
Separating Algorithmic Thinking and
Programming

Maurice Chandoo∗

Abstract. We show how the first steps of algorithmic thinking and programming can be
trained separately. The learner is not assumed to have any prior experience. A general
framework and a sequence of training tasks is described and tested in practice with two
10th graders. Both were able to write relatively complex programs using only pen &
paper within two days.

To train algorithmic thinking, computational problems are presented as games to the
learner. Roughly speaking, a winning strategy corresponds to an algorithm which solves
the problem. Thus, if the learner consistently wins the game for various instances then
this indicates that they have found an algorithm. We describe a general mechanism to
translate a computational problem into such a game. For the programming part, the
learner is shown how a program can be constructed from traces. Programs are specified
in a language which depends on the underlying model of computation (think of Turing
machines, pushdown automata or instruction set architectures); such a model can be
seen as a notional machine. The language itself is very simple yet broadly applicable
due to the generality of our definition of model of computation.

Keywords: machine-computer game, trace-based programming, model of computation,
notional machine, programming education

1 Introduction

Complex tasks are usually taught by breaking them into smaller ones which can be trained separately.
Writing a computer program requires to devise an algorithm for a given task and then implement it
in a programming language. We shall call the ability to devise an algorithm algorithmic thinking
and the task of implementing it programming (some prefer to call the latter coding).

To effectively train something the learner requires feedback to assess their success or performance.
This enables them to appropriately adjust their course of action. Ideally, the feedback is immediate,
informative and easy to obtain. To train algorithmic thinking separately, the learner needs to be
able to verify a potential solution without having to implement it as a program. One way to do
this is to give an informal description of the algorithm to someone else who verifies it. However,
coming up with a description can be difficult by itself, especially for learners with limited means
to express themselves verbally, which makes feedback neither immediate nor easy to obtain. We
describe a game which enables the learner to quickly and easily verify their solution. Playing this
game essentially amounts to executing the algorithm and a recording of the game corresponds to a
trace (therefore playing it is also useful because the implicitly produced traces can be utilized to
construct a program which implements the algorithm).

∗Leibniz Universität Hannover, Institut für Theoretische Informatik, Appelstr. 4, 30167 Hannover, Germany; E-Mail:
chandoo@thi.uni-hannover.de

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Repository of Leibniz Universität Hannover

https://core.ac.uk/display/304105062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A notional machine is described as “the general properties of the machine that one is learning
to control” by du Boulay who introduced the concept [Bou86]. In the context of a programming
language a notional machine can be seen as an execution model for the language which describes
the semantics of its various constructs. Forming a mental representation of such a machine is one
of the difficulties that novice programmers face. Sorva has given an extensive survey on notional
machines and their relation to different research threads in programming education [Sor13]. One of
the conclusions of the survey is that it is recommended to have notional machines as an explicit
learning goal, which we follow in our approach.

Models of computation are a central part of our framework and form a subclass of notional
machines. A model of computation can be seen as an abstract description of a machine: it consists of
buttons (operations) and indicator lamps (predicates), and it resides in a particular state (machine
state). The indicator lamps (partially) describe its current state. When a button is pressed the
machine changes its state depending only on its current state and which button has been pressed.
For example, a Turing machine with tape alphabet {0, 1,�} has 5 buttons and 3 indicator lamps.
For each character x from the alphabet it has an indicator lamp which is on iff the current cell
contains x and a button which writes x to the current cell. It also has buttons to move the head
one cell to the left and right. Its state consists of the tape contents and the position of the head.
This concept has also been described in [Sco67] to uniformly describe various kinds of automata.

Besides automata, it can also be used to describe computing agents such as a drawing turtle
[KK18] or a lumberjack [RZD18]. For example, in a dimly lit maze the agent’s actions (operations)
could be to turn left by 90 degrees or move a step forward and the agent can see whether there
is a wall in front and whether the exit is reached (predicates). The machine state describes the
maze’s layout and the agent’s position. A limitation of models of computation is that the machine
state cannot change unless an operation is executed. For example, an agent in a dynamic real-time
environment cannot be described as such a model. Our framework (game, programming language &
method) is applicable to anything that can be framed as a model of computation.

