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Abstract

Strongly interacting many-body systems consisting of a large number of indistinguish-
able particles play an important role in many areas of physics. Though such systems
are hard to deal with theoretically since the dimension of the respective Hilbert space
increases exponentially both in the particle number and in the number of system modes.
Therefore, approximations are of considerable interest. The mean-field approximation
describes the behaviour in the macroscopic limit N → ∞, which leads to an effective
nonlinear single-particle problem. Although this approximation is widely used, rigor-
ous results on the applicability and especially on finite size corrections are extremely
rare. One prominent example of strongly interacting many-body systems are ultracold
atoms in optical lattices, which are a major subject of this thesis. Typically these
systems consist of a large but well-defined number of particles, such that corrections
to the mean-field limit can be systematically studied.

This thesis is divided into two parts: In the first part we study generalized quantum
mean-field systems in a C∗-algebraic framework. These systems are characterized by
their intrinsic permutation symmetry. In the limit of infinite system size, N → ∞,
the intensive observables converge to the commutative algebra of weak∗-continuous
functions on the single particle state space. To quantify the deviations from the mean-
field prediction for large but finite N , we establish a differential calculus for state
space functions and provide a generalized Taylor expansion around the mean-field
limit. Furthermore, we introduce the algebra of macroscopic fluctuations around the
mean-field limit and prove a quantum version of the central limit theorem. On the
basis of these results, we give a detailed study of the finite size corrections to the
ground state energy and establish bounds, for both the quantum and the classical case.
Finally, we restrict ourselves to the subspace of Bose-symmetric states and discuss their
representation by quantum phase space distributions in terms of generalized coherent
states. In particular, this allows for an explicit calculation of the evolution equations
and bounds for the ground state energy.

In the second part of this thesis we analyse the dynamics of ultracold atoms in optical
lattices described by the Bose-Hubbard Hamiltonian, which provide an important ex-
ample of the generalized quantum mean-field systems treated in the first part. In the
mean-field limit the dynamics is described by the (discrete) Gross-Pitaevskii equation.
We give a detailed analysis of the interplay between dissipation and strong interactions
in different dynamical settings, where we especially focus on the relation between the
mean-field description and the full many-particle dynamics given by a master equation.

Keywords: Ultracold Atoms; Quantum Mean-Field Systems; Dissipative Quantum Sys-
tems; Finite Size Corrections
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Zusammenfassung

Stark wechselwirkende Vielteilchensysteme spielen in vielen Gebieten der Physik eine
herausragende Rolle. Die theoretische Beschreibung ist jedoch sehr aufwändig, da die
Dimension des Hilbertraums exponentiell mit der Anzahl der Teilchen und der An-
zahl der Moden skaliert. Daher sind Näherungen von großem Interesse. Die mean-field
Näherung beschreibt das System im Grenzwert N →∞ als effektives nichtlineares Ein-
teilchensystem. Auch wenn diese Näherung oft angewendet wird, gibt es nur wenige
mathematisch rigorose Ergebnisse. Ein wichtiges Beispiel für ein solches System sind
ultrakalte Atome in optischen Gittern, die in dieser Arbeit untersucht werden. Typ-
ischerweise bestehen diese Systeme aus einer großen, aber wohlbestimmten Anzahl
an Atomen, so dass Abweichungen von mean-field Grenzwert systematisch analysiert
werden können.

Diese Arbeit gliedert sich in zwei Teile: Im ersten Teil befassen wir uns mit der
Beschreibung von verallgemeinerten mean-field Systemen mithilfe von C∗-Algebren,
die durch ihre Permutationssymmetrie charakterisiert sind. Im makroskopischen Gren-
zwert N → ∞ konvergieren intensive Observablen gegen die kommutative Algebra
der schwach ∗-stetigen Funktionen auf dem Einteilchenzustandsraum. Um die Abwe-
ichungen von einer solchen Beschreibung für große, aber endliche Systemgrößen zu
quantifizieren führen wir einen Differentialkalkül für Funktionen auf dem Zustand-
sraum ein, mit dessen Hilfe wir eine verallgemeinerte Taylorentwicklung um den mean-
field Extremwert definieren können. Darüber hinaus diskutieren wir die Algebra der
Fluktuationen um den Grenzwert und beweisen einen nicht-kommutativen zentralen
Grenzwertsatz. Mithilfe dieser Ergebnisse analysieren wir die Korrekturen aufgrund
der endlichen Systemgröße für das Grundzustandsproblem und ermitteln Schranken
für den klassischen und den quantenmechanischen Fall. Im letzten Kapitel des ersten
Teils betrachten wir Bose-symmetrische Zustände und deren Phasenraumdarstellungen
mithilfe verallgemeinerter kohärenter Zustände. Diese Darstellung ermöglicht es unter
anderem die Bewegungsgleichungen und Schranken für die Grundzustandsenergie zu
bestimmen.

Im zweiten Teil dieser Arbeit beschäftigen wir uns mit der Dynamik von ultrakalten
Atomen in optischen Gittern, welche durch das Bose-Hubbard-Modell beschrieben wer-
den und eine wichtige Anwendung der verallgemeinerten mean-field Systeme darstellen.
Im mean-field Grenzwert wird die Dynamik durch die Gross-Pitaevskii-Gleichung be-
schrieben. Wir stellen eine detaillierte Analyse des Zusammenspiels von Dissipation
und starker Wechselwirkung zwischen den Teilchen vor. Insbesondere befassen wir uns
mit der Beziehung zwischen den Vorhersagen der mean-field Näherung und der vollen
Vielteilchendynamik, welche durch eine Mastergleichung beschrieben wird.

Stichwörter: Ultrakalte Atome; Quanten Mean-Field Systeme; Dissipative Quanten-
systeme; Korrekturen aufgrund endlicher Systemgröße
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Generalized Mean-Field Systems





Chapter 1

Mathematical preliminaries

Many particle-systems consisting of a large number of subsystems play an important
role in many areas of physics. Symmetry under permutation of subsystems, as it is e.g.
implied by the indistinguishability of particles, has a wide range of consequences. In
the special case of quantum mean-field systems the subsystems can be assumed to be
approximately independent in the limit of an infinite number of subsystems and their
behaviour can be described by an effective single-particle theory. The consequences of
this description and especially the case of a large, but finite number of subsystems will
be analysed in detail in the following chapters. In this chapter we briefly introduce
the mathematical framework, provide the basic notations and discuss the fundamental
concepts.

1.1 C∗-Algebras

The description of a system in terms of its observable algebra, respective its C∗-algebra,
allows for the treatment of both quantum and classical systems, as well as finite and
infinite dimensional systems on the same ground. This is especially useful if one is
interested in the macroscopic limit and the transition between large, but finite systems
and their infinite mean-field counterpart. In this description the C∗-algebra is taking
over the role of continuous functions on the space of elementary outcomes, while the
probability measures are given by its expectation functionals. Still if one feels more
comfortable with linear operators on Hilbert spaces, the Gelfand-Naimark-Segal theo-
rem promises that there is always a representation in the usual language of quantum
mechanics even if this representation might not be unique.

In this section, we will give a rough introduction to C∗-algebras and explain the funda-
mental concepts. To this end, we will partly follow the textbook [1], which gives a basic
introduction to quantum systems. For a detailed discussion especially focusing on the
relation to statistical physics, as well as for the proofs omitted here, we recommend
the seminal books [2, 3].



4 Mathematical preliminaries

Definition 1. A C∗-algebra A is a complex, normed, complete *-algebra with its norm
satisfying

‖A∗A‖ = ‖A‖2, ∀A ∈ A. (1.1)

In detail, a C∗-algebra A is a vector space over the field of complex numbers C, closed
under addition A×A 3 (A,B) 7→ A + B ∈ A and multiplication A×A 3 (A,B) 7→
AB ∈ A, which in general does not have to be commutative. Furthermore, it is closed
under the adjoint operation A 3 A 7→ A∗ ∈ A, which fulfills

(A∗)∗ = A,

(λA+ νB)∗ = λ̄A∗ + ν̄B∗ λ, ν ∈ C,
(AB)∗ = B∗A∗, (1.2)

where ν̄, λ̄ denote the complex conjugation of ν, λ. Note that the adjoint operation is
sometimes also referred to as star operation or involution. In the physics literature the
adjoint is often denoted as A†.

In addition to the usual definition of a norm,

‖A‖ ≥ 0 and ‖A‖ = 0 ⇒ A = 0,

‖λA‖ = |λ|‖A‖ and ‖A+B‖ ≤ ‖A‖+ ‖B‖, (1.3)

and the requirement for a Banach algebra,

‖AB‖ ≤ ‖A‖‖B‖, (1.4)

the norm ‖ · ‖ of a C∗-algebra fulfills the C∗-condition (1.1).

Note that a C∗-algebra does not necessarily feature an identity 1, though we will be
only concerned with unital C∗-algebras in the following.

The case of finite dimensional C∗-algebras is already covered by the obvious example
of matrix algebras:

Proposition 2. Any finite dimensional C∗-algebra is isomorphic to a direct sum of
square matrix algebras Md,

A '
n⊕
j=1

Mdj . (1.5)

Other examples for C∗-algebras are e.g. the algebra of compact operators C(H), as well
as the algebra of bounded operators B(H) on a separable Hilbert space H equipped
with the operator norm

||A||∞ := sup{||Aψ||;ψ ∈ H, ||ψ|| = 1}, (1.6)

where ||ψ||2 = 〈ψ|ψ〉 is determined by the scalar product on H. Later on, we will see
that in fact every C∗-algebra is isomorphic to a norm-closed algebra of bound operators
on a (generally not separable) Hilbert space.
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To analyse the structure of a C∗-algebra the notion of the center of a C∗-algebra,

Z(A) = {A ∈ A|AB = BA, ∀B ∈ A}, (1.7)

consisting of the subset of all commuting elements is useful. The algebra is commu-
tative or abelian if and only if Z(A) = A. While non-commuting observables are
a fundamental characteristic of quantum systems, classical systems are commutative.
The mean-field systems studied in the following are represented by asymptotically
abelian C∗-algebras. This explains why these are sometimes denoted as classical.

One particular example for a commutative C∗-algebra is the set of all complex-valued,
continuous functions on a compact space X. The following theorem by Gelfand states
that this is already the general case:

Theorem 3 (Gelfand). Any commutative unital C∗-algebra A is isomorphic to the
algebra C(X) of continuous complex functions on a compact Hausdorff space X. This
space is called spectrum of A and is uniquely determined up to homomorphisms.

1.1.1 Composed systems

This thesis is focused on composed quantum systems consisting of a finite number of
identical subsystems and their asymptotic behaviour in the limit of infinite system size.
In general, the tensor product of two C∗-algebras is given by

A⊗ B = closure{A⊗B|A ∈ A and B ∈ B}. (1.8)

The composed systems forms again a C∗-algebra. This can be seen easily:

(A⊗B)∗ = A∗ ⊗B∗ (1.9)

(A1 ⊗B1)(A2 ⊗B2) = A1A2 ⊗B1B2 ∀A1, A2 ∈ A, B1, B2 ∈ B.
As established in the next section, every C∗-algebra is isomorphic to a norm-closed
subalgebra of bounded operators B(H) on a suitable Hilbert space. For finite dimen-
sional Hilbert spaces, the tensor product of bounded operators corresponds to taking
the tensor product of Hilbert spaces,

B(H1)⊗ B(H2) ≡ B(H1 ⊗H2). (1.10)

For a finite number of subsystems, the generalization to more than two subsystems is
straightforward. One possibility for treating the case of an infinite number of subsys-
tems is introduced in chapter 2.

1.1.2 States on C∗-algebras

By 〈· , ·〉, we denote the canonical bilinear form between the algebra A and its dual
A∗. In the case of a finite dimensional algebra the canonical bilinear form is simply
given by the trace.

A linear functional ω : A → C is called positive, if ω(A∗A) ≥ 0 for all A ∈ A and
normalised if ω(1) = 1.
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Definition 4. A state on a C∗-algebra A is a positive, linear and normalised functional
ω : A 7→ C. The state space S(A) is defined as the set of all states on A.

Any convex combination of states ω1, ω2 ∈ S(A),

ω = λω1 + (1− λ)ω2 ∈ S(A) with 0 ≤ λ ≤ 1, (1.11)

is again a state. Thus, the state space forms a convex set. A state is called a pure
state if it cannot be decomposed in this way, i.e. ω = ω1 = ω2. Otherwise it is called
a mixed state.

A state on a composed system A⊗B is called separable, respectively classically corre-
lated if it can be decomposed as

ω =
∑
k

λk ω
A
k ⊗ ωBk , (1.12)

with ωAk ∈ S(A), ωBk ∈ S(B) and
∑

k λk = 1. Otherwise it is called entangled.

In the case of a finite dimensional C∗-algebra A ' Md any state can be rewritten as
a positive and normed density matrix Dω, with Dω ≥ 0 and tr (Dω) = 1, such that

ω(A) = tr (DωA). (1.13)

In the general case, a state which admits a density operator representation is called
normal.

Definition 5. A representation of a C∗-algebra A on a Hilbert space H is a linear map
π : A → B(H) fulfilling the following conditions:

π(AB) = π(A)π(B),

π(A∗) = π(A)∗,

π(1) = 1. (1.14)

The Gelfand-Naimark-Segal theorem (GNS) states that every abstract quantum prob-
ability space (A, ω) has a realisation in terms of a Hilbert space, where the connection
between abstract description and the concrete realisation is given by a representation
π. This allows to rephrase questions from the abstract setting of C∗-algebras in the
language of quantum mechanics based on operators on Hilbert spaces.

Theorem 6 (Gelfand-Naimark-Segal). For any given state ω on a C∗-algebra A, there
exists a Hilbert space HΩ, a unit vector Ω ∈ H and a representation π : A 7→ B(HΩ),
such that

ω(A) = 〈Ω, π(A)Ω〉 ∀A ∈ A and

π(A) is dense in HΩ. (1.15)
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1.2 CCR-algebra and quasi-free states

In chapter 4 we will analyse the algebra of fluctuations and in particular show that
this is an example for an algebra fulfilling canonical commutation relations (CCR). As
the algebraic formulation in terms of Weyl operators is not yet common standard we
will provide the basic concepts needed to follow the discussion here. As the notation
has proven to be most convenient for the discussion of quantum fluctuation operators,
we closely follow the presentation in [4, 5] and borrow some notation from [6].

Let H be a real linear space equipped with a bilinear form σ. (H, σ) is called a real
symplectic space with a symplectic form σ if the bilinear form satisfies

σ(x, y) = −σ(y, x) ∀x, y ∈ H. (1.16)

The symplectic form σ is called non-degenerate if σ(x, y) = 0 for every y ∈ H implies
x = 0.

The canonical example for a symplectic space which one should keep in mind in the
following is a complex Hilbert space H = H with the nondegenerate symplectic form
been given by the imaginary part of the scalar product, that is

σ(f, g) = =〈f, g〉 ∀f, g ∈ H. (1.17)

The CCR-algebra is generated by the Weyl elements {W (f) | f ∈ H}, where the
involution is given by

W (f)∗ = W (−f) (1.18)

and the product is given by

W (f)W (g) = W (f + g)e−
i
2
σ(f,g). (1.19)

Thus W (0) is equal to the identity and all elements are unitary.

For a nondegenerate symplectic space (H, σ) this is already sufficient to define a C∗-
algebra, which is even unique up to isomorphisms (cf. e.g. theorem 2.1 in [6]). Still, for
a degenerate space, we have to do some more work. In this case we can only conclude
from the above definition that the free vector space ∆(H, σ), composed of all finite
linear combinations of Weyl elements W (f), is a ∗-algebra. However, if we consider the
completion of ∆(H, σ) in the minimal regular norm, that is

‖a‖ = sup{ψ(a∗a)
1
2 | ψ is a state} ∀a ∈ ∆(H, σ), (1.20)

this defines a C∗-algebra which we identify with the CCR-algebra.

A state ω, i.e. a linear, positive and normalised functional on the CCR-algebra ∆(H, σ)
is called regular if the map

R 3 λ 7→ ω

(
W (λf + g)

)
(1.21)
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is continuous. From this property it follows (for the technical details see e.g. chapter
5.2 and especially lemma 5.2.12 in [3]) that there exist a linear map Bπ : H → L(Hω)
from H to the set of linear operators on the Hilbert space of the corresponding GNS-
representation (π, ω,Hω), such that Bπ(f)∗ = Bπ(f) is self-adjoint for all f ∈ H and

π

(
W (tf)

)
= eitBπ(f) ∀t ∈ R. (1.22)

Since the map Bπ(f) satisfies the commutation relation

[Bπ(f), Bπ(g)] = iσ(f, g)1 ∀f, g ∈ H, (1.23)

it is called a Bose-field or a field operator.

A quasi free state ωs on the CCR-algebra as defined above is a state which fulfills

ωs

(
W (f)

)
= e−

1
2
s(f,f), (1.24)

where s(·, ·) is a real symmetric positive bilinear form on H with

1

4
|σ(f, g)|2 ≤ s(f, f)s(g, g) ∀f, g ∈ H. (1.25)

Note that a quasi free state is an example for a regular state.

For a more detailed introduction we recommend the book [6], while we refer to to the
seminal books [2, 3] for a rigourous mathematical treatment.

1.3 Tools from functional analysis

Definition 7. Let X, Y be real vector spaces and choose A ⊂ X to be a convex subset
of X. A function f : A→ Y is called convex-linear iff for every λ, µ ≥ 0 with λ+µ = 1
and for all x, y ∈ A, f(λx+ µy) = λf(x) + µf(y) holds.

A simple example for a convex-linear function is the restriction of a linear functions to
a convex set.

Theorem 8 (Minmax-Theorem [7]). Let X, Y be two real vector spaces with arbitrary
topologies, and A ⊂ X,B ⊂ Y two non-empty, convex and compact subspaces. If
f : A×B → R is upper-semicontinuous in A and continuous in B, as well as convex-
linear in both arguments, then

sup
a∈A

inf
b∈B

f(a, b) = inf
b∈B

sup
a∈A

f(a, b). (1.26)

For more details, as well as a sketch of the proof, we refer to [8].



Chapter 2

Introduction to mean-field systems

2.1 Mean-field observables: Basic concepts

In this thesis, we want to study many-particle systems and their behaviour with growing
system size. Each single system is described by its observable algebra A. In the case
of ultracold atoms, this can be thought of as the single-particle observables, while for
a lattice spin system this would refer to the single-site algebra of a quantum lattice
system.

The observable algebra for the n-particle system is given by the n-fold minimal C∗-
tensor product

A⊗A⊗ · · · ⊗ A︸ ︷︷ ︸
n times

= A⊗n := An. (2.1)

The special choice of the norm in which the completion necessary for the definition
of the tensor product has to be taken has several technical implications, e.g. on the
continuity of linear functionals on the tensor products. However, in the case of a finite
C∗-algebra with which we are mostly concerned, the different definitions of the norm
on the tensor product coincide and thus the resulting C∗-norm is unique. More details
on these questions can be found in [9], whereas a first introduction to the problem is
given in [10].

As we are interested in the macroscopic behaviour, we need to relate the different
systems with growing particle numbers. To this end we use the embedding Am ↪→ An
for m < n by the identification of A ∈ Am with

A⊗ 1n−m ∈ An, (2.2)

where

1m = 1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
m times
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denotes the tensor product of m consecutive identities 1 ∈ A. To indicate the observ-
able A ∈ A of a special subsystem of An, we use the notation

A(i) = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) times

⊗A⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
(n−i) times

. (2.3)

We are especially interested in the thermodynamic limit of statistical mechanics, where
both the number of particles, as well as the system size tend to infinity. The subject
of the next section will be the question how to use the embedding (2.2) not only to
consider Am as a subalgebra of An, but to rigorously describe the mean field limit in
algebraic terms as elements of the inductive limit space.

The common characteristic of all mean-field systems is the underlying symmetry of the
interaction which is invariant under a permutation of the subsystems. Both examples
from above, ultracold atoms as well as spin systems, feature an intrinsic symmetry
which strongly influences the behaviour in the thermodynamic limit. In the case of
ultracold atoms the permutation symmetry results directly from the fact that all par-
ticles are indistinguishable, whereas in the case of spin systems we explicitly assumes
that the systems are translationally invariant.

In statistical mechanics we typically face systems with few-body interactions. The
typical example for a mean-field system with pairwise interactions is given by the
hamiltonian density

Hn =
1

n

∑
n

E(i) +
1

n(n− 1)

∑
i 6=j

V (i,j). (2.4)

Here, E(i) ∈ A denotes the one-particle energy of the i-th system and V (i,j) ∈ A ⊗ A
denotes the energy of interaction between the i-th and j-th particle.

The notion mean-field refers to the fact that the hamiltonian density Hn, respectively
the energy per particle or subsystem, is obtained by averaging over all possible permu-
tations of the onsite energy E(i) and the interaction term V (i,j), that is by taking the
average over all possible sites to which E(i) and V (i,j) can be permuted.

In the language of statistical mechanics, the energy density Hn is an intensive observ-
able, while the total energy of the system, respectively the expectation value of the
Hamiltonian 〈nHn〉 is an extensive quantity. Extensive quantities diverge in the macro-
scopic limit n → ∞, while intensive quantities do not scale with the system size, but
constitute specific quantities characterising the system. In this language, mean-field
observables are intensive quantities.

2.2 Strictly symmetric sequences

The preceding argument constitutes the heuristic basis for the abstract description
of mean-field systems and their thermodynamic limit. To define and analyze general
mean-field observables, going beyond the example of pairwise-interactions (2.4), we
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use the formalism of symmetric sequences introduced in [11]. While this description
was first aimed at the rigorous derivation of a variational formula for the free energy
per particle in the thermodynamic limit, the framework is far more general and has
proven to be beneficial in many applications ranging from ground-state problems to
dynamical questions [12, 13]. There are several notations, which have proven to be
useful depending on the context they are used in. Here, we will closely follow the
introduction in [12].

For all m,n ∈ N with n ≥ m we introduce the symmetrization maps, symn : Am → An,
as the consecutive application of the natural embedding

Am ↪→ An : Am 7→ Am ⊗ 1n−m (2.5)

and a symmetrization with respect to all permutations of n sites. Explicitly, this means

symn(Am ⊗ 1n−m) =
1

n!

∑
π∈Sn

π(Am ⊗ 1n−m), (2.6)

where the sum is taken over all permutations π ∈ Sn of the factors of the tensor product
in An and Sn denotes the symmetric group on n letters. Wherever possible without
loss of clarity, the notation will be shortened to symn(Am) in the following.

Since Ansym is a family indexed by a direct set and the homomorphism symn : Amsym 7→
Ansym fulfills

symn (symn(Ak)) = symn(Ak)

symn (symm(Ak)) = symn(Ak) ∀ k ≤ m ≤ n, (2.7)

The symmetrized spaces Ansym := symn(An) together with the symmetrization symn :
Amsym → Ansym form an inductive system of vector spaces.

As stated earlier, we are especially interested in the thermodynamic limit of statistical
mechanics, where both the number of particles, as well as the system size tend to
infinity. If we consider Am as a subalgebra of An via the embedding (2.2) this limit
can be described in algebraic terms as elements of the inductive limit space

A∞ =
⋃
n

Ansym . (2.8)

Whenever it is convenient, we will consider Ansym as a subalgebra of A∞ in this sense.
The inductive system is associated with a natural seminorm,

‖A‖ = inf
n≥0

sup
m≥n
‖Am‖ = lim sup

n≥0
‖An‖. (2.9)

In this description, symn(An) and symn+m(An) can be identified as elements of the same
equivalence class. The elements of the inductive limit space are the strictly symmetric
sequences, which are defined as follows:
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Definition 9. Sequences of observables for which An = symn(An0) for all n ≥ n0 with
An0 ∈ An0

sym are called strictly symmetric of degree n0. The set of strictly symmetric
observables is denoted as Y.

These are exactly the sequences N 7→ An ∈ An considered in the original treatment of
mean-field dynamics [14] and obviously include the example

Hn = symn(E) + symn(V ), (2.10)

which gives rise to a strictly symmetric sequence of degree 2 (cf. equation (2.4)).
Wherever we refer to the sequence in general and not to a special element of the
sequence, we will suppress the index to shorten the notation.

At this point it is worth to pause for a moment: What characterises a mean-field
observable is its scaling behaviour with the system size. Starting from the few-particle
operators acting on a fixed number of particles, as e.g. the two particle interaction term
in equation (2.4), one can write down the many-particle observable for every system
size n just by averaging over all possible permutations.

2.3 Approximately symmetric sequences

Although we now have a formal definition of mean-field observables there is a funda-
mental drawback: The set of strictly symmetric sequences Y is obviously closed under
addition, but generally not under multiplication. This can already be seen by the sim-
ple example of a multiplication of the symmetrisation of two single-particle operators
A,B ∈ A:

symn(A) symn(B)

=
1

n

(∑
i

A(i)

)
1

n

(∑
j

B(j)

)

=
1

n2

(∑
i 6=j

A(i)B(j) +
∑
i

AB(i)

)

=
1

n(n− 1)

(∑
i 6=j

A(i)B(j)

)
+

1

n

(
1

n

∑
i

AB(i) − 1

n(n− 1)

∑
i 6=j

A(i)B(j)

)

= symn(A⊗B) +
1

n
(symn(AB)− symn(A⊗B)) (2.11)

Hence, the set of all strictly symmetric sequences Y does not form a closed algebra
providing a suitable framework for a rigourous analysis.

To overcome the problem, we need to analyse it in more detail. Therefore, we consider
the product of two strictly symmetric observables of arbitrary, but fixed degree k, `,
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e.g. symn(Ak) and symn(B`) with symk Ak = Ak and sym`B` = B`. Moreover, we
assume that n ≥ k + `− 1. Thus, multiplication of the observables yields

symn(Ak) · symn(B`) = symn(Ak ⊗ 1n−k) symn(B` ⊗ 1n−`)

= symn

(
1

n!

∑
π

(Ak ⊗ 1n−k)π(B` ⊗ 1n−`)

)
. (2.12)

Here we have just used the definition of the symmetrisation operation by the sum over
all possible permutations π of indices (cf. equation (2.6)). All the terms with the same
number of common sites on which Ak and B` act give exactly the same contribution to
the product under the symmetrization operation. Hence, we can reorder the summands
according to the overlap r between Ak and B`,

symn(Ak) symn(B`) =

max(k,`)∑
r=0

cn(k, `, r) symn ((Ak ⊗ 1`−r) (1k−r ⊗B`)) . (2.13)

For r = 0 there is no overlap, while for r/geq1 there are exactly r sites on which both
Ak and B` act. These are sometimes referred to as ‘collision terms’.

The factor cn(k, `, r) can be determined by a simple combinatoric argument, as it is
given by the fraction of the number of summands featuring r intersections and the
total number of permutations,

cn(k, `, r) =
k! `! (n− k!)(n− `!)

n! r! (k − r)!(`− r)!(n+ r − k − `)! . (2.14)

Obviously, for n → ∞ only the term with r = 0 contributes and thus the product of
two strictly symmetric observables, symn(Ak) symn(B`), is to leading order symmetric,

lim
n→∞

‖symn(Ak) symn(B`)− symn (Ak ⊗B` ⊗ 1n−k−`)‖ = 0. (2.15)

A closer analysis shows that the factor cn decreases exponentially with the overlap r
in the limit of large system size:

lim
n→∞

nrcn(k, `, r) = r!

(
k

r

)(
`

r

)
. (2.16)

Hence, for finite n there is a whole hierarchy of corrections including all kinds of collision
terms, where the scaling of he corrections depends on the overlap r. A careful evaluation
of the sum of all summands with r 6= 0 shows that the error of the approximation of
the product symn(Ak) symn(B`) by the strictly symmetric operator symn(Ak ⊗ B`) as
given by the summand with r = 0 is bounded by

‖symn(Ak) symn(B`)− symn (Ak ⊗B` ⊗ 1n−k−`)‖ ≤
k`

n
‖Ak‖‖B`‖, (2.17)

(cf. Lemma IV.1 in [11]). This clearly shows that the set of strictly symmetric sequences
Y is not closed under multiplication. Hence, to obtain a closed algebra we have to
weaken the symmetry condition with the constraint that in the limit of an infinite
number of subsystems the observables are still symmetric. To make this notion rigorous
we introduce the definition of approximately symmetric sequences:
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Definition 10. The set of approximately symmetric sequences is defined as the closure
of the set of strictly symmetric sequences with respect to the seminorm (2.9) and will
be referred to as Ỹ in the following.

Note that this definition is reminiscent of the set of microstates in statistical mechanics,
which differ on the microscopic level, but contribute to the same macrostate. By defini-
tion, all approximately symmetric sequences An ∈ An can be uniformly approximated
by a strictly symmetric sequence,

lim
n>m→∞

‖An − symnAm‖ = 0. (2.18)

This is why the approximately symmetric sequences are sometimes referred to as mean-
field convergent. The completion can be interpreted as the set of intensive observables
including microscopic perturbations even though these do not influence the macroscopic
behaviour.

The product of two symmetric sequences (2.13) is an example of an approximately
symmetric sequence. This remains true when multiplying two approximately symmet-
ric sequences. Thus, the set of approximately symmetric sequences Ỹ is closed under
multiplication and therefore again a C∗-algebra.

Moreover, we have seen that each approximately symmetric sequence can (for large n)
be uniformly approximated by a strictly symmetric sequence and the product of two
strictly symmetric sequences (2.13) is to leading order given by

symn (Ak ⊗B`) = symn (B` ⊗ Ak) . (2.19)

Hence, the set of approximately symmetric sequences Ỹ is asymptotically abelian, i.e.

lim
n→∞

‖AnBn −BnAn‖ = 0 (2.20)

for all An, Bn ∈ Ỹ . In this sense, the many-particle structure does no longer play a
dominant role in the limit of an infinite number of particles and due to the asymptotic
commutativity, the system can be considered as classical in the macroscopic limit.

In the next section we will see how the formalism presented here allows for an ap-
proximate treatment of the system in the limit of infinite particle numbers as a single
particle system under the influence of a mean interaction potential, which yields an
effective nonlinearity.

2.4 The limiting algebra

In the preceding sections we have seen that the approximately symmetric sequences
provide a set of intensive observables because of their scaling behaviour with growing
system size. By construction, the set of approximately symmetric sequences is the
completion of the set of strictly symmetric sequences under the seminorn (2.9), which
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thus form a dense subset of the approximately symmetric sequences. In other words, the
set Y contains exactly the sequences in the limiting space of the inductive system (cf.
equation (2.7)). Due to their permutation symmetry and their scaling properties the
approximately symmetric sequences can be identified with the observables of quantum
mean-field systems.

In this section we will have a closer look at the behaviour of approximately symmetric
sequences in the limit of infinite system size. This can be interpreted as the thermo-
dynamic limit of intensive observables for mean-field systems. According to a common
heuristic argument, it is sufficient to treat the many-particle problem as an effective
single-particle problem in the macroscopic limit, which is subject to an effective mean-
field potential given by the averaged interaction over all other particles. Here we will
explain how we can put this argument on more solid grounds. Still we can only give
a rough introduction following the presentation in [12, 13]. A much more detailed
discussion can be found in [11].

In the first chapter we have introduced the state space S(A) ⊂ A∗ as the subset of the
dual of A, which contains all positive, normalized linear functionals on A

S(A) = {ρ ∈ A∗|ρ ≥ 0, 〈ρ,1〉 = 1}. (2.21)

As above, 〈· , ·〉 denotes the canonical bilinear form between the algebra A and its
dual A∗. In the following we will also use the common notation ρ(A) from operator
algebra theory for the expectation value of an observable A in the state ρ wherever
this notation seems more convenient. As defined in section 1.1.2 ρn = ρ⊗n ∈ S(A⊗n)
will denote the n-fold homogeneous product state.

With these preliminary considerations we can define a functional A∞ : S(A) → C for
each sequence An ∈ A⊗n by

A∞(ρ) = lim
n→∞
〈ρ⊗n , An〉. (2.22)

It is easy to see that this map defines a continuous function on the single-particle state
space S(A), e.g. A∞ ∈ C(S(A)), when S(A) is equipped with its weak∗-topology.

However from a more abstract viewpoint, the map (2.22) can be interpreted as as a
map Ỹ → C(S(A)) assigning to each approximately symmetric sequence An ∈ Ỹ the
function A∞(·), that is

Ỹ 3 An 7→
(
ρ 7→ lim

n→∞
〈ρ⊗n , An〉

)
∈ C(S(A)). (2.23)

In the following we will have a closer look at the set of all limits A∞ and show that the
latter interpretation yields not only a simple map, but an isometric homomorphism.
In conclusion, the algebra of approximately symmetric sequences Ỹ can be identified
with the commutative algebra of weak∗-continuous functions on the single-particle state
space, C(S(A)). Thus, in the macroscopic limit the many-particle system can be ap-
proximately treated as a single-particle system, which is commutative and therefore
behaves like a classical system.
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First of all, we note that each element A∞ can be seen as an equivalence class containing
all mean-field convergent sequences which do not differ in the seminorm (2.9), e.g.

An ∼ Bn ⇔ lim
n→∞

‖An −Bn‖ = 0. (2.24)

In this sense, A∞ can be understood as an element of the inductive limit space (2.8).
Still note that the existence of the limit alone does not imply that the sequence is
approximately symmetric.

For a strictly symmetric sequence of degree r, symn (Ar) ∈ Y , the functional (2.22)
becomes independent of n for all n > r:

A∞(ρ) = lim
n→∞

〈
symn (Ar) , ρ

⊗n〉
= 〈ρ⊗r , Ar〉 ∀Ar ∈ Y . (2.25)

Thus, we can conclude that the image of strictly symmetric sequences under the homo-
morphism (2.23) defines a subalgebra of polynomials on the state space of A. Because
each element of Ỹ can be uniformly approximated by a strictly symmetric sequence,
this subset is dense.

Obviously, the set of all limiting elements A∞ is a vector space, as

lim
n→∞

(αAn + βBn) (ρ) =
〈
ρ⊗n , αAn + βBn

〉
= αA∞(ρ) + βB∞(ρ) (2.26)

holds for all α, β ∈ C and An, Bn ∈ Ỹ .

Because of the seminorm properties, ‖ symm(An)‖ ≤ ‖An‖ is decreasing and hence
convergent. Hence, A∞ equipped with the supremum norm

‖A∞‖ = lim
n→∞

‖An‖ (2.27)

is a Banach space. Moreover, this shows that the map (2.22) is an isometry.

In the preceding section, we have already seen that the the n-fold product of two
approximately symmetric sequences is again approximately symmetric. Furthermore,
for two strictly symmetric sequences, the product symn(Ak) symn(B`) is to leading
order given by symn(Ak⊗B`) and therefore asymptotically commutative. Transferring
this result to the limit space spanned by the elements A∞, this space becomes an
abelian algebra. This reasoning also explains the choice of the n-fold product state ρ⊗n

as the reference state in (2.22), since in the limit n → ∞ this defines a multiplicative
functional on the n-fold product. Moreover, one can show that one can construct all
pure states on C(S(A)) in this way (for more details see [11]).

Finally, we verify the C∗-condition (1.1), which can be directly carried over from the
properties of the C∗-algebra A,

‖A∗∞A∞‖ = lim
n→∞

‖A∗nAn‖ = lim
n→∞

‖An‖2 = ‖A∞‖2. (2.28)
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Summarizing the above results we conclude that the map (2.23) preserves the algebraic
structure and therefore yields an isometric homomorphism from Ỹ to C(S(A)). Since
the set of all strictly symmetric sequences is dense in Ỹ , the subalgebra of polynomials
on the state space of A is dense in C(S(A)). Hence, by the Stone-Weierstrass theorem,
the homomorphism is onto C(S(A)): The image must be a closed subalgebra and
contains the linear functionals on S(A). In other words, C(S(A)) is the Hausdorff
completion of the inductive system.

In conclusion the algebra of approximately symmetric sequences Ỹ is isometric and
homomorphic with the commutative algebra of weak∗-continuous functions C(S(A)).
Note, that the homomorphism property can be extended to a whole C∗-functional
calculus (more details can be found in the appendix of [11]).

The following theorem summarizes the argument presented in this section. It provides
the basis for the abstract description of general mean-field systems, as well as the
starting point for the analysis of the fluctuations around the mean-field limit. Here,
A ∈ Ỹ refers to the sequence n 7→ An ∈ An, and not to a special element An ∈ An of
the sequence.

Theorem 11 (Generalized mean-field systems [12,13]).

1. For all A ∈ Ỹ the seminorm ‖A‖ = limn→∞ ‖An‖ exists and Ỹ is the comple-
tion of Y in the seminorm (2.9). Furthermore, Ỹ is closed within the set of all
sequences n 7→ An ∈ An in this seminorm.

2. Ỹ is an algebra with the operations of n-wise addition (A + B)n = An + Bn and
n-wise multiplication (AB)n = AnBn, which is commutative under the seminorm
(2.9) in the sense that

‖AB −BA‖ = lim
n→∞

‖AnBn −BnAn‖ = 0. (2.29)

3. For all A ∈ Ỹ, A∞(ρ) := limn→∞ symn(An)(ρ⊗n) exists uniformly for all ρ ∈
S(A).

4. The map Ỹ 3 A 7→ A∞ ∈ C(S(A)) is an isometric ∗-homomorphism from Ỹ onto
C(S(A)).

A detailed introduction to the general theory of quantum mean-field systems can be
found in the seminal paper [11]. A thorough study of the limiting dynamical semigroup
addressing several fundamental questions ranging from the conditions for the existence
of the limit to an analysis of the stability properties, is given in [12]. In the last chapter
of part I, we will give a short introduction to the application of these results to hamil-
tonian systems following [13] and discuss the relation to the phase space description
for Bose symmetric systems. In particular we will show that the theory of differential
operators introduced in section 6.2 provides an efficient way to explicitly calculate and
analyse the limiting phase space flow predicted by the general theory.
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The ideas presented in this chapter can be extended to study local dynamics to analyse
the interactions between a small amount of tagged sites and the bulk [15]. Moreover,
this framework is not restricted to homogeneous mean-field systems, but can be gen-
eralized to treat inhomogeneous mean-field systems. In this systems each single-site
algebra A carries an additional label, describing e.g. a position or different types of
species, which influences the interaction. If these labels are given by points in a com-
pact space X with a limiting distribution which fulfills some specific conditions, one can
carry through the theory considering C(X,A) instead of C(S(A)) [16]. One important
example for such a system is the BCS-model without the strong coupling assumption.
These systems are treated in [17]. Dynamical question in a general inhomogeneous
mean-field setting are discussed in [18].

The abstract treatment of quantum mean-field systems features some fundamental
connections to the theory of large deviations [19] and is closely related to the theorem
by Størmer about the integral decomposition of symmetric states on an infinite tensor
product of C∗-algebras [20]. The relation to the results presented above will be briefly
highlighted in the next section. Later on, this discussion will be taken up again from
a different viewpoint in chapter 5, as well as in the context of quantum phase space
distributions in chapter 6.

2.5 Symmetric states

In this section we briefly discuss the implications of the symmetry property for states.
In particular, we will introduce the theorem by Størmer which provides an integral de-
composition, characterising permutation symmetric states on infinite tensor products,
such as the C∗- inductive limit algebra

A∞ =
⋃
n

An. (2.30)

For the time being, we will only consider finite dimensional C∗-algebras, respective
d-dimensional matrices A =Md. The limit is taken along the embeddings Am → An :
Am ↪→ Am ⊗ 1n−m.

Moreover, we will explain how one can directly obtain this result as a corollary of
theorem 11 and give an alternative formulation commonly known as quantum de Finetti
theorem [21–24]. This theorem is a generalization of a result from classical probability
theory on the relation between the symmetry and the independent and identically
distributed (i.i.d.) property [25]. Here we will follow the recommendable introduction
[26]. Here we only briefly comment on the implications of the quantum de Finetti, but
we will come back to this point in chapter 5. Furthermore, we will prove two similar
results in the context of quantum phase space distributions in chapter 6.
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2.5.1 Størmer’s theorem and the mean-field limit

A state ρn ∈ An is called symmetric if it is invariant under an exchange of its subsys-
tems, e.g. the state is not affected by any permutation π:

ρn = πρnπ
†. (2.31)

In the case of an infinite tensor product of C∗-algebras, as e.g. A∞ (2.30), a state
φ ∈ S(A∞) is said to be symmetric if all restrictions to a finite sequence are symmetric,
that is

φ(symn (An)) = φ(An) ∀n ∈ N (2.32)

with An ∈ An ⊂ A∞.

Størmer’s theorem [20] establishes that the set of all symmetric states on A∞ forms a
simplex with the extremal states been given by product states, which yields a tractable
parametrization of the infinite dimensional convex set A∞.

Corollary 12 (Størmer’s theorem [20]). Any symmetric state φ on A∞ has a w∗-
integral decomposition

φ =

∫
µ(dσ)σ∞, (2.33)

where µ is a probability measure on S(A) and σ∞ denotes the infinite product state on
A∞.

This corollary is a consequence from the above reasoning, and especially from theorem
11. This can be seen as follows:

For each permutation symmetric state φ the limit limn φ(An) exists uniformly for each
A ∈ Ỹ and thus defines a state on Ỹ as promised by theorem 11. Now this space
modulo the equivalence relation (2.24) is isomorphic to C(S(A)). Hence, the state φ is
equivalent to a state on C(S(A)), which another way of saying that it defines a measure
on C(S(A)). Finally, the decomposition into pure states yields (2.33). For more details
on the proof of corollary 12, as well as on the relation to the general mean-field theory
we refer to [11].

In the next section, we will see how the same problem arises in a quite different context.
Moreover, we will explain how one can weaken the symmetry assumptions to be able to
approximate a larger class of states by the convex combination (2.33) and give explicit
bounds on the error of the approximation, for a large but finite number of tensor
factors N .

2.5.2 Finite quantum de Finetti theorem

All physical laws are based on a limited number of observations restricted by exper-
imental resources. Yet we expect them to hold in general. This paradigm, which we
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have to assume but which we cannot verify experimentally. It is most clearly expressed
in the tomography problem [26] :
Given a large composite system consisting of N subsystems ρ1, . . . , ρN where only k
out of N are experimentally accessible. Now one can ask under which assumptions the
physical state of the whole system can be inferred on the basis of this experimental
data?

Lets first assume that the physical state of the N -partite system is composed of N
independently and identically distributed (i.i.d.) copies of the same state σ, which is
just another way of saying that we assume that ρN is a product state ρN = σ⊗N . Then
it is possible to deduce the physical state of the composite system only by individual
measurements on a small number of subsystems. However, the complete absence of
any correlation can in itself not be verified experimentally, unless the whole state
is accessible. On the other hand, symmetry ρN = πρnπ

† is often implied naturally
in physical systems, e.g. by the indistinguishability of identical particles or can be
enforced by random permutations of the subsystems. But still it is not clear if this
assumption alone is sufficient to solve the tomography problem.

To clarify this problem one has to go back to the fundamental relation between sym-
metric and i.i.d. states. Bruno de Finetti was the first to address this question in the
context of classical probability distributions of random variables for the special case
of fixed k and N → ∞ [25, 27]. In its generalized form [28], the classical de Finetti
theorem makes a statement about exchangeable random variables, that is probability
distributions which are invariant under permutations.

