorithms
for Dynamic Replication of Data,” in Proceedings
of the eleventh ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems.
ACM, 1992, pp. 149–163.

AUTHOR BIOGRAPHIES

Niklas Semmler is currently
pursuing his Ph.D. at SAP SE.
He has received a joint M.Sc.
from the KTH Stockholm and
the TU Berlin and a B.Sc.
from the UvA (University of
Amsterdam). He is interested in
data management across wide-
area networks.

Georgios Smaragdakis is a
Professor at the TU Berlin
and a research collaborator
with Akamai Technologies.
He received a Ph.D. degree in
computer Science from Boston
University, USA, the Diploma
in electronic and computer
engineering from the Technical
University of Crete. His
research brings a data-driven

approach to the study of the Internet’s state, resilience,
and performance, as well as to the enhancement of Web
privacy.

Anja Feldmann is a director
at the Max Planck Institute
for Informatics in Saarbrücken
and has been Professor of the
Internet Network Architectures
research group at TU Berlin.
Previously, she has held research
positions at Technical University
Munich, Saarland University
and has been a member of the
IP Network Measurement and

Performance Department at AT&T Labs – Research. She
received her Ph.D. at Carnegie Mellon University and
her M.Sc. from Paderborn University. Her main research
interest is network performance debugging.

57


	Introduction
	Problem Formalization
	Query Model
	Cost Model
	Strategies

	Online Strategies
	Datasets
	Evaluation
	Related Work
	Conclusion