Our motivation for finding a way to teach algorithmic thinking and programming separately comes
from the experience that students who struggle the most with programming tasks tend to think
about algorithms in terms of a programming language ([Lam18] explains why this is problematic).
A reason for this might be that they equate algorithms with programs. Since it is usually more
difficult to liberate someone from a misconception than to prevent it from happening, we tried to
find a way of letting the learner experience that an algorithm can be constructed without even being
aware of a programming language. Futschek defines algorithmic thinking as a set of abilities related
to constructing and understanding algorithms and also argues that it can be taught independently
of programming [Fut06]. He and Moschitz also propose playing algorithms as means to verify them
[FM10]. Moreover, we also wanted to emphasize that programming requires to take a myriad of
details into account and even if an algorithm is easy to conceive, implementing it can be surprisingly
difficult.

In general, the complexity of translating a mental representation of an algorithm into a program
seems to be underestimated. In [Cha19a] we show how to deal with this translation process
systematically. The programming method presented here is a simpler variant thereof (the difference
is that operations and predicates are already given). Hilton et al. describe a similar approach in
[HLR19]. Both have in common that one starts with executing the algorithm by hand for a concrete
input and then generalizes the steps to build a program incrementally. A related approach called
direct-manipulation programming is tested in [ADF19]. The idea is that the learner can manipulate
a program in terms of its traces using special software which provides a visual link between the
concrete values in the traces and their abstract representations in the code. These works emphasize
the value of traces as means to bridge the gap between the mental representation of an algorithm
and its implementation.

In our approach a trace for some input is written first (or generated by playing the game) and

2

used as specification of the program’s expected behavior on that input. Then the learner performs
two tasks on the trace to add additional information. One task is to assign a program state to each
row of the trace. From this enriched trace a (partial) program is derived that is consistent with the
trace. This process is repeated for additional traces until the program is complete. When adding
additional traces the program is always modified such that it remains consistent with the previous
traces, otherwise a contradiction occurs. Compared to ad hoc programming where the learner is
left alone with figuring out how to construct programs, this approach imposes a structure on this
process with clearly defined steps, which facilitates detecting errors.

In practice, the two 10th graders quickly understood the method and were able to intuitively
apply it to construct complex programs. The method can be carried out using only pen & paper.
An advantage of working away from computers can be that it eliminates the temptation of blindly
guessing parts of a program and verifying its correctness by running it on some arbitrary input
[Cut+19].

2 Machine-Computer Game

A model of computation consists of a set of machine states S, a set of operations (total functions
from S to S) and a set of predicates (total functions from S to {0, 1}). For example, a counter
machine with k registers can hold a non-negative integer in each register; a machine state is a
sequence of k such numbers. For each register it has the operations to increment and decrement
by one (decrementing a register that contains 0 has no effect) and a predicate which holds iff the
register contains 0.

A simple task on the counter machine with 3 registers is to copy the contents of register 1 to
register 2. More specifically, the machine is initialized with an unknown state and a (human)
computer has to operate the machine such that register 1 and 2 contain the value that register 1
had in the beginning. The difficulty is that the indicator lamps (predicates) only reveal partial
information about the machine state, i.e. whether a register contains 0 or not.

This can be played as a 2-player game where one person assumes the role of the machine and the
other is the computer. The machine starts by choosing the initial machine state and writes it down
on a piece of paper which the computer cannot see. Moreover, the machine has a card for each
predicate with ‘on’ written on one side and ‘off’ on the other. These cards are used to simulate the
indicator lamps for the computer. The computer can tell the machine to execute an operation. The
machine writes down the new machine state after applying this operation and updates the indicator
lamps by possibly flipping the cards. When the computer says ‘end’ the machine shows the hidden
paper to the computer. The computer wins if the final contents of register 1 and 2 contain the value
which was in register 1 in the beginning.

A trivial winning strategy for the computer is to determine the contents of register 1 by counting
(decrement until 0) and then set register 1 and 2 to this value. This strategy can be generalized to
solve arbitrary tasks: determine the initial machine state, solve the problem without the machine,
enter the result into the machine. The issue is that no algorithm is executed on the machine itself.
To prevent the learner from resorting to this strategy the additional requirement must be made that
it should be possible to teach the winning strategy to a person who cannot count (e.g. a preschool
child). More generally, the computer is only allowed to remember a constant amount of information
independent of the input.