Theorem 13 (Classical de Finetti theorem [28]). Let S be a finite set of cardinality d
and P be an exchangeable probability distribution on SN . Then there exists a probability
µ on the Borel subsets of the set of probabilities on S, such that the projection Pk of P
on Sk can be approximated as

‖Pk − Pµ,k‖sup ≤
dk

N
∀k ≤ N, (2.34)

where we have defined

Pµ,k(A) =

∫
p⊗k(A) µ(dp) (2.35)

to be a convex combination of identically and independently distributed probability mea-
sures. For sets of infinite cardinality, the error is given by

‖Pk − Pµ,k‖sup ≤
k(k − 1)

2N
∀k ≤ N. (2.36)

Thus for a small sample, i.e. k � N , taking a random sample is approximately the
same as sampling independently and identically distributed random variables, where
the error vanishes approximately as k/N in the limit N → ∞. In this limit, the
analogies to corollary 12 are obvious.



2.5. Symmetric states 21

There are several generalizations of de ’s theorem to the quantum noncommutative
case [11,20–24], including both finite dimensional subsystems [29,30], as well as infinite
dimensional subsystems [31]. Here we are mainly concerned with finite dimensional
subsystems, respectively states ρN on (Cd)⊗N and therefore we will closely follow [30].

In the quantum case, a state ρk is called N -exchangeable if there exists a symmetric
state ρN = π†ρNπ on H⊗N with N > k, such that ρk = trN−k (ρN). The state is said
to be infinitely exchangeable if such a symmetric state ρn exists for all n > k. This is
exactly the case treated in corollary 12, which promises that the state is exactly given
by a convex combination of product states. In the case of finite exchangeability, the
exact statement has to be replaced by an approximation:

Corollary 14 (Quantum de Finetti theorem [30]). Let ρk be an N-exchangeable state,
e.g. there exists a permutation invariant state ρN on (Cd)⊗N for k ≤ N . Then the
reduced state ρk = trN−k(ρN) can be approximated by a convex combination of product
states

ρ̃k =

∫
σ⊗k dµ(σ) (2.37)

where the error is given by

‖ρk − ρ̃k‖1 ≤
d2k

N
. (2.38)

For Bose-symmetric states, e.g. states for which πρN = ρN holds for any permutation
π ∈ SN , the error is even tighter,

‖ρk − ρ̃k‖1 ≤
dk

N
. (2.39)

For details on the proof, as well as possible generalizations we refer to [30].

A simple example shows that it is not possible to find a bound independently of d, as
it is the case in the classical version of the theorem. If we consider the density operator
ρN = |Ψ〉 〈Ψ| where |Ψ〉 denotes the completely antisymmetric state vector for d = N :

|Ψ〉 =
1√
N !

∑
π

sign(π) · π
(
|0〉 ⊗ |1〉 ⊗ · · · |N − 1〉

)
, (2.40)

we get a mixture of singlet states for ρ2

ρ2 =
2

N(N − 1)

∑
1≤i≤j≤N

(|ij〉 − |ji〉) (〈ij| − 〈ji|) . (2.41)

Thus, the trace distance of any approximation by product states never decreases below
1/4, independently of the number of subsystems N . Note only does this prove that the
bound has to depend on the dimension d of the subsystem, but also that the reduced
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system is only approximately i.i.d if the number of subsystems is sufficiently large
compared to the dimension d, which is obviously not he case here, as d ∼ N .

In the following, we will be mostly concerned with the finite version of the de Finetti
theorem, which is simply refered to as the de Finetti theorem wherever possible without
loss of clarity. A closer analysis will show that the determination of these bounds is
closely related to the first order corrections for the mean-field results. We will discuss
this relation in chapter 5 for the ground state problem. There we will also give more
details on the evaluation of these bounds. Moreover, we will prove a similar result in
the context of phase space functions in chapter 6.



Chapter 3

Mean-field differential calculus

What we are aiming at is a general description of the macroscopic limit of mean-
field observables and especially of the derivations from this limit for large, but finite
system size. Hence, an expansion around the mean-field limit A∞ with the expansion
parameter being the system size 1/n would be of major interest.

For common real or complex functions, one well-known possibility to achieve such
an expansion around an arbitrary point is the Taylor expansion. For an infinitely
differentiable function f(x) the Taylor expansion around the point a yields the power
series

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, (3.1)

where f (n)(a) denotes the n-th derivative evaluated at the point a and f (0)(a) = f(a)
refers to the function itself.

However, we are not concerned with a real or complex function, but with the (generally
nonlinear) functions A∞ : S(A)→ R on the single-particle state space. Thus, it is not
at all obvious how to define the notion of a higher derivative, or even the first order
derivative on the limiting space C(S(A)), which we have identified with the set of limits
of mean-field observables in the preceding chapter.

3.1 Introduction to the calculus of state space func-

tions

To generalize the notion of a derivative to functions on the state space, as e.g. given
by the mean-field limit A∞, one has to recall the definition of the tangent space of a
manifoldM from differential geometry. There, the basic idea relies on the composition
of a chart δ : U → Rn, a homeomorphism from on an open subset U ⊂ M around a
point p ∈ M to Rn, with the local parametrization of the manifold around the point
p by a curve γ : (−1, 1) → M with γ(0) = p. Hence, the composition (δ ◦ γ) yields



24 Mean-field differential calculus

an ordinary function from (−1, 1) to Rn and one can apply the common definition of a
derivative as the limit of the difference quotient. The tangent vector at the point p is
defined as the equivalence class of all curves for which the ordinary derivative (δ◦γ)′(0)
coincide at 0. Furthermore, the tangent space at a point p is defined as the set of all
tangent vectors and denoted by TpM.

Later on in this section, we will also need the notion of the total derivative. In the
context of differential geometry the total derivative denotes a function TpM→ R which
sends a tangent vector to its directional derivative and is thus itself an element of the
cotangent space T ∗pM. Note that this construction is independent of the special choice
of the chart δ.

Following this reasoning, we consider the state space as a manifold,M = S(A). Then
the curve γ : (−1, 1)→ S(A) yields a parametrization of the state space, which allows
to define a tangent vector at the point σ(0) = ρ as the selfadjoint functional

φ = lim
ε→0

σ(ε)− σ(−ε)
2ε

∈ TρS(A). (3.2)

Thus, we can identify the tangent space of S(A) at the point ρ as a subspace of the
dual of A containing the set of self-adjoint functionals on A with

〈φ,1〉 = 0, (3.3)

where the condition just results from the conservation of the probability in equation
(3.2).

In the same manner, we can identify the elements of the cotangent space as the equiv-
alence classes [a] = a+ R1 with a∗ = a ∈ A. That we indeed have to treat equivalence
classes [a] = a + R1 and not only self-adjoint elements a∗ = a of A is a direct conse-
quence of property (3.3), namely

〈φ, a+ λ1〉 = 〈φ, a〉 ∀λ ∈ R, φ ∈ TρS(A). (3.4)

With this reasoning in mind, we can define the total derivative for a functional on the
state space S(A)) as follows:

Definition 15. Total derivative [13]

A function on the state space f ∈ C(S(A)) is said to be differentiable if

1. for all ρ ∈ S(A) there exists an element df(ρ) ∈ A such that for all σ ∈ S(A)
the derivative

〈σ − ρ, df(ρ)〉 = lim
t→0

1

t
(f((1− t)ρ+ tσ)− f(ρ))

=
d

dt
f ((1− t)ρ+ tσ)

∣∣∣∣
t=0

exists as a weak∗-continuous affine functional of σ.
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2. The maps ρ 7→ 〈σ − ρ, df(ρ)〉 are weak∗-continuous, uniformly for σ ∈ S(A).

Due to the property (3.3), respective the property that the elements of the cotangent
space form an equivalence class, we are free to choose a unique representative by
fixing the expectation value of the total derivative. In the following, we will choose
〈ρ, df(ρ)〉 = 0 and denote the derivative defined in this way by ∇ρf . Hence we can
always write the directional derivative as 〈σ,∇ρf〉 and reformulate the second condition
of the definition by requiring that the map ρ 7→ ∇ρf is weak∗-to-norm-continuous.

As a first example, we will calculate the derivative of an arbitrary polynomial. Let
AN = symN(Ak) be a strictly symmetric sequence of degree k, symk(Ak) = Ak. Thus
the sequence is mean-field convergent and the mean-field limit

A∞(ρ) =
〈
ρ⊗k, Ak

〉
∈ C(S(A)) (3.5)

defines a functional A∞ : S(A) → R. Therefore, according to definition 15 the total
derivative of the mean-field limit A∞ can be calculated as

〈σ,∇ρA∞〉 =
d

dt

〈
(ρ+ t(σ − ρ))⊗k , Ak

〉∣∣∣∣
t=0

= k
〈
(σ − ρ)⊗ ρ⊗k−1, Ak

〉
= k

〈
σ ⊗ ρ⊗k−1, Ak −

〈
ρ⊗k, Ak

〉
1
〉
. (3.6)

In the second line we made use of the symmetry of Ak to reorder the tensor factors.
Note that in this case, we do not need to explicitly require the continuity of ρ 7→ ∇ρA∞,
as the weak∗-to-norm continuity already follows from the construction of the minimal
C∗-cross norm (for more details see [11]).

Based on the general theory of mean-field dynamical semigroups on C∗-algebras [12]
one can analyse the case where the generators are hamiltonian [13], in which case
the mean-field limit yields a hamiltonian flow. This flow is governed by an effective
Hamiltonian which is given by the first order derivative of the mean-field limit of the
Hamiltonian. Moreover, the derivative can be used to define a Poisson-like bracket,
which turns out to be the mean-field limit of the appropriately rescaled commutator.
We will comment on this point in section 7.2.2.

3.2 Higher order derivatives

Having in mind the above reasoning it is still not clear how to iterate the construction
to determine higher order derivatives. To accomplish this goal it turns out to be quite
useful to make the problem even more complicated at first and consider a function
f : S(A) → B mapping the state space of the algebra A to another algebra B. For
reasons of convenience, we will from now on use the notation ρ(A) from operator
algebra theory to denote the expectation value of the operator A in the state ρ.
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Now we can define the gradient of such a function at a state ρ ∈ S(A) as a directional
derivative,

σ ⊗ σ0

(
∇ρf) =

d

dt
σ0

(
f
(
(1− t)ρ+ tσ

))∣∣∣∣
t=0

, (3.7)

with σ0 ∈ B, generalizing the first order derivative ∇ρf , which is now an element of
the tensor product A⊗ B.

Of course, this need not exist in general, and we define differentiability of a function
precisely by the validity of this formula and the continuity of ∇ρf in ρ, as requested
in the above definition. At first sight, this does not seem like a big change. Still
if we expand the tensor product by the algebra B, we are able to iterate the above
construction and define the k-th order gradient ∇k

ρf ∈ A⊗k ⊗ B to be given by

σk ⊗ · · · σ1 ⊗ σ0

(
∇k
ρf) =

∂k

∂tk · · · ∂t1
σ0

(
f
(
ρ+

∑
i ti(σi − ρ)

))∣∣∣∣
t=0

. (3.8)

This definition is readily motivated by the following construction:

(σk − ρ)⊗ (σk−1 − ρ)⊗ · · · ⊗ (σ1 − ρ)⊗ σ0

(
dkf(ρ)

)
=

∂

∂tk
(σk−1 − ρ)⊗ · · · ⊗ (σ1 − ρ)⊗ σ0

(
dk−1f (ρ− tk(σk − ρ))

)∣∣∣∣
tk=0

=
∂

∂tk . . . ∂t1

(
σ0, f(ρ−

k∑
i=1

ti(σi − ρ))
)∣∣∣∣∣

ti=0

:= σk ⊗ σk−1 ⊗ · · · σ1 ⊗ σ0

(
∇kf(ρ)

)
. (3.9)

To simplify matters, we have defined the zeroth order derivative as the function itself,
∇0f(ρ) = f(ρ) ∈ B.

Since ordinary derivatives commute, the above construction (3.8) is symmetric in the
parameter ti. Thus, the gradient ∇k

ρf is symmetric with respect to the A-factors,

∇k
ρf ∈ Aksym ⊗ B. (3.10)

Moreover, if we choose any one of the σi = ρ, the expression on the right no longer
depends on ti, and hence the derivative vanishes. This is reminiscent of the convention
to chose the gradient ∇ρf at the point ρ such that its expectation vanishes in the state
ρ. These properties are essential for the definition of the Taylor expansion and turn out
to be quite beneficial for actual calculations, as we will see in the following chapters.

We will often evaluate the above expression when all σi = σ are equal. Because of the
permutation symmetry this is actually sufficient to determine ∇k

ρf . In the case that
the algebra B = C is trivial, we get:

σ⊗k
(
∇k
ρf) =

∂k

∂tk
f
(
ρ+ t(σ − ρ)

)∣∣∣∣
t=0

. (3.11)
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As an illustrative example, we calculate the derivatives of the mean-field limit of a
strictly symmetric sequence of degree 2,

A∞(ρ) = lim
n→∞

ρ⊗n (symn(a⊗ b)) (3.12)

= ρ⊗2

(
a⊗ b+ b⊗ a

2

)
= ρ(a)ρ(b). (3.13)

Not only did we choose this example for illustrative reasons, but this calculation already
covers the typical example of the Hamiltonian (2.4) with two-particle interactions.

Using the above definition of the first order derivative and following the steps of the
calculation in equation (3.6), we get

σ (∇ρA∞) =
∂

∂t
(ρ− t(σ − ρ))⊗2

(
a⊗ b+ b⊗ a

2

)∣∣∣∣
t=0

= (σ − ρ)⊗ ρ (a⊗ b+ b⊗ a) , (3.14)

while the second derivative yields

σ2 ⊗ σ1

(
∇2
ρA∞

)
=

∂2

∂t2∂t1
(ρ− t1(σ1 − ρ)− t2(σ2 − ρ))⊗2

(
a⊗ b+ b⊗ a

2

)∣∣∣∣
t1=0=t2

= (σ2 − ρ)⊗ (σ1 − ρ) (a⊗ b+ b⊗ a) . (3.15)

In both calculations we have benefited from the permutation symmetry of the strictly
symmetric sequence.

Summarizing the results for A∞(ρ) = ρ(a)ρ(b) the first order gradient is given by

∇ρA∞ = aρ(b) + bρ(a)− 2ρ(a)ρ(b)1 ∈ A, (3.16)

as well as the second order gradient by

∇2
ρA∞ = 2 sym2

((
a− ρ(a)1

)
⊗
(
b− ρ(b)1

))
∈ A⊗A. (3.17)

Moreover, as expected for a polynomial of degree 2, all higher order derivatives with
k ≥ 3 vanish.

These results can be generalized to a systematic calculation of the k-th order derivative
∇k
ρ for a mean-field polynomial of arbitrary degree r, e.g. A∞(ρ) = 〈ρ⊗r, Ar〉 with

symr Ar = Ar. Due to the permutation symmetry, we can use the reduced formula
(3.11). Thus, the k-th order derivative can be evaluated as

σ⊗k
(
∇k
ρA∞

)
=

∂k

∂tk
A∞

(
ρ− t(σ − ρ)

)∣∣∣∣
t=0

=
∂k

∂tk

〈(
ρ− t(σ − ρ)

)⊗r
, Ar

〉∣∣∣∣
t=0

.
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As in the example above, we can use the permutation symmetry of Ar, which allows
us to rearrange the tensor factors without changing the expectation value:

σ⊗k
(
∇k
ρA∞

)
=

∂k

∂tk

〈
r∑
`=0

(
r

`

)
t`(σ − ρ)⊗` ⊗ ρ⊗r−l , Ar

〉∣∣∣∣∣
t=0

. (3.18)

If we now evaluate the differentiation, all terms proportional to t` with ` < k vanish.
As a direct consequence, all higher order derivatives vanish if the order of the derivative
is greater than the degree of the polynomial, thus ∇k

ρA∞ = 0 for all k > r. For k ≤ r
we obtain

=

〈
r∑
`=k

r!

`!(r − `)!
`!

(`− k)!
t`−k(σ − ρ)⊗` ⊗ ρ⊗r−l , Ar

〉∣∣∣∣∣
t=0

(3.19)

Setting t to zero further simplifies the result, as only the summand ` = k remains to
be considered:

=
r!

r − k!

〈
(σ − ρ)⊗k ⊗ ρ⊗r−k , Ar

〉
. (3.20)

The last line is the starting point for the Taylor expansion, which we will construct
and discuss in section 3.4. Still for actual calculations, some further transformations
of the above expression are useful:

σ⊗k
(
∇k
ρA∞

)
=

r!

r − k!

〈
k∑
`=0

k!

(k − `)!`! (−1)`σ⊗` ⊗ ρ⊗r−` , Ar
〉

(3.21)

=
r!

r − k!

〈
σ⊗k ⊗ ρ⊗r ,

k∑
`=0

k!

(k − `)!`! (−1)`1k−` ⊗ Ar ⊗ 1k

〉
.

In the last line, we have made use of the natural embedding Ar ↪→ Ar+k with Ar 7→
1` ⊗ Ar ⊗ 1k−`, as well as the normalization of the state 〈ρ,1〉 = 1.

In the case r = 2 and k = 1, respective k = 2, the result reduces to the one dis-
cussed earlier in the context of the example A∞(ρ) = ρ(a)ρ(b) (cf. equation (3.16) and
equation (3.17)).

3.3 Extremal problems

Since we have discussed a generalized concept of derivatives of state space functions
and are going to introduce a generalized Taylor formula expansion, which allows us
to expand an arbitrary state space function around a certain state, it is just natural
to ask for extremal problems in this context. The determination of minima and the
expansion around the extremal points will be particularly important in the context



3.3. Extremal problems 29

of the ground state problem addressed in chapter 5, where we aim for the finite size
corrections to the mean-field prediction for the ground state energy.

Suppose that the state space function f : S(A)→ R assumes its minimum at a point
ρ, which may be well on the boundary of the state space. For ρ to be a minimizer,
it is clearly necessary that for all directions towards other states the functional non-
decreases, i.e., σ(∇ρf) ≥ 0. Since σ is arbitrary, this just means that ∇ρf ∈ A is a
positive semidefinite operator.

Furthermore, for ρ to be an extremal point we need ρ(∇ρf) = 0, which is automatically
fulfilled by the above construction. When ρ happens to be strictly positive the condition
ρ(∇ρf) = 0 just means that the gradient ∇ρf itself is zero. However, if ρ is not strictly
positive and thus features an eigenvalue equal to zero, we can only conclude that the
gradient vanishes on the support of ρ. In particular, this is the case for a pure state
and thus at the boundary of the state space.

As a condition for the second derivative, we find that for any σ such that σ(∇ρf) = 0
we must require that the second order derivative is greater or equal zero, σ⊗2(∇2

ρf) ≥ 0.
Note that this does not entail that the second derivative is a positive operator.

As an illustrative example, we consider the function

f(ρ) = tr (ρ2)− 2 (3.22)

on a qubit system, that is ρ ∈ C2. Note that this function can be interpreted as a
measure of the purity of the state, where the constant offset is introduced for later
convenience.

Obviously, the function (3.22) assumes its minimum for the fully mixed state, respec-
tively at the center of the Bloch ball:

ρmin =
1

2
1 ⇒ f(ρmin) = −3

2
, (3.23)

whereas the maximum is assumed at the surface of the Bloch ball, respectively for any
pure state,

ρmax = U †

(
1 0

0 0

)
U ⇒ f(ρmax) = −1. (3.24)

To calculate the first and second order derivatives, it is advantageous to transform the
function (3.22) using the Pauli spin operators

S1 =

(
0 1

1 0

)
S2 =

(
0 −i
i 0

)
S3 =

(
1 0

0 −1

)
. (3.25)

A short calculation yields

f(ρ) = tr (ρ2)− 2 = −
3∑

α=1

tr
[
(ρSα)2

]
. (3.26)
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With this transformation we can determine the first order derivatives ∇ρf according
to the definition (3.11) as

σ
(
∇ρf) =

∂

∂t
f
(
ρ+ t(σ − ρ)

)∣∣∣∣
t=0

= − ∂

∂t

3∑
α=1

tr
[(
ρ+ t(σ − ρ)

)
Sα
(
ρ+ t(σ − ρ)

)
Sα
]∣∣∣∣∣
t=0

= −2
3∑

α=1

tr [(σ − ρ)SαρSα] , (3.27)

as well as the second order derivative ∇2
ρf ,

σ⊗2
(
∇2
ρf) = −2

3∑
α=1

tr [(σ − ρ)Sα(σ − ρ)Sα] . (3.28)

Let us first analyse the behaviour at the minimum ρmin = 1
2
1, which is well inside the

state space. As expected the first order derivative ∇ρmin
f vanishes at this point, since

σ
(
∇ρmin

f) = 0 ∀σ ∈ C2, (3.29)

whereas the evaluation of the second order derivative yields

σ⊗2
(
∇2
ρmin

f) = −2
3∑

α=1

tr
[
(σSα)2]+ 3

≥ 0 ∀σ ∈ C2, (3.30)

which is always greater or equal 0, as required by the condition for a minimum men-
tioned above.

On the other hand, the maximum is assumed at the boundary of the state space.
Taking for example

ρmax =

(
1 0

0 0

)
, (3.31)

we can determine the expectation value of the first order derivative to be given in
components of the state σ as

σ
(
∇ρmaxf) = −2σ22

≤ 0. (3.32)

Thus the first order derivative is not positive, as required for a maximum. However,
in general this expression is not equal zero – the gradient ∇ρmaxf only vanishes on the
support of ρmax.
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Finally, example (3.22) emphasizes the fact that the condition σ⊗2(∇2
ρf) ≥ 0 does not

mean that ∇2
ρf has to be a positive operator, even for a vanishing gradient ∇ρf = 0.

To illustrate this last point, it is most convenient to write the second derivative at the
point ρmin = 1

2
1 as

∇2
ρmin

f =
∑
α

Sα ⊗ Sα. (3.33)

That this expression is indeed equivalent to equation (3.30) can be easily verified by
an evaluation in matrix elements.

If we now choose |Ψ〉 ∈ C2 ⊗ C2 to be the singlet state,

(Sα ⊗ 1) |Ψ〉 = −(1⊗ Sα) |Ψ〉 , (3.34)

which is obviously neither symmetric nor a product state, we find

〈Ψ| ∇2
ρf |Ψ〉 = 〈Ψ|

∑
α

Sα ⊗ Sα |Ψ〉 = −3, (3.35)

hence the operator ∇2
ρf is clearly not positive.

3.4 Taylor expansion

The main motivation to introduce the calculus of state space functions was the quest for
a systematic extension around the mean-field limit inspired by the well-known Taylor
expansion for an analytic function (3.1).

To this end, we again consider the dense subalgebra of polynomials on A, respectively
the limiting elements of the strictly symmetric sequences and assume that f : S(A)→
C is a polynomial of degree r,

f(ρ) = 〈ρ⊗r , Ar〉 (3.36)

= A∞(ρ) with Ar = symr Ar ∈ A⊗r.

Evaluating the function in the vicinity of the point ρ ∈ S(A) yields

A∞ (ρ− t(σ − ρ)) (3.37)

=
〈
(ρ− t(σ − ρ))⊗r , Ar

〉
=

〈
r∑
`=0

(
r

`

)
t`(σ − ρ)⊗` ⊗ ρ⊗r−` , Ar

〉

=
r∑
`=0

t`

`!

〈
r!

(r − `)!(σ − ρ)⊗` ⊗ ρ⊗r−` , Ar
〉
,

where we again used the permutation invariance of the expectation value to reorder
the tensor factors.
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A closer inspection of the last line of equation (3.37) reveals the connection with the
definition of the higher order gradients ∇`

ρA∞. In section 3.2 we derived an explicit
formula for the higher order derivatives of a polynomial of degree ` (cf. equation (3.18)
ff.):

〈σ⊗` , ∇`
ρA∞〉 =

〈
r!

(r − `)!(σ − ρ)⊗` ⊗ ρ⊗r−` , Ar
〉

(3.38)

A comparison of this result to equation (3.37) shows that we can indeed express the
function A∞ (ρ− t(σ − ρ)) evaluated in the vicinity of ρ by an expansion in terms of
derivatives ∇`

ρA∞:

A∞ (ρ− t(σ − ρ)) =
r∑
`=0

t`

`!

〈
σ⊗` , ∇`

ρA∞
〉
. (3.39)

Finally, setting t = 1 yields the Taylor series for the function A∞(σ) as an expansion
around the point ρ:

A∞ (σ) = f(σ)

=
r∑
`=0

1

`!

∂`

∂t`
f
(
ρ+ t(σ − ρ)

)∣∣∣
t=0

=
r∑
`=0

1

`!

〈
σ⊗` , ∇`

ρA∞
〉

=
〈
σ⊗r , Ar

〉
. (3.40)

In the same manner, we can write down the terminating Taylor series for any N ≥ k,

σ⊗N(symN Ar) =
k∑
`=0

1

`!
σ⊗N(symN(∇`

ρA∞)).

If we equalise the symmetric elements evaluated under the arbitrary state σ⊗N , we can
identify the resulting operators. This yields an expansion of an arbitrary symmetric
operator of degree r in terms of the derivatives of the mean-field expectation value at
the point ρ,

symN(Ar) =
r∑
`=0

1

`!
symN(∇`

ρA∞), (3.41)

where the `-th order derivative ∇`
ρA∞ is an element of A⊗`sym as discussed earlier.

By construction the zeroth order term is given by the mean-field limit, respectively the
expectation value of Ar in the product state ρ⊗r. As such it is just a multiple of the
identity, while all higher order terms with ` > 1 have vanishing expectation value. Note
that the first order term is the symmetrization of a (ρ-dependent) one-site observable,
the second is an symmetrized two-particle observable and so on.
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A comparison to the definition of the fluctuation operator which will be discussed in
chapter 5 shows that the first order term is exactly the fluctuation around the mean-
field limit at the point ρ. In the same way, there is a close relation between fluctuation
operators and the higher-order terms. This relation will be analysed in more detail in
the next chapter.

Note that up to now equation (3.41) yields an extension in symmetrized `-particle
operators ∇`

ρA∞ ∈ A⊗` as we have wished for, but does not make a prediction about
the scaling behaviour with the system size. This will be different for the extension in
fluctuation operators.

Finally, we consider an elementary example to get a first idea how the expansion around
the mean-field limit A∞(ρ) = ρ(a)ρ(b) works in practice. To this end, we explicitly
calculate the expansion of the symmetric two-particle operator

A2 = sym2(a⊗ b) =
a⊗ b+ b⊗ a

2
. (3.42)

In the preceding section, we have a already explicitly calculated the first and second
order derivative for this example,

∇ρA∞ = aρ(b) + bρ(a)− 2ρ(a)ρ(b)1,

∇2
ρA∞ = 2 sym2

((
a− ρ(a)1

)
⊗
(
b− ρ(b)1

))
.

According to equation (3.18) all higher order derivatives ∇k
ρA∞ with k ≥ 3 vanish.

Thus, the Taylor expansion yields a finite series.

Using these results the expansion of A∞(σ) around the point ρ is given by

A∞(σ) = =
2∑
`=0

1

`!

〈
σ⊗` , ∇`

ρA∞
〉

= A∞(ρ) + 〈σ , ∇ρA∞〉+
1

2
〈σ⊗2 , ∇2

ρA∞〉
= ρ(a)ρ(b) + σ (a− ρ(a)1) ρ(b) + σ (b− ρ(b)1) ρ(a)

+σ (a− ρ(a)1)σ (b− ρ(b)1)

= σ(a)σ(b). (3.43)

By construction, the complete series sums up to the exact result.
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Identifying the operators yields the Taylor expansion of the symmetric operator symn(A2),

symnA2 =
2∑
`=0

1

`!
symN(∇`

ρA∞)

= ρ(a)ρ(b)1n + symn

(
(a− ρ(a)1)) ρ(b) + symn ((b− ρ(b)1)) ρ(a)

+ symn ((a− ρ(a)1)⊗ (b− ρ(b)1)

)
= symn

(
ρ(a)ρ(b)12 + (a− ρ(a)1)⊗ ρ(b)1

+(b− ρ(b)1)⊗ ρ(b)1 + (a− ρ(a)1)⊗ (b− ρ(b)1)
)

= symn(a⊗ b). (3.44)

Again we find t that the zeroth order term is given by the mean-field expectation
value, while the first order term is given by a single-particle operator proportional to
the fluctuation around the mean-field value and the second order term is a two-particle
term with vanishing expectation value in the state ρ⊗n.



Chapter 4

The algebra of fluctuations

In this chapter we will discuss the algebra of fluctuations, which can be used to describe
the perturbations around the mean-field solution. In particular, we will see introduce
the notion of states with root N fluctuations which allows to establish the relationship
between microscopic fluctuations for finite system size and fluctuations on the macro-
scopic level. Moreover, this notation provides the basic tools to study the limiting
behaviour of the fluctuations for N →∞.

Since the mean-field results describing the limit of infinite particle numbers of inten-
sive observables obviously feature some affinities to the famous law of large numbers
in classical probability theory, it is just natural to expect a quantum version of the
central limit theorem to hold for quantum fluctuations. Indeed, we will find a non-
commutative central limit theorem, which allows to identify the macroscopic fluctua-
tions with a representation of the canonical commutation relations in a quasi-free state
which is determined by the microscopic correlations. These questions will be addressed
in section 4.2.

In the last section, we will discuss the expansion of symmetric operators in fluctua-
tion operators, as well as the relation of this expansion to the differential calculus of
functions on the state space and especially to the Taylor expansion discussed in the
preceding chapter. These results and especially the expansion of a symmetric operator
in fluctuation operators are a key ingredient for the determination of the bound for the
ground state energy and thus play a major role in chapter 5.

4.1 Quantum fluctuations

Definition 16. For finite N , the fluctuation algebra around the state ρ ∈ S(A) is
generated by the (local) fluctuation operators, which are defined as

ã =
√
N (symN(a)− ρ(a)1)

=
1√
N

N∑
i=1

(a(i) − ρ(a)1) ∈ AN , (4.1)
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where a ∈ A is an arbitrary single-particle operator.

Note that there is an implicit dependence on the system size N , which we suppress
to keep the notation transparent. The local fluctuation operators are bounded if the
single particle operators are bounded, but their norm diverges in the limit of infinite
system size ‖ã‖ ≈

√
N‖a− ρ(a)1‖.

Here, we focus on fluctuations of single-particle observables, as e.g. the density, the
momentum or the angular momentum operators. These quantities are of fundamental
interest. Since they are experimentally accessible, they play a major role in part II.
Moreover, we only treat normal fluctuations, which scale as 1/

√
N , as this is the typical

scaling for systems with short range interactions. However, normal fluctuations are
not appropriate to describe systems featuring long-range order, as e.g. systems at low
temperatures which undergo a phase transition. The algebraic structure of abnormally
scaled fluctuations is analysed in detail in [32]. For the ideal Bose gas, a systematic
study of the abnormal fluctuations can be found in [33]. More examples for critical
fluctuations in quantum mean-field systems are discussed in [34].

The similarities of definition 16 to the concept of classical fluctuations around the mean-
value of a distribution are obvious. As in the classical case, the fluctuation operators
describe the deviations of the extensive observable from its mean value, where the
scaling is given by the square root of the scaling parameter of the macroscopic variable
symN(a). This explains why the fluctuation operators are sometimes referred to as
mesoscopic.

To define the fluctuation operators in the limit of infinite system size, we need some
more considerations and do not only have to take into account observables, but also
the states in which we consider the limit:

Definition 17. A sequence of states ρN ∈ S(A⊗N) is said to have root N fluctuations
around ρ iff for any polynomial P in fluctuation operators ã1, . . . , ãr ∈ A⊗N the limit

lim
N→∞

ρN (P (ã1 · · · ãk)) = 〈Ω | P (â1 · · · âk) Ω〉 (4.2)

exists. A sequence of states ρN ∈ S(A⊗N) is said to have normal fluctuations iff these
are gaussian.

The above limit defines the fluctuations â in the limit space. In the following, we will
denote the macroscopic fluctuations by â to distinguish them from the local fluctuations
ã defined in equation (4.1).

The notion 〈Ω | P (â1 · · · âk) Ω〉 already refers to the Gelfand-Naimark-Segal represen-
tation of the macroscopic fluctuations (cf. section 1.1.2). This representation can be
constructed as follows:

From the properties of ρN it can be directly inferred that the limiting functional is
again a state: Obviously limN→∞ ρN (1) = 1 = 〈Ω | 1Ω〉 holds, hence the functional
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〈Ω | · | Ω〉 is normalized. The linearity can easily be checked by〈
Ω | (αâ+ βb̂) Ω

〉
= lim

N→∞
ρN

(
αã+ βb̃

)
= lim

N→∞

(
αρN(ã) + βρN (̃b)

)
= α〈Ω | âΩ〉+ β〈Ω | b̂Ω〉. (4.3)

To prove the positivity we consider an arbitrary polynomial F̃ in the local fluctuation
operators ãi with N -independent coefficients. Then the following relation holds:

‖F̂Ω‖2 = lim
N→∞

ρN(F̃ ∗F̃ ) ≥ 0. (4.4)

Thus, the limiting functional is indeed a state and by theorem 6 we find a representation
of the macroscopic fluctuations â in terms of linear operators in a Hilbert space. In
detail, the theorem establishes that the Hilbert space Hρ contains a unit vector |Ω〉 and
a dense subspace D spanned by the elements of the form â1 · · · âk |Ω〉, whose scalar
products are defined by〈

b̂1 · · · b̂` Ω
∣∣ â1 · · · âk Ω

〉
= lim

N→∞
ρN

(
b̃∗` · · · b̃∗1 ã1 · · · ãk

)
. (4.5)

Note that the positivity of the scalar product in Hρ, which is implicitly claimed in the
above definition, follows again from the properties of ρN (4.4).

In summary, the macroscopic fluctuation operator â is defined as an operator on D,
which can be constructed as

â
(
â1 · · · âk Ω

)
= â â1 · · · âk Ω. (4.6)

In the next section, we will see that the sequence of product states ρN = ρ⊗N is
an example for a state with root N fluctuations around ρ. In fact the limit state is
Gaussian with covariance matrix

〈Ω|â b̂Ω〉 = ρ(ab)− ρ(a)ρ(b). (4.7)

Thus, mean-field systems as defined in chapter 2 are a prototype for systems with
normal fluctuations. The reason for introducing the more general notion of states ρN
with root N fluctuations (cf. definition 17) is that this property for the sequence of
ground states will become the major step to establish an upper bound for the ground
state energy. We will come to this point in section 5.4.

As a corollary of the central limit theorem proven in the next section we will show that
the macroscopic fluctuation operators â build a CCR-algebra and thus satisfy canonical
commutation relations on their common domain, namely[

â, b̂
]
φ = ρ([a, b])φ for all φ ∈ D. (4.8)

This reasoning finally allows to identify the macroscopic fluctuations with Bose fields
in a quasi free state.
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4.2 Central limit theorem

In its simplest form, the classical central limit theorem states that for any sequences
of independently and identically and distributed random variables x1, x2 . . . xN with
expectation value µ and variance σ2 <∞ the fluctuation around its mean, that is

1√
N

(∑
i

xi − µ
)

(4.9)

converges in distribution to a normal distribution, X ∼ N (0, σ2), as given by the
probability density function

f(x) =
1√

2πσ2
e−

x2

2σ2 . (4.10)

There are various versions of this powerful theorem, which has proven to be robust
under weak correlations, for more details see e.g. [35].

Additionally, there are several quantum versions of the central limit theorem which
provide generalizations to the non-commutative case, see e.g. [36–40]. The general
theory of non-commutative central limits for quantum fluctuations has been developed
in [4, 5, 41, 42] including the time evolution. In these papers the relation between the
local, microscopic fluctuations and the macroscopic fluctuations has been worked out
in detail. In particular, the authors give explicit clustering conditions for a state to
have normal fluctuations and present a reconstruction theorem for the CCR-algebra
and the limiting functional.

Here, we are faced with a much more specific problem, namely the central limit for
quantum mean-field systems. The next theorem proves that quantum mean-field sys-
tems are an example of a system with normal fluctuations. Moreover, we will show
that the macroscopic fluctuations converge against Bose field operators in a quasi free
state, as expected from the general theory.

Theorem 18 (Central limit theorem for quantum mean-field systems). For every finite
polynomial P of local fluctuation operators ãi the following limit exists

lim
N→∞

ρ⊗N (P (ãi)) = ωρ (P (âi)) , (4.11)

where ωρ is a Gaussian state with two-point function

ωρ(âiâj) = ρ(aiaj)− ρ(ai)ρ(aj). (4.12)

Thus, the sequence of product states has normal fluctuations.

Proof of the central limit theorem (cf. also [38]). Since ρ is assumed to be a linear
functional it is sufficient to consider monomials M(ãi) =

∏k
i=1 ãi of arbitrary degree k.

The expectation value for such a monomial in the product state ρ⊗N is given by

ρ⊗N (ã1 . . . ãk) = N−
k
2

N∑
j1,··· ,jk=1

ρ⊗N
(
(a1 − ρ(a1)1)(j1) · · · (ak − ρ(ak)1)(jk)

)
, (4.13)
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where we have used the same notation as defined in (2.3). Because of the symmetry
of the state ρ⊗N , we are only interested in the possible distributions of the k operators
ai − ρ(ai)1 ∈ A over the N possible sites. Thus, we can regroup the terms according
to the number of occupied sites p or respectively according to their overlap r = k − p:

ρ⊗N (ã1 . . . ãk) = N−
k
2

k∑
p=1

N !

(N − p)!
∑

{S1,...,Sp}

ρ(aS1) · · · ρ(aSp),

= N−
k
2

k∑
r=0

N !

(N − k + r)!

∑
{S1,...,Sk−r}

ρ(aS1) · · · ρ(aSk−r), (4.14)

where the last summation ranges over all possible partitions of {1, 2, . . . , k} into p =
k − r sets {S1, . . . Sp} and aSi denotes the ordered product

∏
i∈S`(ai − ρ(ai)1). The

combinatorial factor can be determined by choosing p = k − r different values from
the set {1, 2 . . . N}, and is thus simply given by N !

(N−p)! . Note that up to now this
is just another way of writing the summation over truncated correlation functions or
cumulants.

A closer inspections of the summands shows that – due to the construction of the
fluctuation operators – every partition containing a singleton #Si = 1 vanishes, that
is

ρ

(
ai − ρ(ai)1

)
= ρ(ai)− ρ(ai) = 0. (4.15)

Since all terms with an overlap r which is smaller than k/2 occupy more that k/2 sites,
they must contain at least one singleton. Hence all terms with r < k/2, respectively

p > k/2 vanish. On the other hand for p ≤ k/2 the coefficient N−
k
2

N !
(N−p)! tends to zero

as N → ∞ unless p = r = k/2. In this case, which is only attained for even k, only
two-point functions remain.

This reasoning yields the final result:

lim
N→∞

ρ⊗N (M(ãi)) =


0 for k odd∑

{S1,··· ,Sk/2}
#Si=2

ρ(aS1) · · · ρ(aSk/2) for k even.

Now the notation can be simplified further: For each S` = {i, j} with i < j it follows
that

ρ(aS`) = ρ ((ai − ρ(ai)1)(aj − ρ(aj)1))

= ρ(aiaj)− ρ(ai)ρ(aj)

≡ ωρ(âiâj).

This finally proves the theorem.
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The next corollary shows that the limiting fluctuation operators satisfy canonical com-
mutation relations. Thus, using the regularity of the quasi free limit state, they can
be identified with Bose fields building a CCR-algebra as briefly discussed in section
1.2. For more details on this identification and a recommendable introduction to the
general theory of CCR-algebras we refer to the book [6].

Corollary 19. The commutator of two macroscopic fluctuation operators âi and âj is
given by

[âi, âj] = ρ ([ai, aj])1. (4.16)

Proof. Define c = [a, b] to be the commutator of a, b ∈ A on the level of single-
particle observables. With this definition, we can determine the commutator of the
local fluctuations ã, b̃ ∈ A⊗N to be given by the mean-field observable symN c,[

ã, b̃
]

=
1

N

∑
i,j

a(i)b(j) − a(j)b(i)

=
1

N

N∑
i=1

(ab− ba)(i)

=
1

N

∑
i

c(i) = symN c. (4.17)

Rewriting the last expression again as a local fluctuation[
ã, b̃
]

= ρ(c)1 +
1√
N
c̃ (4.18)

yields a constant term plus a term given by a convergent operator, which is however
rescaled by N−1/2. This reasoning allows to determine the limit

lim
N→∞

ρ⊗N
(
ã1 . . .

[
ã, b̃
]
. . . ãk

)
= lim

N→∞
ρ⊗N

(
ã1 . . .

(
ρ([a, b])1 +

1√
N
c̃

)
. . . ãk

)
= lim

N→∞
ρ⊗N (ã1 . . . ãk) ρ([a, b])

= ωρ

(
â1 . . .

[
ã, b̃
]
. . . âk

)
. (4.19)

This proves the corollary.

In summary, we have shown that for the sequence of macroscopic fluctuations the
correlation functions converge to Bose fields in the limiting functional ωρ. This is
an example of convergence in distribution. Still it must be noted that in contrast
to classical probability theory, this does not imply that the characteristic functions
converge. A characteristic function version of the central limit theorem is derived in [4].
Moreover, we have treated only the case of independent operators. This condition can
be significantly attenuated [5] .

In the last part of this section we quantify the error of the approximation by the limiting
quasi free state for finite system size to give a first idea of the convergence properties.
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Corollary 20. For an odd degree k of the polynomial M in fluctuation operators, the
first order corrections to the gaussian nature of the limit state ωρ are of order N−

1
2 .

Explicitly, they are given by

lim
N→∞

ρ⊗N (M(ãi)) =
1√
N

∑
{S1,···S(k−1)/2}

ρ(aS1) · · · ρ(aS(k−1)/2
) +O(N−

3
2 ) (4.20)

For even degree, the first order corrections are of order N−1 and given by

lim
N→∞

ρ⊗N (M(ãi)) = ωρ (M(âi)) (4.21)

+
1

N

ωρ (M(âi))−
k/2(k/2− 1)

2

∑
{S1,...Sk/2−1}

ρ(aS1) · · · ρ(aSk/2−1
)

+O(N−2).

Proof. The proof is just a simple extension of the combinatorics used in the proof of
the central limit theorem.

4.3 Expansion in fluctuation operators

In order to use the theory of fluctuations for the ground state problem, we need to
expand the Hamiltonian in terms of fluctuation operators. Not surprisingly, this is
related to the differential calculus of functions on the state space discussed in chapter 3,
and in particular to the Taylor expansion of H∞ around ρ, which we derived in section
3.4.

To get a first impression of the expansion in fluctuation operators we explicitly calculate
for the example A2 = sym2(a ⊗ b), starting from the definition (4.1) for the local
fluctuation operators:

symN(a⊗ b) =
1

N(N − 1)

N∑
i 6=j

a(i)b(j)

=
1

N(N − 1)

( N∑
i,j=1

a(i) ◦ b(j) −
N∑
i=1

(a ◦ b)(i)
)

=
1

N(N − 1)
(Nρ(a)1N +

√
N ã) ◦ (Nρ(b)1N +

√
N b̃)

− 1

N(N − 1)
(Nρ(a ◦ b)1N +

√
Nã ◦ b)

= ρ(a)ρ(b)1N +
1√
N

(ãρ(b) + b̃ρ(a))

+
1

N
(ã ◦ b̃− ρ(a ◦ b)1N + ρ(a)ρ(b)1N) +O(N−3/2).(4.22)

To keep the notation as simple as possible we have used the definition a◦b ≡ 1
2
(ab+ba)

for the symmetric product of two generally non-commuting operators a, b ∈ A.
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Except for the last line, this expansion is exact. In the last line we have reordered the
summands according to their scaling with the number of tensor factors, respectively
the system size N and only given the terms up to N−1 explicitly. Note that in the last
term which is quadratic in the fluctuations, we recover the covariance matrix of the
limiting quasi free state, ωρ(ã ◦ b̃) = ρ(a ◦ b)− ρ(a)ρ(b) (cf. equation (4.12)).

A comparison of this result to the Taylor expansion of symN(a ⊗ b) (3.44) clearly
illustrates the analogies. Again, the leading order is given by the mean-field expectation
value A∞(ρ) = ρ(a)ρ(b). Moreover, the linear term in the fluctuations is identical to
the first order derivative ∇ρA∞ (3.43),

symN(∇ρA∞) = symN

((
a− ρ(a)1

)
ρ(b) +

(
b− ρ(b)1

)
ρ(a)

)
=

1√
N

(ãρ(b) + b̃ρ(a)). (4.23)

Still, while the Taylor expansion including the second order derivative ∇2
ρA∞ (3.43)

sums up to the correct result, the expansion in fluctuation operators (4.22) does not
terminate. Instead there is a whole hierarchy of corrections, as can already be seen
from the above example. In particular, the error of the approximation of the second
order derivative by the term quadratic in fluctuation operators is given by

symN(∇2
ρA∞)− 1

N
(ã ◦ b̃− ρ(a ◦ b) + ρ(a)ρ(b))

= − 1

N
(symN(a ◦ b)− symN(a⊗ b)− ρ(ab) + ρ(a)ρ(b))

=
1

N3/2

(
ã ◦ b− ãρ(b)− b̃ρ(a)

)
+O(N−2), (4.24)

where we have continuously substituted symmetric operators by their expression in
fluctuation operators.

The calculation presented above for the special case k = 2 can be generalized to
determine the expansion in fluctuation operators for an arbitrary symmetric operator
symN(Ak) = symN(a1 ⊗ a2 ⊗ · · · ⊗ ak). This results essentially in the same structure:

symN(Ak) =
k∏
i=1

ρ(ai) +
1√
N

∑
j

ãj
∏
i 6=j

ρ(ai) (4.25)

+
1

N

∑
k 6=j

(ãkãj − ωρ(âkâj))
∏
i 6=k
i 6=j

ρ(ai)

+O(N−
3
2 ),
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where we have suppressed the factors 1N for reasons of clarity. Hence, e.g. ρ(a) has to
be understand as a multiple of the identity ρ(a)1N . Explicitly, the calculation reads:

symN(Ak) =
(N − k)!

N !

∑
i`∈{1,...,N}
i` 6=ij for ` 6=j

a
(i1)
1 ⊗ a(i2)

2 ⊗ · · · ⊗ a(ik)
k

=
(N − k)!

N !

∑
i`∈{1,...,N}

a
(i1)
1 ⊗ a(i2)

2 ⊗ · · · ⊗ a(ik)
k (4.26)

− (N − k)!

N !

k−1∑
p=1

N !

(N − p)!
∑

{S1,...,Sp}

∏
Si

symN(aSi),

where we have used the the same notation as in the proof of theorem 18 with the
sum ranging over all partitions. Still here, in contrast to the definition above, we
assume that the product

∏
Si

symN(aSi) = symN(aS1) ◦ · · · ◦ symN(aSi) is symmetric.
The substitution of symmetric operators by their corresponding fluctuation operators
yields:

symN(Ak) =
(N − k)!

N !

k∏
i=1

(
Nρ(ai)−

√
N ãi

)
(4.27)

− (N − k)!

N !

k−1∑
p=1

N !

(N − p)!
∑

{S1,...,Sp}

∏
Si

symN(aSi).

Now, we expand the terms up to the order 1/N ,

=

(
1 +

k(k − 1)

2

1

N
+O(N−2)

)
(4.28)

×

 k∏
i=1

ρ(ai) +
1√
N

∑
j

ãj
∏
i 6=j

ρ(ai) +
1

N

∑
k 6=j

ãk ◦ ãj
∏
i 6=k
i 6=j

ρ(ai) +O(N−2)


− 1

N

∑
{S1,...,Sk−1}

∏
Si

ρ(aSi) +O(N−2).
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Obviously, if one has k − 1 partitions of k operators, there can be only one two-point
and k − 2 one-point functions. This yields the final result:

symN(Ak) =
k∏
i=1

ρ(ai) +
1√
N

∑
j

ãj
∏
i 6=j

ρ(ai)

+
1

N

∑
k 6=j

(ãk ◦ ãj − ρ(ak ◦ aj))
∏
i 6=k
i 6=j

ρ(ai) +
k(k − 1)

2

k∏
i=1

ρ(ai)


+O(N−

3
2 )

=
k∏
i=1

ρ(ai) +
1√
N

∑
j

ãj
∏
i 6=j

ρ(ai)

+
1

N

∑
k 6=j

(ãk ◦ ãj − ωρ(ãk ◦ ãj))
∏
i 6=k
i 6=j

ρ(ai)

+O(N−
3
2 ). (4.29)

In summary we obtain the same structure as discussed for the special example k = 2 –
to leading order the expansion is given by the mean-field expectation A∞(ρ), while the

term proportional to ∝ N−
1
2 is a linear combination of fluctuation operators, which is

equivalent to the first order derivative ∇ρA∞ of the mean-field limit. As above, the
1/N -correction is a quadratic expression in fluctuation operators including collision
terms which are not covered by the Taylor expansion. In the remaining part of this
chapter, we will analyse the relation in more detail.

The main result of section 3.4 was the generalization of the Taylor expansion for a
symmetric operator HN = symk(Hk) in terms of the derivatives ∇r

ρH∞ of the state
space function H∞(ρ):

symN(Hk) =
k∑
r=0

1

r!
symN(∇r

ρH∞). (4.30)

Due to the construction, all terms have vanishing expectation value in the state ρ,
except for the zeroth-derivative, which is given by the state space function H∞(ρ)1N
itself, respectively the mean-field expectation value in the state ρ.

Thus, we are looking for an expansion in a basis with vanishing expectation value in ρ
in order to generalize the reasoning in the preceding paragraph. In particular, we want
to expand each term ∇r

ρH∞ as follows:

∇r
ρH∞ =

dimA−1∑
α1,...,αr=0

h(α1, . . . , αr) eα1 ⊗ · · · ⊗ eαr ∈ A⊗r, (4.31)

where the eα ∈ A are a basis of the algebra with e0 = 1 and ρ(eα) = 0 ∀α > 0.
Note that due to the summation over all αi, the symmetry of the operator ∇r

ρH∞



4.3. Expansion in fluctuation operators 45

is implicitly contained. As a direct consequence of the construction of derivatives all
terms containing an index αi = 0 for r ≥ 0 vanish. Therefore, we get the following
expression in terms of fluctuation operators by a symmetrization over N sites:

symN

(
∇r
ρH∞

)
=

1

N r/2

dimA−1∑
α1,...,αr=1

h(α1, . . . , αr) ẽα1 . . . ẽαr + corrections

≡ 1

N r/2
∇̃r
ρH∞ ∈ A⊗Nsym, (4.32)

where ẽα is simply given by ẽα = N1/2 symN(eα), as ρ(eα) vanishes by definition.

In the above example we have seen that the corrections mainly arise from the fact
that the product of fluctuation operators also contains collision terms in which the
two observables act on the same site, whereas these terms are not contained in the
symmetrization of tensor products (4.31). In addition, we introduce an error by the
replacement of the exact combinatorial factor by its leading order.

Still the explicit calculation (cf. equation (4.26) to equation (4.29)) has shown that
the corrections again expressed in terms of local fluctuation operators scale as 1/

√
N

compared with the leading term. So they do not invalidate the observation that the
above treatment turns the Taylor expansion into a power series in 1/

√
N ,

symN(Hk) =
k∑
r=0

1

r!
symN(∇r

ρH∞)

=
∞∑
r=0

1

r!N r/2
∇̃r
ρH∞ (4.33)

= H∞(ρ)1N +
1√
N
∇̃ρH∞ +

1

2N
∇̃2
ρH∞ +O(N−3/2),

where ∇̃r
ρH∞ is a polynomial in fluctuation operators (4.32). It is worth stopping here

for a moment: So, what we have finally got is an expression for a symmetric operator as
a polynomial of fluctuation operators. Therefore, every single term ∇̃r

ρH∞ is convergent
if we take the limit of infinite system size in a state with root N fluctuations (17). This
allows for a determination the deviations from the limit for finite system size

lim
N→∞

ρN (symN(Hk)) (4.34)

= lim
N→∞

∞∑
r=0

1

r!N r/2
ρN

(
∇̃r
ρH∞

)
= H∞(ρ) + lim

N→∞

1√
N
ρN

(
∇̃ρH∞

)
+ lim

N→∞

1

N
ρN

(
1

2
∇̃2
ρH∞

)
+O(N−3/2)

= H∞(ρ) +
1√
N
〈Ω | ∇̂ρH∞Ω〉+

1

N
〈Ω | 1

2
∇̂2
ρH∞Ω〉+O(N−3/2).



46 The algebra of fluctuations

This expansion will be the the key ingredient to establish an inner bound for the ground
state problem in chapter 5.

Still, to quantify the deviations, we need to take into account the corrections (4.32).
Note that for r = 0, as well as r = 1 there are no corrections. Here, we will not
determine the exact collision corrections for general r, which would essentially result in
a similar calculation to the one presented above starting from equation (4.26). However,
the case r = 2 will be crucial for us since we are interested in an expansion around the
mean-field extrema, where the second order derivatives play a major role.

In this case, the determination of the corrections is equivalent to the above calculation
(4.26), with the special choice A2 =

∑
α,β h(α, β) symN(eα ⊗ eβ). Thus, we get

symN(∇2
ρH∞) =

1

N − 1

dimA−1∑
α,β

h(α, β) ẽα ẽβ −
1

N(N − 1)

dimA−1∑
α,β

h(α, β)eαeβ

=
1

N

dimA−1∑
α,β

h(α, β) ẽα ẽβ −
1

N

dimA−1∑
α,β

h(α, β) symN(eαeβ)

− 1

N(N − 1)

(dimA−1∑
α,β

h(α, β) symN(eαeβ)−
dimA−1∑
α,β

h(α, β)ẽα ẽβ

)
≡ 1

N
∇̃2
ρH∞, (4.35)

where we have chosen a representation for the corrections which most clearly reveals
the convergence properties in the limit (4.5) we are interested in. This expression will
be the starting point for the analysis of the 1/N corrections for the quantum ground
state problem discussed in section 5.4.



Chapter 5

The ground state problem

5.1 Introduction

In this chapter we are interested in the ground state energy of an N -particle system
with a mean-field interaction term described by a symmetric Hamiltonian of degree k

N symN(HN) = N symN(Hk) ∈ A⊗N . (5.1)

While the total energy of the N -particle system is an extensive quantity given by the
expectation value of the Hamiltonian 〈NHN〉, HN = symN Hk ∈ Y denotes the hamil-
tonian density, respectively the energy per particle, which is an intensive quantity.
For the time being we only consider strictly symmetric operators HN = symN(Hk).
Moreover, in this chapter A will either be the algebra of d× d-matrices, i.e., we will be
concerned with a d-level quantum system, or A will be the commutative algebra of con-
tinuous functions on some compact space X, i.e. a classical system with configuration
space X.

The example for such a hamiltonian density including two-particle interactions V (i,j)

HN =
1

N

N∑
i=1

E(i) +
1

N(N − 1)

N∑
i,j=1

i 6=j

V (i,j)

= symN(E) + symN(V ), (5.2)

has already been introduced in section 2.1. Here E(i) ∈ A denotes the one-particle
energy of the i-th system and V (i,j) ∈ A ⊗ A denotes the interaction energy between
the i-th and j-th particle. This example includes the mean-field Heisenberg model, as
well as the mean-field Ising model with a transverse field as special realisations, which
are briefly addressed in section 5.2.

For a general N -particle system (5.1) the size of the corresponding Hilbert space grows
exponentially with the system size N , as well as with the local dimension d. There-
fore an explicit calculation of the infimum of the spectrum of the hermitian operator
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HN , respectively the calculation of the smallest eigenvalue of the N -particle hermitian
operator HN in finite dimension,

σN(HN) = inf
ρN∈S(AN )

〈ρN , HN〉, (5.3)

becomes impossible for any realistic system size. Hence, approximations are of high
interest. For a quantum mean-field system it is well-known that the problem can be
approximately solved in the limit of infinite system size N →∞ by a reduction to an
effective single-particle problem. However, rigorous results on the relation between the
mean-field solution and the original N -particle problem are extremely rare, see e.g. [43].
These relations and especially the case of large, but finite system size N illustrating
the convergence towards the mean-field solution will be thoroughly discussed in this
chapter.

As we have seen in chapter 2, the formalism of strictly and approximately symmetric
operators allows for a rigourous treatment of such problems and especially of the limit
of infinite system size. In this formalism the mean-field limit of a sequence of strictly
symmetric hamiltonian densities HN = symN Hk ∈ Y is described by a function H∞(ρ)
on the single-particle state space S(A),

H∞(ρ) = lim
N→∞

〈ρ⊗N , HN〉 = 〈ρ⊗k , Hk〉. (5.4)

We will also use the common notation from operator theory ρ⊗k(Hk) for the expectation
value of the observable Hk in the state ρ⊗k, wherever this notation is more convenient.

In the limit of infinite system size the ground state energy σN(HN) defined in equation
(5.3) is thus given by a variational problem on the single particle state space S(A):

lim
N→∞

σN(HN) = inf
ρ∈S(A)

H∞(ρ)

= inf
{
ρ⊗k(Hk)

∣∣∣ ρ ∈ S(A)
}
. (5.5)

By a simple inclusion of domains over which the infimum is taken,{
ρ⊗N

∣∣∣ ρ ∈ S(A)
}
⊂ S(A⊗N), (5.6)

one can show that σN(HN) ≤ infρH∞(ρ). Moreover, because of the properties of the
norm (1.3), the relation

‖HN‖ ≤ ‖HN+M‖ (5.7)

holds. Thus, σN(HN) is monotonically increasing to its limit.

In this chapter, we are interested in the next order in 1/N of the approximation of the
ground state energy σN(HN) by the mean-field solution infρH∞(ρ):

σN(HN) = inf
ρ
H∞(ρ)− 1

N
γ(Hk) + o(1/N). (5.8)
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The major goal of this chapter is therefore the determination of the coefficient γ(Hk).
As a direct consequence of the convergence properties of σN(HN), this coefficient has
to be positive, i.e. γ(Hk) ≥ 0.

It is clear that in order to establish the value of γ(Hk) we have to prove two bounds.
Still in this case it may be confusing to speak of upper and lower bounds, since a lower
bound to the ground state energy (5.8) is at the same time an upper bound to γ(Hk),
and vice versa. Instead we will refer to this bound as the outer bound, as it limits the
set of possible values of ρN(HN) or γ(Hk) from the outside, typically by establishing
conditions valid for all states ρN . In contrast, we call the upper bound to the ground
state problem (5.8), respectively the lower bound to γ(Hk), the inner bound, as it sets
a limit to the set of expectation values from within, typically by explicitly constructing
suitable states ρN .

The bound we are searching for is closely related to the error predicted by the finite de
Finetti theorem discussed in section 2.5. This relation will be elucidated in section 5.3.1.

5.2 Some illustrative examples from statistical me-

chanics

Before going into more details considering the general problem, we will discuss the
implications of the ground state problem for two well-known examples from the theory
of solid state physics: The mean-field Heisenberg model and the mean-field Ising model
with a transverse field.

5.2.1 The mean-field Heisenberg Model

The mean-field Heisenberg model describes a system consisting of N identical spins
s ∈ 1

2
N, which all interact in the same way with the external field, as well as with

one another. For illustrative reasons, we only consider the simplest case s = 1
2
, such

that the single-particle algebra is given by the set of 2 × 2-matrices, i.e. A = C2×2.
In addition, we chose the external field along the z-axis, B = (0, 0, B). Hence, the
Hamiltonian of the N -particle system in terms of the Pauli matrices S1, S2, S3 (3.25)
becomes

NHN = B
N∑
i=1

S
(i)
3 +

J

N − 1

N∑
i 6=j

∑
α=x,y,z

S(i)
α ⊗ S(j)

α . (5.9)

This is an example of a mean-field quantum system with pairwise interactions (5.2)
with the special choice E = BS3 ∈ A for the term describing the interaction with the
external field and V = J

∑
α=x,y,z Sα ⊗ Sα ∈ A⊗A for the interaction term.

A concise way to summarize the possible values of ρN(HN) of such a two-parameter
model and in particular the ground state energies is the joint numerical range. For an
arbitrary two-parameter model, e.g. H = aA + bB with a, b ∈ R and A,B ∈ A, the
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Figure 5.1: Joint numerical range νN (5.10) of the single-particle term 1/N symN(S3)
(horizontal axis) and the interaction term 1/(N(N − 1)) symN(S ⊗ S) in the mean-
field Heisenberg model (5.9) for different system sizes N = 2, 3, 4, 5, 6, 10, 20, 40. The
shaded area depicts the region which can be accessed by mean-field states and is the
intersection of all the numerical ranges νN for finite N . Note that for N = 10, 20, 40
the distance to the limiting shape is roughly halved in each step.

joint numerical range ν(A,B) of the two operators involved is defined as the compact
convex set

νN(A,B) =
{

(ρ(A), ρ(B)) ∈ R2
∣∣ ρ ∈ S(A⊗N)}. (5.10)

Then we can consider the family of parallel lines ax+ by = c in R2, and find the largest
and the smallest values of c such that this line meets νN(A,B). The smallest c will be
the ground state energy of aA + bB. Hence determining all ground state energies of
Hamiltonians in the family is equivalent to determining νN(A,B).

In the case of the mean-field Heisenberg model (5.9) E and V commute for all N , which
can easily be checked. Thus, the Hamiltonian is diagonal in the common eigenbasis of
the collective angular momenta operators

L3 =
1

2

N∑
i=1

S
(i)
3 and L2 =

1

4

N∑
i 6=j

∑
α=x,y,z

S(i)
α ⊗ S(j)

α +
3N

4
1N (5.11)

of the tensor product representation u 7→ u⊗N of SU(2). Note, that in this chapter, we
do not restrict the analysis to a certain subspace, whereas in chapter 6 we only treat
the projection onto the symmetric subspace.

In the common eigenbasis the eigenvalues for the collective angular momenta operators
(5.11) are given by

L3 |`,m〉 = m |`,m〉 L2 |`,m〉 = `(`+ 1) |`,m〉 . (5.12)

with ` = N/2, N/2− 1, ...− 1/2, respectively ` = N/2, N/2− 1, ..., 0 depending on N
being odd or even and m = `, `− 1, . . . ,−`. Hence, by a simple calculation we obtain
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Figure 5.2: Left-hand side: Joint numerical range νN (5.10) of the one particle term
1/N symN(S1) (horizontal axis) and the interaction term 1/(N(N − 1)) symN(S3⊗S3)
in the mean field Ising model (5.15) for N = 2, 3, 4, 5, 6, 10, 20, 40. Right hand side:
Analogous plot for a model in which the interaction is scaled with 1/N rather than
1/(N − 1).

the spectrum of the energy density HN (5.9), which is given by

〈`,m|HN |`,m〉 = B
(m
N

)
+ J

4`(`+ 1)− 3N

N(N − 1)

≥ −B
2
− J. (5.13)

Because of the joint diagonalizability of L3 and L2 the joint numerical range ν(L3,L
2)

is a polytope, whose vertices are the pairs of joint eigenvalues. The result for the mean-
field Heisenberg model is shown in figure 5.1. One can easily check that the vertices
for νN are given by{(

`

N
,
4`(`+ 1)− 3N

N(N − 1)

) ∣∣∣∣ ` = N/2, N/2− 1, ...,−N/2− 1,−N/2
}
. (5.14)

Here the vertices on the x-axis corresponding to ` = 0 reveal the convergence to the
mean-field limit which is proportional to 1/(N − 1) most clearly. The mean field
accessible region is the intersection of all numerical ranges for finite particle numbers
N and is shaded in blue.

5.2.2 Mean-field Ising Model with transverse field

As above, we choose s = 1
2
, such that the single-particle algebra is given by the set of

2× 2-matrices, i.e. A = C2×2. However, we now consider the case E = BS1 ∈ A and



52 The ground state problem

V = JS3 ⊗ S3 ∈ A⊗A, such that the Hamiltonian is given by

NHN = B

N∑
i=1

S
(i)
1 +

J

N − 1

N∑
i 6=j

S
(i)
3 ⊗ S(j)

3 . (5.15)

In contrast to the mean-field Heisenberg model (5.9), the interaction with the external
field E and the interaction term V do not commute, which makes the calculation of
the spectrum a much harder task. As a direct consequence, the joint numerical range
(5.10) is no longer a polytope. If we restrict the set of states to the Bose sector, then
we obtain again the Bose-Hubbard system for two lattice sites, which plays a major
role in the second part of this thesis. Even with this restriction, analytic solutions
are not easily obtained (cf. e.g. [44] for analytic solutions based on the Bethe ansatz
method). Figure 5.2 shows the numerical results. As in the first example, the shaded
area represents the mean-field expectation values. As above, this area is given by the
intersection of all the numerical ranges νN for finite N .

In addition to the strictly symmetric version (5.15) of the mean-field Ising model, we
have plotted a model where the interaction term is scaled by 1/N instead of 1/(N −
1). The sequence of the resulting hamiltonian densities HN is still approximately
symmetric, but the mean-field expectation values do no longer lie inside the numerical
range for finite system size N . This clearly shows that the mean-field results provide
only inner bounds for the expectation values if the intensive observables are strictly
symmetric.

5.3 Relations to other problems

The determination of the first order corrections to the mean-field expectation value
is a fundamental quantum problem. In this section we will highlight two possible ap-
plications. Finite de Finetti theorems are concerned with approximations of finitely
exchangeable states, which are the defined as the restrictions of permutation symmetric
states (cf. section 2.5), whereas we consider the macroscopic limit of symmetric oper-
ators of finite degree. Still, we will show that there is a elementary relation between
the bounds established by finite de Finetti theorems and the determination of the 1/N
correction γ (5.8). In particular, we will see that computing γ can be interpreted as a
local version of a finite de Finetti theorem.

Moreover, we will analyse the relation of the finite size corrections for the ground
state (5.8) to spin squeezing inequalities. These inequalities give bounds on the set
of expectation values which can be assumed by separable states. Thus, they can be
interpreted as entanglement witnesses. In section 5.3.2, we will analyse this problem in
more detail and show that the determination of the entanglement witnesses reduces to
the computation of γ (5.8) for a suitable abelian algebra. Furthermore, we will suggest
an algorithm to determine the finite size correction and discuss its applications to the
examples considered in section 5.2. The algorithm will be proven to be correct to order
1/N in section 5.5.
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5.3.1 Finite de Finetti theorems

In section 2.5 we have introduced the theorem by Størmer [20], which provides a char-
acterization of permutation symmetric states, generalizing a result from classical prob-
ability theory by de Finetti [25] to the quantum case. There, we have also analysed
the relation to the abstract theory of quantum mean-field systems and explained how
this result follows as a corollary theorem 11 (for more details see [11]).

Finite de Finetti theorems [29–31] extend these results and give an explicit bound on the
difference between the restriction ρk of a permutation symmetric state ρN ∈ S(A⊗N)
and a convex combination of product states

ρµ,k =

∫
µ(dσ)σ⊗k, (5.16)

where µ is a probability measure on S(A). Note that this state is sometimes referred
to as a de Finetti state.

In general finite de Finetti theorems take the form of the estimate

sup
ρN

inf
µ
‖ρk − ρµ,k‖1 ≤

γk
N
, (5.17)

with some constant γk depending only on k and A. In this equation and below ‖ · ‖1

denotes the norm of the states (equal to the L1-norm of probability densities or the
trace norm of density operators, respectively) and it is understood that the supremum
is taken over the whole set of symmetric states ρN ∈ S(A⊗N ). Furthermore, ρk is the
restriction of ρN to A⊗k . For N =∞, i.e., if ρk is the restriction of a state on infinitely
many copies of N , which is invariant under finite permutations, the result reduces again
to the theorem by Størmer.

Since the relation of the ground state problem (5.8) to finite de Finetti theorems (5.17)
is not directly obvious, we will discuss the point in more detail. First we express the
trace norm as the supremum over the set of all operators Hk with ‖Hk‖ ≤ 1. Since
we look for the norm of a hermitian element, it is sufficient to consider only hermitian
operators H†k = Hk:

sup
ρN

inf
µ
‖ρµ,k − ρk‖1 = sup

ρN

inf
µ

sup
Hk

(
ρµ,k(Hk)− ρk(Hk)

)
.

As both, the element Hk, as well as its negative counterpart −Hk are included in the
set of elements over which the supremum is taken, we have omitted the absolute value.
Now we can use the Minmax theorem presented in the mathematical introduction (cf.
theorem 8), which allows to rearrange the order in which the suprema and the infimum
have to be taken:

sup
ρN

inf
µ
‖ρµ,k − ρk‖1 = sup

Hk

sup
ρN

inf
µ

(
ρµ,k(Hk)− ρk(Hk)

)
.
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The second term is independent of the measure µ

sup
ρN

inf
µ
‖ρµ,k − ρk‖1 = sup

Hk

sup
ρN

(
inf
µ
ρµ,k(Hk)− ρk(Hk)

)
,

and the first term assumes its minimum if the probability measure µ is concentrated
on a point σ where the integrand assumes its minimum (see also equation (5.16)):

sup
ρN

inf
µ
‖ρµ,k − ρk‖1 = sup

Hk

(
inf
σ
σ⊗k(Hk)− inf

ρN
ρN(symN(Hk))

)
.

Note that there is no reason, why this minimum should be unique. In the last equality
we introduce the notations used in equation (5.8):

sup
ρN

inf
µ
‖ρµ,k − ρk‖1 = sup

Hk

(
inf
σ
H∞(σ)− σN(HN)

)
(5.18)

To summarize the reasoning, we have found the following relation between the de
Finetti constant γk as defined in equation (5.17) and the coefficient γ (cf. (5.8)) which
we want to determine:

γk = sup
Hk

γ(Hk) + o(1/N). (5.19)

Hence, in applications of the finite de Finetti theorem, in which the difference of states
in equation (5.8) is only evaluated on a few observables Hk, the computation of γ(Hk)
may give more detailed information. In this sense computing γ(Hk) is a local version
of a finite de Finetti theorem.

5.3.2 Spin squeezing inequalities and entanglement detection

Imagine an experiment, where we measure the energy of a many-particle Hamiltonian,
that is the expectation value of a N -particle Hamiltonian HN = symN(Hk) in some
state ρN . If the measurement outcome is smaller than the infimum over the set of
mean-field solutions infσH∞(σ), we can conclude that the state of the system is not of
de Finetti form, i.e. not given by a convex combination of homogeneous product states
σ⊗N . But can we also conclude that the state is not fully separable, e.g. not a convex
combination of inhomogeneous product states σ1 ⊗ · · · ⊗ σN? In other words, can we
use symmetric operators as entanglement witnesses?

Clearly, it is not sufficient to consider the infimum over H∞, respectively over all de
Finetti states, to answer this question. Hence, we will address this problem in more
detail and show that it is again closely related to the determination of the first order
corrections of the mean-field limit which are summarized by the coefficient γ in equation
(5.8).

In particular, we want to analyse the relation between the following variational prob-
lems: The determination of the infimum over the whole N -particle state space, respec-
tively the minimum of the spectrum of HN (5.3),

σN(HN) = inf
{
ρN(HN)

∣∣ ρN ∈ S(A⊗N)
}
,
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the infimum over the set of fully separable states, i.e.

inf
sep
HN = inf

{
ρN(HN)

∣∣∣∣∣ ρN =
∑
k

pk σk1 ⊗ · · · ⊗ σkN with
∑
k

pk = 1 and pk ≥ 0

}
,

and the infimum over the set of de Finetti states,

inf
deFinetti

HN = inf

{
ρN(HN)

∣∣∣∣∣ ρN =
∑
k

pkσ
⊗N
k with

∑
k

pk = 1 and pk ≥ 0

}
= inf

{
ρN(HN)

∣∣ ρN = σ⊗N
}

= inf {H∞(ρ) | ρ ∈ S(A)} ,

which is equivalent to the minimum of the mean-field expectation value.

By the inclusion of the set of states, one can directly deduce that

σN(HN) ≤ inf
sep
HN ≤ inf

ρ
H∞(ρ). (5.20)

For an abelian algebra A, the first two values coincide. Moreover, we claim that due to
the symmetry of the problem, we can evaluate the separable bound in full generality
by a variation over all states of an abelian algebra. This establishes the relation to the
ground state problem addressed in this chapter, as the computation of the infimum
over all separable states up to the first order in 1/N is equivalent to the determination
γ for a classical problem.

To prove this claim, we introduce the map

j : A → C(S(A)) with j(a)[σ] 7→ σ(a). (5.21)

The set of all functions j(a)[σ] = 〈σ, a〉 on the state space forms a commutative algebra,
since

j(a)j(b)[σ] = 〈σ, a〉〈σ, b〉 = 〈σ, b〉〈σ, a〉 = j(b)j(a)[σ] ∀σ ∈ S(A). (5.22)

It is easily verified that the map (5.21) is a channel, that means that it is completely
positive and normalized. Obviously, j is a linear map and j(1)[σ] = σ(1) = 1. To
prove the complete positivity, we have to prove that not only is j a positive map, but
also the composite map j ⊗ idN : Let a = (aij) be a positive N ×N matrix with values
in A. Then the image of the composite map

j ⊗ idN : A⊗MN → C(S(A))⊗MN (5.23)

is isomorphic to matrices over C(S(A)),

j ⊗ idN(a)[σ] = j(aij)[σ]

= (σ(aij))
N
i,j=1 (5.24)
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but just as well to functions on S(A) with values in MN . Hence, if we consider the
function σ 7→ (σ(aij))

N
i,j=1 = σ ⊗ id(a), this yields a positive map and we can conclude

that j (5.21) is a completely positive map.

For a sequence of strictly symmetric observables HN , we set (jH)N = j⊗N(HN).
Since HN = symN(Hk) is generated by symmetrization, this is also true for jH, i.e.,
symN(j⊗k(Hk)) = j⊗N(symN(Hk)). Therefore, we can determine the mean-field limit
for this sequence to be given by

(jH)∞(µ) = µ⊗k((jH)k) = µ⊗k
(
j⊗k(Hk)

)
=

∫
µ(dσ1) · · ·µ(dσk) σ1 ⊗ · · · ⊗ σk(Hk)

= ρ̄⊗k(Hk) = H∞(ρ̄), (5.25)

where µ is an arbitrary probability measure on S(A) and ρ̄ =
∫
µ(dσ)σ is the barycenter

of µ. In particular, the infimum is identical, inf(jH)∞ = inf H∞.

Then, due to the symmetry of HN , we have

inf
sep

symN((Hk) = inf{σ1 ⊗ · · ·σN(HN)|σi ∈ S(A)}

= inf{j⊗N(HN)[σ1, . . . , σN ]|σi ∈ S(A)}
= inf(jH)N

= inf symN((jH)k))

= inf H∞ −
1

N
γ ((jH)k) +O(N−2). (5.26)

By the above argument (jH)k is an element of an abelian algebra (cf. equation (5.22)).
This proves the claim, as we can indeed determine the infimum over all separable states
up to the order 1/N by the computation of γ for a commutative algebra.

Later on, we will get an easy formula for γ(Hk) in the classical case in terms of the
mean-field minimizing state (cf. section 5.4.2). When the minimizer is not unique,
this requires a further variation over all such minimizers. For computing infsep this
uniqueness almost always fails, since all probability measures on S(A) with the same
barycenter give the same minimum.

This is best illustrated in the case k = 2, i.e., for two-body interactions. Because of
the symmetry, we can simplify the expression over which we have to take the infimum
as

σ1 ⊗ · · · ⊗ σN
(

symN(H2)

)
=

1

N(N − 1)

∑
i 6=j

σi ⊗ σj(H2)

=
N

N − 1
ρ̄⊗ ρ̄(H2)− 1

N(N − 1)

N∑
i=1

σ⊗2
i (H2)

= ρ̄⊗ ρ̄(H2)− 1

N(N − 1)

N∑
i=1

(σi − ρ̄)⊗2(H2), (5.27)
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where ρ̄ = (1/N)
∑

i σi is the barycenter of the set of states (σ1, . . . , σN). The expres-
sion follows by considering separately the terms with i = j and i 6= j for the sum on the
left hand side. Here the second term is clearly of order 1/N . The suggestive strategy
for minimizing this expression is to first choose ρ̄ minimizing the first term. In a second
step, we vary over all possible choices for the components σi of ρ̄. In section 5.5 we
prove that this strategy yields indeed the correct infimum to order 1/N .

A closer inspection shows that the choice of the components σi depends on the sign of
the quadratic form (σ′, σ′′) 7→ σ′⊗σ′′(H2): if this is negative-definite, it is advantageous
to choose all σi = ρ, so that the exact minimum is attained for a homogeneous product
state: infsepHN = infρH∞(ρ). On the other hand, if the quadratic form is positive-
-definite, the σi should be as far away from their mean as possible, and certainly be
pure.

To illustrate this last point and the application of the algorithm, we we consider again
the two examples for mean-field spin models introduced in section 5.2. For the sake
of simplicity we restrict ourselves to the case without a transverse field, i.e. we set
B = 0, and assume that the number of spins N is even. The ground state then
crucially depends on the sign of the interaction constant: For J < 0 the spins tend to
align leading to a ferromagnetic ordering, while J > 0 leads to an anti-ferromagnetic
ordering.

We start with the Ising model (5.15). Hence, we have to minimize the mean-field term

H∞(ρ̄) = J〈ρ̄⊗ ρ̄, S3 ⊗ S3〉 = Jρ̄(S3)2. (5.28)

For J > 0 the minimum is assumed for

J > 0 : ρ̄min =

(
1/2 ρ12

ρ∗12 1/2

)
, H∞(ρ̄min) = 0, (5.29)

with arbitrary coherences |ρ12| ≤ 1/2, whereas for J < 0 the minimum is attained by
a completely polarized state:

J < 0 : ρ̄min =

(
1 0

0 0

)
or ρ̄min =

(
0 0

0 1

)
, H∞(ρ̄min) = J. (5.30)

Now we can evaluate the 1/N corrections. In the ferromagnetic case J < 0 (5.30), the
interaction Hamiltonian H2 is negative-definite. Therefore the extremum is found for
a homogeneous product state, i.e. σi = ρ̄ for all i and we can conclude that

inf
sep
HN = inf

deFinetti
HN = J for J < 0. (5.31)

In the anti-ferromagnetic case J > 0 (5.29), the interaction Hamiltonian H2 is positive-
definite such that the σi should be chosen as far away from their mean ρ̄ as possible. In
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particular, the correction term in equation (5.27) which we have to subtract assumes
its maximum for

σa =

(
1 0

0 0

)
⇒ (σa − ρ̄)⊗2(H2) = J and

σb =

(
0 0

0 1

)
⇒ (σb − ρ̄)⊗2(H2) = J. (5.32)

In order to assure that ρ̄ = (1/N)
∑

i σi, we have to demand that half of the spins
point up, σi = σa and half of the spins point down, σi = σb.

Then equation (5.26) predicts that the infimum over the set of fully separable states is
assumed for an inhomogeneous product state and that

inf
sep
HN = − J

N − 1
for J > 0. (5.33)

Indeed, the exact ground state of the mean-field Ising model without transverse field
is given by a separable state. Hence, we can conclude that σN(HN) = infsepHN and
thus, the above results give the exact ground state energy in both cases.

For the mean-field Heisenberg model (5.9) the calculation is very similar. The mean-
field term

H∞(ρ) = J
3∑

α=1

〈ρ̄⊗ ρ̄, σα ⊗ σα〉 (5.34)

assumes its minimum for

J > 0 : ρ̄min =
1

2
12, H∞(ρ̄min) = 0,

J < 0 : ρ̄min = U

(
1 0

0 0

)
U † H∞(ρ̄min) = J, (5.35)

where U is an arbitrary unitary matrix. Again, the interaction Hamiltonian H2 is
negative-definite for the ferromagnetic case J < 0 such that the minimum over all
separable states is found for σi = ρ̄ ∀i with

inf
sep
HN = J for J < 0. (5.36)

In the anti-ferromagnetic case J > 0 the interaction Hamiltonian H2 is positive-definite.
The minimum of the 1/N correction term is found by choosing all σi as pure states
under the constraint that ρ̄ = (1/N)

∑
i σi. This yields (σi − ρ̄)⊗2(H2) = J for all i

such that

inf
sep
HN = − J

N − 1
for J > 0. (5.37)
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The main difference to the Ising model is that the exact ground state for J > 0 is not
separable but given by the entangled singlet state. As shown in section 5.2, the exact
ground state energy is given by

σN(HN) = − 3J

N − 1
. (5.38)

This shows that one can indeed use the expectation value of symmetric operators as
e.g. the mean-field Heisenberg Hamiltonian as an entanglement witness. Moreover, the
determination of the separable bound for HN , respectively the entanglement witness
is equivalent to the calculation of the first order correction γ for the corresponding
abelian algebra (JH)N , where the relation is given by equation (5.26).

5.4 Inner bound in terms of fluctuations

In this section we will consider an upper bound to the ground state value inf HN ,
respectively a lower bound for the coefficient γ(Hk) (5.8) which arises by perturbing
the minimizing mean-field solution. So throughout this section ρ will denote a one-
particle state at which the state space function H∞ attains its minimum,

min
σ∈S(A)

H∞(σ) = min
σ∈S(A)

σ⊗k(Hk) = H∞(ρ). (5.39)

This minimum does not have to be unique and, in fact, the arguments are the same
for just a local minimum.

Suppose ρN is a sequence of states with root N fluctuations around the state ρ, which
minimizes the mean field expectation functional (5.39). Since this is a severe restriction
on the set of states, it is clear that we can only obtain an upper bound for the ground
state energy, e.g.

inf
ρN
ρN (symN(Hk)) ≥ σN(HN). (5.40)

Now we can use expression (4.34) in terms of macroscopic fluctuations to quantify the
deviations from the mean-field expectation value (5.39) for finite system size N up to
the order 1/N :

lim
N→∞

ρN (symN(Hk)) = H∞(ρ) +
1√
N
〈Ω | ∇̂ρH∞ | Ω〉 (5.41)

+
1

N

〈
Ω

∣∣∣∣ 1

2
∇̂2
ρH∞

∣∣∣∣ Ω

〉
+O(N−3/2).

In section 3.3 we have argued for ρ to be a minimizer of the state space functional
H∞(ρ) (5.39) the first order derivative∇ρH∞ has to be a positive semidefinite operator,
∇ρH∞ ≥ 0. If ρ is a global minimum, e.g. in the interior of the state space S(A), we
can even conclude that ∇ρH∞ ≡ 0. In general, we can use the condition for a minimum
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to at least estimate the linear term in macroscopic fluctuations from below by zero,
such that we get the following behaviour for large, but finite N :

lim
N→∞

ρN (symN(Hk)) ≥ H∞(ρ) +
1

N

〈
Ω

∣∣∣∣ 1

2
∇̂2
ρH∞

∣∣∣∣ Ω

〉
+O(N−3/2). (5.42)

Thus, we are looking for an estimate for the quadratic term in the fluctuations. The
calculation (4.35) has shown that the following considerations can be essentially split
into two major parts:〈

Ω

∣∣∣∣ 1

2
∇̂2
ρH∞

∣∣∣∣ Ω

〉
= 〈Ω| Ĥ |Ω〉 − γc(Hk), (5.43)

where we have defined the Hamiltonian in the fluctuation Hilbert space,

Ĥ ≡ 1

2

dimA−1∑
α,β

h(α, β) êα êβ, (5.44)

which is quadratic in the fluctuation operators even if k > 2 and H∞ is not a quadratic
polynomial. Note that this is the effective Hamiltonian governing the dynamics of the
fluctuations for quantum mean-field systems [41].

Moreover, we have defined the coefficient γc(Hk), to be given by

γc(Hk) = lim
N→∞

ρN

(
1

2

∑
α,β

h(α, β) symN(eαeβ)

)

= ρ

(
1

2

∑
α,β

h(α, β)eαeβ

)
. (5.45)

This can be interpreted as the mean-field limit of the corrections.

With these considerations we can write the bound as

lim inf
N→∞

ρN
(
symN(Hk)

)
≥ H∞(ρ) +

1

N

(
〈Ω| Ĥ |Ω〉 − γc(Hk)

)
+O(N−3/2). (5.46)

Note that the coefficient γc(Hk) does only depend on the mean-field minimizer ρ, as
well as the Hamiltonian Hk, but not on the special choice of the sequence ρN with
root N fluctuations around ρ. This is clearly different for the expectation value of
the fluctuation Hamiltonian (5.44), which is strongly influenced by the choice of the
sequence ρN . In the following sections, we will evaluate the two terms contributing to
the first order corrections separately.

As a particular case, we consider the sequence ρN = ρ⊗N of homogeneous product
states. Then the sequence of expectations on the left site of equation (5.46) is just a
constant, such that the 1/N -term on the right hand side vanish and the bound is useless.
In order to improve this bound, we have to construct sequences which lead to a better
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vector |Ω〉. This is the only part which depends on the actual choice of the sequence.

Still, we can give a an estimate to the expectation value 〈Ω| Ĥ |Ω〉 using the ground

state expectation value of Ĥ, which obviously yields a lower bound. Since the ground
state energy of Ĥ only depends on its expression in terms of canonical operators âα and
on their commutation relations, we have found a bound which is again independent of
the sequence ρN . Moreover, we claim that this bound is actually attained by suitable
perturbations of any sequence ρN , including the sequence of product states. This fact
is in particular important if the true ground state has root N fluctuations.