An actual computer can be used to simulate the machine which makes the game much faster and
less error-prone. However, initially playing the game with another person can facilitate relating
computation to ‘physical reality’. For instance, in the case of the counter machine the machine-player
can use a stack of beer mats to represent each register’s content (number of beet mats = register
value) instead of writing it down on a paper. This allows the learner to associate the abstract

3

quantities in the registers with something tangible. By writing characters from a fixed alphabet on
the beer mats this also extends to stack machines (defined below) and makes it intuitively clear why
counter machines are isomorphic to stack machines over a unary alphabet. In [FWR19] it is found
that programming a physical object versus programming a simulation thereof does not significantly
affect learning gains. Assuming this generalizes, using a computer to simulate the game with the
beer mats might just be as effective; since the computer cannot see the beer mats until the end, the
learner should also be able to play the machine in this simulation.

The learner can train the first steps of algorithmic thinking by trying to find algorithms for simple
models of computation and tasks. If the learner consistently wins the game as computer (without
resorting to the trivial winning strategy described above) then this indicates that they found a
correct algorithm. The feedback for the learner is relatively quick (provided the inputs are not
too large) and easy to obtain since there is no need to convert the mental representation of the
algorithm into a program or an informal description.

A stack machine with k registers over an alphabet Σ can hold a string over Σ (including the
empty string ε) in each register; a machine state is a sequence of k such strings. For each register it
has an operation to remove the last character or append a given character from Σ; removing the
last character from an empty string has no effect. For each register and each character x from Σ it
has a predicate which holds iff x is the last character of the string in that register.

In the following, sequences of training tasks for the counter and stack machine are given. The
number in the parenthesis indicates the number of registers. We write Ri and Ri′ for the initial
and final value of the i-th register, respectively. For a string x let |x| denote its length. The right
column contains tasks for counter machines and the left one for stack machines over the alphabet
{A,B,C}.

• Reverse (2): R2′ = the reverse of R1

• Move (3): R2′ = R1

• Copy (3): R1′ = R2′ = R1

• Concat (3): R3′ = R1 concatenated with R2

• Repeat (4): R3′ = R1 concatenated with itself
|R2| times

• Substr (4): R4′ = substring of R1 starting
from the (|R2| + 1)-th character with length
|R3|

• Move (2): R2′ = R1

• Copy (3): R1′ = R2′ = R1

• Add (3): R3′ = R1 + R2

• Mult (4): R3′ = R1 · R2

• Parity (1): R1′ = R1 mod 2

• Prime (6): R2′ = 1 if R1 is prime, oth-
erwise 0

• Binary (4): R2′ = x times A where x is the value of the
binary number in R1 (A=1, B=0, last character is LSB)

For the task Substr the initial machine state must be chosen such that it describes a valid
substring, i.e. |R2|+ |R3| ≤ |R1|. The game for these tasks can be played at [Cha19b].

This game can be used for any computational problem which can be framed as the task of
reaching a particular target machine state from an unknown initial machine state in some model of
computation.

Here is an example. In a gummy bear factory there are two containers: one with sugar and one
with food dye. Beneath these two containers is a mixer. A gummy bear consists of three pieces of
sugar and two pieces of food dye. There is a button which drops a piece of sugar in the mixer and
another one which drops a piece of food dye in the mixer, provided the respective container is not
empty. Moreover, there are two indicator lamps which show whether the sugar or food dye container

4

Start

S1

R2− 1

S2

R1− 1

S3

R2 + 1

S4

R2 + 1

Start, S1: R2 = 0

R1 = 0

EndS2

S1

S2: S3

S3: S4

S4: R1 = 0

EndS2

Figure 1: Example program for a counter machine

is empty. The task is to put as many piece of sugar and food dye as possible into the mixer in the
correct ratio (3:2) to produce gummy bears. For example, if there were 60 pieces of sugar and 45
pieces of food dye in the beginning then there should be 60 pieces of sugar and 40 pieces of food dye
in the mixer in the end. The challenge is that one does not know how many pieces of sugar and food
dye are in the containers in the beginning. In certain cases it is not possible to achieve a correct
ratio (e.g. 5 pc. sugar, 4 pc. food dye); how can the indicator lamps be modified to solve this issue?