In order to prove this claim, respectively to replace (5.46) by

lim inf
N

ρN
(
symN Hk

)
≥ H∞(ρ)− 1

N

(
γc(Hk)− inf Ĥ

)
+O(N−3/2), (5.47)

we consider an arbitrary sequence ρN of states with root N fluctuations, and define

F̃ =
∑

α1,...,αm

c(α1, . . . , αm)ãα1 · · · ãαm (5.48)

to be a polynomial in fluctuation operators. Then

ρFN(X) =
ρ⊗N

(
F̃ ∗XF̃

)
ρ⊗N

(
F̃ ∗F̃

) (5.49)

again defines a state with root N fluctuations. Moreover, the vector ΩF for the modified
GNS state can be realized in the same Hilbert space namely as

ΩF =
1

‖F̂Ω‖
F̂Ω, (5.50)

where F̂ is the same polynomial with the same coefficients as F̃ in the variables
âα1 · · · âαm . By construction of the Hilbert space HΩ (cf. definition 17) the vectors of
this form are dense in the unit vectors on H. Hence, we conclude that we can always
find a root N fluctuating sequence for which 〈Ω|ĤΩ〉 comes arbitrarily close to inf Ĥ.
This proves the claim.

The major reason why we only obtain an upper bound for the ground state energy,
is the restriction to states with root N fluctuations (5.40). Hence, if we could prove
that the true ground state of the system has root N fluctuations and the mean-field
extremum is not on the boundary of the state space, we could conclude that

γ(Hk) = γc(Hk)− inf Ĥ, (5.51)

since we have argued that the infimum is actually attained. Therefore this condition
allows for an replacement of the above inequality for the ground state energy (5.40) by
an equality.
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5.4.1 Minimization of the fluctuation Hamiltonian

In this section we have a closer look at the fluctuation Hamiltonian (5.44). In particular,
want to establish a lower bound for the expectation value. This can be understand as
a generalized Bogoliubov approach (cf. section 8.4).

In detail, we analyse the following problem: Suppose that Ĥ is an operator on a Hilbert
space written in terms of other operators âα on a common dense domain D such that

Ĥ =
1

2

r∑
α,β=1

hαβ âαâβ , (5.52)

[âα, âβ] = i sαβ = ρ([aα, aβ]), (5.53)

where h and s are given real valued matrices, with h symmetric positive semidefinite
and s antisymmetric. The problem is to establish a lower bound on 〈ψ|Ĥψ〉 for ψ ∈ D
in terms of the matrices h and s.

As we will show below, one can construct a suitable basis of Rr with respect to which
both matrices h and s have only diagonal blocks of dimension 1 or 2. On all blocks of
dimension 1, the antisymmetric matrix s vanishes, and h may be zero or non-zero. On
all blocks of dimension 2 we can take

s =

(
0 1

−1 0

)
and h =

(
0 ωα

ωα 0

)
or h =

(
1 0

0 0

)
or h =

(
0 0

0 0

)
. (5.54)

Clearly, for the minimization problem all the blocks with h = 0 can be ignored and
effectively just reduce the rank r. Blocks with h of the second type occur e.g., for a free
particle on the line with H = P 2, and have also ground state energy zero. Equivalently,
we can reduce r, so that the conjugate Q-variable is not considered at all and we have
a diagonal block with s = 0. To summarize: the only relevant blocks have harmonic
oscillator form and for each one we get a contribution ωα/2.

Lemma 21. Let Ĥ be the quadratic Hamiltonian in macroscopic fluctuations (5.52).
The matrix sh is defined as

(sh)βγ =
∑
α

sγαh
αβ. (5.55)

Now, sh is a skew symmetric matrix and we denote its non-zero eigenvalue pairs by
±iω1, . . . ,±iωr2. Then, for every unit vector ψ in the domain D the expectation value

of the Hamiltonian Ĥ is bounded from below by〈
ψ | Ĥ | ψ

〉
≥ 1

2

∑
α

ωα. (5.56)

Proof. The idea is to consider Rr as a phase space, with the symplectic matrix s, and
to find a symplectic normal form of h first. Of course, s may be degenerate, e.g. there
may be an index α with sα,β = ρ([aα, aβ]) = 0 for all aβ ∈ A, even if aα 6= 0. Hence,
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Rr is not a phase space in the strict sense, but we can still use h and s to generate a
linear “time evolution” in analogy to

d

dt
âγ = i[Ĥ, âγ] =

r∑
α,β=1

sγαh
αβ âβ , (5.57)

where we have joined two terms using that h is symmetric and s is antisymmetric.
Therefore the crucial object for the dynamics is the matrix sh defined in equation
(5.55), which formally generates the above “quantum” evolution, and an analogous
“classical” phase space evolution ξ̇ = shξ on Rr, respectively on Cr.

On Cr, we introduce the scalar product

Ψ · Φ =
∑
αβ

hαβ ΨαΦβ, (5.58)

which has a null space N = {Ψ|Ψ ·Φ = 0, ∀Φ} of dimension r0 ≥ 0. It is easily checked
that the scalar product is invariant under the evolution exp(sh t) generated by sh, so
we obtain a unitary operator on the (r−r0)-dimensional quotient Cr/N . Hence on the
quotient space sh is a skew symmetric operator, which is hence diagonalizable. First
consider a non-zero eigenvalue iω, for which there must be vectors Ψ ∈ Cr, and χ ∈ N
such that (sh− iω1)Ψ = χ. Since ω 6= 0, we replace Ψ by Ψ− (i/ω)χ, which then is a
genuine eigenvector of sh. Note that Ψ is then an eigenvector for −iω, or equivalently,
we can split Ψ = ξ+ iη into real and imaginary part so that shξ = −ωη and shη = ωξ.
Thus, if there are r2 pairs of eigenvalue ±iωα and we will choose the corresponding
ξα, ηα as our basis vectors, conveniently normalized so that ξ · ξ = η · η = 1/ωα.

For eigenvectors ω = 0 this correction is not possible in general, and we may either
have shψ = 0 or shψ = χ for some non-zero χ. We will take the vectors χ arising
in this way as part of our basis. Finally, we can choose a basis on N , consisting of
“canonical pairs” of vectors connected by the symplectic matrix s, and further vectors,
on which s vanishes as well.

To summarize, we have constructed a basis of Rr with respect to which both matrices
are block diagonal and the blocks are exactly given by the description given in equation
(5.54). This proves the lemma.

Note that if we start from an abelian algebra, the anti-symmetric matrix s vanishes
(cf. the definition in equation (5.53)). Hence, we can estimate the expectation value to
be bounded from below by 0. This explains why we do not have to take into account
the fluctuation Hamiltonian in the classical case treated in section 5.5.

5.4.2 Determination of the mean-field limit of the corrections

In this paragraph, we will give a more compact expression for the mean field limit
of the second term (5.45). This allows to determine the functional γc(Hk) starting
directly from the symmetric operator Hk without making the detour of the expansion
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(4.31) in the basis {eα} with vanishing expectation values ρ(eα) = 0. Additionally, to
simplify explicit calculations, the following considerations will reveal some fundamental
differences between the ground state problem in the classical case and the quantum case,
i.e. between the case where A is chosen to be the commutative algebra of continuous
functions on some compact space X and the general case with A non-commutative.

In contrast to the representation in fluctuation operators which requires the treatment
of the full N -particle system, the Taylor expansion

symN(Hk) =
k∑
`=0

1

`!
symN(∇`

ρH∞) (5.59)

can be determined with the knowledge of the mean-field limit alone. Thus, it would be
particularly desirable to link the functional γc(Hk) to the terms in the Taylor expansion
and we are again faced with the problem of collision terms.

In the basis {eα} the second order derivative is given by

∇2
ρH∞ =

dimA−1∑
α,β

h(α, β)eα ⊗ eβ. (5.60)

By definition this does not contain any collision terms in contrast to γc(Hk). This can
be verified by a comparison to equation (5.45). Hence, γc(Hk) does account for the
error which we made by introducing the collision terms needed for the expansion in
fluctuation operators.

A comparison of equation (5.45) and equation (5.60) shows that the derivative ∇2
ρH∞

is related to to γc by

γc(Hk) =
1

2
ρ

(
M(∇2

ρH∞)

)
, (5.61)

where M is the multiplication map, which is defined as M : A⊗A → A is the multi-
plication map M(a⊗ b) = ab. In the following we will present an explicit construction
for the desired functional.

In section 3.2 we have derived an explicit formula for the k-th order derivatives:

σ1 ⊗ σ2

(
∇2
ρH∞

)
=

∂2

∂t1∂t2

(
ρ− t1(σ1 − ρ)− t2(σ2 − ρ)

)⊗k
(Hk)

= k(k − 1) ((σ1 − ρ)⊗ (σ2 − ρ))⊗ ρ⊗(k−2)
(
Hk

)
,

= k(k − 1)
(

(σ1 ⊗ σ2)⊗ ρ⊗(k−2)
(
Hk

)
−
(
σ1 ⊗ σ2 + σ2 ⊗ σ1

)
⊗ ρ⊗(k−1)

(
1⊗Hk

)
+
(
σ1 ⊗ σ2

)
ρ⊗(k)

(
1⊗ 1⊗Hk

))
, (5.62)

for arbitrary states σ1, σ2 ∈ S(A) (cf. equation (3.18). In the last line, we have inserted
the normalization of σi such that the entire expression becomes linear in each σi.
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So what we are looking for is a substitution of the product state σ1 ⊗ σ2 by a suit-
able linear combination of tensor products, which transforms the elements of the form
(eα ⊗ eβ) into the expectation value of the product ρ(eαeβ), as needed in expression
(5.45), respectively in expression (5.61). Hence, the desired functional has to be a
concatenation ρ ◦ M , where the multiplication map M : A ⊗ A → A is defined as
discussed above.

From the theory of matrices it is well-known that in general the product of two positive-
-definite matrices A,B > 0 is not positive-definite. Thus, in the quantum case the
multiplication map is in general not positive. Still, if A and B commute, they can be
jointly diagonalized and the product is again a positive definite matrix. This explains
why this map is positive in the classical case. Therefore, the computation branches
here.

In a first step we consider the quantum case, since we can then treat the special case
of a commuting algebra in a second step. In the context of the theory of quantum
information the flip operator or swap operator F has to be proven quite useful in
distinguishing between classical and quantum correlations [45]. The flip operator is
defined as F |ij〉 = |ji〉 and can thus be written as

F =
∑
ij

|i〉〈j| ⊗ |j〉〈i| (5.63)

in suitable basis states |ij〉 ∈ H⊗2. A short calculation shows that the flip operator
satisfies the relation F(A⊗ 1) = (1⊗A)F. In particular, the trace of the flip operator
acting on a tensor product exactly fulfills the desired property:

tr F(A⊗B) = tr (AB). (5.64)

Hence, we can write the concatenation ρ ◦M as

ρ(M(a⊗ b)) = tr (F(ρ⊗ 1)(a⊗ b))
= tr (F(ρa⊗ b)) = tr (ρab) = ρ(ab), (5.65)

where by abuse of notation ρ denotes both, the state as well as the corresponding
density operator ρ(A) = tr (ρA). In summary, this allows to identify the operator
inducing the linear functional ρ ◦M with

X 7→ ρ(M(X)) = tr
(
F(1⊗ ρ)X

)
. (5.66)

Based on these result we can make the following substitution in (5.62) in order to
introduce collision terms:

σ1 ⊗ σ2 7→ F(1⊗ ρ) =
∑
i,j,k

ρk` |i〉〈`| ⊗ |k〉〈i|

σ1(1)σ2 + σ2(1)σ1 7→
∑
k,i

ρki|k〉〈i|+
∑
i,`

ρi`|i〉〈`| = 2ρ

σ1(1)σ2(1) 7→
∑
ij

δij 〈i| ρ |j〉 =
∑
i

ρii = 1, (5.67)
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where in the second line we have taken the partial trace over the first or second tensor
factor, respectively. Hence, including the factor 1/2 introduced in the definition of γc,
we finally get

γc(Hk) =
k(k − 1)

2
tr
(

(F(ρ⊗ 1)⊗ ρ⊗(k−2) − ρ⊗k) Hk

)
. (5.68)

As F has eigenvalues ±1, this functional is indeed not positive.

In the classical case Hk is a symmetric function of k variables x1, . . . , xk ∈ X. When
X is finite we can assume that these variables are the diagonal entries in some distin-
guished product basis. Moreover, in the language of states, the classical ones are those
which are diagonal. Thus, in the general expression (5.68), the off-diagonal terms of
the flip operator do not contribute. Hence we get

γc(Hk) =

(
k

2

)(∫
Xk−1

ρ(dx1) · · · ρ(dxk−1) Hk(x1, x1, x2, . . . , xk−1)−H∞(ρ)
)
. (5.69)

Of course, the appearance of the two equal arguments x1, x1 is again the direct expres-
sion of the multiplication map. The case of infinite X will be discussed below in the
context of the lower bound in section 5.5.

5.4.3 Illustrative example

As an example to illustrate the quantum case, we once again consider the anti-ferro-
magnetic Heisenberg model (5.9) without a transversal field as discussed in section
5.3.2. We do not have to discuss the ferromagnetic case J < 0 in detail as its
ground state is a product state such that the ground state energy is exactly given
by minρH∞(ρ) as shown earlier.

In the anti-ferromagnetic case J > 0, the mean-field energy assumes its minimum for

ρ =
1

2
12 ⇒ H∞(ρ) = 0. (5.70)

The expectation value of the Pauli matrices in this state vanishes, ρ(Sα) = 0, α = 1, 2, 3
such that the fluctuation operators are given by

S̃α =
√
N symN(Sα). (5.71)

The expansion into fluctuation operators around ρ (cf. equation (4.22)) thus yields

symN(H2) = J
3∑

α=1

ρ(Sα)2︸ ︷︷ ︸
=0

1N .

+
2J√
N

∑
α

S̃α ρ(Sα)︸ ︷︷ ︸
=0

+
J

N

∑
α

S̃2
α − ρ(S2

α) + ρ(Sα)2︸ ︷︷ ︸
=0

+O(N−3/2)

= +
J

N

∑
α

S̃2
α − ρ(S2

α) +O(N−3/2). (5.72)
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To obtain the 1/N corrections to the ground state energy we first note that S2
α = 12

for α = 1, 2, 3 such that the mean-field limit of the corrections is given by

γc(H2) = J
3∑

α=1

ρ(S2
α)

= 3J. (5.73)

Furthermore, we have to minimize the fluctuation Hamiltonian

Ĥ = J
∑
α

Ŝ2
α. (5.74)

Since the expectation values of all Pauli matrices vanishes for the mean-field minimizer
ρ = 1/212, all fluctuation operators commute:[

Ŝα, Ŝβ

]
= 0 ∀α, β = 1, 2, 3. (5.75)

Hence, the matrix s defined in equation (5.53) vanishes exactly and the ground state

energy of Ĥ is zero.

In conclusion we find that the ground state energy of the anti-ferromagnetic Heisenberg
model up to order 1/N is given by

σN(HN) = −3J

N
+O(N−3/2), (5.76)

while the exact result is −3J/(N − 1). Hence, for the anti-ferromagnetic Heisenberg
model the inner bound gives the correct prediction of the scaling behaviour for 1/N .

5.5 Classical ground state problem

Now we address the classical problem, that is the case of an abelian single-particle
algebra A. By theorem 3 every such algebra is isomorphic to the algebra C(X) of
continuous complex functions on a compact Hausdorff space X. In section 5.4.2 we
have already briefly commented on the case of finite X. Here we will weaken this
restriction and consider at least certain infinite dimensional cases, which in particular
include the entanglement detection problem discussed in section 5.3.2.

Definition 22. An element Hk ∈ A⊗k has finite rank or rank r if there are r elements
e1, . . . , er ∈ A such that

Hk =
r∑

α1,...,αk=1

c(α1, . . . , αk) eα1 ⊗ · · · ⊗ eαk , (5.77)

with suitable coefficients c ∈ C.
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If Hk has rank r, then so does symN(Hk), provided the unity is one of the basis
elements ei, which we may assume. Moreover, if A is r-dimensional, then (jH)k as
defined in section 5.3.2 has rank r. Hence the case of entanglement detection for a
finite dimensional single-particle algebra is covered as well.

In the classical case the pure states on C(XN) are given by a tuple (x1, . . . , xN) repre-
sented by point measures δxi . These form a set of extremal measures, since they cannot
be written as a convex combination of probability measures. If we consider Hk ∈ A⊗k
with A = C(X) abelian, then HN is taking its values on configurations in XN . The
expectation value of HN in the state, respectively the probability measure µ can be
simply evaluated as

µ⊗N(HN) =

∫
X

µ(dx1) · · ·µ(dxk) Hk(x1, x2, . . . , xk). (5.78)

A key step in the computation is to look at the particular function H(x1, . . . xN) with
(x1, . . . , xN) ∈ XN in terms of the “empirical measure”

µN =
1

N

N∑
i=1

δxi (5.79)

associated with a tuple (x1, . . . , xN) ∈ XN :

µ⊗NN (HN) = µ⊗kN (Hk) =
1

Nk

∑
i1,...,ik

Hk(xi1 , . . . , xik). (5.80)

In the following, we will see that the evaluation of HN in empirical measures µN plays
essentially the role of the expansion fluctuations in the quantum case.

The next lemma is closely related to the question of the difference between sampling
with and without replacement. Therefore the proof has the flavour of the classic work
of Diaconis and Freeman [28] on the subject.

Lemma 23. Let Hk ∈ symN(C(Xk)) be a real valued symmetric function. Then, for
any tuple (x1, . . . , xN) ∈ XN , and its associated empirical measure µN (5.79), we have

symN(Hk)(x1, . . . , xN) = H∞(µN)− 1

N
Γ(µN) +O

(
N−2

)
,

where the last term O(N−2) is bounded by c(k)‖Hk‖/N2. Here c(k) denotes a constant
depending only on the degree k of the Hamiltonian and H∞ and Γ are functionals
defined for arbitrary (not just for empirical measures), namely

H∞(µ) = µ⊗k(Hk)

=

∫
X

µ(dx1) · · ·µ(dxk) Hk(x1, x2, . . . , xk) (5.81)

and

Γ(µ) =

(
k

2

)(∫
Xk−1

µ(dx1) · · ·µ(dxk−1) Hk(x1, x1, x2, . . . , xk−1)−H∞(µ)
)
. (5.82)
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We have introduced the special notation Γ in lemma 23 only to emphasize the depen-
dence on µ. The comparison to the classical bound γc (5.69) shows that, in fact, Γ is
exactly equal to the bound γc with the special choice ρ = µ.

Proof. For the sake of simplicity, we introduce the notation

(∆Hk)(x1, x2, . . . , xk−1) = Hk(x1, x1, x2, . . . , xk−1) (5.83)

for the “diagonal embedding” applied to the first argument of Hk.

We begin by a rough sketch of the argument, which is enough to establish the first
order correction to the mean-field limit. However, to determine the bound on the
error, respectively c(k) a more careful counting argument is needed. We will comment
on this point after presenting the major argument.

The function symN(Hk) evaluated at the point (x1, . . . , xN) is defined to be the sym-
metrization over all possible choices of the k arguments of Hk out of the N -tuple:

symN(Hk)(x1, . . . , xN) =
(N − k)!

N !

∑
i1,...,ik

all different

Hk(xi1 , . . . , xik). (5.84)

What we are aiming for is an expression of HN in terms of the empirical measure (5.79).
So if we drop the above restriction on the samples (xi1 , . . . , xik) we get:

symN(Hk)(x1, . . . , xN) =
(N − k)!

N !

∑
i1,...,ik

unconstrained

Hk(xi1 , . . . , xik) (5.85)

− (N − k)!

N !

∑
i1,...,ik

two equal

Hk(xi1 , . . . , xik)− . . .

To get the leading order corrections, we can restrict the analysis to the samples
(xi1 , . . . , xik) which contain at most two identical arguments. Moreover, since the
expression is symmetric, we can collectively express all these terms by the diagonal
embedding (5.83):

symN(Hk)(x1, . . . , xN) =
(N − k)!Nk

N !
µ⊗kN (Hk) (5.86)

+

(
k

2

)
(N − k)!Nk−1

N !
µ
⊗(k−1)
N (∆Hk)− · · ·

The expansion of the scaling factor up to the order 1/N2 finally yields:

symN(Hk)(x1, . . . , xN) =

(
1 +

1

N

(
k

2

))
µ⊗kN (Hk) (5.87)

− 1

N

(
k

2

)
µ
⊗(k−1)
N (∆Hk) +O(N−2).
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This reasoning already reveals the general structure. In order to determine the constant
c(k) we have to do the combinatorics for the terms featuring more than one identical
argument more carefully. Note that all these expressions are sums of evaluations of
Hk at various arguments out of x1, . . . , xN , with some coefficients. Moreover, the
expression is symmetric in all arguments, so that all terms with the same sizes of the
clusters of equal arguments can be collected together.

The determination of c(k) is closely related to the fundamental question of the total
variation distance of the probability distributions of a sample with and without replace-
ment. This is most clearly revealed in equation (5.85), where we express the average
over all samples (x1, . . . , xk) without replacement by the average over all samples with
replacement minus the cluster terms. The question of the quantification of the error
for large sample sizes N was first addressed by Diaconis and Freedman [28, 46]. They
proved that the error is to first order in 1/N given by 1/2(k(k − 1)), which is exactly
the scaling with k which we obtain for the term proportional to 1/N . However, we are
now interested in the error to the next order N−2. In [47] a family of explicit approxi-
mations Pr for the probability distribution for a sample without replacement has been
constructed, which is given by a linear combination of uniform probability product-
measures concentrated on certain submeasures. By a generalization of the argument of
Freeman [46], the authors prove that the total variational distance between the exact
distribution and the approximation scales as (k2/N)r+1 as N →∞. As the argument
is quite technical we will not go into details here. Still note that the convergence of
the total variational distance implies weak∗-convergence of measures. For r = 2, their
results cover exactly the case we are considering. Hence, we get∥∥∥∥symN(Hk)(x1, . . . , xN)−

(
1 +

1

N

(
k

2

))
µ⊗kN (Hk)−

1

N

(
k

2

)
µ
⊗(k−1)
N (∆Hk)

∥∥∥∥
≤
(
k

2

)2
N !

(N − k + 1)!
N−(k+1)‖Hk‖ ≤

k2

4N2
‖Hk‖, (5.88)

which finally proves the lemma.

Now we finally come to the main result of this section.

Theorem 24. Let Hk ∈ C(Xk) be a symmetric, real valued function of finite rank.
Then, the mean-field limit of the ground state of HN = symN(Hk) ∈ C(XN) is given
by

lim
N→∞

inf
(x1,...,xN )∈XN

symN(Hk) = inf
µ
H∞(µ). (5.89)

We denote by argminH∞ the set of minimizers ρ ∈ S(A) of H∞(ρ). Then the O(1/N)
correction to the mean field ground state energy is given by

γ(Hk) = lim
N→∞

N
(

inf
µ
H∞(µ)− inf

(x1,...,xN )∈XN
symN(Hk)

)
= sup

{
Γ(µ)

∣∣∣ µ ∈ argminH∞

}
, (5.90)

where Γ(µ) is defined exactly as in lemma 23 (cf. equation (5.82)).
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Proof. Note that, as A is assumed to be abelian, it suffices to evaluate the minimum
inf symN(Hk) on the set of pure state, respectively the tuples (x1, . . . , xN) ∈ XN . The
proof is divided into two major parts: The proof of the inner bound for γ(Hk) and
the proof of the outer bound based on lemma 23. Due to the finite rank condition,
the result is similar to the result for the classical case (5.69) which we obtained above.
Still, as this restriction is not quite satisfactory, we analyse this bound for the special
case considered here and relate it to an approximation problem for empirical measures.
This illustrates the reasons to introduce the finite rank condition most clearly.

Proof of the inner bound

Let µ be a probability measure which meets the description of the theorem, that is
choose µ to be a minimizer of H∞. Our aim is to approximate it by a suitable empirical
measure µN , for which we will provide an explicit construction in the following.

From the earlier reasoning it follows that∫
X

µ(dx)A(x)− 1

N

N∑
i=1

A(xi)→ 0 (5.91)

in the limit of infinite sample size N →∞. This is again the basic result by Freeman
[46]. Thus, µN converges weakly towards µ, which directly implies that Γ(µN)→ Γ(µ).
The difficult part of the proof is to show that the approximation by the empirical
measure is good enough to achieve H∞(µN) = H∞(µ) + o(1/N) and hence does not
disturb the convergence of Γ(µN)→ Γ(µ).

This is exactly the point where we need the condition that Hk has finite rank r. Let
K ⊂ Rr be the convex set spanned by the points with the coordinates eα(x),

K = span{eα(x) |x ∈ X} ⊂ Rr (5.92)

with α = 1, . . . , r. Then mα = µ(eα) defines a point m, which lies in the convex set K.
By Carathodory’s theorem [48] we can pick r + 1 points y1, . . . , yr+1 in K such that
the point m ∈ K ⊂ Rr lies in their convex hull. Thus, m can be expressed as a convex
combination of these points, by the definition of K these points correspond to points
in X, i.e.

mα = µ(eα) =
r+1∑
i

λiyi =
r+1∑
i

λieα(xi) (5.93)

with convex weights λi > 0 and
∑r+1

i λi = 1.

Note that due to the finite rank condition (5.77), H∞(µ) only depends on the expec-
tations of the eα:

H∞(µ) =

∫
X

µ(dx1) . . . µ(dxk)H(x1, . . . xk)

=
r∑

α1,...,αk=1

c(α1, . . . , αk)
k∏
i=1

µ(eαi).
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Thus, H∞(µ) = H∞(
∑

i λiδxi).

Now we choose a rational approximation of the weights with denominator N , i.e., a
collection of integers ni such that ∣∣∣λi − ni

N

∣∣∣ ≤ 1

N
, (5.94)

for all i. Indeed, we can first set ni = bNλic, and then choose a suitable subset of these
numbers and add one to all elements, such that

∑
i ni/N = 1. Since∑

i

bNλic ≤ N ≤
∑
i

dNλie, (5.95)

this strategy leads to a normalized set of weights satisfying the above inequality.

If we directly insert the estimate (5.94) into H∞(µ), we only get an approximation to
order 1/N , which would completely mess up the term we are interested in. In order to
complete the argument, we must therefore use the property of µ, which we have chosen
to be a minimizer of H∞. Therefore, we are again faced with an extremal problem for
a state space function. As argued in section 3.3, for a minimizer the general conditions
∇µH∞ ≥ 0 and µ(∇µH∞) = 0 hold. Thus, the positive function ∇µH∞ vanishes on
the support of µ. Moreover, if we take any measure µ′, whose support is contained in
the support of µ, we will also get µ′(∇µH∞) = 0.

A closer inspection shows that this last condition is very much in line with our choice
of the points y1, . . . , yr+1 for the discretization of µ: In the decomposition of the point
m ∈ K (5.93), only those extremal points can have a positive weight, which lie in
the same face as m. Hence the entire approximation will happen in the same face
and we conclude that µN(∇µH∞) = 0. Since by definition (5.92) each point yi ∈ K
corresponds to a certain element of xi ∈ X, that is yi = eα(xi), this treatment provides
us with the empirical measure we were looking for.

Now the Taylor expansion (4.33) of H∞ gives

H∞(µN)−H∞(µ) = (µN − µ)⊗2(∇2
µH∞) +O(N−3/2).

This concludes the proof of the inner bound. It is to be noted that the constant of this
term depends on the rank r, so it is not obvious how to generalize this result.

Proof of the outer bound

Let µN denote the empirical measure for every N , which corresponds to a minimizing
pure state, respectively a tuple (x1, . . . xN) ∈ X. Then, according to lemma 23, we
have

inf
x1,...,xN

symN(Hk)(x1, . . . , xN) = H∞(µN)− 1

N
Γ(µN) +O(N−2). (5.96)

By a simple inclusion of the domains over which the infimum is taken, we can conclude
that the first term is bounded below,

H∞(µN) ≥ inf
µ
H∞(µ). (5.97)
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Furthermore, we have shown that there are measures attaining this value for N →∞
in the proof of the inner bound. Hence, limN→∞H∞(µN) = infµH∞(µ) and any cluster
point of a minimizing sequence µN must be a minimizer of H∞.

This allows to give a first estimate for the corrections γc,

γ(Hk) = lim
N→∞

N
(

inf
µ
H∞(µ)− inf

(x1,...,xN )∈XN
symN(Hk)

)
≤ lim

N→∞
N
(

inf
µ
H∞(µ)−H∞(µN) +

1

N
Γ(µN) +O

(
N−2

) )
≤ lim

N→∞

(
Γ(µN) +O

(
N−2

) )
, (5.98)

but we still need a estimate for the remaining term.

For this purpose we may pick a subsequence along which Γ(µN) converges and we
will denote the limit by Γ∗. From this sequence we pick a convergent subsequence of
measures µNk which converges towards the limit µ. Since µ is a cluster point of µN ,
it minimizes H∞. By construction the limit along the convergent subsequence yields
Γ(µNk)→ Γ(µ) = Γ∗. Hence, all cluster points of Γ(µN) must be below {sup Γ(µ)|µ ∈
argminH∞}, as given in the theorem.

5.6 Conclusion and outlook

In this chapter, we presented a detailed study of the finite size corrections for the
ground state problem for quantum mean-field systems. The determination of the de-
viations from the mean-field expectation value for large, but finite systems size is a
fundamental question, which is closely related to other problems. In section 5.3, we
commented on two major problems in this context, namely the relation to spin squeez-
ing inequalities and Finite de Finetti theorems. In particular, we have seen that the
finite size corrections can be interpreted as an entanglement witnesses.

In section 5.4 we established an inner bound for the quantum case, where the finite
corrections can be split in a mean-field part and a variational problem over a quadratic
Hamiltonian in macroscopic fluctuations. In the general case, a proof for an outer
bound, respectively a lower bound for the ground state energy is still missing. Thought,
if the exact ground state has root N fluctuations around the mean-field minimizer we
can upgrade the inner bound from an inequality to an equality.

In the last section we consider an abelian algebra and hence, the classical case. However,
we have seen in section 5.3.2 that in certain quantum cases it is possible to find a
suitable map from the quantum algebra to an abelian algebra, such that e.g. the
quantum spin squeezing problem is covered by the classical case as well. Under the
restriction that the Hamiltonian has finite rank, we can give a full characterization of
the finite size corrections, which results in a variational problem over all mean-field
minimizers. Up to now, it is an open question if the finite rank condition can be
released.
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Chapter 6

Quantum phase space

The phase space formulation of quantum mechanics is nearly as old as the theory itself
and has a wide range of applications, especially in quantum optics. The formulation
provides an illustrative insight into the dynamics and many techniques and methods
were developed in this context. However, only a small fraction of the literature is
dedicated to systems with intrinsic symmetries like the Bose-Hubbard Hamiltonian

Ĥ =
M∑
i=1

εin̂i − J
M−1∑
i=1

(
â†i âi+1 + â†i+1âi

)
+
U

2

M∑
i=1

(n̂i(n̂i − 1)) . (6.1)

for M sites, which plays a central role in the second part of this thesis.

In this case the dynamical group is spanned by the normally ordered operators â†j âk
with j, k ∈ {1, 2, ...,M} and is hence equivalent to the special unitary group SU(M).
This is underlined by the fact that every group element as well as the Hamiltonian
itself commutes with the particle number operator N̂ =

∑M
j=1 â

†
j âj. Consequently, an

analysis in terms of the flat phase space and the use of related methods, like Glauber
coherent states, is not adequate because these states ignore the conservation of the
total particle number. For instance, the annihilation and creation operators âj, â

†
j

lead to Hilbert spaces with different particle numbers and the order parameter 〈âj〉
obviously vanishes (cf. also the discussion in section 8.4.1 for more details). Since the
dynamical group is no longer a direct sum of the Heisenberg-Weyl group one has to
apply an extended concept of coherent states [49]. These states obey a generalized
minimum uncertainty relation and stay coherent under an evolution which is linear in
the generators of the dynamical group.

A general algorithm to construct phase space distribution functions for systems whose
dynamical group has the structure of an arbitrary Lie group such as SU(M) has been
developed only about ten years ago [50]. It is based on the concept of generalized
coherent states introduced by Gilmore [51] and Perelomov [49]. Starting from these
states one can define a number conserving phase space description and derive exact
evolution equations for the Husimi Q-function and the Glauber-Sudarshan P -function
of the M -site Bose-Hubbard model. One important consequence of the use of SU(M)
coherent states is the different topology of the phase space, which is now isomorphic to
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the 2M−2 dimensional Bloch sphere and therefore compact. Moreover, the phase space
description based on SU(M) coherent states allows for a deeper analysis of the many-
particle-mean-field correspondence as these states are of high physical significance. As
this class of states is equivalent to the product states describing a fully condensed
state, they provide an excellent tool to describe, characterize, and study deviations
from the macroscopic state which determine the regional validity of the mean-field
approximation.

In this chapter, we will give a a short overview of phase space distributions based
on generalized SU(M) coherent states and introduce the definitions required for the
following discussion. More details can be found in [52,53].

6.1 Generalized coherent states

The basic ingredient which we will need in the following is the concept of generalized
coherent states for systems with an arbitrary dynamical Lie group [49]. The parameter
space of the generalized coherent states determines the corresponding phase space and
reflects the physical properties of the system by its geometric structure. Moreover it
has been shown that one can construct explicitly a family of phase-space distributions
for a system with an arbitrary Lie group symmetry based on this concept [50]. In this
section we will provide the basics and introduce the notations used in the following.

So, let G be the dynamical Lie group of the relevant quantum system. For reasons of
simplicity we assume that G is connected, simply connected and has a finite dimension,
which is the case for the group SU(M). It is important to note that the general
approach does not rely on these assumptions. The unitary irreducible representation
of the dynamical group G acting on the Hilbert space will be denoted by T . With these
preliminaries, we can define the generalized coherent states by the action of an element
of the unitary irreducible representation T on a fixed normalized reference state |ψ0〉:

|ψg〉 = T (g) |ψ0〉 , g ∈ G. (6.2)

Even though the choice of the reference state is in principle arbitrary, it strongly in-
fluences the shape of the coherent states and the structure of the corresponding phase
space. A physically motivated choice would be an extremal state of the Hilbert space
like the vacuum ground state for the Heisenberg-Weyl group or the lowest/highest spin
state for the case of SU(M). Mathematically these states correspond to the high-
est/lowest weight states of the unitary irreducible representation [51].

The isotropy subgroup or maximum stability group H ⊂ G consists of every element
which leaves the reference state invariant up to a phase factor. Formally one can write

T (h) |ψ0〉 = eiφ(h) |ψ0〉 with φ(h) ∈ R ∀h ∈ H. (6.3)

With respect to the coherent states, there is a unique decomposition for every element
g ∈ G into a product of two elements, one of the isotropy subgroup H and one of the
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coset space G/H:
g = Ωh, g ∈ G, h ∈ H and Ω ∈ G/H. (6.4)

Hence, there is a one-to-one correspondence between the elements Ω(g) of the coset
space H/G and the coherent states |Ω〉 ≡ |ψΩ〉 which preserves the algebraic and
topological properties. This construction guarantees the characteristic property of the
coherent states: a coherent state stays coherent under a time evolution linear in the
generators of the dynamical group.

Another important property we will need in the following is the (over)completeness of
the coherent states, which leads to the resolution of the identity operator of the Hilbert
space, ∫

G/H

|Ω〉 〈Ω| dµ(Ω) = I, (6.5)

where dµ(Ω) denotes the invariant measure on the coset space.

6.1.1 Glauber states

The coherent states were first discussed in the context of the Heisenberg-Weyl algebra
h4 = {â, â†, â†â ≡ n̂, I}, with â and â† being the bosonic annihilation and creation
operators. One of the first applications was the description of a mode of the quantized
radiation field modeled by harmonic oscillators [54]. In this case the unitary irreducible
representation of an arbitrary group element g ∈ H4 can be decomposed as

T (g) = eαâ
†−α∗âei(δn̂+φI) α ∈ C, δ, φ ∈ R, (6.6)

with the stability subgroup U(1)×U(1) being generated by {n̂, I}. Therefore the phase
space is isomorphic to the complex plane H4/U(1) × U(1) ∼= C, parametrized by the
complex parameter α and the typical representative of the coset space

D̂(α) ≡ eαâ
†−α∗â (6.7)

is just the well-known displacement operator. With the physically motivated choice
of the vacuum ground state |0〉 as the reference state one obtains the famous Glauber
states

|α〉 ≡ D̂(α) |0〉 . (6.8)

The generalization to more than one mode is straightforward, since the multimode
group

⊕
i∈N{âi, â†i , â†i âi ≡ n̂i, I} is just a direct sum of the single-mode group. Thus

the multimode Glauber states can be obtained as a direct product of the single-mode
Glauber states,

|α〉 =
M∏
i=1

|αi〉 =
M∏
i=1

eαiâ
†
i−α

∗
i âi |0〉 , (6.9)

with |0〉 being the multimode vacuum ground state. Due to this factorization the well-
known properties of the single-mode Glauber states can be transferred easily to the
multimode case.
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6.1.2 SU(M)-coherent states

In the case of the Bose-Hubbard model (6.1) with M sites, the dynamical group is
equivalent to the special unitary group SU(M), spanned by the generalized angular
momentum operators Êjk = â†j âk with j, k ∈ {1, 2, ...,M}. These fulfill the algebraic
commutation relations [

Êjk, Êmn

]
= Êjnδkm − Êmkδnj (6.10)

and conserve the particle number N̂ =
∑M

j=1 Êjj, since[
Êjk, N̂

]
= 0. (6.11)

As already argued earlier in this chapter, a suitable choice of the reference state is
the maximum spin state, corresponding to the state with the entire population in the
first well |N, 0, . . . , 0〉. With respect to this state, an arbitrary element of the unitary
irreducible representation can always be decomposed as

T (g) |N, 0, . . . , 0〉 = exp

(
M∑
k=2

(yk1Êk1 + y1kÊ1k)

)

× exp

(
M∑

k,l=2

yklÊkl + y11Ê11

)
|N, 0, . . . , 0〉 (6.12)

into an element of the coset space and an element of the stability group U(M−1)×U(1)
[55]. Given that Êjk = Ê†kj, we have to assume that y∗jk = ykj in order for the argument
of the exponentials to be anti-hermitian. Therefore we get the SU(M) coherent states
by the action of the representative of the coset space onto the reference state

R̂(y) |N, 0, . . . , 0〉 = exp

( M∑
k=2

(yk1Êk1 − y∗k1Ê
†
k1)

)
|N, 0, . . . , 0〉

=: |y〉 . (6.13)

The parameter space of the coherent states is spanned by the M−1 complex parameters
yk ≡ yk1 with k ∈ {2, ...,M} of the coset space and can thus be identified with the
2(M − 1) sphere which is topologically equivalent to

U(M)/U(M − 1)× U(1) ∼= SU(M)/U(M − 1). (6.14)

Due to this analogy one can interpret the coset representative R̂(y) as a rotation of the
reference state on the multidimensional sphere. To assure that the parametrization is
unique one has to demand that the parameters are bounded as

∑M
k=2 y

∗
kyk ≤ (π/2)2. In

the case of two sites the definition of the coherent states reduces to the spin coherent
states or Bloch states [56, 57], which are discussed in section 9.1.
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Anyhow, a parametrization by the (M−1) independent complex parameters (x2, . . . , xM)
of the site together with the real dependent parameter of the first site x∗1 = x1 is phys-
ically more reasonable. These parameters represent the probability amplitudes at the
respective sites, directly reflecting the particle conservation

x2
1 +

M∑
k≥2

x∗2x2 = 1, (6.15)

and the irrelevance of the global phase. By means of the generalized Baker-Campell-
Hausdorff formula one can show the relation

R̂â†1R̂−1 = cos(‖y‖)â†1 +
sin(‖y‖)
‖y‖

M∑
k=2

ykâ
†
k (6.16)

with the abbreviation ‖y‖2 ≡ ∑M
k=2 |yk|2. This leads directly to the parameter trans-

formation

x1 = cos(‖y‖), xk =
sin(‖y‖)
‖y‖ yk, k ≥ 2 (6.17)

and the representation of the SU(M) coherent states in terms of the complex ampli-
tudes (x1, x2, . . . , xM):

|y〉 = R̂ |N, 0, . . . , 0〉
=

1√
N !
R̂â†N1 |0, 0, . . . , 0〉

=
1√
N !

(
M∑
k=1

xkâ
†
k

)N

R̂ |0, 0, . . . , 0〉

=
1√
N !

(
M∑
k=1

xkâ
†
k

)N

|0, 0, . . . , 0〉

=: |x〉N , (6.18)

where we have used the commutation relation (6.16). The last relation reveals another
interesting property of the SU(M) coherent states. In the case of the Bose-Hubbard
model these states are equivalent to the fully condensed states, since they can always
be written as a product state. This characteristic trait is certainly not trivial and it
cannot be generalized to other dynamical groups since it is an intrinsic property of
the su(M) algebra. Moreover, this fact also singles out the physical significance of an
analysis in terms of phase space distributions which are based on the SU(M) coherent
states.

6.2 Differential algebra

In this section we present a formalism for mapping quantum observables onto differen-
tial equations acting on the continuous parameter space of the coherent states based on
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the ideas of Gilmore [55]. These can be used, for example, to calculate the exact phase
space dynamics for the Bose-Hubbard model, as we will see in section 6.3.3. Moreover,
in section 7.3.2 we will see that the differential operators represent a genuine tool to
derive a quantum de Finetti type theorem or to determine bounds on the ground state
energy (cf. section 7.3.5). Note that in contrast to other approaches, for example based
on the star product (see [58] and references therein), this formalism is not restricted
to the case of just two sites or to the special case of some dynamical groups [51].

6.2.1 Flatland

In the field of quantum optics the modus operandi for the Heisenberg-Weyl group H4

and the Glauber coherent states is well-known (see, e.g., [59] and references therein).
Since the Glauber states expressed in Fock states |n〉,

|α〉 = e−
1
2
αα∗

∞∑
n=0

αn√
n!
|n〉 =

∑
n

fn(α) |n〉 , (6.19)

form an overcomplete basis, one can replace the action of the bosonic creation and
annihilation operators by first order linear differential equations acting on the function
fn(α) ≡ exp(−1

2
αα∗)αn/

√
n!. This yields the differential operators Dk acting on a ket

state

Â |α〉 = Dk(Â) |α〉

with Dk(â†) =
∂

∂α
+

1

2
α∗ and Dk(â) = α. (6.20)

In what follows we are interested in phase space densities corresponding to density
operators and therefore to products of functions fn(α)fm(α∗), we need the differential
operators Dl acting from the left side on the coherent state projectors:

Â |α〉 〈α| = Dl(Â) |α〉 〈α|

with Dl(â†) =
∂

∂α
+ α∗ and Dl(â) = α. (6.21)

The generalization to operators Dr acting from the right,

Dr(Â) =
[
Dl(Â†)

]∗
, (6.22)

and to multimode Glauber states is straightforward:

Dl(â†i ) =
∂

∂αi
+ α∗i = Dr(âi)∗

Dl(âi) = αi = Dr(â†i )∗. (6.23)
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By means of the properties of the differential operators acting on arbitrary elements of
the multimode algebra Â, B̂ with r, s ∈ C,

Dl(rÂ+ sB̂) = rDl(Â) + sDl(B̂) (6.24)

Dl(ÂB̂) = Dl(B̂)Dl(Â) (6.25)

Dl
([
Â, B̂

])
=
[
Dl(B̂),Dl(Â)

]
, (6.26)

one can show that the differential operators conserve the algebraic structure. Therefore
the differential operators of the generators of the Heisenberg-Weyl algebra form itself
a closed (differential) algebra.

6.2.2 From the plane to the sphere

The su(M) algebra is generated by the set of operators {Êjk = â†j âk} with j, k ∈
{1, 2, 3, ...,M}. In the case of the multimode Glauber states, the corresponding differ-
ential operators read

Dl(Êjk) = Dl(âk)Dl(â†j) = αk∂αj + αkα
∗
j . (6.27)

Using the transformation

αi = xiαe
iφ, α =

∑
i

(αiα
∗
i )

1
2 , eiφ =

α1

|α1|
, (6.28)

to theM−1 complex parameters x = (x2, x3, . . . , xM)t, the norm α and the global phase
φ, one obtains the differential form of the generalized angular momentum operator in
terms of the multimode Glauber states

Dl(Êjk) = xk
∂

∂xj
+ xkx

∗
j

(
α

2

∂

∂α
+ α2

)
− 1

2
xkx

∗
j (x∇+ x∗∇∗) . (6.29)

Here we have used the definition

x∇+ x∗∇∗ =
M∑
k=2

xk
∂

∂xk
+ x∗k

∂

∂x∗k
. (6.30)

The parameter x1 = x∗1 is fixed by the normalization

x1 =

√√√√1−
M∑
k=2

x∗kxk, (6.31)

which leads to the following definition of the derivative with respect to the dependent
parameter:

∂

∂x1

≡ 1

2x1

(
∂

∂(iφ)
− x∇+ x∗∇∗

)
≡ − ∂

∂x∗1
. (6.32)
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To reduce the M independent complex parameters of the multimode Heisenberg-Weyl
group to the (M − 1) independent complex variables parameterizing the SU(M) co-
herent states, one has to invert the relation between the projectors for the multimode
Glauber states and the SU(M) coherent states |x〉N :

|α〉 〈α| =
∞∑

L,N=0

e−|α|
2αN+Leiφ(N−L)

√
N !L!

|x〉N 〈x|L . (6.33)

This can be done using the following homomorphism [55]

lim
α2→0

(
∂

∂α

)N
e−α

2

∮
|α〉 〈α| dφ

2π
= |x〉N 〈x|N (6.34)

and the relation (
α

2

∂

∂α
+ α2

)
e−α

2α2N

N !
= Ne−α

2α2N

N !
. (6.35)

A short calculation gives the desired result

lim
α2→0

(
∂

∂α

)N
e−α

2

∮
Dl(â†j âk) |α〉 〈α|

dφ

2π

= xk
∂

∂xj
+ xkx

∗
j

(
N − 1

2
(x∇+ x∗∇∗)

)
|x〉N 〈x|N

≡ Dl(Êjk) |x〉N 〈x|N , (6.36)

where we used the abbreviation:

∂

∂x1

≡ − 1

2x1

(x∇− x∗∇∗) ≡ − ∂

∂x∗1
. (6.37)

A comparison to equation (6.32) shows that the differentiation no longer depends on
the global phase. This can be understood as an averaging effect of the integration over
the angle φ, which is part of the homomorphism.

6.3 Quantum dynamics in phase space

Now we have all the tools ready to study the quantum dynamics in phase space. In this
section, we first define quasi phase space distributions, the analogue to quantum states
in quantum phase space. In this description the evaluation of an expectation value is
equivalent to taking the statistical average of the phase space distribution. Finally, we
will calculate the exact phase space evolution equations for the Bose-Hubbard model
using the differential operators introduced in the preceding section.
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6.3.1 Quantum phase space distributions

With the help of the generalized coherent states, which will be denoted |Ω〉 in the
following (independently of the corresponding dynamical group or parametrization),
one can readily introduce quasi phase space distributions: The Glauber-Sudarshan P-
distribution is defined as the diagonal representation of the density operator ρ̂ in terms
of the generalized coherent states

ρ̂ =

∫
X

P(Ω) |Ω〉 〈Ω| dµ(Ω), (6.38)

where Ω represents the respective parametrization and dµ(Ω) stands for the invariant
measure on the respective phase space, denoted by X. Due to the overcompleteness
of the coherent states the P-function does always exist but is usually not unique.
Furthermore it is not positive definite and often highly singular. On the other hand,
the Husimi Q-function defined as the expectation value of the density operator in
generalized coherent states,

Q(Ω) = 〈Ω| ρ̂ |Ω〉 , (6.39)

is unique, regular and positive definite. However, the Q-function does not give the
correct marginal distributions. Thus the Q-function is especially suited for illustrations,
while both quasi distribution functions will be used for actual calculations.

The relation between the Q- and P-function is in general be given by a convolution
with the overlap of the coherent states |Ω〉 and |Ω′〉,

Q(Ω) =

∫
dµ(Ω′)P(Ω′)|〈Ω|Ω′〉|2. (6.40)

Note that it is also possible to define the Wigner function on a spherical phase space
but this leads to much more complicated expressions than the P- and Q-function,
since such constructions use harmonic functions on the respective phase space. This
makes actual calculations a hard task even for two lattice sites corresponding to SU(2)
(see, e.g., the contradictory results in [60] and [61]) and is almost impossible for larger
systems. A positive P-representation respecting SU(M) symmetry has been introduced
and analyzed in [62]. In the following chapters we will mostly focus on the Q-function,
not only due to its illustrative advantages, but also because of numerical stability.

6.3.2 Expectation values

The expectation value of an arbitrary operator B̂ in terms of Q- and P-functions is
given by the statistical average of the phase space distribution

〈B̂〉 =

∫
PB̂(Ω)Q(Ω)dµ(Ω)

=

∫
P(Ω)QB̂(Ω)dµ(Ω), (6.41)
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where PB̂(Ω) denotes the diagonal representation of the operator B̂ in generalized
coherent states

B̂ ≡
∫

PB̂(Ω) |Ω〉 〈Ω| dµ(Ω) (6.42)

and QB̂(Ω) represents the expectation value of the operator B̂ in coherent states

QB̂(Ω) ≡ 〈Ω| B̂ |Ω〉 . (6.43)

These representations are usually referred to as Weyl symbols of the operator B̂. Hence,
the expectation values cannot be expressed in terms of one phase space distribution
alone as one always needs both distributions. However, the differential algebra formal-
ism also allows for the calculation of the expectation values in terms of the Q-function
and the differential operator without using the P-representation and vice versa:

〈B̂〉 = Tr(B̂ρ̂)

= Tr

(∫
B̂ |Ω〉 〈Ω| ρ̂ dµ(Ω)

)
=

∫
Dl(B̂)Q(Ω) dµ(Ω)

=

∫
D̃l(B̂)P(Ω) dµ(Ω). (6.44)

In the last line D̃l denotes the differential operators for the Glauber-Sudarshan distribu-
tion (6.38), which arise from a simple integration by parts of the differential operators
for the Husimi-distribution:∫

P(Ω)Dl(Â) |Ω〉 〈Ω| dµ(Ω) =

∫
D̃l(Â)P(Ω) |Ω〉 〈Ω| dµ(Ω). (6.45)

A comparison of equation (6.41) and equation (6.44) shows an interesting correspon-
dence and reveals the close connection between the differential operators and the Weyl-
symbols of the operator B̂. Note that a rather elegant way to formulate the relationship
between operators and a family of s-parametrized functions on the corresponding clas-
sical phase space is provided by the Stratonovich-Weyl correspondence [63], where s
denotes the operator ordering of the operator kernel. In this language, the mutual
dependence of the phase space distributions (6.41) can be explained by the different
operator ordering chosen for the integral kernel of the quasi phase space distribution.
Here, the Q-function corresponds to normal operator ordering, as e.g. Êjk = â†j âk and

the P -distribution results from anti-normal operator ordering âkâ
†
j. This relation man-

ifests itself again in the relation between the differential operators Dl(Â) and D̃l(Â),
which are connected by a partial integration (6.45).

As an example, we calculate the expectation value of the generalized angular mo-
mentum operators Êjk = â†j âk which span the su(M) algebra in the Q-representation
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using an integration by parts and the periodic boundary conditions. This provides the
following result for the Q-function

〈Êjk〉 = (N +M)

∫
xkx

∗
jQ(x)dµ(x)− δjk, (6.46)

and the subsequent outcome for the P-function:

〈Êjk〉 = N

∫
xkx

∗
jP(x)dµ(x). (6.47)

The differences are of course due to the operator ordering. For a coherent state |x0〉
with P (x) = δ(x− x0) we obtain

〈Êjk〉 = Nxk,0x
∗
j,0, (6.48)

as expected.

6.3.3 Evolution equations

The time evolution of Q-function (6.39) follows from the formal time dependence of the
density operator ˙̂ρ = − i

~ [Ĥ, ρ̂]. With the help of the relation ∂
∂t

Q(Ω, t) = tr( ˙̂ρ |Ω〉 〈Ω|),
the properties of the trace and the hermiticity of the Hamiltonian one finds

∂

∂t
Q(Ω, t) =

i

~

(
Dl(Ĥ)−Dl(Ĥ)∗

)
Q(Ω, t), (6.49)

independent of the specific structure of the dynamical group. In the following we will
use rescaled units with ~ = 1.

Starting from the definition of the differential operator corresponding to the generalized
angular momentum operator Êjk,

Dl(Êjk) = xk
∂

∂xj
+ xkx

∗
j

(
N − 1

2
(x∇+ x∗∇∗)

)
(6.50)

we first have to calculate the differential representation for the Hamiltonian Dl(Ĥ) and
then to evaluate the imaginary part of the differential operator Dl(Ĥ).

For the determination of the imaginary part of differential operator for the Bose-
Hubbard Hamiltonian (6.1) and later for the discussion of the the canonical structure
of the resulting macroscopic dynamics (cf. section 7.2.2), it is most convenient to use
an amplitude phase decomposition according to

x1 =
√
p1, xi =

√
pie
−iqi 2 ≤ i ≤M. (6.51)

In the case of the Bose-Hubbard model, the pj directly refer to the relative occupation
in the j-th well and qj describes the relative phase between the j-th and the first well.
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With a little bit of algebra one gets the exact phase space dynamics of the Bose-
Hubbard model in terms of the Husimi-function:

∂Q

∂t
(p,q, t) =

{ M∑
k=2

(ε1 − εk)
∂

∂qk
+ 2J

√
p2p1 sin q2

∂

∂p2

+ 2J
M−1∑
k=2

√
pk+1pk sin(qk − qk+1)

(
∂

∂pk
− ∂

∂pk+1

)

+ J
M−1∑
k=1

cos(qk+1 − qk)
(√ pk

pk+1

∂

∂qk+1

+

√
pk+1

pk

∂

∂qk

)
+UN

M∑
k=2

(p1 − pk)
∂

∂qk
− U

M∑
k=2

pk
∂2

∂pk∂qk

+U

M∑
k,k′=2

(pk − p1)pk′
∂2

∂pk′∂qk

}
Q(p,q, t), (6.52)

with the definitions

q1 ≡ 0,
∂

∂q1

≡ −
M∑
k=2

∂

∂qk
. (6.53)

This is the exact many-particle result without any approximations. Before we analyze
this formula in the limit of large particle numbers, we will derive the analogous result
for the P-function.

As the differential operators for the Glauber-Sudarshan distribution (6.38), denoted
by D̃ to avoid confusion, arise from a simple integration by parts of the differential
operators for the Husimi-distribution (cf. equation (6.45)), we can easily derive the
explicit expression for the differential operator of the generalized angular momentum
operator :

D̃l(Êjk) = −xk
∂

∂xj
− δjk + xkx

∗
j

(
(N +M) +

1

2
(x∇+ x∗∇∗)

)
. (6.54)

Here, we have used the same definitions as in equation (6.37). The origin of the minor
changes compared to the case of the Q-function is clear: the additional factor M and
the δ-symbol result from the different operator ordering and the sign is due to the
integration by parts.

With these preliminary considerations, we can determine the time evolution of the
P-function using the differential operators in an analogous way as for the Husimi-
distribution:

˙̂ρ =

∫
Ṗ(Ω) |Ω〉 〈Ω| dµ(Ω) (6.55)

= i

∫ (
D̃l(Ĥ)∗ − D̃l(Ĥ)

)
P(Ω) |Ω〉 〈Ω| dµ(Ω).



6.3. Quantum dynamics in phase space 87

Now we can calculate the exact dynamics of the P-function for the Bose-Hubbard
model with M sites:

∂P

∂t
(p,q, t) =

{ M∑
k=2

(ε1 − εk)
∂

∂qk
+ 2J

√
p2p1 sin q2

∂

∂p2

+ 2J
M−1∑
k=2

√
pk+1pk sin(qk − qk+1)

(
∂

∂pk
− ∂

∂pk+1

)

+ J

M−1∑
k=1

cos(qk+1 − qk)
(√ pk

pk+1

∂

∂qk+1

+

√
pk+1

pk

∂

∂qk

)
+U(N +M)

M∑
k=2

(p1 − pk)
∂

∂qk
+ U

M∑
k=2

pk
∂2

∂pk∂qk

−U
M∑

k,k′=2

(pk − p1)pk′
∂2

∂pk′∂qk

}
P(p,q, t), (6.56)

where we used rescaled units ~ = 1 and the same definitions (6.53) as above.

A comparison with the result for the Husimi-distribution (6.52) shows that due to the
operator ordering the interaction strength now varies with the particle number plus
the number of sites, U(N +M). Apart from this issue, the first order differential form
is exactly the same. The second order contribution has apparently the same structure
as above, but the sign has changed. In both cases the second order term vanishes
in the macroscopic limit N → ∞ with UN fixed as O(1/N) if the lattice size M is
kept constant. A more detailed study of the macroscopic dynamics will be subject of
section 7.2.2.

6.3.4 Numerical simulation using phase space ensembles

From a practical viewpoint, the simulation of the exact phase space dynamics (cf.
equation (6.52) and equation (6.56)) is as complicated as the original problem. Still,
the Liouville dynamics can be used for a quasi-classical simulation of the dynamics by
an approximation based on phase space ensembles, which is comparable to numerical
Monte Carlo methods (for an introduction to these methods see, e.g., [64]).

To this end, one computes the Husimi distribution Q of the initial many-body quan-
tum state. Due to the properties of the Husimi-function this yields a positive prob-
ability distribution. Now one chooses an ensemble of starting points in phase space
distributed according to this probability function ρQ(p, q), where the dynamics of ev-
ery point (pi(t), qi(t)) is given by the corresponding Gross-Pitaevskii equation. Thus,
the evaluation of expectation values reduces to the calculation of classical ensemble
averages:

〈Â〉t =

∫
A(p, q) ρQ(p, q, t)dpdq ≈ 1

L

L∑
i=1

A(pi(t), qi(t)). (6.57)
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This treatment allows for the approximate calculation of expectation values to all or-
ders. Moreover, it links the depletion of the condensate to the dynamical stability of the
GPE and provides a valuable tool for approximately studying the long time dynamics.
Though, just like the case for the approximations discussed in section 8.4.4 neglecting
the second order differential term can be construed as disregarding of quantum noise
and thus the the uncertainty relation might not be satisfied.

Last but not least the simulation based on classical ensembles is much simpler to use
and implement then both of the methods mentioned earlier, especially in the case of
larger systems. This method will be especially beneficial in chapter 10, where it is used
to analyze the many-body features in a generalized Landau-Zener setup.



Chapter 7

Relation to the general theory

In this chapter we highlight the connections between the general theory for quantum
mean-field systems and the description of systems of ultracold atoms in optical lattices
which is in the center of attention in the second part. In particular, we discuss the
relation to the theory of mean-field dynamical semigroups developed in [12, 13] and
apply the algorithm developed in chapter 5 to determine the first order corrections
to the mean-field ground state energy to the Bose-Hubbard model. Since we are now
concerned with a bosonic system, we have to restrict the analysis to the symmetric
subspace.

Furthermore, we discuss several applications of the phase space approach presented in
the preceding chapter. In detail, we will come back to the finite Quantum de Finetti
theorem and its relation to the mean-field theory which we began to discuss in section
2.5. Here, we will be mainly concerned with the question of bounds on the error of the
de Finetti approximation and especially the scaling behaviour of the error for large, but
finite particle numbers. To this end, we will explicitly calculate bounds starting from
the D-algebraic representation introduced in chapter 6. In addition, we take a more
general viewpoint to complement this approach and show that the generalized phase
space representations not only allow for the derivation of another bound, but also to
explicitly construct the states for which the bound is attained. Finally, in the last
section of this chapter, we will derive and discuss bounds on the ground state energy
for the Bose-Hubbard model, as well as their scaling behaviour with the inverse particle
number, complementing the results from the general theory discussed in chapter 5.

7.1 The Bose-Hubbard model as a quantum mean-

field system

In this section, we analyse the ground state problem for the Bose-Hubbard Hamiltonian
in the language of symmetric operators and quantum mean-field systems. Note that
the general theory was aimed at the description of quantum many-particle systems of
indistinguishable particles and we have not yet commented on possible restriction to
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the symmetric or anti-symmetric subspace. Still now we are concerned with a system
consisting of bosonic atoms. This clearly needs some further considerations.

7.1.1 Formulation in symmetric operators

The general theory of quantum mean-field systems as summarized in theorem 11 is
based on strictly symmetric operators. Obviously, the Bose-Hubbard model in the
tight-binding or next-neighbour approximation,

Ĥ =
M∑
i=1

εin̂i − J
M−1∑
i=1

(
â†i âi+1 + â†i+1âi

)
+
U

2

M∑
i=1

(n̂i(n̂i − 1)) , (7.1)

is not invariant under an arbitrary permutation of sites. To analyze the symmetry
properties under an arbitrary permutation of particles, it is most convenient to work
with the generalized angular momentum operators Êjk = â†j âk satisfying[

Êjk, Êmn

]
= Êjnδkm − Êmkδnj (7.2)

with j, k ∈ {1, 2, ...,M}, which we have already used to define the generalized SU(M)-
coherent states in section 6.1.2.

The operators Êjk span the dynamical group and describe the hopping between the k-th
and the j-th well. Yet, they are not single-particle operators, but collective operators
on the many-particle Hilbert space H⊗N due to the indistinguishability of atoms,

Êjk =
N∑
α=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
α−1 times

⊗ |j〉 〈k| ⊗ 1⊗ · · ·1︸ ︷︷ ︸
N−α times

=
N∑
α=1

|j〉 〈k|(α) , (7.3)

where |j〉 denotes the basis state of the single-particle Hilbert space localized at the
j-th well. Note that the diagonal elements Êii are normalized as

M∑
i=1

Êii =
M∑
i=1

n̂i = N. (7.4)

Defining the single-particle transition operator from the k-th to the j-th well as êjk =
|j〉 〈k| allows us to write the rescaled generalized angular momentum operator as a
symmetric operator of degree one,

1

N
Êjk = symN(êjk), (7.5)
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while the interaction term n̂i(n̂i − 1) gives rise to a symmetric operator of degree 2,

1

N(N − 1)
Êii(Êii − 1) =

1

N(N − 1)

N∑
α,β=1

|i〉 〈i|(α) |i〉 〈i|(β) −
N∑
γ=1

|i〉 〈i|(γ)

=
1

N(N − 1)

∑
α 6=β

|i〉 〈i|(α) |i〉 〈i|(β)

= symN(êii ⊗ êii) (7.6)

With these preliminary considerations, we can rewrite the hamiltonian density hN =
ĤN/N for the Bose-Hubbard Hamiltonian (7.1) as

hN =
1

N

M∑
i=1

εiÊii −
J

N

M−1∑
i=1

(
Êi,i+1 + Êi+1,i

)
+

g

2N(N − 1)

M∑
i=1

(
Êii(Êii − 1)

)
=

M∑
i=1

εi symN(êii)− J
M−1∑
i=1

symN(êi i+1 + êi+1 i) +
g

2

M∑
i=1

symN(êii ⊗ êii), (7.7)

where we have used the definition g = U(N − 1) for the macroscopic interaction
strength. This notation clearly illustrates that the Bose-Hubbard Hamiltonian (7.1) is
an example of a quantum mean-field system with pairwise interactions (cf. equation
(2.4)) and once more underlines the condition for the mean-field limit, where we have
to consider the limit of infinite particle numbers N →∞ under the constraint that the
macroscopic interaction strength g = U(N − 1) is kept fixed, and not the microscopic
interaction strength U . Since we need both the Hamiltonian and the hamiltonian
density in this chapter, we use capital and small letters, ĤN and hN , respectively.

7.1.2 The ground state problem

The 1/N fluctuations to the mean-field ground state of ultracold bosonic atoms are
described by the celebrated Bogoliubov theory. This theory is commonly introduced in
a framework where the total particle number is not considered to be a fixed number,
which renders a thorough analysis of the mean-field limit N →∞ impossible. Number-
conserving derivations exist, but even these are mostly based on heuristic arguments
(see section 8.4.2 and [65]). In the following we show that the Bogoliubov Hamiltonian
emerges as a fluctuation Hamiltonian in the framework introduced in chapter 5.

We start from the momentum representation of the Bose Hubbard model. To this end,
we define the annihilation operator for an atom in momentum state p,

âp :=
1√
M

M∑
`=1

eip`â` , (7.8)

where p ∈ π/M × (−M,−M + 2,−M + 4, · · · ,M − 2) if M is even and p ∈ π/M ×
(−M + 1,−M + 3,−M + 5, · · · ,M − 1) if M is odd. Assuming periodic boundary
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conditions, the Bose Hubbard Hamiltonian reads

Ĥ =
∑
p

εpâ
†
pâp +

U

2M

∑
rs,pq

δr+s,p+qâ
†
râ
†
sâpâq (7.9)

with the free particle energy εp = −2J cos(p). The hamiltonian density for a system
with N particles can then be written as

hN = symN(h2) (7.10)

with the two-particle hamiltonian density

h2 =
∑
p

εp
2

(êpp ⊗ 1 + 1⊗ êpp) +
g

2M

∑
rspq

δr+s,p+q êrp ⊗ êsq . (7.11)

Here and in the following êrq denotes the operator taking one atom from momentum
state q to momentum state r, while êrq is the associated macroscopic fluctuation op-
erator. One can easily see that the mean-field energy 〈ρ⊗2, h2〉 assumes its minimum
when all particles condense to the zero-momentum state, ρ = |p = 0〉 〈p = 0|.
Now if want to determine the ground state energy for N bosonic atoms, we must
calculate the infimum of 〈ρN , hN〉 over the set of Bose symmetric states. These satisfy
the symmetry condition

πρ = ρ and ρπ† = ρ (7.12)

for any permutation π of two particles. Note that the set of Bose symmetric states is a
proper subset of the permutation symmetric states. However, we can circumvent this
restriction by a trick, enforcing Bose symmetry on the level of the Hamiltonian h2 by
applying the symmetrization operator (12 +π1,2)/2. In particular, we will calculate the
1/N corrections to the mean-field ground state energy for the modified Hamiltonian

h′2 = ε012 +
1

4

∑
p

(εp − ε0)
(
êpp ⊗ 1 + 1⊗ êpp +

∑
`
ep` ⊗ ê`p + ê`p ⊗ ep`

)
+

g

2M

∑
rspq

δr+s,p+q êrp ⊗ êsq . (7.13)

Physically, this corresponds to the inclusion of the so-called exchange terms into h′2.
Note that the interaction term in h2 is already invariant under the permutation π1,2. It
is easily verified that h′2 and the corresponding N -particle operator h′N = symN(h′2) are
equivalent to h2 and hN , respectively, when restricted to the Bose symmetric subspace.

We now expand the two-particle Hamiltonian density h′2 into fluctuation operators
around the mean-field minimizer ρ = |p = 0〉 〈p = 0| as described in chapter 5. For the
kinetic energy term we need

symN êpp = ρ(êpp) +
1√
N
ẽpp (7.14)∑

`

symN(êp` ⊗ ê`p) = ρ(êp`)ρ(ê`p) +
2√
N
δp0ẽ00

+
1

N

∑
`

ẽp` ◦ ẽ`p − ρ(êp` ◦ ê`p) + ρ(êp`)ρ(ê`p).
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For the interaction term, we find the expansions

symN(êrp ⊗ êsq) = δr0δp0δs0δq0 +
1√
N

(δr0δp0ẽsq + δs0δq0ẽrp) (7.15)

+
1

N

∑
`

ẽrp ◦ ẽsq − ρ(êrp ◦ êsq) + ρ(êrp)ρ(êsq).

In these expressions, the ◦ refers to the symmetric product of two operators as above.

It is worth stopping here for a moment to investigate the fluctuation operators in more
detail. We have shown that the macroscopic fluctuations obey canonical commutation
relations

[êab, êcd] = ρ ([êab, êcd])1. (7.16)

However, the mean-field state ρ is such that most expectation values vanish exactly.
In fact, the only non-vanishing commutators are given by

[ê0b, êa0] = δab, a, b 6= 0. (7.17)

Hence, we can identify the fluctuation operator ê0b with the annihilation operator of a
bosonic field as it is common in Bogoliubov theory. As these operators are the only ones
which contribute to the ground state energy of the Hamiltonian Ĥ, we can basically
neglect all other fluctuations. Indeed, we will only consider the ’bosonic’ part of Ĥ and
drop all other terms in the following.

Collecting the results from equations (7.14) and (7.15), we thus have to retain only
fluctuation operators with exactly one index that equals zero. Furthermore, we can
exploit that ρ(êab) = δa0δb0 for all a, b. We thus obtain the bosonic part of fluctuation
Hamiltonian for the kinetic energy,

Ĥkin =
∑
p 6=0

εp − ε0
2

êp0 ◦ ê0p +
∑
` 6=0

ε0 − ε0
2

ê`0 ◦ ê0`

=
∑
p6=0

εp − ε0
2

êp0 ◦ ê0p. (7.18)

The scalar correction to the mean-field ground state is given by

γc(Hkin) =
∑
p,`

εp − ε0
2

(ρ(êp` ◦ ê`p)− ρ(êp`)ρ(ê`p))

=
∑
p

εp − ε0
4

. (7.19)

To evaluate the bosonic part of the interaction term we again make use of the fact
that one of the indices r, p and p, q must equal zero and that we have the momentum
conservation condition r + s = p+ q. Thus we are left with the contributions

Ĥint =
g

2M

∑
p 6=0

(ê0,p ◦ êp,0 + êp,0 ◦ ê0,p + êp,0 ◦ ê−p,0 + ê0,p ◦ ê0,−p) (7.20)
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and

γc(Hint) =
g

2M

∑
rspq

δr+s,p+q (ρ(êrp ◦ êsq)− ρ(êrp)ρ(êsq))

=
g(M − 1)

2M
. (7.21)

Finally, we use the commutator relations (7.17) to simplify our results. Notably, the
resulting scalar terms are just canceled out by γc such that we finally get

Ĥ − γc(H) =
∑
p 6=0

(
εp − ε0

2
+

g

M

)
êp,0 ê0,p +

g

2M
(êp,0 ê−p,0 + ê0,p ê0,−p) , (7.22)

which is nothing but the well-known Bogoliubov Hamiltonian, (cf. equation (8.49)).
More details on the heuristic derivation are given in section 8.4.1.

7.2 Mean-field dynamical semigroups

The second part of this thesis is devoted to the study of the dynamics of ultracold
atoms in optical lattices, and especially the relation between the mean-field descrip-
tion and the exact many-particle dynamics. In this section, we give a brief introduction
to the general theory of mean-field dynamical semigroups introduced in [12, 13]. As
this illustrates the structure most clearly, we focus on hamiltonian systems and illus-
trate the consequences of the general theory for the special case of the Bose-Hubbard
Hamiltonian (7.7). We have already seen in the preceding chapter that the dynamics
can be described by a flow in quantum phase space, which turns out to be in perfect
accordance with the predictions from the general theory for quantum mean-field sys-
tems. Yet the appearance of the symplectic phase space structure needs some further
explanations. To this end, we will again need the differential calculus for state space
function introduced in chapter 3. In addition, we will briefly comment on dissipative
systems described by a master equation since these systems play a major role in the
following chapters.

7.2.1 Hamiltonian flows

A quantum dynamical semigroup is defined as a family (Tt,N)N∈N of completely positive,
identity preserving contractions

Tt,N : AN → AN for t ∈ R+ and N ∈ N. (7.23)

In detail, we require that for each N ∈ N, Tt,N is a strongly continuous one-parameter
semigroup on AN with generator GN , that is

(
Tt,N = etGN

)
t≥0

.
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In this section we restrict the discussion to hamiltonian systems, where the generator is
given by a strictly symmetric hamiltonian density hN as for example the Bose-Hubbard
Hamiltonian (7.7). Hence the generator is given by

GN = iN [hN , ·] . (7.24)

To establish an evolution in the mean-field limit, that means an automorphism Tt,∞
on S(A),

Tt,∞A∞ = (Tt,·A·)∞, (7.25)

we must assure that Tt,N preserves the basic structure. Here and in the following,
A· refers to the sequence N 7→ AN and not to a particular element AN of the se-
quence. Therefore, we at most require the condition that Tt,N maps approximately
symmetric operators XN ∈ Ỹ to approximately symmetric operators Tt,NXN ∈ Ỹ . A
detailed analysis [12] shows, that we need an additional technical condition to cope
with unbounded generators.

Theorem 25 (Limiting dynamics for quantum mean-field systems [12]). For each
N ∈ N let (Tt,N = etGN )t∈R be a strongly continuous semigroup of automorphisms on
AN . Then the following conditions are equivalent:

1. For each t, Tt,· is approximately symmetry preserving and the set of sequences
A·, such that AN ∈ Dom(GN) and ‖GNAN‖ is uniformly bounded is dense in Ỹ
in the seminorm (2.9).

2. The operator G∞ defined by G∞A∞ = (G·A·)∞ on the domain

Dom(G∞) = {A∞ | AN ∈ Ỹ and GNAN ∈ Ỹ} (7.26)

is well defined, closed and generates a group automorphism on C(S(A)).

If these conditions are satisfied, Tt,∞ = etG∞ is the mean-field limit of the sequence Tt,·.
Moreover, Tt,∞ is implemented by a weak∗-continuous 2-sided flow (Ft)t∈R on S(A),
i.e. R × S(A) 3 (t, ρ) 7→ Ttρ ∈ S(A) is jointly continuous, Ft ◦ Fs = Ft+s for all
t, s ∈ R and Tt,∞f = f ◦ Ft for all f ∈ C(S(A)) and all t ∈ R.

In the following discussion we restrict ourselves to strictly symmetric observables and
especially to the evolution of linear functions on S(A), as e.g. ρ(a). Note however,
that one can establish a suitable condition which allows for the extension to a large
subset of the approximately symmetric sequences (cf. condition 2.3 in [13]).

For hamiltonian systems, the generator of the limiting dynamics G∞ can be determined
by evaluating sequences of the form (7.24). In chapter 2 we have seen that for strictly
symmetric sequences the commutator vanishes to leading order. However, now we are
interested in the rescaled commutator. With the results from calculation (2.13) we can
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directly conclude that for AN = symN(ak), BN = symN(B`) ∈ Y and for N ≥ k+`−1,
the following relation holds

N [AN , BN ] = N

min k,`∑
r=0

cN(k, `, r) symN ([Ak ⊗ 1`−r , 1k−r ⊗B`])

= k` symN ([Ak ⊗ 1`−1 , 1k−1 ⊗B`]) +O(N−1). (7.27)

Hence, the rescaled commutator defines an approximately symmetric and therefore
mean-field convergent sequence. Moreover, a comparison to the definition of the first
order derivative (cf. equation (3.6)) shows that we can express the mean-field limit of
the sequences in terms of derivatives,

lim
N→∞

〈ρ⊗N , N [AN , BN ]〉 = k`〈ρ⊗(k+`−1) , [Ak ⊗ 1`−1 , 1k−1 ⊗B`]〉
= 〈ρ , [∇ρA∞ , ∇ρB∞]〉. (7.28)

Note that due to the properties of the commutator this expression is independent of
the convention to choose the representative of the equivalence class of derivatives.

The mean-field limit of the rescaled commutator defines a bilinear, skew-symmetric
form on the set of differential functions C(S(A)), which we can use to define a Poisson-
like bracket,

{A∞, B∞} = i〈ρ , [∇ρA∞ , ∇ρB∞]〉. (7.29)

Still, in order to define a proper symplectic structure and hence a phase space structure,
the bilinear form ought to be non-degenerate. This property clearly depends on the
state ρ. We will come back to his point in the next section.

With this definition (7.29), we can associate to any differential function A∞ ∈ C(S(A))
the corresponding hamiltonian vector field induced by the mean-field limit of the Hamil-
tonian h∞ by A∞ 7→ {h∞, A∞}. The integral curves of the vector field can be inter-
preted as the time evolution on S(A),

∂

∂t
〈ρt , a〉 = i〈ρt , [∇ρh∞ , a]〉 (7.30)

for a ∈ A. Here, we have used the fact that the gradient of a linear function ρ(a) is
proportional to a. Hence, the limiting generator of (7.24) is of the form

G∞f(ρ) = i〈ρt , [∇ρh∞ , ∇ρf∞]〉. (7.31)

Now we state the main theorem for quantum hamiltonian mean-field systems. In the
next section, we will discuss the application of this theorem to the Bose-Hubbard
Hamiltonian (7.7).

Theorem 26 (Mean-field limit of the dynamics for quantum hamiltonian systems
[12,13]). Let HN be a strictly symmetric self-adjoint sequence and set

Tt,NAN = eitNHNANe
−itNHN (7.32)

for all N ∈ N and t ∈ R. Then



7.2. Mean-field dynamical semigroups 97

• (Tt,·) has a mean-field limit (Tt,∞)t∈R which is the group of automorphisms of
C(S(A)) generated by {∇ρh∞, ·}.

• Tt,∞ is implemented by a flow Ft, the differential equation for ρt = Ftρ being
〈ρ̇t, a〉 = i〈ρt , [∇ρh∞ , a]〉 for all ρt ∈ S(A) and a ∈ A.

7.2.2 Limiting dynamics for the Bose-Hubbard Hamiltonian

With the general theory in mind, we can directly calculate the mean-field limit of the
energy density of the Bose-Hubbard Hamiltonian (7.7):

h∞(σ) =
M∑
i=1

εiσ(êii)− J
M−1∑
i=1

σ(êi i+1 + êi+1 i) +
g

2

M∑
i=1

σ(êii ⊗ êii). (7.33)

Now theorem 26 states that the generator of the evolution in the limiting space is given
by the first order derivative ∇ρh∞,

∇ρh∞ =
M∑
i=1

εiêii − J
M−1∑
i=1

(êi i+1 + êi+1 i) + g
M∑
i=1

êii ρ(êii). (7.34)

Note that we have already left out all terms which are simple multiples of the identity
as these terms do not contribute to the commutator.

With these considerations the evolution equations for the single-particle operators êjk ∈
A in the Heisenberg picture are given by

d

dt
〈ρt, êjk〉 = i〈ρt , [∇ρth∞ , êjk]〉. (7.35)

Using the commutator relations [êjk, ê`m] = δk`êjm− δmj ê`k and the abbreviation 〈a〉 =
ρ(a) for the expectation value in the state ρ ∈ S(A), we obtain the following set of
differential equations

i
d

dt
〈êjk〉 = 〈[êjk , ∇ρth∞ , ]〉

=
M∑
i=1

εi 〈[êjk, êii]〉 − J
M−1∑
i=1

〈[êjk, (êi i+1 + êi+1 i)]〉+ g
M∑
i=1

〈[êjk, êii]〉 〈êii〉

= (εk − εj)〈êjk〉 − J (〈êj k+1〉 − 〈êj−1 k〉+ 〈êj k−1〉 − 〈êj+1 k〉)
+g (〈êjk〉〈êkk〉 − 〈êjk〉〈êjj〉) . (7.36)

Hence, this treatment provides a rigorous justification for the heuristic argument that
one can replace the expectation value of four-point functions, as e.g. êjkêkk by a product
of the expectation value of the two point functions êjk in the mean-field limit. This
argument will be presented in more detail in section 8.4.1. Here, we just note that
if we neglect the variances of the two-point functions in the exact equation (8.60) as
proposed in the heuristic approach we recover exactly the above result.
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By a simple calculation using the parameter transformation 〈êjk〉 = x∗jxk, one can show
that the result (7.36) is equivalent to the discrete Gross-Pitaevskii equation in its most
common form,

iẋj = εjxj − J(xj+1 + xj−1) + g|xj|2xj , (7.37)

provided that the mean-field state is pure. Still, one should keep in mind that the
rigorous derivation presented in this section is based on number-conserving operators
Êjk, which avoids many conceptual problems, as will be argued in section 8.4.1.

Again using the decomposition into amplitude and phase (6.51), the dynamics described
by the GPE (7.37) can be reformulated as canonical evolution equations

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, (7.38)

with the corresponding Hamiltonian function

H(p,q) = −2J
M−1∑
k=1

√
pkpk+1 cos(qk+1 − qk) +

UN

2

M∑
k=1

p2
k +

M∑
k=1

εkpk, (7.39)

where one should keep in mind that the parameters of the first well are not independent
(cf. equation (6.31)).

A classical phase space distribution ρ(p,q, t)dp dq, with p,q being canonical conjugate
variables, describes the probability that an ensemble of particles will be found in an
infinitesimal phase space element dp dq. The dynamics according to the Hamiltonian
function H is given by the classical Liouville equation

dρ

dt
=
∂ρ

∂t
+ {ρ,H} = 0, (7.40)

where {·, ·} denotes the classical Poisson bracket. Therefore the resulting evolution
equations induced by the Hamiltonian function (7.39) are given by the hamiltonian
flow

∂ρ

∂t
=

M∑
k=2

∂H
∂qk

∂ρ

∂pk
−

M∑
k=2

∂H
∂pk

∂ρ

∂qk
(7.41)

=
M∑
k=2

(ε1 − εk)
∂

∂qk
ρ+ 2J

√
p2p1 sin q2

∂ρ

∂p2

+ 2J
M−1∑
k=2

√
pk+1pk sin(qk − qk+1)

(
∂ρ

∂pk
− ∂ρ

∂pk+1

)

+ J

M−1∑
k=1

cos(qk+1 − qk)
(√ pk

pk+1

∂ρ

∂qk+1

+

√
pk+1

pk

∂ρ

∂qk

)
+UN

M∑
k=2

(p1 − pk)
∂ρ

∂qk
.
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Hence, with this particular choice of coordinates, we obtain a symplectic phase space
structure. In the next section, we will see how we can put this argument on more solid
grounds.

Still, before we proceed, we will discuss the connections between equation (7.41) and the
exact evolution equations for the quantum phase space quasi-distributions (6.52) and
(6.56) derived in chapter 6. The comparison shows that the exact phase space evolution
equation consists of a first order differential equation plus a many-particle quantum
correction of second order. This correction vanishes in the macroscopic limit N →∞
with g fixed. The first order terms can be thought of as the classical evolution since they
are identical to the results of the Liouville equation for the hamiltonian function (7.41).
Thus, in the noninteracting case this result coincides with the many-particle result –
the Liouville equation is exact. In this case the GPE describes the evolution of the
center or maximum of the phase space distribution. Thus, starting from the Liouville
equation (7.40) and assuming a delta-distribution ρ(p′, q′) = δ(p′ − p)δ(q′ − q), we get
back to the GPE (7.37) in the form of canonical equations (7.41). This explains that
the GPE is sometimes referred to as s ingle-trajectory approach and demonstrates that
it is obviously not possible to infer any details about higher-order moments from the
GPE alone.

In contrast, the description in terms of a hamiltonian flow clearly goes beyond the area
of validity of the GPE since there are no restrictions on the shape of the initial state,
up to the usual ones set up by the uncertainty relation. As predicted by the general
theory [12,13], the leading term of the exact phase space dynamics (6.52) and (6.56) is
exactly reproduced by the classical Liouville equation (7.41). In the macroscopic limit
N → ∞ with a fixed macroscopic interaction strength g = U(N − 1), as well as for a
fixed lattice size M , the next to leading order differential term vanishes as O(M/N)
and is to first order in 1/N independent of the operator ordering. The choice of the
operator ordering is closely related to the question of finite corrections to the quantum
de Finetti theorem (cf. section 2.5 and especially corollary 14). This point will be
taken up again in the following sections.

Note that the first order differential equation is obviously equivalent to an ordinary
differential equation, whereas the full partial differential equations have a much more
elaborate structure, as they belong to the class of pseudo-parabolic partial differential
equations [66, 67] and thus cannot be easily treated, e.g. by stochastic differential
equations [68].

The first order interaction term is responsible for a variation of the shape of the state,
therefore an initially coherent state no longer stays coherent during the time evolution.
This fact is usually denoted as the break-down of mean-field [69–71], indicating that
the description by a single mean-field trajectory corresponding to the evolution of the
center of the coherent state is no longer valid. Indeed this breakdown is resolved
by using the Liouville approach, where we can take into account the variation of the
shape of the initial state and therefore effects due to variation of the higher moments.
Having in mind the general result it is directly obvious, that the assumption of a point
distribution during the whole evolution is not correct. Instead, the general theory



100 Relation to the general theory

predicts a hamiltonian flow in the mean-field limit in accordance with the exact result
which we have derived in the preceding section using the D-algebraic calculus.

The second order differential corrections to the classical Liouville equation decay with
increasing particle number as 1/N in the macroscopic limit. These terms are responsible
for many-particle effects as tunneling in quantum phase space and (self-)interference. It
is interesting to note that both the Liouville equation and the whole equation without
approximations conserve the normalization. These considerations demonstrate that
the phase space approach presented in chapter 6 provides a suitable tool to explic-
itly calculate the explicit dynamics, as well as to determine the mean-field limit and
quantify the deviations from the limiting dynamics.

7.2.3 Symplectic structure

For reasons of simplicity, we will restrict the following discussion to finite dimensional
algebras A =MM . For the Bose-Hubbard model, the dimension M is equivalent to the
number of sites. As a direct consequence the state space S(A) is a finite dimensional
manifold of dimension M2 − 1. This allows us to use some concepts from differential
geometry, which have already proven to be useful in the discussion of the differential
calculus introduced in chapter 3. For a general introduction to the geometric aspects
of hamiltonian mechanics and a physical motivation of the concepts of differential
geometry, as e.g. 2-forms, we refer to the textbook [72]. For a detailed discussion of
the ideas presented in this chapter, see [13]. In the following, we will closely follow this
reasoning.

In chapter 3, we have identified the tangent space TpS(A) of S(A) as

TpS(A) = {φ ∈ A∗ | φ = φ∗, 〈φ,1〉 = 0}, (7.42)

which can be interpreted as the phase space containing all hamiltonian vector fields
{h∞, ·} = i〈ρ, [∇ρh∞, ·]〉. The cotangent space T ∗pS(A) is set of functions from TpS(A)
to R. It contains the first order derivatives and is equivalent to the set of equivalence
classes [a] = a+ R1 with a∗ = a ∈ A.