3 Programming with Traces

We define (machine) programs w.r.t. a model of computation. A program is represented as control
flow graph (CFG) with a designated start node. Nodes of the CFG are called program states. Each
program state is associated with an operation (except the start node) and with a binary decision tree
(BDT) which specifies what program state to visit next or whether the program should terminate.
The inner nodes of such a tree are labeled with predicates and the leaves with program states
(except the start node) or ‘End’.

Figure 1 shows a program for a counter machine with two registers. If a predicate does not hold
then the left child (dashed line) is taken. A program state is gray if the program can terminate at
that state. The program doubles the value of register 1 and writes it to register 2, clearing register
1 in the process. Table 1 shows the trace produced when executing this program on input (2,1). An
online interpreter for counter and stack machines is available at [Cha19b].

Observe that the CFG is redundant since it can be reconstructed from the BDTs, i.e. a mapping
from program states to operations along with the BDTs is a complete description of a program.
However, the CFG provides an alternative perspective on the program which we deem valuable for
the learner.

Since this definition works for any model of computation it can be used to describe programs for

5

Table 1: Execution trace of program from Fig. 1

Program State Operation R1 R2

Start 2 1
S1 R2− 1 0
S2 R1− 1 1
S3 R2 + 1 1
S4 R2 + 1 2
S2 R1− 1 0
S3 R2 + 1 3
S4 R2 + 1 4
End

various kinds of automata, computing agents and instruction set architectures to a certain extent.
In contrast to assembler programs the control flow is explicit and jump/branching operations are
replaced by BDTs. The lack of abstraction mechanisms leads to a compact and simple definition
which can be quickly understood.

A program can be derived from traces as follows. When a trace is generated from playing the
machine-computer game each row only contains the operation and machine state. The first step is
to assign program states to each row. This requires deciding which rows correspond to the same
program state. If two rows have different operations then they cannot correspond to the same
program state. The converse is not necessarily true, i.e. the same operation does not imply identical
program states. The next step is to add an additional column to the trace which contains the
sequence of predicates that were considered to determine what state to visit next. This information
can be used to systematically construct the desired program.

To illustrate this, let us consider how the program from Fig. 1 can be partially reconstructed
from Table 1. The trace already contains the program states. The next step is to add a column for
the predicates. In row 1 (Start) only R2 = 0 is considered. Since it does not hold we go to S1. In
row 2 R2 = 0 and then R1 = 0 is considered. Since the first holds and the second does not, we go
to S2. In row 3 no predicate is considered and we immediately go to S3. The sequence of predicates
in a row describes a path through the BDT of the respective program state. For example, row 2
uncovers the path R2 = 0 −→ R1 = 0 99K S2 in the BDT of S1.

The machine-computer game can be modified to reveal these predicate sequences as well. The
machine does not use cards to reveal the truth of the predicates anymore. Instead, the computer
has to ask the machine whether a certain predicate holds until it is clear with what operation to
continue. The sequence of queries before the computer decides the next operation describes the
predicate sequence for that particular row of the trace.

If one strictly follows this approach then programming reduces to selecting a set of inputs whose
traces reveal the complete program, computing those traces, adding program states and predicate
sequences and mechanically deriving the program from this information. The program can be built
incrementally by following the above steps for each input. The partial programs constructed during
this process can be helpful to determine what other inputs to add.

This programming method comes with a correctness guarantee for the partial programs. Suppose
that P is the target program that one wants to construct. A mental representation of P is assumed
to be available, which is used to generate the required information. Let P ′ be a partial program
which is synthesized from the traces T . Notice that P ′ is not necessarily a complete program because
there might be inner nodes in a BDT with only one child. To resolve this, add a node labeled �
for each missing child. The program state � represents undefined behavior; its BDT is ‘End’ and

6

its operation arbitrary. Executing this modified program on input x will reach � as final state
whenever the behavior of P ′ on x is undefined. Now, if the traces T are consistent with P then
P and P ′ produce the same trace for every input x for which the behavior of P ′ is defined. For
example, the behavior of the partial program constructed from Table 1 is defined for all inputs
(x, y) with x ≥ 1 and y = 1. Therefore it will output (0, 2x) for all such (x, y).

4 Experience Report

We tested our framework and the previous tasks with two 10th graders A and B who had no
prior experience with programming. They attended a 5-day workshop for ca. 3 hours per day.
They were given work sheets with multiple problems. We engaged only if we noticed a conceptual
misunderstanding, the interpretation of a problem was unclear or to verify solutions. They were
allowed to interact, but only did so to compare their solutions for the first worksheet.

Worksheets. Worksheet 1 had two problems similar to the task Move for the counter machine
but with a real-world context. The first one involved trading apples against pears before counting
was invented (give one apple, receive one pear and so forth until one party runs out). The second
one was the gummy bear factory from section 2.

Worksheet 2 explained the machine-computer game for counter machines with beer mats. The
game was described such that the connection to counter machines was not as obvious. Instead of
predicate cards the machine-player has to notify the computer as soon as a stack becomes empty.
The problem was to find winning strategies for Move and Copy without counting. Worksheet 3
contained a description of counter machines and the 6 tasks for them. The problem was to find
algorithms for each of them.

Worksheet 4 contained the program from Fig. 1 and two execution traces when executing it
(similar to Table 1). The first problem was to write a trace when executing this program for a given
input. The second problem was to find out how the program can be partially reconstructed from
the given traces; no further hint was given. The purpose of this problem was to make them aware
of the connection between traces and programs. The last problem was to write programs for the 6
previous tasks.

Worksheet 5 described the machine-computer game for stack machines with beer mats. The
problem was to find winning strategies for the first three tasks for stack machines without memorizing
the stack contents. Worksheet 6 described stack machines and the seven tasks for it. The first
problem was to find algorithms for each one and the second problem was to write programs
implementing them. For the task Binary there was an explanation how a binary number can be
converted into decimal by summing the appropriate powers of two.

To demonstrate the algorithms that they found they had to write traces for given inputs. We
provided printed sheets with trace tables that they could fill in. For the more difficult tasks we also
asked them to play the game on the computer.

Observation. Both of them found correct algorithms for all tasks up to and including Parity
after just one hour. They did not play the game at all (either on the computer or with beer mats).
Both failed to find an algorithm for Prime. When we asked them to play the game for the more
difficult tasks, they usually needed two or three tries until they were able to reliably execute their
algorithm.

After less than 20 minutes both had written the execution trace for the program on worksheet 4
and figured out that the sequence of program states in a trace describes a path through the CFG.
Next, A decided to write a program for Mult first and B decided to write a program for Add. We
gave both a laptop with an interpreter where they could type in their programs to run them and

7

explained the syntax of the interpreter. After 1 hour B claimed to have a correct program. We
found an error during testing, which was resolved by B after another half an hour. A had a correct
program for Mult after 2 hours. This concluded the first day.

On day 2 we demonstrated the programming method. During the demonstration we asked them
how to proceed at certain points to check whether they could follow. This took 15 minutes. Then
we gave them trace tables with an additional column for the predicate sequences to facilitate the
use of the method. We asked them to write a program for Mult using only pen & paper. Initially,
A was not sure how to fill out the predicate sequence column: instead of writing down the sequence
of predicates considered for that particular input, A seemed to write down the subset of predicates
that has to be considered at the corresponding program state over all inputs.

After less than 45 minutes A was done. We typed it into the computer and it worked correctly
immediately without further modifications. After 90 minutes B was done. We typed it in but it
returned incorrect results in certain cases. It took B only a few minutes of looking at the trace
produced by the program to identify the cause of the problem (in two places the wrong register was
referenced). After this correction the program worked correctly. B’s program for multiplication had
15 program states and implemented a more efficient algorithm than A’s whose program had only 9;
for certain inputs B’s program was nearly twice as fast.

It took A and B another 30 minutes to write programs for the other tasks on the counter machine
using only pen & paper. All of their programs worked immediately when typed in with the exception
of B’s program for Add (a predicate was missing). A said that the method was useful for Mult
but not so much for the other tasks since the programs were quite simple.

Both solved worksheet 5 before the end of day 2. It took both 20 minutes to understand the game
and find correct winning strategies for all problems with the following exception. B’s strategy for
Copy was incorrect because it involved implicitly counting the length of a string. This concluded
day 2.