In this language,

σ(a, b) = i〈ρ, [b , a]〉 (7.43)

defines an antisymmetric bilinear form on T ∗pS(A)×T ∗pS(A). Yet this is not a 2-form,
as required for a hamiltonian system (see e.g. [72]), but a contravariant tensor of rank 2.
Moreover, as a non-degenerate antisymmetric tensor can only exist in even dimensions
it is in general degenerate and strongly depends on the choice of ρ. This can be directly
seen from a simple example: For ρ being given by the maximally mixed state ρ = 1d/d,
the symplectic form vanishes identically for all a, b ∈ A.

Thus, the null space at the point ρ defined as

Nρ = {a ∈ TρS(A) | σ(a, b) = 0 ∀b ∈ TρS(A)} (7.44)
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is in general a non-empty subset of TρS(A). Obviously, the bilinear form σ is non-
degenerate on the quotient space TρS(A)/Nρ. The problem is now to identify this
space as the tangent space of some submanifold S of S(A) through ρ. As this tangent
space contains all the hamiltonian vector fields the hamiltonian flow is restricted to this
submanifold. Hence we would obtain a symplectic manifold, which can be interpreted
as the phase space.

To determine the submanifold S we have to analyse the integral curves of the Hamilto-
nian vector field. Since the first order derivative of the mean-field limit of the Hamilto-
nian h∞ (7.34) is an element of the single-particle space A it defines an affine function
of ρ. Thus, we can directly integrate

d

dt
〈ρt, a〉 = σ (∇ρh∞, a) = 〈ρt, i [∇ρh∞ , a]〉 (7.45)

to determine the flow

〈Ftρ, a〉 = 〈ρt, a〉 = 〈ρ, ei∇ρh∞tae−i∇ρh∞t〉 ≡ 〈ρ, uau∗〉, (7.46)

where u is an element of the connected component G0 of the identity of the unitary
group of A.

The elements of the subspace Nρ generate the fixed group Gρ of ρ with

〈Ftρ, a〉 = 〈ρ, uau∗〉 = 〈ρ, a〉. (7.47)

Since a ∈ Nρ implies that σ(a, b) = 〈ρ, [a, b]〉 = 0, this subset is equivalent to the
centralizer of ρ, i.e. the set of all elements which commute with ρ.

Hence, we can define the submanifold Sρ to be given by the homogeneous space G0/Gρ.
In [13] it is shown that indeed, on each such leaf Sρ we can obtain a suitable 2-form
by inverting σ, which is closed. Therefore (Sρ, σ−1) defines a proper symplectic phase
space structure with the hamiltonian flow being generated by {h∞, ·}.
Here, we will not comment on the proof, but have a closer look at the structure of the
phase space Sρ. For illustrative reasons, we restrict ourselves to the case M = 2, which
we analyse in detail in chapter 9. In this case, the state space is equivalent to the set
of normalized hermitian 2× 2 matrices and hence equivalent to a 3-ball.

Let us denote the eigenvalues of the state ρ by ρ1, ρ2. The tangent space at the identity
G0 contains the set of first order derivatives and is equivalent to the set of hermitian
matricesM2, thus dimG0 = 22 = 4. If we assume that ρ1 6= ρ2, the centralizer contains
only multiples of the identity. Therefore, the quotient space G0/Gρ is 2-dimensional
and equivalent to a 2-sphere of constant radius. Furthermore, the orbits of the flow
are given by the level lines of h∞. Some examples for such systems are depicted in
figure 9.4. For the completely mixed state, ρ1 = ρ2 = 1/2, the centralizer is equivalent
to M2. Hence, the phase space G0/Gρ is simply given by the center of the Bloch
sphere.

Note that while the above reasoning started from the mean-field dynamics and showed
that it is possible to restrict the state space to a submanifold with a symplectic structure
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which can be identified with the phase space one can also start the other way round:
Using the phase space approach discussed in the preceding chapter, we define the phase
space as the coset space (6.4) respective the parameter space of the coherent states.
For the Glauber coherent states, the coset space is given by H4/U(1) ⊗ U(1) ∼= C.
This is a complex space with an explicit diagonal metric. Hence, there is a symplectic
structure [73]. With the parameter transformation α = 1/2(p+iq), the standard 2-form
is given by ω = dp ∧ dq, which induces the well known Poisson-bracket.

For the SU(M) coherent states, the coset space (6.13) is given by SU(M)/U(M − 1).
Hence for SU(M) coherent states the phase space is isomorphic to a multi-dimensional
sphere SM−1, which is again a complex space with an explicit metric. A straightforward,
but quite lengthy computation shows that using a suitable parametrization (6.51), we
indeed obtain the Poisson bracket (7.41). For more details, see [51, 55].

7.2.4 Some comments on dissipative systems

The general theory of dynamical mean-field semigroups [12] is not restricted to hamilto-
nian systems, but provides a description for arbitrary generators supposed their scaling
properties are appropriate. In detail, we require GN to be a sequence of bounded
polynomial generators of degree g, that is a sequence of operators (GN)N≥g with
GN ∈ B(A⊗N) with

GN =
N

g
symN(Gg) =

1

g(N − 1)!

∑
π

π(Gg ⊗ idN−g)π
−1. (7.48)

For this class of generators the limiting dynamics are given by a flow. This result can
be even extended to approximately polynomial generators [12].

In the second part of this thesis, we are especially interested in the dynamics generated
by the Lindblad master equation in second quantized form

˙̂ρ = −i[Ĥ, ρ̂]− κ

2

M∑
j

(
n̂2
j ρ̂+ ρ̂n̂2

j − 2n̂j ρ̂n̂j
)

−1

2

M∑
j

γatoms,j

(
â†j âj ρ̂+ ρ̂â†j âj − 2âj ρ̂â

†
j

)
, (7.49)

which will be introduced and motivated in detail in section 8.5.1. This approach takes
into account two major effects, phase noise described by the term proportional to κ and
localized loss processes with a site-dependent dissipation rate γatoms,j. As the last term
does not conserve the particle number it is not readily covered by the general approach.
Still note that the resulting mean-field dynamics which are discussed extensively in the
second part suggest that it might be possible to extend the rigorous results.

Hence, in this section we will restrict the analysis to the effects of phase noise, which
is described by the following master equation

d

dt
ρ = −κ

2

M∑
j=1

n̂2
jρ− ρn̂2

j − 2n̂jρn̂j . (7.50)
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Because of the appearance of quadratic terms in n̂j the scaling with the particle number
is not obvious at first sight. To reveal the scaling properties more clearly, we calcu-
late the resulting dynamics of an arbitrary single-particle operator, say â†j âk, in the
Heisenberg picture

d

dt
â†j âk = Lâ†j âk

= −κ
2

M∑
j=1

n̂2
j â
†
j âk − â†j âkn̂2

j − 2n̂j â
†
j âkn̂j

= −κ(1− δj,k)â†j âk. (7.51)

Thus it is evident that phase noise is just a single-particle effect, that degrades all
coherences at a constant rate κ.

In the language of symmetrized operators, the master equation can be rewritten as

d

dt
ρN = LN(ρN), (7.52)

where the N -particle Liouvillian LN is obtained by symmetrizing the corresponding
single-particle Liouvillian:

LN = N symNL1 (7.53)

=
N∑
a=1

1⊗ · · · ⊗ L(a)
1 ⊗ 1⊗ · · · ⊗ 1,

where the superscript (a) refers to the a-th particle. In the case of phase noise, the
single-particle Liouvillian is given by

L1(ρ1) = −κ
M∑
j=1

1

M
ρ1 − êjjρ1êjj . (7.54)

The dynamics generated by the phase noise Liouvillian LN is a rather simple example
of an irreversible mean-field convergent dynamics. A general account of this topic is
given in [12]. We will not go into details here and just note that the scaling factor
∼ N in equation (7.53) is essential. To illustrate this issue we give a simple example
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by calculating the evolution equation for a symmetrized single-particle operator

d

dt
symN(êjk) = N symN(L1) symN(êjk)

=
1

N

N∑
a6=b
a,b=1

1⊗ · · · ⊗ L(a)
1 (1)︸ ︷︷ ︸
=0

⊗1⊗ · · · ⊗ ê(b)
jk · · · ⊗ 1

+
1

N

N∑
a=1

1⊗ · · · ⊗ L1(êjk)
(a)︸ ︷︷ ︸

=−κ(1−δjk)êjk

⊗1⊗ · · · ⊗ 1

= −κ(1− δjk)
1

N

N∑
a=1

1⊗ · · · ⊗ êjk ⊗ 1⊗ · · · ⊗ 1

= −κ(1− δjk) symN(êjk). (7.55)

Hence, to leading order the time derivative vanishes and only the rescaling by N assures
that one recovers a mean-field convergent expression. Furthermore, this calculation
once more demonstrates the significance of the collision terms as all other terms vanish.

7.3 Applications of the phase space approach

We have already seen that the phase space approach provides an illustrative way to
explicitly calculate the resulting hamiltonian flow including the first order corrections
in 1/N . However, the approach is not limited to dynamical questions, but has a wide
range of possible applications. In particular, we will discuss two possible ways to derive
a phase space version of the finite de Finetti theorem, which provide an illustrative
insight in the relations of the de Finetti theorem to different phase space distributions
and in particular to the purity of the state. Moreover, we obtain a nice corollary in
the context of Renyi-Wehrl entropies. In the last section, a quite simple calculation
illustrates that one can also use the phase space approach to determine bounds on the
ground state energy and at least an interval for the 1/N corrections, even if these are
not optimal.

7.3.1 A quantum de Finetti theorem starting from differential
operators

In section 2.5 we have discussed the relation between finite quantum de Finetti theorems
and mean-field systems. In this section, we show how we can use the D-algebraic
formalism introduced earlier to derive a similar bound to the one given in the de
Finetti theorem, while in the next section, we analyse the relation of the theorem 14
to the generalized phase space distributions and the SU(M) coherent states.

First of all, we paraphrase the problem addressed by the Quantum de Finetti theorem
(14) in the language of second quantization:
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Given a symmetric N -partite quantum state ρN , we consider the k-body reduced den-
sity matrix

ρk = trN−k ρN , (7.56)

tracing out N − k particles. In the language of creation and annihilation operators the
reduced k-body density matrix is given by

ρk(j1 j2 . . . jk; `1 `2 . . . `k) =
(N − k)!

N !
〈â†`1 â

†
`2
. . . âj1 âj2 . . . 〉 (7.57)

These quantities are very important, for example the energy expectation value 〈Ĥ〉 is
completely determined by ρ1 and ρ2 if we have a Hamiltonian consisting of one-body
terms and two-body interaction terms only. As is the case in the typical example of a
quantum mean-field system with pairwise interactions (2.4) and in particular for the
special example of the Bose-Hubbard Hamiltonian (7.1).

Now the quantum de Finetti theorem (14) promises that ρk can be approximated by a
convex sum of product states

ρk '
∫

σ⊗k dµ(σ) (7.58)

up to an error which vanishes as N−1 [11, 20–24].

Exact bounds have been derived for both, finite dimensional subsystems [29,30], as well
as infinite dimensional subsystems [31]. Here, we will prove a similar relation for the
finite dimensional case using the D-algebraic approach introduced in section 6.2 based
on the SU(M) coherent states (6.18). In the following, x refers to the parametrization
of SU(M) coherent states in terms of the complex amplitudes |x〉 = |x1, x2, . . . , xM〉
as defined in (6.28).

Theorem 27 (A quantum de Finetti theorem starting from differential operators). Let

ρN be a Bose-symmetric N-partite quantum state on the Hilbert space
(
CM
)⊗N

that
is πρN = ρN for arbitrary permutations π ∈ SN . Then the reduced k-particle density
matrix ρk = trN−kρN can be approximated by a convex combination of product states,
respective SU(M) coherent states

ρ̃k =

∫
dµ(x)S(x) |x〉 〈x| , (7.59)

where S(x) is a probability density on S2(M−1). The error of this approximation van-
ishes as N−1,

||ρk − ρ̃k||1 ≤
k(M − 1) + 2k2

N
+O(N−2), (7.60)

where ‖ · ‖1 denotes the trace norm.
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Note that one particular choice for the probability distribution S(x) is given by the
Husimi function Q(x) = 〈x| ρN |x〉, but that this is not necessarily optimal. For exam-
ple if ρN is already a product state |x0〉 〈x0|, then the best choice is the point measure
S(x) = δ(x − x0), which is equivalent to the P-representation of the coherent state.
Hence, this choice yields the exact result. However, the choice QN(x) gives a measur-
able approximation for all possible quantum states ρN and also yields the upper bound
for the error discussed earlier.

Proof. Here, we just sketch the basic idea and omit the technical parts wherever the
explicit calculations are straightforward.

If we use the D-algebraic calculus introduced in section 6.2, the expectation value
needed to determine the k-body reduced density matrix

ρk(j1 j2 . . . jk; `1 `2 . . . `k) =
(N − k)!

N !
〈â†`1 â

†
`2
. . . âj1 âj2 . . . 〉

=
(N − k)!

N !

∫
D`(Ê`1 j1 . . . Ê`k jk) Q(x) dµ(x) (7.61)

can be evaluated to next-to-leading order in terms of the Q-function. This involves a
quite lengthy calculation, some commutation relations, lots of integration by parts, as
well as tedious bookkeeping of indices. Therefore we only state the result:

〈â†`1 â
†
`2
. . . âj1 âj2 . . . 〉 = Nk

∫
x∗`1x

∗
`2
. . . xj1xj2 . . .Q(x) dµ(x) (7.62)

+Nk−1

(
kM +

k(k − 1)

2

)∫
x∗`1x

∗
`2
. . . xj1xj2 . . .Q(x) dµ(x)

−Nk−1

k∑
a,b=1

δ`b ja

∫
x∗`1 . . . x

∗
`b−1

x∗`b+1
. . . xj1 . . . xja−1xja+1 . . .Q(x) dµ(x)

+O(N−2).

Note, that the order Nk does not contain any differentiation, while the term propor-
tional to Nk−1 does contain a single differentiation and so on. Removing this differ-
entiation by an integration by parts yields the terms in the second and third line of
equation (7.62). As we are only interested in the next-to-leading order, we will also
expand the prefactor of equation (7.57) as

Nk(N − k)!

N !
= 1 +

k(k − 1)

2N
+O(N−2)

Nk−1(N − k)!

N !
=

1

N
+O(N−2). (7.63)
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In total, we find

ρk(j1 j2 . . . jk ; `1 `2 . . . `k) (7.64)

=

∫
x∗`1x

∗
`2
. . . xj1xj2 . . .Q(x) dµ(x)

+
kM + k(k − 1)

N

∫
x∗`1x

∗
`2
. . . xj1xj2 . . .Q(x) dµ(x)

− 1

N

k∑
a,b=1

δ`b ja

∫
x∗`1 . . . x

∗
`b−1

x∗`b+1
. . . xj1 . . . xja−1xja+1 . . .Q(x) dµ(x)

+O(N−2).

In contrast, the matrix elements of the approximation ρ̃k with S(x) = QN(x) are
simply given by

ρ̃k(j1 j2 . . . jk; `1 `2 . . . `k) =

∫
x∗`1x

∗
`2
. . . xj1xj2 . . .Q(x) dµ(x), (7.65)

such that the error is in leading order given by the difference

E(j1 j2 . . . jk; `1 `2 . . . `k) = ρk(j1 j2 . . . jk; `1 `2 . . . `k)− ρ̃k(j1 j2 . . . jk ; `1 `2 . . . `k).

Using the above result (7.64) and identifying once again the integrals with the reduced
density matrices yields:

E(j1 . . . jk; `1 . . . `k) =
k(M − 1) + k2

N
ρk(j1 j2 . . . jk; `1 `2 . . . `k)

− 1

N

k∑
a,b=1

δ`b jaρk−1(j1 j2 . . . ja−1 ja+1 . . . ; `1 `2 . . . `b−1 `b+1 . . . )

+O(N−2). (7.66)

Collecting all these elements, the error E = ρk − ρ̃k can be recast into matrix form

E =
k(M − 1)

N
ρk +

1

N

N∑
a,b=1

(ρk − πa,k(ρk−1 ⊗ 1)πb,k) +O(N−2), (7.67)

where πa,k denotes the permutation of particles a and k. This result can be checked
by simply calculating the elements of E and using the Bose symmetry of the reduced
density matrices ρk−1. Hence, starting from the trace norms of the reduced density
matrices,

‖ρk‖1 = 1

‖πa,k(ρk−1 ⊗ 1)πb,k‖1 = 1, (7.68)

we can give an upper bound on the leading term of the error using the triangular
inequality:

‖E‖1 ≤
k(M − 1) + 2k2

N
. (7.69)
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7.3.2 A quantum de Finetti theorem in phase space

In the last section, we have seen how we can use the D-algebraic formalism introduced
in section 6.2 to explicitly calculate bounds on the de Finetti approximation. In this
section, we present a more general approach to derive a Quantum de Finetti type
theorem based on the concept of generalized phase space distributions for SU(M)
coherent states.

In section 6.3.1, we have introduced the P-representation of the N -particle state ρN ,

ρN =

∫
PN(x) |x〉 〈x|N dµN(x), (7.70)

where dµN(x) denotes for the invariant measure on the phase space corresponding to
N particles. Moreover, the Q- or Husimi representation is defined as

QN(x) = 〈x| ρN |x〉N ,

and is thus closely related to the P-distribution:

QN(x) = 〈x|N
∫

PN(y) |y〉 〈y|N dµN(y) |x〉N

=

∫
PN(y)|〈y|x〉|2N dµN(y). (7.71)

Here, |x〉N denotes the SU(M)-coherent states (6.18) ,

|x〉N =
1√
N !

(
M∑
k=1

xkâ
†
k

)N

|0, 0, . . . , 0〉 , (7.72)

which are equivalent to the product states parametrized by the complex amplitudes
(x1, . . . , xM) with

∑M
i=1 x

∗
ixi = 1. Due to this property, tracing out N−k particles just

results in a reduction of tensor factors,

|x〉N = |x〉⊗N ⇒ trN−k |x〉 〈x|⊗N = |x〉 〈x|⊗k . (7.73)

While the P-distribution is in general not positive definite, often singular and sometimes
not even unique, the Q-function provides a positive definite and normalized functional,
but does not give the right marginal distributions. Still, we can interpret it as a
probability distribution on the set of product states and thus use it as a special choice of
the measure for the approximation in the Quantum de Finetti theorem. This particular
choice not necessarily gives the best approximation, but yields an upper bound on the
error of the approximation.

In the following, we will be concerned with the evaluation of integrals on the finite
dimensional phase space more than once. In this context, we are especially interested
in the relationship between the reduced k-particle state ρk := trN−kρN and the full
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N -particle state ρN , and therefore in the relations between different particle numbers.
The size of the Hilbert space (cf. e.g. [74])

dimHM,N =
(M +N − 1)!

N ! (M − 1)!
, (7.74)

depends on the number of particles N , as well as on the number of lattice sites M . This
can be translated into a relation between the measures dµN(x) and dµN+k(x) linking
the phase spaces corresponding to different particle numbers,

dµN(x) =
dimHM,N

dimHM,N+k

dµN+k(x)

=
(M +N − 1)!

N !

(N + k)!

(M +N + k − 1)!
dµN+k(x). (7.75)

This result will turn out to be extremely useful in the following calculations. As a first
application, we can use it to prove the relation,∫

|x〉 〈x|⊗N+k dµN(x) =
(M +N − 1)!

(M +N + k − 1)!

(N + k)!

N !

∫
|x〉 〈x|⊗N+k dµN+k(x)

=
(M +N − 1)!

(M +N + k − 1)!

(N + k)!

N !
1N+k, (7.76)

where we have exploited the overcompleteness of the generalized coherent states∫
|x〉 〈x|⊗N dµN(x) = 1N . (7.77)

With these preliminary considerations, we can state the main result of this section:

Theorem 28 (A quantum de Finetti theorem based on generalized phase space dis-
tributions). Let ρN be a Bose-symmetric N-partite quantum state on the Hilbert space(
CM
)⊗N

. Then the reduced k-particle density matrix ρk = trN−kρN can be approxi-
mated by a convex combination of product states, that is SU(M) coherent states

ρ̃k =

∫
dµ(x)S(x) |x〉 〈x| , (7.78)

where S(x) is a probability density on S2(M−1).

If we assume that tr (ρ̃2
k) ≤ tr (ρ2

k) ≤ 1, the error of the approximation is bounded as

‖ρk − ρ̃k‖2
2 ≤

2k2M

N
, (7.79)

where ‖ · ‖2 denotes the Frobenius norm which is defines as ‖A‖2
2 = tr(A†A). In

particular for the important case of the reduced single-particle density matrix, i.e. k =
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1, and for the special choice S(x) = QN(x) of the measure on the set of product states
|x〉N ,

ρ̃k =

∫
QN(x) |x〉 〈x|⊗k dµN(x) (7.80)

the bound is exactly given by

‖ρ1 − ρ̃1‖2
2 = tr (ρ̃2

1)− N −M
N +M

tr (ρ2
1)− 2

M +N
. (7.81)

If we assume tr (ρ̃2
1) ≤ tr (ρ2

1) ≤ 1, this can be further simplified to:

‖ρ1 − ρ̃1‖2
2 ≤

2M

M +N
tr (ρ2

k)−
2

M +N

≤ 2(M − 1)

M +N
. (7.82)

Proof. As the 2-norm quantifying the error made by the approximation of ρk by the
state ρ̃k is given by

‖ρk − ρ̃k‖2
2 = tr

(
(ρk − ρ̃k)†(ρk − ρ̃k)

)
= tr (ρ2

k) + tr (ρ̃2
k)− 2tr (ρkρ̃k), (7.83)

the proof of theorem 28 proceeds in two major steps. First we calculate the overlap
tr (ρkρ̃k) using the P-representation (7.70). In a second step, we then look for a good
estimate of the overlap.

In the P-representation the corresponding reduced k-particle density matrix ρk of the
full N -particle density matrix

ρN =

∫
PN(x) |x〉 〈x|⊗N dµN(x) (7.84)

is due to the property (7.73) simply given by

ρk = trN−kρN =

∫
PN(x) |x〉 〈x|⊗k dµN(x). (7.85)

The approximation ρ̃k by the convex combination of product states distributed accord-
ing to the Q-function expressed in terms of the P-distribution (7.71) reads:

ρ̃k =

∫
QN(x) |x〉 〈x|⊗k dµN(x)

=

∫ ∫
PN(y)|〈x|y〉|2N |x〉 〈x|⊗k dµN(x) dµN(y). (7.86)

Thus, the overlap between the exact state ρk and its approximation ρ̃k can be calculated
as

tr (ρkρ̃k) =

∫ ∫
PN(z)PN(y)

∫
|〈z|x〉|2k · |〈y|x〉|2N dµN(x) dµN(y) dµN(z). (7.87)
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Now the major difficulty is to find a suitable estimate for the integral (7.87). The
technical considerations for establishing such a bound are summarized in the following
lemma, which we will prove at the end of this section.

Lemma 29. For arbitrary k,N,M ∈ N the following integral is bounded from below by∫
|〈z|x〉|2k · |〈y|x〉|2N dµN(x)

≥ (M +N − 1)!

(M +N + k − 1)!

N !

(N − k)!
|y · z|2k.

Moreover, in the special case k = 1, one gets the exact result∫
|〈z|x〉|2 · |〈y|x〉|2N dµN(x) =

1

M +N

(
1 +N |y · z|2

)
. (7.88)

Now we can calculate a lower bound on the overlap between ρk = trN−kρN and the
approximation ρ̃k (7.86) and thus give a proper estimate for the 2-norm of the difference
of ρk and ρ̃k (7.83), which finally completes the proof of theorem 28.

Using lemma 29, the overlap tr (ρkρ̃k) for arbitrary k can be estimated as

tr (ρkρ̃k) =

∫ ∫
PN(z)PN(y)

∫
|〈z|x〉|2k · |〈y|x〉|2N dµN(x) dµN(y) dµN(z). (7.89)

≥ (M +N − 1)!

(M +N + k − 1)!

N !

(N − k)!

∫ ∫
PN(z)PN(y)|〈y|z〉|2k dµN(z) dµN(y).

A closer analysis shows that the remaining integral exactly gives the trace of the squared
density matrix,

tr (ρ2
k) =

∫ ∫
PN(z)PN(y)|〈y|z〉|2k dµN(z) dµN(y), (7.90)

which is a measure of the purity of the state. Therefore, we can rewrite the estimate
as

tr (ρkρ̃k) ≥
(M +N − 1)!

(M +N + k − 1)!

N !

(N − k)!
tr (ρ2

k). (7.91)

As expected from mean-field theory (or alternatively as promised by the theorem of
Størmer [20], see e.g. section 2.5), this converges to one for a pure state, tr (ρ2

k) = 1,
in the macroscopic limit N →∞ with M,k fixed.

Now we have everything at hand to finally prove the theorem 28. For arbitrary k, the
distance in the 2-norm between the reduced k-particle density ρk and the approximation
ρ̃k, respectively the error of the approximation can be estimated as (cf. equation (7.91)),

‖ρk − ρ̃k‖2
2 = tr (ρ2

k) + tr (ρ̃2
k)− 2 tr (ρkρ̃k)

≤ tr (ρ2
k) + tr (ρ̃2

k)− 2
(M +N − 1)!

(M +N + k − 1)!

N !

(N − k)!
tr (ρ2

k). (7.92)
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Assuming that tr (ρ̃2
k) ≤ tr (ρ2

k) ≤ 1, we finally get the promised bound on the error:

‖ρk − ρ̃k‖2
2 ≤ 2

(
1− (M +N − 1)!

(M +N + k − 1)!

N !

(N − k)!

)
tr (ρ2

k)

≤ 2
k2M

N
. (7.93)

For the special case k = 1, we don’t even need an estimate, but get the exact result
from lemma 29:

tr (ρ1ρ̃1) =

∫ ∫
PN(z)PN(y)

∫
|〈z|x〉|2|〈y|x〉|2N dµN(x) dµN(z) dµN(y)

=
(M +N − 1)!

(M +N)!

N !

(N − 1)!

1

N + 1

·
∫ ∫

PN(z)PN(y)
(
1 +N |y · z|2

)
dµN(z) dµN(y)

=
1

M +N
+

N

N +M
tr (ρ2

1), (7.94)

where we used again the relation (7.90).

Thus, the 2-norm of the difference of ρk and ρ̃k (7.83) is given by

‖ρ1 − ρ̃1‖2
2 = tr (ρ2

1)

(
1− 2N

N +M

)
+ tr (ρ̃2

1)− 2

M +N

= tr (ρ̃2
1)− N −M

M +N
tr (ρ2

1)− 2

M +N
. (7.95)

Moreover, if we assume that tr (ρ̃2
1) ≤ tr (ρ2

1) ≤ 1, we get the following upper bound
for the distance:

‖ρ1 − ρ̃1‖2
2 ≤

2M

N +M
tr (ρ2

1)− 2

N +M

≤ 2(M − 1)

N +M
. (7.96)

This finally proves the theorem. Note that this derivation does not only give the
bound, but also yields by construction an explicitly expression for the state for which
the bound is attained.

What remains to prove is the bound for the integral given lemma 29, which provided
the estimate for the overlap.

Proof. To evaluate the central part of the integral 7.87, we introduce the definition

|Ψ〉 =
1

(N + k)!

∑
π

π(|y〉⊗k ⊗ |z〉⊗N), (7.97)
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where the sum is taken over all possible permutations π of the single-particle vectors
|y〉 and |z〉 in the spirit of definition (2.6). Note that the vector |Ψ〉 is symmetric, but
not normalized to one.

With the help of this definition, we can rewrite the central part of the integral (7.87),
as follows: ∫

|〈z|x〉|2k · |〈y|x〉|2N dµN(x)

=

∫
|〈Ψ|x〉⊗k|x〉⊗N |2 dµN(x)

= 〈Ψ|
∫

dµN(x) |x〉 〈x|⊗N+k |Ψ〉 .

Using the above result (7.76), we obtain∫
|〈z|x〉|2k · |〈y|x〉|2N dµN(x)

=
(M +N − 1)!

N !

(N + k)!

(M +N + k − 1)!
〈Ψ|Ψ〉. (7.98)

Thus, we have reduced the problem to the calculation of the normalization 〈Ψ|Ψ〉 of
the symmetric vector (7.97). Since this results again in the evaluation of the product
of two symmetrized sums the combinatorics are completely analogous to the ones used
in section 2.3. This can be seen most clearly for the simplest example k = 1,

|Ψ〉 =
1

N + 1

N∑
j=0

|y〉⊗j |z〉 |y〉⊗N−j , (7.99)

where we get

〈Ψ|Ψ〉 =
1

(N + 1)2

(
(N + 1)〈y|y〉N〈z|z〉+N(N + 1)〈y|y〉N−1〈z|y〉〈y|z〉

)
=

1

(N + 1)

(
1 +N |y · z|2

)
. (7.100)

A comparison of the calculation to equation (2.11) clearly shows the analogies. Note
that this also illustrates that the vector |Ψ〉 is not normalized for y 6= z.

For arbitrary k, we again can reorder the terms according to the number r of collision
terms of |y〉 and |z〉. A similar calculation to the one presented in section 2.3 (see
especially equation (2.13) et seqq.) yields the result:

〈Ψ|Ψ〉 =
k∑
r=0

cN+k(k, k, r) |y · z|2(k−r). (7.101)
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Analogously to the definition (2.14), the prefactor cN+k(k, k, r) is given by

cN+k(k, k, r) =
k! k!N !N !

(N + k)! r! (k − r)! (k − r)! (N − k + r)!

=
N !

(N + k)!

N !

(N − k + r)!
r!

(
k

r

)2

. (7.102)

as can be verified by simple combinatorics and careful counting.

Since only the terms with r = 0 contribute to leading order in 1/N (cf. equation (2.16))
and all summands are positive, we can approximate 〈Ψ|Ψ〉 as

〈Ψ|Ψ〉 =
k∑
r=0

cN+k(k, k, r) |y · z|2(k−r)

≥ cN+k(k, k, 0) |y · z|2k

=
N !2

(N + k)! (N − k)!
|y · z|2k. (7.103)

In summary we have found a lower bound for the central part of the integral (7.87):∫
dµN(x) |〈z|x〉|2k · |〈y|x〉|2N

=
(M +N − 1)!

N !

(N + k)!

(M +N + k − 1)!
〈Ψ|Ψ〉

≥ (M +N − 1)!

N !

(N + k)!

(M +N + k − 1)!

N !2

(N + k)! (N − k)!
|y · z|2k

≥ (M +N − 1)!

(M +N + k − 1)!

N !

(N − k)!
|y · z|2k. (7.104)

This proves the lemma 29.

7.3.3 Discussion of the bounds

Let us briefly compare our results on the error of the de Finetti approximation to the
bounds obtained in the literature, in particular to the article by Christandl et al. [30].
Theorem 27 gives a comparable scaling for the error of the approximation to leading
order, but includes an additional term ∼ k2/N which is not present in [30]. Notably,
our calculation is exact until the point where we have to invoke the triangle inequality.
One might thus obtain a tighter bound if this step could be improved. On the other
hand, theorem 28 is stated in terms of the Frobenius norm such that a comparison to
the results of Christandl et al. is less straightforward. We note that the Frobenius is
always smaller than the trace norm, ‖A‖2 ≤ ‖A‖1, for all operators A. However, one
observes that the bound for the Frobenius norm given in theorem 28 is weaker than
the one derived for the trace norm – in particular it scales only as N−1/2. Thus, there
is surely room for improvement.
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7.3.4 A note on quantum phase space entropies

Finally, we want to present another interesting application of the technical lemma 29
in the context of quantum phase space entropies. For the characterization of complex
quantum states the generalized Renyi-Wehrl entropies S

(q)
ρ have proven to be very

useful. The generalized Renyi-Wehrl entropy is defined as

S(q)
ρ :=

1

1− q logW (q)
ρ , (7.105)

where q > 0 is the Renyi index and W
(q)
ρ are the moments of the Husimi function:

W (q)
ρ :=

∫
dµ(x)Qρ(x)q. (7.106)

Note that the common von Neumann entropy is recovered in the limit q → 1.

The following result establishes a connection between the second moment W
(2)
ρ and

the purity tr (ρ2
s) of the reduced density matrices ρs = trN−sρN . Note that we use the

index s instead the index k in order to avoid confusion later on. Hence, the corollary
links the phase space distribution and the quantum entropies of the corresponding
states. Moreover, it proves that the product states ρ⊗N are the sole minimizers of the
Renyi-Wehrl entropy S

(2)
ρ .

Corollary 30. Given a Bose symmetric N-particle quantum state ρN ∈ (CM)⊗N .
Then the second moment of its Husimi function is given by

W (2)
ρ =

∫
dµN(x) 〈xN |ρN |xN〉2

=
N∑
s=0

(N +M − 1)!N !

(2N +M − 1)!

(
N

s

)2

tr (ρ2
s), (7.107)

where ρs = trN−sρN is the reduced s-particle density matrix. Furthermore, the second

moment W
(2)
ρ assumes its maximum and the Renyi-Wehrl entropy S

(2)
ρ assumes its

minimum if and only if ρN is a product state ρN = ρ⊗N .

Proof. We calculate the second moment explicitly starting from a decomposition of the
Husimi function into the P -function:

W (2)
ρ =

∫
dµN(z)

∫
dµN(y)P (z)P (y)

∫
dµN(x)|x · z|2N |x · y|2N . (7.108)

The last integral can be evaluated as in lemma 29, setting k = N :∫
dµN(x)|x · z|2N |x · y|2N

=
N∑
r=0

(N +M − 1)! (2N)!

N ! (2N +M − 1)!
c2N(N,N, r) |y · z|2(N−r). (7.109)
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Furthermore we use the relation∫
dµN(z)

∫
dµN(y)P (z)P (y)|y · z|2(N−r)

= tr

[∫
dµN(z) |z〉 〈z|⊗(N−r) ×

∫
dµN(y) |y〉 〈y|⊗(N−r)

]
= tr (ρ2

N−r). (7.110)

For r = N the integral equals one, such that we adopt the convention tr (ρ2
0) := 1 in

the following.

Inserting these two equations and the coefficients c2N(N,N, r) from equation (7.102)
into the expression (7.108) for the second moment of the Husimi function finally yields
the desired result:

W (2)
ρ =

N∑
s=0

(N +M − 1)!N !

(2N +M − 1)!

(
N

s

)2

tr (ρ2
s), (7.111)

where we have set s := N − r.
Most importantly, all coefficients in the sum (7.111) are strictly positive. Thus, W

(2)
ρ

assumes its maximum if and only if

tr (ρ2
s) = 1 ∀s = 0, 1, . . . , N. (7.112)

This is the case if and only if the original quantum state ρN is a product state

ρN = ρ⊗N . (7.113)

As the Renyi-Wehrl entropy S
(2)
ρ is strictly monotonously decreasing with W

(2)
ρ , the

same condition holds for the minimum of S
(2)
ρ . This completes the proof.

While the fact that the product states are the sole minimizers of S
(q)
ρ has been shown

in a similar framework in [75], the illustrative connection to the purity of the reduced
density matrices ρs was not addressed in this article.

7.3.5 The ground-state variational problem

In this section, we will discuss bounds for the ground state energy resulting from
the Lieb-Berezin inequalities. These thermodynamic inequalities were independently
proved by Lieb and Berezin in the context of quantum spin systems [76,77] and provide
upper and lower bounds for the quantum free energy in terms of classical free-energy
functions based on SU(2) coherent states. Later, their results were extended to quan-
tum partition functions on arbitrary compact Lie groups by Simon [78].

In the following, the Q-representation of the Hamiltonian, that is the expectation value
of the Hamiltonian Ĥ in generalized coherent states |Ω〉, will be denoted by

HQ(Ω) = 〈Ω| Ĥ |Ω〉 , (7.114)
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while the corresponding P-representation will be referred to as HP(Ω), such that

Ĥ =

∫
X

HP(Ω) |Ω〉 〈Ω| dµ(Ω). (7.115)

In this language, the Lieb-Berezin inequalities are given by [51]∫
e−βHQ(Ω)dµ(Ω) ≤ tr e−βĤ ≤

∫
e−βHP(Ω)dµ(Ω). (7.116)

In the zero-temperature limit, the inequalities can be used to determine bounds for the
ground-state energy:

Theorem 31 (Lieb-Berezin inequality for the ground state energy [51,79]). The ground
state energy EG of a quantum system is bounded from below and above by

min
Ω
HQ(Ω) ≥ EG ≥ min

Ω
HP(Ω). (7.117)

In the macroscopic limit N →∞ the difference between the bounds vanishes, |HQ(Ω)−
HP(Ω)| → 0.

For a detailed introduction to the general problem we refer to [78], while the connections
to phase space functions are highlighted in [51]. Here, we will only present the basic
idea and discuss its relation to the formalism based on the D-algebra which we have
introduced in section 6.2. Moreover, we will show how on can use the D-algebraic
formalism to explicitly evaluate these bounds for the ground state energy of the Bose-
Hubbard Hamiltonian (7.1).

In general, the upper bound is rather easy to understand and to evaluate. By definition,
the ground state ρG minimizes the energy functional 〈E〉, such that

〈E〉 = tr (ρĤ) ≥ tr (ρGĤ) := EG (7.118)

holds for every state ρ. Choosing in particular the SU(M) coherent states (6.18) as
trial states one finds

min
Ω

tr
(
|Ω〉 〈Ω| Ĥ

)
= min

Ω
HQ(Ω) ≥ EG. (7.119)

Due to the restriction of the trial states, this approach can only give an upper bound,
but at least this bound can be evaluated much more easily than the general one,
as the algebraic construction based on finite dimensional Lie groups provides a suit-
able parametrization of the coherent states. For the case of SU(M)-coherent states
|Ω〉 = |x〉 (6.18), the evaluation of the left-hand side of equation (7.119) results in the
calculation of the minimum of a function HQ : S2(M−1) → R only.

The lower bound HP is much harder to compute in practice. Calculating the P-
representation of a many-body Hamiltonian is in general a quite tedious task. In
particular for SU(M)-coherent states |Ω〉 = |x〉 this involves the determination of inte-
grals over Y (Ω) 〈Ω| Ĥ |Ω〉, where Y (Ω) are the higher dimensional spherical harmonic
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functions on S2(M−1) (for more details on spherical harmonics in higher dimensions,
see e.g. [80]).

Instead, we can again make use of the D-algebra representation introduced in section
6.2. In this representation the expectation value of the Hamiltonian Ĥ is given by

〈Ĥ〉 =

∫
D`(Ĥ)Q(Ω) dµ(Ω). (7.120)

Using an integration by parts, we can remove all derivatives,

〈Ĥ〉 =

∫
H̃(Ω)Q(Ω) dµ(Ω), (7.121)

and finally obtain a function H̃(Ω) on the parameter space of the generalized coherent
states instead of the differential operator D`(Ĥ). The Q-function can be interpreted as
a positive probability function, which is maximally localized in the case of a coherent
state. Thus, the integration can be interpreted as an averaging procedure and we have

〈Ĥ〉 ≥ min
Ω
H̃(Ω), (7.122)

where the equality sign holds in the macroscopic limit N →∞.

As an example, we calculate the variational bounds for the Bose-Hubbard Hamiltonian
(7.1). For reasons of simplicity, we choose a lattice with M sites and periodic boundary
conditions, such that

Ĥ = −J
∑
i

(
â†i âi+1 + â†i+1âi

)
+
U

2

∑
j

n̂j(n̂j − 1) (7.123)

where we identify the lattice sites i = 1 and i = M + 1.

The expectation value of the Hamiltonian (7.123) in terms of SU(M) coherent states
is given by

〈Ω| Ĥ |Ω〉 = −JN
∑
j

(x∗j+1xj + x∗jxj+1) +
1

2
UN(N − 1)

∑
j

|xj|4. (7.124)

The minimum of this expression is clearly attained for a spatially homogeneous distri-
bution and phase, i.e. |xj|2 = 1/M . Thus, it immediately follows that∑

j

|xj|4 = M
1

M2
=

1

M
and

∑
j

x∗j+1xj + x∗jxj+1 = M
2

M
= 2, (7.125)

such that we can determine the minimum of the functional (7.124) as

min
Ω
〈Ω| Ĥ |Ω〉 = N

(
−2J +

U

2

N − 1

M

)
. (7.126)
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Note that (N − 1)/M ' N/M is approximately equal to the filling factor. Thus, we
have found an upper bound for the ground state energy per particle, that is the energy
density,

〈EG〉
N
≤ −2J +

U

2

(N − 1)

M
. (7.127)

Keeping this result in mind, we come to the determination of a lower bound for the
ground state energy of the Bose-Hubbard model (7.123). To this end we first calculate
the expectation value of the Hamiltonian (7.123) in terms of the Q-function starting
from the D-algebra representation (6.36). A quite lengthy, but straightforward calcu-
lation based on an integration by parts allows us to determine the expectation values
of the operators â†j âk and n̂j(n̂j − 1) as

〈â†j âk〉 = (N +M)

∫
x∗jxkQ(x) dµ(x) (7.128)

for j 6= k and

〈n̂j(n̂j − 1)〉 =
(
N2 +N(2M + 1) +M(M + 1)

) ∫
|xj|4Q(x) dµ(x)

−4(N +M)

∫
|xj|2Q(x) dµ(x)− 2. (7.129)

Now we have to minimize the expectation value of the Hamiltonian (7.123) under the
condition that Q represents a physical state, respecting the uncertainty condition. The
maximally localized states are given by the SU(M) coherent states, which converge
towards a δ-distribution in the limit of infinite particle numbers. Thus, the approxima-
tion (7.122) yields a lower bound, which is attained in the macroscopic limit. Setting
xj = 1/

√
M as above, we thus obtain for the minimum (7.122)

min
x
H̃(x) = −2J(N +M) +

U

2

N2N(2M + 1) +M(M + 1)

M
− 2U(N +M)− UM

= −2J(N +M) +
U

2

N(N − 1)

M
− U 2MN + 7M2 − 2N −M

2M
. (7.130)

Summarizing our results, we have found the following bounds on the ground state
energy EG of the Bose-Hubbard Hamiltonian (7.123):

−2JN +
U

2

N(N − 1)

M
≥ EG (7.131)

≥ −2J(N +M) +
U

2

N(N − 1)

M
− U 2MN + 7M2 − 2N −M

2M
.

In other words, the possible values of the ground state energy are restricted to an
interval with a width

∆E = −2JM +
U

2M

(
2MN + 7M2 − 2N −M

)
. (7.132)
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Note that this result can be seen as an generalization of the results for the special case
M = 2 treated in [76].

In the mean-field limit, i.e. in the limit of infinite particle numbers N → ∞, but for
a fixed macroscopic interaction strength g = U(N − 1) and a fixed number of lattice
sites M , we obtain for the energy density EG/N

−2J +
g

2M
≥ EG

N
≥ −2J +

g

2M
−O

(
1

N

)
. (7.133)

Thus, the energy per particle EG/N of the interacting many-particle ground state
converges towards

EG
N

N→∞−−−→
g fixed

−2J +
g

2M
, (7.134)

which is exactly the energy which we would expect for a Bose-Einstein condensate (cf.
equation (8.32) for the interaction part).