The remaining 3 days they were working on worksheet 6. A found algorithms for all of the tasks.
B found algorithms for all tasks but Binary. We gave B a trace produced by an algorithm which
solves it. After 12 minutes B was able to understand the algorithm from the trace alone and execute
it by playing the game. B wrote correct programs for all tasks but Concat and Binary before the
workshop ended. A wrote correct programs for all tasks but Repeat. While B used the method for
all problems, A tried to write programs for Repeat and Substr on the computer. In both cases A
failed to write correct programs without the method. After two hours A gave up on the program
for Substr because it had multiple errors. A tried again on paper using the method which lead to
a correct program for Substr after 90 minutes. A expressed surprise that programming on the
computer can be more difficult than on paper.

In general, A and B’s programs were either immediately correct or had one error which they
resolved after one correction. If they had an incorrect program we gave them the choice to continue
with the next task and return to the current one later on.

We noticed that after Mult both only used the method to construct the CFG and did not write
predicate sequences. Instead, they recognized certain patterns in the BDTs and that some subtrees
occured multiple times in a program. They would draw a colored circle around the first occurrence
of such a subtree and then used the color to reference it.

Interpretation. Both had a relatively high level of abstraction as exhibited by the fact that they
did not need to play the game at all to come up with the algorithms/winning strategies. Also, the
connection between the beer mat game and the counter and stack machines were obvious to them.
It took them only a few minutes to come up with algorithms for a task. We suppose that their
performance during the workshop was above average with respect to their age group.

We claimed that the game can help the learner to train the first steps of algorithmic thinking.

8

However, the learners did not play the game for themselves at all. Why is that? Clearly, playing the
game itself does not help in finding an algorithm. The learner needs to come up with an algorithmic
idea beforehand. The game can only act as an external source which reinforces the belief in the
correctness of the algorithm. If a learner is already confident in their algorithm’s correctness then
playing the game provides no additional value in that regard. In particular, we believe that the
game can help a learner to build confidence in their ability to reason (about the correctness of
algorithms) until the point where it is not needed anymore. A and B were already beyond that
point and thus found no use in playing the game to check their algorithms. Nonetheless, we found
it useful to let them play the game to confirm that they had found a correct algorithm.

The programs that they had to write were quite large. For example, both their programs for
Substr had 27 program states and over 60 nodes in the BDTs. Writing programs of such complexity
is not trivial. We let them try the ad hoc approach on the computer to see how it compares to the
method. For instance, A’s ad hoc program for Mult had 10 program states and 44 nodes in the
BDTs whereas the one constructed with the method had only 9 program states and 31 nodes. A
required less than half of the time to write the program with the method. An even stronger example
of the method’s usefulness is that A failed to write a program for Substr without it. We would
expect that a weaker learner can profit even more from the method because they would already fail
to write simpler programs ad hoc.

However, programming with traces alone is not a silver bullet. It order to write programs
effectively it has to be combined with other techniques. A good example is the task Concat for
which B failed to write a correct program using the method. It can be solved using only 4 calls to
a subprogram for Reverse. Knowing how to compile a program with subprogram calls makes it
trivial to write a program for Concat if a program for Reverse is already known. In contrast,
trying to write a program for it using only the method is tedious and error-prone because it requires
a lot of needless repetition.

Similarly, neither A nor B used predicate sequences for the tasks on the stack machine. Instead
they recognized recurring subtrees and used them to efficiently construct the BDTs after having
derived the control flow and program states with the method. Deriving BDTs strictly from traces
in these cases would have been much more laborious.

The learner should be taught how the method can be used more flexibly and how techniques such
as subprogram calls can be integrated into its workflow; something that we did not do. For example,
subprogram calls can be incorporated by adding them as operation to the model of computation. In
this case the learners figured out how to modify the method by themselves in order to accommodate
it to their needs; something that cannot be expected of every learner.

We conjecture that writing the more complex programs using only pen & paper would have been
infeasible for the two without the method. Since it is impractical to use the method directly on
the computer without additional software support, it was easier for them to program away from it.
However, we think that pen & paper are not essential in this regard. Roughly speaking, letting
the learner work with pen & paper has the advantage that is forces them to think whereas when
programming on the computer there is the temptation of guessing part of the program and running
it to check. A software which enforces a rigid application of the method (the program cannot be
manipulated directly) would eliminate that temptation.

5 Conclusion & Future Work

We described a theoretical framework consisting of models of computation and machine programs,
a game which allows the learner to test and execute arbitrary algorithms within this framework, a
method whereby a program can be constructed from execution traces and a sequence of training
tasks.

9

The presented framework is simple yet general. Our notion of program is simple enough that a
single example can be already sufficient for a learner without prior knowledge of any programming
language to fully comprehend its syntax and semantics. Despite this simplicity such programs can
be used to describe algorithms on the same level of abstraction as modern programming languages
[Cha19a]. During the workshop the two 10th graders quickly understood the framework just from
the description and problems on the worksheets without further instructions.

The game was not played by the 10th graders to verify their algorithms. From this one might
infer that it provided no value. However, it also serves the purpose of implicitly describing what
constitutes an algorithm (a certain kind of winning strategy). Before a learner can be asked to
find algorithms they need to know what algorithms are. An abstract definition is likely too vague
in order for the learner to understand what they are looking for. The alternative is to directly
introduce programs. But this can cause the conflation of programming and algorithmic thinking
since the learner might feel obliged to represent their solution as program. A learner which struggles
to find a correct implementation might not understand whether the algorithm or the implementation
is wrong. Instead of writing a program, the learner can represent their algorithm in terms of traces.
During the workshop we found traces to be quite effective as means to communicate algorithms,
especially when paired with a description of the idea behind the algorithm. Writing such traces
implies the ability to mentally simulate the game. Thus, while the 10th graders did not play the
game they must have simulated it mentally.

A disadvantage of the game compared to programs is that not every winning strategy corresponds
to an algorithm. More specifically, any strategy which requires the computer to remember a
non-constant amount information does not correspond to a program. In general, it might not be
easy for the learner to understand what constitutes a valid strategy.

The method to derive a program from traces worked well in practice. The two 10th graders were
able to understand and use it surprisingly quickly. But the workshop also showed that in certain
instances a rigid application of the method can be exhausting and error-prone. Therefore the learner
should be taught basic forms of abstraction early on to complement the method. Also, applying the
method by hand requires a lot of concentration.

We plan to conduct the algorithmic part of this workshop for a larger group of younger students.
The notion of a program will not be presented to the students in order to evaluate whether teaching
algorithmic thinking using only the machine-computer game is feasible. They should learn the
following abilities: recognizing whether a winning strategy constitutes an algorithm, describing an
algorithm using traces and verbal descriptions, designing algorithms from scratch and translating a
given idea into an algorithm.

We also intend to develop a software which facilitates programming with traces. More specifically,
a modified version of the game can be played which also yields predicate sequences. Then the user
can add state labels to such a trace and automatically synthesize a (partial) program from it. When
another trace is added, the software also checks whether it is consistent with the current program.
Such a software could simplify the use of this method by taking care of menial tasks.

References

[ADF19] Michel Adam, Moncef Daoud, and Patrice Frison. “Direct Manipulation versus Text-
based Programming: An experiment report”. In: Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education, Aberdeen, Scotland, UK,
July 15-17, 2019. 2019, pp. 353–359. doi: 10.1145/3304221.3319738. url: https:
//doi.org/10.1145/3304221.3319738.

[Bou86] Benedict du Boulay. “Some Difficulties of Learning to Program”. In: J. Educational
Computing Research 2.1 (1986).

10

https://doi.org/10.1145/3304221.3319738
https://doi.org/10.1145/3304221.3319738
https://doi.org/10.1145/3304221.3319738

[Cha19a] Maurice Chandoo. “A Systematic Approach to Programming”. In: CoRR abs/1808.08989
(2019). arXiv: 1808.08989.

[Cha19b] Maurice Chandoo. Games and Interpreter for Counter and Stack Machines. 2019. url:
https://upsl.uber.space/aws19/info.txt.

[Cut+19] Quintin I. Cutts, Matthew Barr, Mireilla Bikanga Ada, Peter Donaldson, Steve Draper,
Jack Parkinson, Jeremy Singer, and Lovisa Sundin. “Experience Report: Thinkathon
- Countering an “I Got It Working” Mentality with Pencil-and-Paper Exercises”. In:
Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer
Science Education, Aberdeen, Scotland, UK, July 15-17, 2019. 2019, pp. 203–209. doi:
10.1145/3304221.3319785.