With these results on the ground state energy we leave the fundamental aspects of
mean-field quantum systems. In the second part, we are concerned with several appli-
cations in the field of ultracold atoms.



Part II

Dynamics of Ultracold Atoms in
Optical Lattices





Chapter 8

Ultracold atoms in optical lattices –
models and methods

The physics of ultracold atoms in optical lattices has made an enormous progress in the
last twenty years. They provide an excellent model system for a variety of fields such as
nonlinear dynamics or condensed matter physics [81, 82]. Since the first experimental
demonstration of Bose-Einstein condensation in a gas of alkaline atoms in 1995 these
systems have turned out to be a genuine tool box to implement a wide range of many-
body Hamiltonians featuring near perfect control and have inspired whole new fields
of research. In this chapter we will discuss the basic definitions and physical concepts
and introduce the models and methods used in the following chapters.

In the first section, we explain the phenomenon of Bose-Einstein condensation (BEC)
in a system of non-interacting bosons. The second section gives a short review on
experimental techniques from laser cooling to optical lattices and an account on current
experiments with BECs. In section 8.3 we introduce the Bose-Hubbard Hamiltonian, a
paradigmatic model for the study of ultracold, strongly interacting bosonic atoms and
one possible realisation of the permutation symmetric systems discussed in the first
part of this thesis. We have already seen that in the limit of large particle numbers
these systems converge to a mean-field solution. In section 8.4 we comment on the
resulting (discrete) Gross-Pitaevskii equation (GPE) and discuss possibilities for going
beyond this approximation, which is strictly valid only in the limit of infinite particle
numbers. Finally, in the last section, we extend these models to include noise and
dissipation.

8.1 Bose-Einstein condensation

In 1924 Albert Einstein predicted a novel phase for an ideal Bose gas [83,84], based on
Satyendra Nath Bose’s work on photon statistics [85]. Below a critical temperature,
a dilute gas of non-interacting bosons condenses to the single-particle ground state of
the system, such that a macroscopic occupation of this state arises. The result is a
macroscopic matter wave exhibiting quantum phenomena on a large scale.
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To illustrate this phase transition, we consider a gas of N � 1 non-interacting bosons
in a large box of volume V = L3. To keep the notation simple, we assume that
the particles have no spin, s = 0. However, the extension to systems with spin is
straightforward. In the following, we are interested in the thermodynamic limit, where
the particle number N , as well as the volume L tend to infinity, N,L→∞, while the
density ρ = N/V is fixed.

To analyse the low-temperature limit of an ideal Bose gas, it is most convenient to
work in the grand canonical framework with the grand canonical partition function

ZG = tr e−β(Ĥ−µN̂), (8.1)

where β = 1/kBT denotes the inverse temperature and µ the chemical potential . The
Hamiltonian for N non-interacting, non-relativistic particles is given by

Ĥ =
N∑
i=1

p̂2

2m
. (8.2)

The single-particle energies are given by the eigenvalues εp = (2π~)2n2/2mL2 with
n ∈ Z3 due to the boundary condition.

Due to the restriction to the symmetric subspace of the total Hilbert space, the N -
particle state is completely determined by the set of occupation numbers np of the
energy eigenstates. The sum over all eigenstates gives the total particle number, N =∑

p np, and the total energy is E({np}) =
∑

p npεp. As the grand canonical partition
function (8.1) factorizes into the contributions from the single energy levels, ZG can be
determined as follows:

ZG =
∑
N≥0

∑
{np}

e−β(E({np})−µN) =
∞∑

np=0

e−β
P

p(εp−µ)np

=
∏
p

∑
np

e−β(εp−µ)np =
∏
p

1

1− eβ(εp−µ)
. (8.3)

Now, all thermodynamic quantities can be deduced from the grand canonical potential,

Φ ≡ −β−1 logZG = β
∑
p

log
(
1− e−β(εp−µ)

)
. (8.4)

Note that, since the total energy is independent of the spin s, the extension to systems
with spin just amounts to a multiplicative degeneracy factor g = 2s + 1 and not to a
qualitatively different behaviour. In the last transformation of equation (8.3) we have
used the geometric sum. To insure convergence, it is necessary that µ < εp for all p.
Since the ground state has zero energy εp = 0, the chemical potential µ thus must be
negative.

The average particle number can be calculated from the grand canonical potential
(8.4):

〈N̂〉 = −
(
∂Φ

∂µ

)
=
∑
p

1

1− eβ(εp−µ)
. (8.5)
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In the thermodynamic limit, the sum can be be approximated by an integral L−3
∑

p →
(2π~)−3

∫
R3 , such that the density can be evaluated as

ρ ≡ 〈N̂〉
L3

=
g

(2π~)3

∫
R3

d3p
1

1− eβ(εp−µ)
. (8.6)

A closer analysis shows that this is a monotonically increasing function of µ ∈ [−∞, 0],
which assumes its maximum,

ρc(T ) = g3/2(1)

(
mkBT

2π~2

)2/3

, (8.7)

for µ = 0. This equation defines the critical density ρc, which still depends on the
temperature T . For simplicity, we have used the generalized ζ-function

gν(z) ≡ 1

Γ(ν)

∫ ∞
0

dx
xν−1

exz−1 − 1
with Γ(ν) ≡

∫ ∞
0

dt e−ttν−1 (8.8)

instead of the full integral expression. In dependence of the fugacity z = eβµ ∈ [0, 1],
the function g3/2(z) assumes its maximum g3/2(1) ≈ 2.612 for z = 1, respective µ = 0.
Thus, we get the absurd result that for vanishing chemical potential, µ → 0, the
density assumes its smallest value ρc. On the other hand, if we interpret equation
(8.7) as an equation to determine the temperature, we get an expression for the critical
temperature

Tc(ρ) =
2π~2

m

(
ρ

g3/2(1)

)2/3

. (8.9)

Below this critical temperature the density seems to be shrinking with decreasing tem-
perature.

These obvious inconsistencies go back to the naive replacement of the sum by an
integral. A more careful analysis shows, that the term with p = 0 in equation (8.5)
diverges in the limit of vanishing chemical potential µ → 0 and therefore has to be
treated separately,

〈N̂〉 = N0 +Np6=0

=
1

e−βµ − 1
+
∑
p6=0

1

1− eβ(εp−µ)
. (8.10)

The first term describes the number of particles N0 in the single-particle ground state
with p = 0. Below the critical temperature Tc, the fraction of atoms N0/〈N̂〉 in this
state does not vanish in the thermodynamic limit (with ρ held fixed), but can be
determined as

lim
N→∞

N0

〈N̂〉
=

 0 T > Tc(ρ)

1−
(

T
Tc(ρ)

)3/2

T < Tc(ρ).
(8.11)
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This macroscopic occupation of the single-particle ground state is called Bose-Einstein
condensation. For a finite temperature below Tc one gets a mixture of the normal phase
and a Bose-Einstein condensate, whereas one gets a fully condensed state for T = 0.
For a fixed particle number the ground state wave function in the BEC phase is thus
simply a product of single-particle wave functions in the lowest energy eigenstate.

A much more illustrative explanation of Bose-Einstein condensation can be given in
therms of the thermal wavelength,

λthermal ≡
√

2π~2

mkT
. (8.12)

If one compares this quantity to the critical density (8.7), one can paraphrase the
condition for the onset of Bose-Einstein condensation as λ−3

thermal ∝ g3/2(1)ρ. Thus, the
phase transition to a macroscopic wave function takes place as soon as the thermal
wavelength λ is of the order of the mean distance between the particles.

Note, that the derivation given was for a three-dimensional system. In a one- or
two-dimensional volume the density (8.6) diverges, thus there is no Bose Einstein con-
densation in one and two dimensions in free space. This result is in accordance with the
Mermin-Wagner theorem, which states the impossibility of long-range order in uniform
one- or two-dimensional systems at a finite temperature T [86, 87]. The situation is
different if the atoms are confined by an external potential. In this case it is possible
to obtain a BEC also in one-dimensional systems [88,89]. In two-dimensional systems
a Berezinsky-Kosterlitz-Thouless transition [90–92], characterized by a huge, but finite
correlation length occurs instead of a Bose-Einstein condensation.

Up to now, we were only concerned with non-interacting systems. As of yet there exists
no general proof of Bose-Einstein condensation for interacting many-particle systems.
There have, however, been many results in this direction. For a recent overview and a
thorough introduction to the mathematical side of this problem, see [43]. Even at zero
temperature it is not directly obvious how to generalize the concept of a macroscopic
occupation of a single-particle state of an interacting system, since the eigenfunctions
of the Hamiltonian no longer factorize into a product of single-particle states. To make
the concept of Bose-Einstein condensation more precise, we introduce the reduced
single-particle density matrix (SPDM). If the symmetric N -particle state is denoted by
the wave function Ψ(r1, r2, . . . , rN) the SPDM is defined as follows:

ρred(r, r′, t) ≡
∫

dr2dr3 . . . drNΨ∗(r, r2, . . . , rN)Ψ(r′, r2, . . . , rN). (8.13)

By definition the SPDM is a hermitian operator, which can thus be decomposed into
sets of eigenfunctions ψi and eigenvalues ai,

ρred(r, r′, t) =
∞∑
i=1

aiψ
∗
i (r, r

′, t)ψi(r, r
′, t), (8.14)

and is normalized, as tr ρred = 1. For a fully condensed state,

Ψ(r1, r2, . . . , rN) =
N∏
i=1

ψ0(ri), (8.15)
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only one eigenvalue equals 1, while all the others are zero. The corresponding SPDM
is thus simply given by ρred(r, r′, t) = ψ∗0(r, t)ψ0(r′, t).

To turn the argument on its head, we can define Bose-Einstein condensation, respec-
tively a macroscopic occupation as the appearance of an eigenvalue of the SPDM (8.13)
which does not vanish the thermodynamic limit N → ∞, but is of order unity O(1),
whereas all others scale as O(1/N). This definition was first given in the context of liq-
uid helium [93], where interactions play a dominant role and is now common standard
(see, e.g., [94] and references therein). However, it is not restricted to a condensation
in the ground state only, but can be extended to arbitrary states, including thermal
states. Also, the system can condense to more than one state, as e.g. a set of hyperfine
states instead of a single ground state. This is represented by an SPDM with more
than one eigenvalue of the order of one and yields a so-called spinor BEC or a BEC
consisting of various fragments.

Moreover, the SPDM can be used to characterize the system and quantify depletion
during the dynamics, since the non-vanishing eigenvalue directly gives the fraction
of condensed atoms. Therefore the SPDM will be frequently used in the following
chapters.

8.2 Experimental overview

8.2.1 From laser cooling to the creation of a BEC

The first proposal for cooling atoms with light dates back to the advent of laser physics.
This marked a major breakthrough in atomic physics with innumerable applications
ranging from atomic clocks to precision spectroscopy. In 1997, Steven Chu, Claude
Cohen-Tannoudji and William D. Phillips were awarded the Noble prize for their work
on laser cooling of atoms and trapping techniques [95–97]. Here, we can only give a
short introduction to two techniques frequently used for the creation of a BEC, namely
Doppler cooling and evaporative cooling. A more detailed overview can be found in [98].

The basic principle of Doppler cooling relies on the Doppler effect due to the ther-
mal motion of the atoms. The slight detuning of the electronic transition frequency
depending on their direction relative to the near-resonant laser light is sufficient to
influence the absorption rate of the photons. Thus, if the laser frequency lies just be-
low the atomic transition frequency, only atoms travelling towards the beam strongly
absorb photons. Since the scattered photons are re-emitted equally in all directions,
this causes a net decrease of momentum due to the photon recoil and can thus be used
to minimize the kinetic energy, and hence the temperature of the atoms. Together with
optical pumping effects this allows for temperatures of a few hundreds micro-Kelvin.

When Doppler cooling is combined with evaporative cooling temperatures in the nano-
Kelvin regime which are needed for Bose-Einstein condensation can be reached. In
an evaporative cooling scheme the atoms are normally confined by a conservative trap
using magnetic or optical dipole forces. If the trap depth is successively lowered, the
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Figure 8.1: Bose-Einstein condensation (taken from the Nobel lecture of W. Ketterle
[103]). Depicted is an absorption image vs. two spatial dimensions. The left picture
shows an expanding cloud cooled to just above the transition point; middle: just after
the appearance of the condensate; right: after further evaporative cooling an almost
pure condensate is visible. The total number of atoms at the phase transition is about
7× 105, the temperature at the transition point is 2µK.

most energetic atoms can escape. In this kind of setup temperatures of few nano-Kelvin
can be reached due to rethermalization processes, while the phase space density is still
large enough to induce the phase transition to a BEC.

In 1938 a superfluid phase in liquid helium-4 was discovered, which can be partly
explained as Bose-Einstein condensation. However, interactions play a dominant role
and as we have discussed such an interpretation requires that the fundamental theory
must be substantially modified. For a long time, it was an open problem if one could
indeed realize a clean Bose-Einstein condensate, since in this temperature regime the
stable phase would usually be a solid. To circumvent this problem the gas must be
dilute enough to suppress three-body scattering events. In 1995, seventy years after the
seminal work of Bose and Einstein, the first three independent experimental realizations
of Bose-Einstein condensation in gases of alkaline atoms using 87Rb, 7Li and 23Na were
reported [99–101]. In 2001 Eric Cornell, Carl Wieman and Wolfgang Ketterle received
the Nobel prize for their achievements [102,103].

In figure 8.1 the momentum distribution of a BEC created in the group of Wolfgang
Ketterle is shown. These images are created using a time-of-flight technique. The
trapping potential is switched off, such that the atomic cloud can expand for a few
milliseconds. By shining a resonant laser beam on the atomic cloud one can observe its
shadow via a CCD camera. The result is a density profile of the momentum distribu-
tion. One clearly observes the macroscopic occupation of the p = 0 state as discussed
in the preceding section. For an in situ observation the required resolution is challeng-
ing. For ultracold atoms in optical lattices the resolution must be on the order of a
hundreds of nanometers. This requires significant effort and has only been achieved
recently [104, 105]. An introduction to different imaging techniques can be found e.g.
in [106].
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Today the physics of Bose-Einstein condensates is a whole new field of research in
its own right. Bose-Einstein condensates of more then 13 different isotopes have been
reported, including atomic hydrogen [107] and 52Cr [108]. They are an ideal playground
to study interference and correlations, superfluidity and the creation of vortices, the
creation of solitons, as well as the behaviour of mixtures and spinor condensates (for
a general overview see e.g. [109]). There are multiple suggestions for using BECs as
quantum simulators for solid state systems (like the Bose-Hubbard model which will be
introduced in the next section) or for relativistic problems, as for example black holes
[110] or the Zitterbewegung of a Dirac particle, on which we will comment at the end of
chapter 10. BECs have been employed as a quantum interface for light and matter, e.g.
to slow down light [111] via electromagnetically induced transparency [112]. Nowadays
the physics of Bose-Einstein condensation is no longer restricted to bosonic atoms:
Ultracold fermions pair up to form molecular BECs [113–115], the condensation of
magnons [116] and exciton-polaritons [117] offers the possibility for studying Bose-
Einstein condensation at room temperature and the Bose-Einstein condensation of
photons has only recently been reported [118,119].

8.2.2 Trapping by light

Two laser beams in diametric opposition to each other form a standing light field,
which induces an electric dipole moment in the atoms. The ac Stark shift is the energy
shift Vac(r) of an atomic level due to the interaction between the induced dipole and
the electric field [120,121]:

Vac(r) =
1

2
α(ω)〈E2(r, t)〉, (8.16)

where α(ω) describes the specific dynamic polarizability of the atomic level under
consideration and the time average 〈·〉 has to be taken over one period of light. This
energy shift may be regarded as an effective potential for the atoms, which gives rise
to the dipole force

Fdipole ≡ −∇Vac(r). (8.17)

The detuning ∆ of the light field is defined as the difference between the laser frequency
ω and the frequency of an atomic transition: ∆ = ω − ωres. Spontaneous emission can
be neglected if the system is detuned far from resonance. If it is red-detuned, respective
∆ < 0, the induced dipole is in phase with the electric field. Therefore, the gradient
of the potential energy points in the direction of the increasing field and the force is
attractive, whereas it is repulsive for blue-detuned light, ∆ > 0.

Thus, the two opposed laser beams form a standing wave which leads to a periodic
dipole potential

Vperiodic(x) = V0 cos2

(
2πx

d

)
, (8.18)

which is characterized by the lattice spacing d = λlaser/2. A slight variation of the
angle between the two beams gives the ability to influence the lattice spacing without
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changing the wave length. The lattice depth is proportional to the ratio between the
laser intensity and the saturation intensity of the atomic transition and is typically
given in units of the recoil energy

Erecoil =
~2π2

2md2
. (8.19)

A combination of different beams allows various forms of potential. Moreover, by
controlling the polarization one can even create state dependent potentials, which can
be shifted relative to each other [122]. The special case of a bichromatic lattice, which
can be implemented by superimposing two incoherent optical lattices (cf. e.g. [123,
124]), is analysed in section 10.3.

Ultracold atoms in a periodic potential allow the observation of many effects originally
studied in condensed matter physics. Such as Bloch oscillations and Landau-Zener tun-
neling (cf. chapter 10), with almost perfect control over the lattice parameters. The
significantly higher densities which can be reached with a BEC compared to ultracold
atoms facilitate filling factors of more then one atom per site. Thus, interactions be-
tween the particles play a dominant role. They induce strong correlations and strongly
influence the dynamics. Since the effective interaction strength is widely tunable using
Feshbach resonances [109], this provides the opportunity to implement a wide range
of many-body Hamiltonians, as e.g. the Bose-Hubbard model introduced in the next
section.

8.3 The Bose-Hubbard model

In 1998 Jaksch et al. [125] proposed using a dilute gas of ultracold bosonic atoms in an
optical lattice as a realisation of the Bose-Hubbard Hamiltonian, which was previously
known from the theoretical description of Josephson junctions (cf. [126] and references
therein). Unlike Josephson junctions in an optical lattice implementation of the Bose-
Hubbard model all system parameters are easily accessed by a variation of the laser
intensity and wave length in their proposal. Their idea and the famous realisation by
Greiner et al. [127] showed that ultracold atoms provide ideal model systems for solid
state physics. This attracted a great deal of attention in the quantum optics community
and laid the foundations of a whole new field of research (cf. [82] and references therein).

In the following, we consider a dilute gas of ultracold bosons. In addition to the
optical lattice Vperiodic(r), most experimental setups feature an optical or magnetic
potential Vtrap(r) to confine the atoms. These trapping potentials, as well as any
other specialized potentials are summarized in the external potential Vext(r), while the
interaction potential between the particles is denoted as Vint(r, r

′).
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In second quantization this yields the Hamiltonian

Ĥ =

∫
d3r Ψ̂†(r)

(
p2

2M
+ Vperiodic(r) + Vext(r)

)
Ψ̂(r) (8.20)

+
1

2

∫
d3r

∫
d3r′ Ψ̂†(r)Ψ̂†(r′)Vint(r, r

′)Ψ̂(r)Ψ̂(r′),

with the field operators Ψ̂(r) and Ψ̂†(r) fulfilling the commutation relations

[Ψ̂(r), Ψ̂†(r′)] = δ(3)(r− r′). (8.21)

The interactions of the bosons Vint(r, r
′) are mainly due to binary collisions. As all

these scattering events take place at very low energies and momenta, it is sufficient to
treat the scattering problem up to first order in the partial wave expansion. In this
approximation, the scattering amplitude does not depend on the relative direction of
the atoms, Vint(|r− r′|) . The s-wave scattering length as is defined as the limit of the
scattering amplitude in the case of zero momentum and can be seen as a measure of
the interaction strength (cf. [109]). If one is not interested in details of the scattering
process, one can just as well replace the interaction potential by a delta-shaped model
potential,

Vint(|r− r′|) =
4π~2as
Mred

δ(r− r′), (8.22)

which is much easier to handle, but yields the same scattering length. Note, that
this replacement is not correct for atoms featuring long-range interactions, such as the
dipole-dipole interactions in 52Cr [128].

The quantum dynamics in a deep optical lattice is now conveniently studied in the
Wannier basis wn(r− ri), which is defined as the Fourier transform of the Bloch basis
[129]. Here, n labels the Bloch band, while i denotes the lattice site. The basis functions
are exponentially localized in the minima ri of the periodic potential. If we decompose
the field operators Ψ̂(r) into this basis

Ψ̂(r) =
∑
n,i

wn(r− ri)ân,i, (8.23)

the coefficients ân,i can be determined as follows

ân,i =

∫
w∗n(r− ri)Ψ̂(r)dr (8.24)

and fulfill bosonic commutation relations. Their interpretation is evident: They destroy
(or create) a boson in the state wn(r − ri). Due to exponential localization, matrix
elements of operators evaluated with two Wannier functions located at remote sites
can be approximately neglected. This fact is commonly used for approximations and
leads to an effective discretisation of the continuous system.

In the following, we restrict our analysis to the ground band n = 0. This single-band ap-
proximation is justified if the following conditions are fulfilled: The energetic difference
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between the lowest and the higher energy bands is large compared to the thermal en-
ergy of the bosons, if there are no band crossings and the external fields are sufficiently
weak. In this case, the band index can be considered as approximately conserved. In
the tight-binding or nearest neighbour approximation we neglect the coupling between
non-adjacent sites because of the exponential localisation of the Wannier functions.

Based on these assumptions, the continuous Hamiltonian (8.20) can be approximated
by the discrete Bose-Hubbard Hamiltonian:

Ĥ =
M∑
i=1

εin̂i − J
M−1∑
i=1

(
â†i âi+1 + â†i+1âi

)
+
U

2

M∑
i=1

(n̂i(n̂i − 1)) . (8.25)

Here, we used the common definition n̂i ≡ â†i âi and rescaled units such that ~ = 1.
The index i labels the M potential minima or sites and the parameter J describes the
tunneling strength between neighbouring sites |i− j| = 1,

Jij = −
∫

d3rw∗(r− ri)

(
− ~2

2M
∇2 + Vperiodic(r)

)
w(r− rj). (8.26)

As the phase of the Wannier function is arbitrary, we can choose it such that J is real.
Due to the tight-binding approximation, tunneling events between non-adjacent sites
are negligible, just like interactions of bosons located at different sites, i 6= j , whereas
the on-site interactions,

Ui =

∫ ∫
d3r′ d3r |w(r− ri)|2Vint(|r− r′|)|w(r′ − ri)|2

=
4πas
Mred

∫
d3r |w(r− ri)|4 (8.27)

play a crucial role for the dynamics. In the following, we assume a site-independent
interaction strength Ui ≡ U . In addition, we have defined the local chemical potential
as

εi =

∫
d3r Vext(r)|w(r− ri)|2. (8.28)

Note, however, that this definition is only sensible if the variation of the external
potential on the characteristic length of the optical lattice is small enough to be assumed
to be constant over one lattice site.

In dependence of the parameter ratio, the Bose-Hubbard system undergoes a quantum
phase transition from a superfluid phase for J � U , characterized by long range
coherence and vanishing gap in the excitation spectrum, to the Mott phase for U �
J , dominated by localization effects [130]. Especially the prediction [125] and the
spectacular experimental realization [127] of the latter system attracted a lot of interest,
since this shows that optical lattices can be seen as a kind of laboratory for strongly
correlated many-body systems. Only recently this phase transition has been observed
in an experiment with astonishing accuracy, being able to resolve single-sites as well
as single atoms [104,105].
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One immediate consequence of the discretisation due to the tight-binding approxima-
tion is the reduction of the definition of the SPDM (8.13) is to the calculation of the
matrix elements

ρred,ij =
1

N
〈â†i âj〉 (8.29)

with i, j = 1, . . . ,M .

For an extended lattice the huge dimension of the N -particle Hilbert space H,

dimH =
(M +N − 1)!

N ! (M − 1)!
, (8.30)

precludes any attempt to solve the problem numerically exact for a realistic number
of particles, while the interactions make analytic solutions a hard task, especially in
the case where the interaction strength is of the order of the tunneling, U ≈ J , such
that perturbative approaches fail. Thus, approximations are of fundamental interest.
In the next section, we will introduce the most common approximation, the (discrete)
Gross-Pitaevskii equation (GPE) and discuss possibilities for going beyond this ap-
proximation.

8.4 The mean-field limit and beyond

Even if the Bose-Hubbard model (8.25), as well as the continuous problem (8.20) are
inherently many-particle problems, the dynamics of the macroscopic wave function is
remarkably well reproduced by the (discrete) Gross-Pitaevskii equation (GPE) if the
systems undergoes Bose-Einstein condensation [131]. In this section, we will introduce
the GPE and discuss possible ways to go beyond this approximation. To this end, we
will follow the heuristic derivation of the GPE based on the work of Bogoliubov [132].
Note that a rigourous derivation of the mean-field dynamics based on the phase space
description discussed in chapter 6, yields exactly the same hamiltonian function. Still,
the rigorous treatment shows that the limiting dynamics is given by a phase space flow,
in contrast to the heuristic description by Bogoliubov, where we consider only a single
trajectory in phase space.

8.4.1 The time-independent Gross-Pitaevskii equation

To derive the time-independent Gross-Pitaevskii equation we start again with the full,
second quantized, many-particle Hamiltonian (8.20), which we have discussed in the
proceeding section. However, now we are interested in the limit of large particle num-
bers N →∞.

Under these conditions the energy of a fully condensed state (8.15) is given by

E = N

∫
dr

(
~2

2m
|∇ψ0(r)|2 + Vext(r)|ψ0(r)|2 +

N − 1

2
U |ψ0(r)|4

)
. (8.31)
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For a uniform Bose gas confined to a volume V , the wave function of the ground state
is ψ0 ∝ 1/V 1/2 and thus the expression for the energy reduces to

E =
N(N − 1)

2V
U ≈ UN2

2V
for N � 1. (8.32)

Motivated by the expression for the ground state energy of the condensate (8.31), we
introduce the Gross-Pitaevskii energy functional [133–135]

EGP[φ] =

∫
R3

dr

(
~2

2m
|∇φ(r)|2 + Vext(r)|φ(r)|2 +

U

2
|φ(r)|4

)
, (8.33)

with the condition ∫
R3

dr |φ(r)|2 = N. (8.34)

Here, |φ(r)|2 describes the spatial density of particles. In the following, we will see that
this normalization is much more convenient for the analysis of the scaling behaviour
than a normalization to one. From now on we will assume a repulsive interaction,
U > 0, to avoid technical difficulties. Moreover, this is the case for most isotopes used
in experiments with ultracold atoms.

Minimizing the energy functional (8.33) with respect to the independent complex pa-
rameters φ and φ∗ under the the constraint of constant particle number N ,

δE − µ δN = 0, (8.35)

yields the variational equation

− ~2

2m
∇2φ(r) + Vext(r)φ(r) +

U

2
|φ(r)|2φ(r) = µφ(r). (8.36)

This is the time-independent Gross-Pitaevskii equation (GPE), which has the form
of a nonlinear Schrödinger equation taking into account the interactions by a mean-
field potential. The eigenvalue of the GPE is the chemical potential µ, which was
introduced as a Lagrange multiplier to ensure a constant number of particles N . Note
that the chemical potential is no longer equivalent to the energy per particle as in the
non-interacting case.

A rigorous analysis of the Gross-Pitaevskii functional [136] shows that there exists a
unique, positive and continuously differentiable minimizer φGP, which depends only on
the particle number N and the interaction strength U for a given external potential
Vext(r). The corresponding energy is denoted by

EGP(N,U) = EGP[φGP] = infR
dr |φ(r)|2=N

EGP[φ]. (8.37)

To clarify the relationship between the ground state of the many-particle system and the
Gross-Pitaevskii minimizer, we first consider two extremal cases. In the homogeneous
case, the GPE (8.36) reduces to

µ = U |φ(r)|2, (8.38)
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as one would have expected from the energy of the uniform state for a Bose gas (8.32)
with N � 0 using the thermodynamic relation

µ =
∂E

∂N
. (8.39)

For a non-interacting system, the ground state is a BEC (8.15). In this case, the
Gross-Pitaevskii minimizer is equivalent to the rescaled single-particle wave function:
φGP =

√
Nψ0 and the Gross-Pitaevskii energy EGP gives the correct ground state

energy.

Thus, one would expect that one can establish a suitable limit, where the ground state
energy E0 and the GP energy coincide, EGP ≈ E0 and the quantum mechanical ground
state density

ρQM(r) = N

∫
dr2 . . . drN |Ψ(r, r2, . . . , rN)|2 (8.40)

can be approximated by the Gross-Pitaevskii estimate |φGP(r)|2. A closer look at the
scaling properties yields the following relations

EGP(N,U) = NEGP(1, UN) and φN,UGP (r) =
√
Nφ1,UN

GP (r), (8.41)

making the condition for the limit N → ∞ more precise. And indeed, one can
rigourously prove that in the limit N → ∞ with a fixed macroscopic interaction
strength g ≡ UN ,

lim
N→∞

1

N
E0(N,U) = EGP(1, g) (8.42)

and

lim
N→∞

1

N
ρ

(N,U)
QM (r) = |φ1,g

GP(r)|2 (8.43)

converge in the weak L1-sense [136]. Thus, in the macroscopic limit N → ∞, we get
an effective single-particle problem. This limit can be interpreted in close analogy to
the classical limit of quantum mechanics ~ → 0, since in a path integral formulation
of the original problem (8.20) the saddle point equation is the GPE, thus giving the
steepest descent approximation to the integral for 1/N → 0.

Note that the quantum mechanical density (8.40) is equivalent to the diagonal part of
the rescaled SPDM (8.13),

ρQM(r) = Nρred(r, r). (8.44)

Thus it is not possible to make any predictions about Bose-Einstein condensation and
deviations from a fully condensed state, as well as about coherence properties, based
on results of the GPE alone. The implications of this fact will be discussed in the
following chapters.

8.4.2 Bogoliubov theory

A major part of the results concerning Bose-Einstein condensates has its seeds in the
ideas of Bogoliubov. Still his ansatz was not rigourous, but mainly a heuristic argument
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based on a perturbative treatment of the low energy spectrum in the weakly-interacting
case. Here we can give only a short introduction to set the basic ideas into a general
context, a detailed discussion including mathematical details can be found in [43].

The basic setup we are looking at is again the same as in section 8.3, so we can directly
start with the Hamiltonian (8.20). As above, we are concerned with the limit of infinite
particle number N →∞, while the density remains constant. In addition, we assume
periodic boundary conditions. To present the line of the argument most clearly without
to many technical details, we omit the external potential Vext(r) and assume a local
interaction potential Vint(|r−r′|) = Uδ(r−r′). Note, that the latter definition is in line
with the assumptions which lead to the definition of the Bose-Hubbard Hamiltonian
(8.3).

Thus, it is sensible to decompose the system into the Bloch modes with a discrete
constant total momentum. To this end it is most convenient to introduce bosonic
annihilation and creation operators

[âp, â
†
p′ ] = δp,p′ and [âp, âp′ ] = 0 = [â†p, â

†
p′ ], (8.45)

such that the field operator |Ψ〉 in momentum representation is given by

|Ψ〉 =
∑
p1

· · ·
∑
pN

ψ(p1, . . .pN)â†p1
. . . â†pN |0〉 , (8.46)

with the vacuum state |0〉, defined as âp |0〉 = 0 for all p, and the Fourier transform
of the wave function ψ(p1, . . .pN). Under the aforesaid assumptions, the Hamiltonian
(8.20) becomes

Ĥ =
∑
p

p2

2m
â†pâp +

U

V

∑
p,p′,q

â†p+qâ
†
p′−qâp′ âp, (8.47)

and the normalized, non-interacting ground state corresponding to zero energy is given
by

|Ψ0〉 = (N !)1/2
(
â†0

)N
|0〉 , (8.48)

such that all particles are condensed, np = 〈â†pâp〉 = Nδp,0.

This is the starting point for Bogoliubov’s approximation: The condensation hypothesis
acts on the assumption that for weak interactions the fraction of bosons condensed to
the ground state n0/N is of order one, while all the other excitations mainly come in
pairs with opposite momentum. This can be motivated by a perturbative argument
starting with a fully condensed state (8.48) and successively applying the Hamiltonian
(8.47). A first application of the interaction term yields one pair of bosons with opposite
momenta {p,−p}, while all the other N − 2 bosons remain in the ground state. A
second application can either create a triplet {p,p′,q}, such that p+p′+q = 0 or two
pairs, {p,−p} and {p′,−p′}. However, the creation of two pairs is much more likely,
since the relative probability is given by (N−2)(N−3)/4. If we keep only terms in the
Hamiltonian (8.47), which result in pairs, we can get an upper bound to the ground
state energy via diagonalization.
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Bogoliubov even made a further simplification by neglecting all terms including quadratic
pair operators on the grounds that these are expected to be small compared to the first
two terms and by replacing the operator â†0â0 by its expectation value n0. For weak
interactions one can assume that the condensate is essentially not depleted and thus,
that n0 is of the order of N . Approximating N −1 by N finally yields the Hamiltonian

HB =
UN2

V
+
∑
p6=0

((
p2

2m
+
UN

V

)
â†pâp +

UN

V

(
âpâ−p + â†pâ

†
−p

))
. (8.49)

Note that the first term just gives the mean-field approximation of the energy (8.32)
for the uniform Bose gas as predicted by the Gross-Pitaevskii equation. Since we have
neglected the quadratic terms, there is no reason why diagonalization should in general
give an upper bound to the original problem. Nevertheless, the Bogoliubov theory has
been successfully applied to study the excitation spectrum of a homogeneous gas at zero
temperature, as well as the depletion of the condensate and the changes to the ground-
state energy. Moreover, the approximation can be used to study inhomogeneous gases
and can be extended to excitations at a finite temperature (cf. [109] and references
therein). Yet, this treatment is basically linear response theory and thus clearly does
not account for the backreaction of the excitations on the condensate.

8.4.3 The time-dependent Gross-Pitaevskii equation

To treat dynamical problems in the limit of infinite particle numbers it seems somehow
natural to consider the time-dependent generalization of the Gross-Pitaevskii equation
(8.36). There are several heuristic ways to motivate this equation starting directly
from the many-body Hamiltonian (8.20) and assuming a macroscopic occupation of
a single-particle state, which we will shortly present in the following. However, none
of them is mathematically intangible and their use is mainly justified by pragmatic
considerations, even though there are innumerable applications of the time-dependent
GPE. One method for rigorously analysing the dynamics in the macroscopic limit is
discussed in the chapter 6, where we comment also on its relation to the general theory
of quantum mean-field systems.

In the Heisenberg picture, the equation of motion for the field operator Ψ̂ is given by

i~
∂

∂t
Ψ̂(r, t) = − ~2

2m
∆Ψ̂(r, t) + Vext(r)Ψ̂(r, t) + UΨ̂†(r, t)Ψ̂2(r, t). (8.50)

To derive advantage of the macroscopic occupation of the single-particle state ψ0,
one decomposes the field operator into contributions from the condensed state and
deviations from this state δψ̂(r, t)

Ψ̂(r, t) = ψ0(r, t)â0 + δψ̂(r, t), (8.51)

where â0 annihilates a boson in the condensate wave function:

â0 =

∫
drψ∗0(r)Ψ̂(r, t). (8.52)
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If we substitute this ansatz into the equations of motion (8.50), this yields the exact
equation

i~
(
∂ψ0

∂t
â0 +

∂

∂t
δψ̂

)
=

(
− ~2

2m
∆ψ0 + Vext(r)ψ0

)
â0 + U |ψ0|2ψ0â

†
0â

2
0

+

(
− ~2

2m
∆ + Vext(r)

)
δψ̂ + U

(
2|ψ0|2â†0â0δψ̂ + ψ2

0 â
2
0δψ̂

†
)

+ U
(
ψ∗0 â

†
0δψ̂

2 + 2ψ0â0δψ̂
†δψ̂ + δψ̂†δψ̂2

)
, (8.53)

where we have already chosen an ordering according to the quantum fluctuation op-
erator δψ̂. Now, the common folklore states that in the macroscopic limit, quantum
fluctuations are small and can be neglected to leading order, such that all terms includ-
ing powers of δψ̂ are omitted and â†0â0 can be replaced by the macroscopic expectation
value N0. The next-to-leading order equations, which linearize the equations of motion
for δψ̂ around the mean-field approximation given by the GPE, are normally refereed
to as Bogoliubov-de-Gennes equations and are used to describe low-energy excitations
around the ground state (cf., e.g., [65, 137]).

Alternatively, one assumes the system to be in a Glauber coherent state with a fixed
phase. In combination with the assumption of a macroscopic occupation of the single-
particle state N0 � 0, this suggest the replacement

â0 |N0, . . . 〉 ≈
√
N0 |N0 − 1, . . . 〉 ≈

√
N0 |N0, . . . 〉 for N0 � 0. (8.54)

Thus, if one divides equation (8.53) by
√
N0 and takes the limit of a condensate with

infinite particle number N0 →∞, equation (8.53) reduces to the time-dependent Gross-
Pitaevskii equation

i~
∂

∂t
ψ0(r, t) = − ~2

2m
∆ψ0(r, t) + Vext(r)ψ0(r, t) + g|ψ0(r, t)|2ψ0(r, t), (8.55)

where we again recover the macroscopic interaction strength g = UN0, as in the time-
independent case (8.36).

The most common way to infer the Gross-Pitaevskii equation is to replace the field
operators in the Heisenberg equation of motion by its expectation values. For the
Bose-Hubbard Hamiltonian (8.25) the corresponding Heisenberg equation of motion is
given by

i
d

dt
âj = −J (âj−1 + âj+1) + Uâ†j âj âj. (8.56)

Substituting âj by its expectation value 〈âj〉 =
√
Nxj and truncating all correlations

according to
〈â†j âkâl〉 ≈ 〈â†j〉〈âk〉〈âl〉 (8.57)

yields the discrete Gross-Pitaevskii equation

iẋj = εjxj − J(xj+1 + xj−1) + UN |xj|2xj, (8.58)
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where the truncation (8.57) is again valid for a coherent state. However, an initially
coherent state is readily depleted during the time-evolution

The assumption (8.54), respective the replacement (8.57), which leads to the Gross-
Pitaevskii equation, is sometimes refereed to as the Bogoliubov ansatz. Note, that
even if this replacement of bosonic annihilation and creation operators by c-numbers
seems to be crude, it can be made rigourous in certain cases [138]. However, the naive
treatment presented here clearly faces some conceptual problems [65,71,94], where one
major objection beyond the obvious mathematical ones is the problem to treat systems
with fixed particle number This being the scenario in experiments. In this case the
expectation values 〈â0〉 and 〈â†0〉 vanish for a BEC, such that its expectation value no
longer yields a sensible parametrization. Even more confusing is the assumption of a
Glauber coherent state in (8.54) or (8.57) is not at all compatible with a a macroscopic
occupation of a single-particle state. These problems are even more striking if one
considers possible ways to go beyond this simple treatment, as we will see in the
following section.

8.4.4 Dynamics beyond mean-field

Quantum fluctuations are completely neglected in the Bogoliubov approach for deriving
the time-dependent GPE . To go beyond the Gross-Pitaevskii equation one has either
to include the dynamics of the quantum fluctuations in equation (8.53) or equivalently
add supplementary evolution equations for the normal â†kâl and anormal âkâl two-
point functions and truncate at a later stage as in equation (8.57). Depending if and
to what extent anomalous terms are neglected, the resulting models are known as the
Hartree-Fock-Bogoliubov (HFB), HFB-Popov or Griffin (see, e.g., [139] and references
therein). However, all these methods face some characteristic difficulties which are
direct consequences of the breaking of the U(1) symmetry [140]. For instance, none
of them conserves the total number of particles while, at the same time, allowing for
particle exchange between the condensate and the remaining modes.

To avoid these conceptual problems, it is most convenient to use the two-point functions

σjk = 〈Êjk〉 = 〈â†j âk〉 (8.59)

given by the single-particle density function (8.29) instead of one-point functions 〈âk〉.
In contrast to single annihilation and creation operators, these quantities are measur-
able and thus represent physically relevant observables. The expectation value of these
operators for a BEC, given a product state with fixed particle number does not van-
ish, thus yielding a sensible parametrization for the bulk dynamics. Moreover, these
quantities span the dynamical group of the Hamiltonian. This fact is essential for the
quantum phase space description discussed in chapter 6.
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The evolution equations of the two-point functions (8.59) for the Bose-Hubbard Hamil-
tonian (8.25) are given by

i
d

dt
〈â†j âk〉 = (εk − εj)〈â†j âk〉 − J〈â†j âk+1 + â†j âk−1 − â†j+1âk − â†j−1âk〉

+U〈â†j âkâ†kâk − â†j âj â†j âk〉. (8.60)

In terms of the SPDM and the covariances

∆jk`m = 〈â†j âkâ†`âm〉 − 〈â†j âk〉〈â†`âm〉 (8.61)

they can be rewritten as

i
d

dt
σj,k = (εk − εj)σj,k − J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k)

+U (σkkσjk + ∆jkkk − σjjσjk −∆jjjk) . (8.62)

For a Bose-Einstein condensate with a macroscopic number of particles the variances
scale only linearly with the particle number N , while the products σjkσ`m scale as
N2. If one thus neglects the variances ∆jk`m one recovers the discrete Gross-Pitaevskii
equation (8.58) by the identification σj,k = x∗jxk. Note that here we have not assumed
a Glauber coherent state but only a BEC at any stage of the approximation, in contrast
to the approach based on one-point functions presented in the preceding section.

To describe quantum correlations and the depletion of the condensate, at least approx-
imately, one has to calculate evolution equations for the four-point functions

i
d

dt
〈â†j âmâ†kân〉 = (εm + εn − εj − εk)

〈
â†j âmâ

†
kân〉 (8.63)

−J 〈â†j âmâ†kân+1 + â†j âmâ
†
kân−1 + â†j âm+1â

†
kân + â†j âm−1â

†
kân

−â†j+1âmâ
†
kân − â†j−1âm+1â

†
kân − â†j âmâ†k+1ân − â†j âmâ†k−1ân

〉
+U 〈â†j âmn̂mâ†kân + â†j âmâ

†
kânn̂n − n̂j â†j âmâ†kân − â†j âmn̂kâ†kân〉

and neglect higher order variances in order to obtain a closed set of equations. Tech-
nically, this amounts to a truncation of six-point functions in the interaction term in
(8.64) according to [140]

〈â†j âmâ†kânâ†râs〉 ≈ 〈â†j âmâ†kân〉〈â†râs〉+ 〈â†j âmâ†râs〉〈â†kân〉
+〈â†kânâ†râs〉〈â†j âm〉 − 2〈â†j âm〉〈â†kân〉〈â†râs〉. (8.64)

The coherent evolution of the variances is thus given by

i
d

dt
∆jmkn ≈ (εm + εn − εj − εk)∆jmkn (8.65)

−J
[
∆j,m,k,n+1 + ∆j,m,k,n−1 + ∆j,m+1,k,n + ∆j,m−1,k,n

−∆j,m,k+1,n −∆j,m,k−1,n −∆j+1,m,k,n −∆j−1,m,k,n

]
+U
[
∆mmknσjm −∆jjknσjm + ∆jmnnσkn −∆jmkkσkn

+∆jmkn (σmm + σnn − σkk − σjj)
]
.
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This approach based on the number conserving generators Êjk of the su(M) algebra
was first introduced by James Anglin and Amichay Vardi [69, 141] and is commonly
refereed to as Bogoliubov backreaction (BBR). Several numerical examples shown in
[140] suggest that the BBR method provides a better approximation to the many-
particle dynamics than HFB and its varieties while being conceptually much simpler
and avoiding the common problems of the Hartree-Fock-Bogoliubov approximation.
But still, BBR is limited to the first two moments of the operators Êjk. Higher order
correlation functions are not defined at all. This is clearly different within the phase
space description, which we have discussed in detail in the chapter 6.