[FM10] Gerald Futschek and Julia Moschitz. “Developing Algorithmic Thinking by Inventing
and Playing Algorithms”. In: Constructionism, Paris. 2010.

[Fut06] Gerald Futschek. “Algorithmic Thinking: The Key for Understanding Computer Science”.
In: Informatics Education - The Bridge between Using and Understanding Computers,
International Conference in Informatics in Secondary Schools - Evolution and Per-
spectives, ISSEP 2006, Vilnius, Lithuania, November 7-11, 2006, Proceedings. 2006,
pp. 159–168. doi: 10.1007/11915355_15.

[FWR19] Grégoire Fessard, Patrick Wang, and Ilaria Renna. “Are There Differences in Learning
Gains When Programming a Tangible Object or a Simulation?” In: Proceedings of the
2019 ACM Conference on Innovation and Technology in Computer Science Education,
Aberdeen, Scotland, UK, July 15-17, 2019. 2019, pp. 78–84. doi: 10.1145/3304221.
3319747.

[HLR19] Andrew D. Hilton, Genevieve M. Lipp, and Susan H. Rodger. “Translation from Problem
to Code in Seven Steps”. In: Proceedings of the ACM Conference on Global Computing
Education. CompEd ’19. Chengdu,Sichuan, China: ACM, 2019, pp. 78–84. isbn: 978-
1-4503-6259-7. doi: 10.1145/3300115.3309508. url: http://doi.acm.org/10.1145/
3300115.3309508.

[KK18] Tobias Kohn and Dennis Komm. “Teaching Programming and Algorithmic Complexity
with Tangible Machines”. In: Informatics in Schools. Fundamentals of Computer Science
and Software Engineering - 11th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2018, St. Petersburg, Russia, October
10-12, 2018, Proceedings. 2018, pp. 68–83. doi: 10.1007/978-3-030-02750-6_6. url:
https://doi.org/10.1007/978-3-030-02750-6_6.

[Lam18] Leslie Lamport. “If You’re Not Writing a Program, Don’t Use a Programming Language”.
In: Bulletin of the EATCS 125 (2018). url: http://eatcs.org/beatcs/index.php/
beatcs/article/view/539.

[RZD18] Sylvia da Rosa Zipitria and Andres Aguirre Dorelo. “Students Teach a Computer
How to Play a Game”. In: Informatics in Schools. Fundamentals of Computer Science
and Software Engineering - 11th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2018, St. Petersburg, Russia, October
10-12, 2018, Proceedings. 2018, pp. 55–67. doi: 10.1007/978-3-030-02750-6_5. url:
https://doi.org/10.1007/978-3-030-02750-6_5.

[Sco67] Dana S. Scott. “Some Definitional Suggestions for Automata Theory”. In: J. Comput.
Syst. Sci. 1.2 (1967), pp. 187–212. doi: 10.1016/S0022-0000(67)80014-X.

[Sor13] Juha Sorva. “Notional machines and introductory programming education”. In: TOCE
13.2 (2013), 8:1–8:31. doi: 10.1145/2483710.2483713. url: https://doi.org/10.
1145/2483710.2483713.

11

https://arxiv.org/abs/1808.08989
https://upsl.uber.space/aws19/info.txt
https://doi.org/10.1145/3304221.3319785
https://doi.org/10.1007/11915355_15
https://doi.org/10.1145/3304221.3319747
https://doi.org/10.1145/3304221.3319747
https://doi.org/10.1145/3300115.3309508
http://doi.acm.org/10.1145/3300115.3309508
http://doi.acm.org/10.1145/3300115.3309508
https://doi.org/10.1007/978-3-030-02750-6_6
https://doi.org/10.1007/978-3-030-02750-6_6
http://eatcs.org/beatcs/index.php/beatcs/article/view/539
http://eatcs.org/beatcs/index.php/beatcs/article/view/539
https://doi.org/10.1007/978-3-030-02750-6_5
https://doi.org/10.1007/978-3-030-02750-6_5
https://doi.org/10.1016/S0022-0000(67)80014-X
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713

	Introduction
	Machine-Computer Game
	Programming with Traces
	Experience Report
	Conclusion & Future Work
	References