8.5 Noise and dissipation in a trapped Bose-Einstein

condensate

A major challenge for the effective control of quantum systems is to maintain coher-
ence in the presence of decoherence effects and dissipation caused by the unavoidable
coupling to the environment. Methods to attenuate phase noise for an open two-mode
BEC were discussed in [142], and the effects of particle loss on the spin squeezing of
such a system were analyzed in [143].

Recently, novel opportunities for engineering the dynamics of interacting many-body
systems by controlling dissipation have received attention, in an attempt to take ad-
vantage of this inevitable problem. It has been shown that dissipative processes can
be tailored to prepare arbitrary pure states for quantum computation and strongly
correlated states of ultracold atoms [144, 145] or even, in principle, to implement a
universal set of quantum gates [146]. A recent experiment has even proven that in-
elastic collisions may inhibit particle losses and induce strong correlations in a quasi
one-dimensional gas of ultracold atoms [147,148].

In chapter 9 we will give a detailed analysis of the effects of phase noise and dissipa-
tion on a Bose-Einstein condensate in a double-well trap. There, we will see that the
phase coherence of a weakly-interacting condensate as well as the response to an ex-
ternal driving show a pronounced stochastic resonance effect: Both quantities assume
a maximum for a finite value of the loss rate matching the intrinsic time scales of the
system and can thus be effectively tuned by controlled dissipation. Similar effects have
been found in spin chains, where the entanglement assumes an maximum for a finite
amount of thermal noise [149]. Even stronger effects are observed when dissipation
acts concurrently with strong inter-particle interactions, as we will explain in section
9.3.3. In this case, dissipation can be used to restore the purity of the condensate
almost completely and increase the phase coherence significantly. These effects are not
restricted to the case of two modes, but are also present in extended lattices. In chap-
ter 11 we will analyse the effects of phase noise and particle loss on the dynamics of a
Bose-Einstein condensate in optical lattices and show how localized particle dissipation
can lead to surprising dynamical effects, such as an effective suppression of decay and
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an inhibition of tunneling, a restoration of coherence and creation of stable nonlinear
structures, such as discrete breathers and dark solitons.

Such localized loss effects in an optical lattice require single-site addressability, which
implies a resolution on the order of the laser wavelength. Such a challenging optical
resolution of a few hundred nanometers has only been recently achieved by advanced
imaging techniques [104, 105]. Up to now, the best spatial resolution of about 150
nm could be achieved using a technique based on scanning electron microscopy [150],
where atoms are removed from the lattice via a focused electron beam.

In the following, we will give a short overview over the theoretical description of phase
noise and particle dissipation for ultracold bosons in an optical lattice. We also in-
troduce the Monte Carlo wave function method [151–153], a method for simulating
the dynamics of a master equation by a wave function evolution including a stochastic
element.

8.5.1 Master equation

Even though current experiments with Bose-Einstein condensates reach temperatures
of less then 10−6 Kelvin, heating processes e.g. due to collisions, incoherent scattering
and spontaneous emission of light or laser fluctuations leading to phase noise and
amplitude noise on the lattice potential, are inevitable. Two recent, but independent
approaches taking into account these processes lead to the same generic form of the
master equation, while in both cases the coherent part of the dynamics are described
by the Bose-Hubbard Hamiltonian (8.25).

A first model for noise and dissipation in a deep trapping potential has been derived by
James Anglin [154] and later extended by Janne Ruostekoski and Dan F. Walls [155].
They consider a dilute gas of bosons in a deep trap, respectively in a double-well trap
(cf. section 9.1), where only one mode in each well is significantly populated, whereas
all higher, unbound modes contribute to the heat bath. The dynamics are then given
by the master equation

˙̂ρ = −i[Ĥ, ρ̂]− κ

2

∑
j=1,2

(
n̂2
j ρ̂+ ρ̂n̂2

j − 2n̂j ρ̂n̂j
)

(8.66)

−γatoms

2

∑
j=1,2;±

(
Ĉ†j±Ĉj±ρ̂+ ρ̂Ĉ†j±Ĉj± − 2Ĉj±ρ̂Ĉ

†
j±

)
with the Lindblad operators

Ĉj+ = â†j and

Ĉj− = eβ/2(εj−µ+Un̂j)âj, (8.67)

describing growth and depletion of the condensate.

Let us briefly discuss the effects of the noise and dissipation terms. The second term∼ κ
in (8.66) describes phase noise due to elastic collisions with the background gas atoms.
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It is usually the dominating contribution, effectively heating the system, but leaving
the total particle number invariant. If only phase noise is present, the system relaxes to
an equilibrium state where all coherences are lost and all Dicke states |n1, N − n1〉 ∼
â†n1

1 â†N−n1

2 |0, 0〉 are equally populated

〈n1, N − n1|ρ̂|n′1, N − n′1〉 =
1

N + 1
δn1,n′1

, (8.68)

as long as J 6= 0 [59,156]. This corresponds to a thermal state of infinite temperature,
respectively a completely mixed state.

The remaining terms ∼ γatoms in the master equation (8.66) describe amplitude noise,
that is the growth and depletion of the condensate due to inelastic collisions with the
background gas. In contrast to phase noise, amplitude noise can heat and cool the
system. Note that the system will relax to the proper thermal state with a density
operator ρ̂ ∝ exp(−β(Ĥ − µn̂)) only if both amplitude and phase noise are present.

In current experiments intrinsic amplitude noise is usually extremely weak in compar-
ison to phase noise [155], if it is not introduced artificially as for example by forced
evaporative cooling during the preparation of the BEC. For example, phase noise damps
Josephson oscillations on a timescale of a few hundred milliseconds in the experiments,
while less than 10% of the atoms are lost during a 30 s experiment [157–159]. Thus,
the effects of intrinsic amplitude noise can be neglected to a good approximation.

In the same manner, one could argue, that perturbations caused by the background gas
could be prevented to a large extent by a careful cooling process and a lower pressure.
Yet, elastic collisions are not the only source of phase noise in current experiments.
The dominant heating mechanism, especially in the case of red-detuned lattices, is
expected to be incoherent scattering of laser light (cf., e.g., [160]). A detailed study
of the decoherence of many-body states due to spontaneous emission is given in [161],
where the dominant processes in a system described by a single-band Bose-Hubbard
Hamiltonian (8.25) are described by the master equation

˙̂ρ = −i[Ĥ, ρ̂]− κ

2

M∑
j

(
n̂2
j ρ̂+ ρ̂n̂2

j − 2n̂j ρ̂n̂j
)
. (8.69)

Non-trivial effects of dissipation such as the stochastic resonance discussed in chapter
9 or the creation of stable nonlinear structures addressed in chapter 11 require local-
ized, controlled loss processes. Such a strong and tunable source of dissipation can
be implemented artificially by shining a resonant laser beam using a high resolution
objective with single-site addressability [104,105] or by a focused electron beam [150],
that removes atoms with the site-dependent rates γatoms,j. In magnetic trapping po-
tentials, this can also be achieved by a forced rf-transition to an untrapped magnetic
substate [162].

The master equation description of forced, localized particle loss, is well established [59]
and routinely used in the context of photon fields. In the following chapters we will
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thus consider the dynamics generated by the master equation

˙̂ρ = −i[Ĥ, ρ̂]− κ

2

∑
j=1,2

(
n̂2
j ρ̂+ ρ̂n̂2

j − 2n̂j ρ̂n̂j
)

−1

2

∑
j=1,2

γatoms,j

(
â†j âj ρ̂+ ρ̂â†j âj − 2âj ρ̂â

†
j

)
, (8.70)

including thus both phase noise and particle dissipation.

8.5.2 Monte Carlo wave function method

Quantum theory is usually used to describe ensembles, and can not be adapted to the
description of single realisations without further explanation. This is especially true
in the case of a system subject to dissipation caused by the irreversible coupling to
the environment, which usually has far to many degrees of freedom to monitor them
all at a time. In this case the common knowledge is to describe the evolution of
the microsystem by a master equation, tracing out the reservoir states and resulting
in an effective description by density matrices, which are nothing else than ensemble
descriptions.

Some advanced techniques in quantum optics – including ion traps, cavities and optical
lattices – allow experimental observations and manipulations of single particles, which
feature quantum jumps. These jumps are due to a sudden increase of knowledge, since
e.g. a photon is detected or not, and lead to a conditional time evolution. Even if there
is no real measurement taking place, one could imagine a series of repeated gedanken
measurements with random results, which determine the state of system and bring
about the irreversibility of the dynamics. In the context of quantum optics several
methods for treating single realizations via a conditional dynamics of wave functions
have been developed. These are variously described as Quantum Jump, Monte Carlo
Wave function (MCWF) or the Quantum Trajectory method. For a comprehensive re-
view of these methods and a careful discussion of their interrelationships see e.g. [163].
Beneath their descriptive appeal, these methods provide an extremely useful compu-
tational tool, since the number of equations which need to be solved simultaneously
scales linearly with the number of states and not quadratically, as it is the case for
density matrices.

Here we will follow the argument presented in [151] to introduce the general idea behind
the Quantum Jump approach. For further details see also [152,153].

To keep both the notation and the physics simple, we use the generic example of a two-
level atom coupled simultaneously to a classical laser field, together with a quantized
electromagnetic field inducing spontaneous emission. The two states of the atom are
labeled |g〉 for the ground state and |e〉 for the excited state, while the laser field is
chosen to be monochromatic,

E(t) = E0 cos(ωLt). (8.71)
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In the rotating wave approximation, the interaction Hamiltonian of the atom and the
laser in terms of the raising Ŝ+ = |e〉 〈g| and lowering operators Ŝ− = |g〉 〈e| is given
by

Ĥ0 = −∆Ŝ+Ŝ− +
Ω

2

(
Ŝ+ + Ŝ−

)
. (8.72)

Here, ∆ = ωL − ωres denotes the detuning of the laser with respect to the atomic
transition and Ω = −dE0 is the Rabi frequency, defined as the atomic dipole moment
d times the electric field of the laser. Note that we again use rescaled variables such
that ~ = 1.

At time t, the total state of the composed atom-laser system and the quantized elec-
tromagnetic field in the vacuum state |0〉 is given by

|Ψ(t)〉 = |φ(t)〉 ⊗ |0〉
= (α |g〉+ β |e〉)⊗ |0〉 . (8.73)

One time step further, at t+ dt, one photon may have been emitted spontaneously. To
ensure that it is at most one, we choose dt to be much smaller than all other timescales
involved,

dt� Γ−1,Ω−1,∆−1, (8.74)

where Γ denotes the rate of spontaneous emission. Within a perturbative treatment
of the problem, commonly known as Wigner-Weisskopf approach [164], we can now
calculate the wave function at time t+ dt as

|Ψ(t+ dt)〉 = (α′(t) |g〉+ β′ |e〉)⊗ |0〉+ |g〉 ⊗
∑
k,ε

ck,ε |k, ε〉 . (8.75)

Since we restrict the analysis to very short timescales dt, the probability of a re-
excitation after the spontaneous emission can be neglected. Thus it is sufficient to
consider only the case where the quantized field contains a single excitation, with a
probability amplitude ck,ε in the respective mode, while the atom is still in the ground
state and not yet re-excited.

The square of the norm of the second summand is equal to the probability for a
spontaneous emission during the interval dt:

dp = Γdt|α|2 = Γdt〈φ(t)|Ŝ+Ŝ−|φ(t)〉, (8.76)

and the total norm is preserved, 〈Ψ(t)|Ψ(t)〉 = 1. The coefficients α′, β′ can be deter-
mined from the evolution of the atomic state |φ(t)〉 during dt under the action of the
non-hermitian Hamiltonian

Ĥ = Ĥ0 −
i

2
ΓŜ+Ŝ−, (8.77)

which reduces the amplitude of the excited state by a factor 1− Γdt/2.

If we now perform a perfect gedanken measurement on the atom, we get two possible,
but random results: With a probability dp, cf. equation (8.76), we detect a photon
and destroy it. Thus, the conditional wave function reads

|Ψ(t+ dt)〉 = |g〉 ⊗ |0〉 . (8.78)
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In the case of no detection, we get a modification of the initial wave function as well,

|Ψ(t+ dt)〉 = (1− dp)−1/2 (α′ |g〉+ β′ |e〉)⊗ |0〉
= (1− dp)−1/2

(
1− idtĤ

)
|φ(t)〉 ⊗ |0〉 , (8.79)

where the prefactor µ = (1 − dp)−1/2 is a result of the renormalization after the pro-
jection onto the subspace.

In both cases, the structure of the total wave function remains the same as in equation
(8.73). To determine the random time evolution of the atom, one has to repeat this
procedure and consider the averaged result. This method is known as the Monte Carlo
Wave function approach, as presented in [151]. The result σ(t), which we obtain by
averaging over the different outcomes σ(t) = |φ(t)〉 〈φ(t)| is equivalent to the result
obtained from the master equation. This can be seen directly by an expansion in
terms of dt

σ(t+ dt) = |φ(t)〉 〈φ(t)|
= (1− dp)µ2 −

(
1− idtĤ

)
|φ(t)〉 〈φ(t)|

(
1 + idtĤ†

)
+ dp |g〉 〈g|

≈ σ(t) + idt
(
Ĥσ(t)− σ(t)Ĥ†

)
+ ΓdtŜ−σ(t)Ŝ+ (8.80)

Taking the average over the random outcomes |φ(t)〉 all starting from the initial value
|φ(0)〉 yields

dσ

dt
= i
[
σ, Ĥ0

]
+

Γ

2

(
Ŝ+Ŝ−σ + σŜ+Ŝ−

)
+ ΓŜ−σŜ+, (8.81)

which is equivalent to the master equation describing an atom subject to spontaneous
emission [165,166].

The MCWF method turns out to be not only a valuable computing method, but also
provides a vivid illustration of the random nature of the quantum evolution. To adapt
this method to the dissipative processes discussed in the previous section, two major
differences have to be considered: Firstly, we are not considering one single atom, but
a whole cloud of ultracold bosons, and secondly, we are not interested in the internal
dynamics between atomic levels, but in localized particle loss processes. Thus, the
wave function we are considering is an element of the symmetrized Fock space of N
particles and the quantum jumps, respective the loss events, reduce the particle number
one by one. Keeping in mind these differences, the basic structure remains the same:
Calculating the conditional dynamics for the different possible outcomes by an effective
non-hermitian evolution interrupted by quantum jumps and averaging over the random
results allows for the simulation of the exact dynamics of about 100-200 atoms in a
double- or triple-well trap. This will be especially beneficial in chapter 9 and in chapter
11, where we study dynamics in extended lattices.



Chapter 9

Dynamics of an open two-mode
Bose-Einstein condensate

9.1 Ultracold atoms in a double-well trap

Ultracold atoms confined in a double-well trap are an extremely popular model system
that can be realized in various experimental settings, e.g. by superimposing an optical
lattice with an optical dipole trap [157–159], in a bichromatic optical lattice [124,167],
or on an atom chip [168]. The unitary part of the dynamics is described by the Bose-
Hubbard Hamiltonian (8.25) restricted to two modes,

Ĥ = −J
(
â†1â2 + â†2â1

)
+ ε1n̂1 + ε2n̂2 +

U

2

(
â†21 â

2
1 + â†22 â

2
2

)
, (9.1)

where âj and â†j are the bosonic annihilation and creation operators in mode j ∈ {1, 2}
and n̂j = â†j âj is the corresponding number operator. J is the tunneling matrix element,
εi denotes the on-site energies and U gives the interaction strength of two particles in
the same well. As in the general case discussed earlier, we set ~ = 1, thus measuring all
energies in frequency units. Even if the model (9.1) seems simplistic it can describe the
fundamental phenomena of two weakly coupled BECs in more general setups [169] and
features complex dynamics as e.g. Landau-Zener transitions between different Bloch
bands [170,171], which will be discussed in more detail in chapter 10.

In this chapter, we will study the dynamics of a Bose-Einstein condensate (BEC)
in a double-well trap including the effects of localized particle loss and phase noise.
The basic setup under consideration including a potentially asymmetric particle loss
is depicted in figure 9.1. The corresponding master equation description has been
introduced in section 8.5.1:

˙̂ρ = −i[Ĥ, ρ̂]− κ

2

∑
j=1,2

(
n̂2
j ρ̂+ ρ̂n̂2

j − 2n̂j ρ̂n̂j
)

−1

2

∑
j=1,2

γatoms,j

(
â†j âj ρ̂+ ρ̂â†j âj − 2âj ρ̂â

†
j

)
. (9.2)
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Figure 9.1: The two-mode system with (possibly) asymmetric loss rates

as discussed there, γatoms,j denotes the loss rate at the j-th lattice site and κ measures
the strength of phase noise. In this section, we will focus on the coherent dynamics and
especially on the dynamics in the mean-field limit. A detailed analysis of the effects of
dissipation and phase noise on the dynamics will be the main subject of the subsequent
sections.

In the following, the common transformation using the collective operators

L̂x =
1

2

(
â†1â2 + â†2â1

)
, L̂y =

i

2

(
â†1â2 − â†2â1

)
,

L̂z =
1

2

(
â†2â2 − â†1â1

)
, (9.3)

will turn out to be extremely useful, not only for illustrative reasons. With these
definitions the Hamiltonian (9.1) can be rewritten as

Ĥ = −2JL̂x + 2εL̂z + UL̂2
z (9.4)

up to a constant term with ε being defined as the difference between the on-site energies,
2ε = ε1 − ε2. Thus, the dynamical group is spanned by an angular momentum algebra
su(2),

[Li, Lj] = εijkLk, (9.5)

with rotational quantum number N/2 [52,141,172,173].

In chapter 6 we have seen how one can generalize the concept of coherent states based
on the respective dynamical group. The generalization of the concept of the translation
operator to the su(2) algebra yields an rotation operator (cf. section 6.1.2). Thus, the
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Bloch coherent states |θ, φ〉 can be defined as

|θ, φ〉 = R̂(θ, φ) |N, 0〉 (9.6)

= e−iθ(Ĵx sinφ−Ĵy cosφ) |N, 0〉

=
∑

n1+n2=N

(
N

n2

) 1
2

cos
(
θ
2

)n1 sin
(
θ
2

)n2e−in2φ |n1, n2〉

=
1√
N !

(
cos( θ

2
)a†1 + sin( θ

2
)e−iφa†2

)N
|0, 0〉 , (9.7)

where the last line illustrates the equivalence of SU(2) coherent states to product
states.

The group of rotations R̂(θ, φ) and equivalently the parameter space of coherent states
can be described by two angles 0 ≤ θ ≤ π, 0 ≤ φ < 2π and is thus isomorphic to a
sphere S2. This parametrization is often referred to as Bloch representation.

The expectation value of the angular momentum operators in Bloch coherent states
(9.6) yields the (rescaled) Bloch vector

s =
〈θ, φ| L̂ |θ, φ〉

N
=

1

2

 sin θ cosφ

sin θ sinφ

− cos θ

 . (9.8)

The z-component of the Bloch vector s is equivalent to the population imbalance of
the two modes, while the polar angle represents the relative phase. Since this variable
is cyclic and not defined if all particles are in a single well (respectively at the poles),
the topology of the phase space is clearly that of a sphere. Note that, while considering
systems with particle loss and thus a time-dependent particle number N(t), it could
also be beneficial to study the dynamics of the expectation values without rescaling,
which will be denoted by `(t) = 〈θ, φ| L̂ |θ, φ〉.
In section 7.2.2 we have seen that an amplitude phase transformation reveals the canon-
ical structure of the macroscopic dynamics most clearly. Using the parametrization in
terms of the relative population of the second mode, p = sin(θ/2)2, and the relative
phase between the modes q = φ the Bloch vector is given by

s =


√
p(1− p) cos(q)√
p(1− p) sin(q)

p− 1/2

 . (9.9)

In this parametrization the resulting Hamiltonian flow (cf. section 7.2.2) for the two-
mode Bose-Hubbard model (9.1) is governed by the Hamiltonian function

H(p, q) = −2J
√
p(1− p) cos(q) +

g

4
(2p− 1)2 + ε(2p− 1) (9.10)
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and the dynamics is given by the canonical equations

q̇ =
∂H
∂p

and ṗ = −∂H
∂q

. (9.11)

As defined earlier g = UN denotes the macroscopic interaction strength.

The resulting equations are equivalent to the discrete Gross-Pitaevskii equation

i
d

dt

(
x1

x2

)
=

(
ε+ g|x2|2 −J
−J −ε+ g|x2|2

)(
x1

x2

)
, (9.12)

which we have discussed in section 8.4.3. This can be easily verified by an identification
of x1 =

√
1− p and x2 =

√
p exp (−iq) and a neglect of the global phase (cf. equation

(8.58)). The connection to the description in terms of the Bloch vector s is given by

s =
1

2

 x∗1x2 + x∗2x1

i(x∗1x2 − x∗2x1)

x∗2x2 − x∗1x1

 . (9.13)

Thus, the evolution equations for the coherent mean-field dynamics of the Bloch vector
read

ṡx = −2εsy − 2Usysz,

ṡy = 2Jsz + 2εsx + 2Usxsz,

ṡz = −2Jsy. (9.14)

The corresponding dynamics is depicted in figure 9.4 (a) and (d). Since the normal-
ization of the Bloch vector |s|2 = 1/2, respective the total particle number N , is a
conserved quantity, the mean-field dynamics is restricted to the surface of the Bloch
sphere. The fixed points of the dynamics are identical to the critical points of the
Hamiltonian function (9.10). In the linear case, cf. figure 9.4 (a), one recovers simple
Rabi or Josephson oscillations. This changes drastically for an increasing interaction
strength U , as is shown in figure 9.4 (d). If the interaction strength exceeds a critical
value, g = 2J , one of the elliptic fixed points bifurcates into two novel elliptic and
one hyperbolic fixed point. Due to the population imbalance at the fixed points, this
is known as a self-trapping effect [172–174] and can be directly observed in current
experiments [157].

Figure 9.2 shows an in-situ observation of the tunneling dynamics in a double-well
trap by the group of Markus Oberthaler at the university of Heidelberg [157,175]. One
clearly observes the differences between Josephson oscillations (left) and the dynamics
in the self-trapping regime (right), where only a minor fraction of the atoms tunnels
between the wells, while the major part remains in the left well.

Note that the bifurcation of fixed points can be readily explained by topological consid-
erations, since the Euler characteristic χEuler of the domain of a Hamiltonian function
H(p, q) (9.10) is a topological invariant [176].
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Figure 9.2: Observation of the macroscopic tunneling dynamics between two weakly
linked BECs in a symmetric double well potential by the group of Markus Oberthaler
at the university of Heidelberg (taken from the Dissertation of Michael Albiez [175]).
Shown are absorption images of the atomic cloud after a variable evolution time in the
subcritical, g = UN < 2J , and in the supercritical regime, g > 2J .

9.2 Dissipative mean-field dynamics

In the preceding section we have shortly commented on the coherent dynamics of ultra-
cold atoms in a double-well trap. In this section, we are interested in the macroscopic
dynamics of the atomic cloud, which is well described within a mean-field approxima-
tion, now including the effects of particle loss and dissipation.

9.2.1 Relation to the non-hermitian Gross-Pitaevskii equation

Starting from the master equation (9.2), we can calculate the evolution equations for
the expectation values of the angular momentum operators (9.3),

˙̀
j = tr (L̂j ˙̂ρ) (9.15)
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with j = x, y, z , as well as the expectation value of the total particle number n =
〈n̂1 + n̂2〉:

˙̀
x = −2ε`y − 2U(`y`z + ∆yz)− T−1

2 `x,
˙̀
y = 2J`z + 2ε`x + 2U(`x`z + ∆xz)− T−1

2 `y,
˙̀
z = −2J`y − T−1

1 `z − T−1
1 fan/2,

ṅ = −T−1
1 n− 2T−1

1 fa`z. (9.16)

Note that here and in the following the initial particle number is denoted by n0, whereas
the time-dependent expectation value of the particle number is denoted by n(t) to avoid
confusion between the two quantities. A comparison to the coherent dynamics shows
that equation (9.16) still includes the covariances

∆jk = 〈L̂jL̂k + L̂kL̂j〉/2− 〈L̂j〉〈L̂k〉, (9.17)

which are neglected in the mean-field limit. This approximation is valid in the macro-
scopic limit, since the covariances vanish as 1/n if we assume the many-particle quan-
tum state to be close to a pure BEC. The possibility to go beyond this approximation
by truncating at a later stage and consider higher moments at least approximately will
be addressed in chapter 11.

Moreover, the dynamics is fundamentally altered by dissipation, where we differentiate
between two effects: The transversal T−1

2 and longitudinal T−1
1 damping rates are

defined as follows

T−1
1 = (γatoms,1 + γatoms,2)/2 and T−1

2 = κ+ T−1
1 (9.18)

and the asymmetry factor of the loss rates is given by fa = (γatoms,2 – γatoms,1)/(γatoms,1

+ γatoms,2). While the longitudinal damping rate T−1
1 describes the relaxation of the

population imbalance, the transversal damping rate T−1
2 gives the rate at which the

coherence between the two wells is suppressed.

In the non-interacting case U = 0, the equations of motion (9.16) resemble the Bloch
equations in nuclear magnetic resonance (NMR) [177], except for the fact that the
’equilibrium’ value of the population imbalance `z is given by −fan/2 and therefore
depends on the decreasing expectation value of the total particle number n. The
longitudinal relaxation is now associated with particle loss. In the interacting case, the
dynamics is substantially altered compared to the NMR setup.

The major effect of phase noise is a reduction of the phase coherence between the
two wells. In the Bloch picture this is reflected by the fact that the normalization of
the Bloch vector |`| is no longer conserved. If only phase noise is present, an initially
coherent state converges rapidly to a fully mixed state ` = 0, while the particle number
n(t) remains constant.

In the absence of phase noise the dynamics can be further simplified. In this case the
particle number coincides with the magnitude of the Bloch vector

√
`2
x + `2

y + `2
z =



9.2. Dissipative mean-field dynamics 153

−0.2

0

0.2

s z

1

10

100

n

0 0.5 1
60
70
80
90

100

t [s]

n

0 0.5 1
0.3

0.4

0.5

t [s]
s z

Figure 9.3: Comparison of the mean-field approximation (thin blue line) with the
full many-particle dynamics calculated with the MCWF method (thick red line) for
J = 10 s−1, U = 1 s−1, κ = 3 s−1 and for asymmetric particle loss γatoms,1 = 0 and
γatoms,2 = 5 s−1. The initial state was assumed to be a pure BEC (that means a
product state) with s = (0.46, 0, 0.2) (a) and s = (0.14, 0, 0.48) (b), respectively, and
n = 100 particles.

n(t)/2, which we can use to reformulate the mean-field dynamics by an effective non-
hermitian Gross-Pitaevskii equation

i
d

dt

(
ψ1

ψ2

)
=

(
ε̃1 + U |ψ1|2 −J
−J ε̃2 + U |ψ2|2

)(
ψ1

ψ2

)
(9.19)

now with complex on-site energies ε̃j = εj − iγatoms,j/2. Contrary to equation (9.12),
we have chosen (ψ1, ψ2) not to be normalized to one, but to the particle number n(t) =
|ψ1|2 + |ψ2|2, such that in this effective description a loss of particles is represented by
a loss of normalization. The relation to the Bloch picture is given by the identification

`x =
1

2
(ψ∗1ψ2 + ψ∗2ψ1), `y =

1

2i
(ψ∗2ψ1 − ψ∗1ψ2),

`z =
1

2
(|ψ2|2 − |ψ1|2). (9.20)

Note that the effective macroscopic interaction strength g = Un(t) is now time-
dependent.

An extension of this derivation to an arbitrary number of modes is straightforward,
as we will see in chapter 11. Similar non-hermitian mean-field systems have been
introduced phenomenologically to analyse resonances, transport and localization effects
[178–183].

In the following, we depict the rescaled variables sj = `j/n, thus renormalizing to
separate the decay of the particle number n(t) from the internal dynamics.

Figure 9.3 shows a first comparison of the mean-field approximation including phase
noise and dissipation to the full many-particle quantum dynamics calculated with the
Monte Carlo wave function (MCWF) method, introduced in section 8.5.2. The tra-
jectory in figure 9.3 (a) was started at s = (0.46, 0, 0.2) with a moderate population
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imbalance, thus performing Josephson oscillations [157]. The amplitude is damped be-
cause of the phase noise, while the oscillation period increases as the effective macro-
scopic interaction strength g(t) = Un(t) decreases. The decay of the particle number
n(t) is also strongly modulated by the oscillations of the population imbalance. The
trajectory in figure 9.3 (b) was started at s = (0.14, 0, 0.48) in the self-trapping re-
gion. The residual oscillations are rapidly damped out and the system relaxes to a
quasi-steady state on the shown time scale. The particle number decreases slowly
and non-exponentially, since the condensate is mostly localized in the non-decaying
potential well, cf. also [179]. All these features of the dynamics are well reproduced
by the mean-field description, and the decay of the particle number is accurately pre-
dicted. Strong deviations are only expected in the vicinity of unstable fixed points of
the mean-field dynamics. These fixed points will be analysed in more detail in next
section.

9.2.2 Analysis of fixed points

We now consider the dynamics for a fixed value of the macroscopic interaction strength
g = Un = const. in the special case γatoms,1 =: γ and γatoms,2 = 0. To explore the
genuine effects of particle loss, phase noise is neglected (κ = 0) in the following.

Even though the restriction to a fixed interaction constant seems to be artificial, it
reveals the effects of the particle loss on the structure of the mean-field phase space
and especially the character of the fixed points most clearly. Moreover, the dynamics
under a fixed interaction constant correspond to the periods of constant particle number
between two loss processes in the quantum jumps picture, as introduced in section 8.5.2.
Therefore this treatment provides a well-suited description of the short- as well as the
long-time behaviour. Note that the more general case γatoms,1 6= 0 and γatoms,2 6= 0 does
not lead to a fundamentally different dynamical behaviour since only the difference of
the decay rates influences the internal dynamics. However, the expectation value of the
particle number n(t) and thereby also the effective interaction strength g(t) decrease
faster.

The resulting dynamics of the Bloch vector is illustrated in figure 9.4. The upper
row (a-c) shows the phase space for the linear case, U = 0, where the mean-field
approximation is exact. For comparison, the loss-free case is depicted in (a), showing
the famous Josephson oscillations discussed earlier. An analysis of the fixed points
for the dissipative dynamics shows the emergence of two regimes depending on the
amplitude of the loss rate: For weak losses, |γ| ≤ 2J , the fixed points are given by

sJosephson
± =

 ±
[

1
4
− ( γ

4J
)2
] 1

2

− γ
4J

0

 . (9.21)

While the fixed points remain elliptic and the population is still equally distributed,
the fixed points are no longer symmetric, since the relative phase between them de-
creases (b). This behaviour can be qualitatively understood within the analogy to
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Figure 9.4: Mean-field dynamics for the non-interacting case g = 0 (upper row) and
for a fixed interaction strength g = 4 s−1 (lower row) in dependence of the decay rate
(γ = 0 for (a) and (d), γ = 1.9 s−1 for (b), γ = 2.1 s−1 for (c), γ = 1 s−1 for (e) and
γ = 4 s−1 for (f)) – for all figures holds J = 1 s−1 and ε = 0.

Josephson junctions: The weak decay induces an asymmetry between the wells leading
to to a continuous particle stream to the first well. At the fixed points this effect is
compensated by the Josephson current IJ ∝ Jsy requiring sy 6= 0.

For stronger decay rates, |γ| ≥ 2J , the two fixed points are given by

sDecay
± =


0

−J
γ

±
[

1
4
− (J

2

γ2 )
] 1

2

 . (9.22)

Above the critical value |γ| = 2J the character of the two fixed points changes abruptly
from elliptic into an attractive and a repulsive one as shown in figure 9.4 (c). The
maximal Josephson current is no longer sufficient to compensate the current induced
by the decay leading to a population excess in the non-decaying site. This explains the
population imbalance in the fixed points which increases with ascending decay rates.

In the strongly interacting case without dissipation one observes the splitting of one of
the elliptic fixed points into two novel elliptic and one hyperbolic fixed point, as dis-
cussed at the beginning of this chapter. However, the critical interaction strength
for the occurrence of this bifurcation is lowered in the presence of dissipation to
g2

crit = U2n2 ≥ 4J2 − γ2. In the subcritical regime for γ < 2J and U2n2 ≤ 4J2 − γ2,
we find oscillations around the same fixed points sJ± as in the non-interacting, but
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Figure 9.5: Comparison of the many-particle dynamics (thick red line) to the mean-
field approximation (thin blues line) for an initially pure BEC with s = (−0.5, 0, 0)
and n(0) = 200 particles: Dynamics of the Bloch vector s (a), evolution of the purity
(9.24) of the BEC (b) and evolution of the population imbalance sz (c). The system
initially relaxes to a non-linear quasi-steady state with a purity of almost one, which
is then lost as n(t) decreases. Parameters are chosen as J = 1 s−1, Un(0) = 10 s−1,
T1 = 1 s and fa = 1.

dissipative case (9.21). However, these are now distorted (not shown in the figure).
In the supercritical regime g = Un >

√
4J2 + γ2 and for a weak decay γ < 2J one

rediscovers a generalized self-trapping effect. As a result of the dissipative process, one
elliptic fixed point now bifurcates into an attractive and a repulsive fixed point (by
contrast to the two elliptic ones) and one hyperbolic one (cf. figure 9.4 (e)). The novel
fixed points are located at:

sπ± =
1

γ2 + g2


−gJ
−γJ

±
√

(γ2 + g2)(γ
2+g2

4
− J2)

 . (9.23)

For stronger decay rates, γ ≥ 2J , the hyperbolic and the elliptic fixed point sJ± (9.21)
meet and annihilate themselves as illustrated in figure 9.4 (f). Their disappearance is
accompanied by the complete disintegration of periodic orbits.

9.2.3 Metastable dynamics

Let us finally discuss the implication of this phase space structure. We especially focus
on the emergence of the attractive fixed point since it is stable and therefore strongly
influences the many-body quantum dynamics. Figure 9.5 shows the dynamics of the
rescaled Bloch vector s comparing results of a MCWF simulation (solid red line) to
the mean-field approximation (thin blue line). The given parameters correspond to the
situations illustrated in figure 9.4 (b) or (e), respectively, depending on the value of the
macroscopic interaction strength g(t) = Un(t). The Bloch vector first relaxes to the
attractive fixed point illustrated in figure 9.4 (e). The contraction of the mean-field
trajectories to the attractive fixed point manifests itself by a convergence towards a
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pure BEC, being the state of tightest localization in phase space. This is illustrated in
figure 9.5 (b) where we have plotted the purity

p = 2 tr (ρ̂2
red)− 1 (9.24)

of the reduced single-particle density matrix [69, 94,141]

ρ̂red =
1

N

(
〈â†1â1〉 〈â†1â2〉
〈â†2â1〉 〈â†2â2〉

)
. (9.25)

Note, that the definition of the purity (9.24) is chosen such that a pure BEC, corre-
sponding to a product state, is characterized by p = 1 and a completely mixed state
yields p = 0, according to the common usage of this term in experimental physics. One
can easily show that the purity is related to the Bloch vector s by p = |s|2 = |`|2/n2.

Figure 9.5 shows that the attractive fixed point is lost as g(t) = Un(t) decreases, and
thus the Bloch vector departs again and the purity starts to decrease again. This
behaviour is very well predicted by the mean-field approximation already for the rela-
tively small atom number assumed in the simulation. The mean-field trajectory then
convergences to the limit cycle shown in figure 9.4 (b). However, as the atoms are so
rapidly lost nearly no particles remain to follow the limit cycle predicted by mean-field
theory. This transition effect between different fixed points is closely related to the
quantum state diffusion in and out of a metastable state, which can be observed in
optical bistability (see, e.g., [184]). Note however, that the system considered here
irretrievably departs from the metastable self-trapping state because the fixed point is
lost as n(t) decreases.

9.3 Dissipation induced coherence and stochastic

resonance

Stochastic resonance (SR) is a strongly surprising, yet very general effect in nonlinear
dynamical systems. Against our naive understanding, the response of a system to an
external driving can be facilitated if an appropriate amount of noise is added. In fact,
the maximum of the response – the stochastic resonance – is found if the timescale of
the noise matches an intrinsic time scale of the system. The effect was first described
for strongly damped classical systems such as the overdamped particle in a driven
double well trap. In this case the noise is strong enough to induce transitions between
the wells, whereas it is still weak enough not to randomize the dynamics completely.
The particle will then hop to and fro almost deterministically if the average transition
time between the wells due to the noise equals half of the driving period [185]. By
now, a stochastic resonance has been shown in a variety of systems, an overview can
be found in the review articles [186–189]. In addition to numerous examples in classical
dynamics, stochastic resonance has also been found in a variety of quantum systems
(see, e.g., [189–195]).



158 Dynamics of an open two-mode Bose-Einstein condensate

Figure 9.6: Decay rate ξ of the quasi-steady-state (9.27) as a function of the tunneling
rate J and the dissipation rate T−1

1 for κ = 5 s−1 and U = ε = 0.

In the following, we will show that a finite amount of dissipation induces a maximum
of the coherence of a two-mode BEC, which can be understood as an stochastic reso-
nance effect. In this discussion we have to distinguish between two different kinds of
coherence, which will both be considered in the following. First of all we consider the
phase coherence between the two wells, which is measured by the average contrast in
interference experiments as described in [157–159] and given by

α(t) =
2|〈â†1â2〉|
〈n̂1 + n̂2〉

=

√
`x(t)2 + `y(t)2

n(t)
. (9.26)

Secondly, we will analyze how close the many-particle quantum state is to a pure Bose-
Einstein condensate. This property is quantified by the purity p = 2 tr (ρ̂2

red) − 1 of
the reduced single-particle density matrix (9.25), with p = 1 indicating a pure BEC,
as discussed earlier.

9.3.1 Dissipation induced coherence in a weakly-interacting
Bose-Einstein condensate

In this section, we show that a proper amount of dissipation can indeed increase the
phase coherence (9.26) of a two-mode BEC similar to the stochastic resonance effect.
For simplicity, we start with the linear case U = 0, where the mean-field equations
of motion for the expectation values (9.16) are exact. As already mentioned, the
linear equations resemble the Bloch equations for driven nuclear spins in the rotating
wave approximation [177], which are known to show a pronounced stochastic resonance
effect [196]: The amplitude of forced oscillations of the spins given by `y assumes a
maximum for a finite value of the relaxation rates T−1

1 and T−1
2 , provided that these

two rates are coupled. For the two-mode BEC considered here this is automatically
the case as given by equation (9.18). Thus we also expect a maximum of the steady
state value of the phase coherence (9.26) for a finite value of T−1

1 .
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Figure 9.7: Contrast α of the quasi-steady state (9.27) as a function of the tunneling
rate J and the dissipation rate T−1

1 (a) for κ = 5 s−1 and U = ε = 0 and (b) for a
fixed value of the tunneling rate J = 2 s−1 and (c) a fixed value of the dissipation rate
T−1

1 = 2 s−1. The dash-dotted red lines represent the approximations (9.32) for small
and large values of J , respectively.

Let us now determine the steady state value of the contrast (9.26) which quantifies
the phase coherence of the two wells, as a function of the system parameters and the
relaxation rates. Obviously, the only steady state in the strict sense is given by ` = 0
and n = 0, corresponding to a completely empty trap. However, the system rapidly
relaxes to a quasi-steady state where the internal dynamics is completely frozen out
and all components of the Bloch vector and the particle number decay at the same
rate:

`(t) = `0e
−ξt, n(t) = n0e

−ξt. (9.27)

Substituting this ansatz into the equations of motion (9.16), the quasi-steady state is
determined by the eigenvalue equation

M


`x0

`y0

`z0

n0

 = ξ


`x0

`y0

`z0

n0

 (9.28)

with the matrix

M =


T−1

2 2ε 0 0

−2ε T−1
2 −2J 0

0 2J T−1
1 faT

−1
1

0 0 faT
−1
1 T−1

1

 , (9.29)

which is readily solved numerically.

Figure 9.6 depicts the smallest real eigenvalue ξ corresponding to the most stable
quasi-steady-state as a function of J and T−1

1 for the noninteracting case and ε = 0.
It determines the basic time scale of the system and is essentially proportional to the
dissipation rate T−1.
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Figure 9.7 shows the resulting values of the contrast α as a function of the dissipation
rate T−1

1 and the tunneling rate J for U = ε = 0 and κ = 5 s−1. For a fixed value of one
of the parameters, say J , one observes a typical SR-like maximum of the contrast for a
finite value of the dissipation rate T−1

1 as shown in part (b) of the figure. In particular,
the contrast is maximal if the time scales of the tunneling and the dissipation are
matched according to

4J2 ≈ f 2
aT
−2
1 + faκT

−1
1 . (9.30)

Furthermore, the contrast α(J) shows a similar maximum for a finite value of the
tunneling rate J when the dissipation rate is fixed as shown in figure 9.7 (c). Contrary
to our intuition this shows that an increase of the coupling of two modes can indeed
reduce their phase coherence.

In the special case ε = 0, illustrated in figure 9.7, one can solve the eigenvalue equation
(9.28) exactly. In this case one has `x = 0 and the contrast α is related to the eigenvalue
ξ by

α =
2J(T−1

1 − ξ)
faT

−1
1 (T−1

2 − ξ) . (9.31)

Evaluating the roots of the characteristic polynomial to determine ξ leads to an alge-
braic equation of third order which can be solved analytically. The resulting expressions
are quite lengthy, but the limits for small and large values of the tunneling rate are
readily obtained as

α ≈ 2J
T−1

2 −(1−fa)T−1
1

for J � T−1
1

α ≈ faT
−1
1

2J
for J � T−1

1 . (9.32)

These approximations are plotted as dashed red lines in figure 9.7 (c). Their intersec-
tion given by (9.30) gives a very good approximation for the position of the SR-like
maximum of the contrast α(J).

An important experimental issue is the question whether the quasi-steady state is
reached fast enough, such that the typical SR-like curve of the contrast as shown in
figure 9.7 can be observed, while still enough atoms are left in the trap. To answer
this question, we integrate the equations of motion (9.16) starting from a pure BEC
with `(0)/n(0) = (

√
3/4, 0, 1/4) and n(0) = 100 particles. Figure 9.8 (a) shows the

relaxation of the contrast for J = 4 s−1 and T1 = 1 s. The steady state value is
nearly reached after t = 1 s, when still 40% of the atoms are left in the trap. Figure
9.8 (b) shows the development of the contrast α(J) in time. It is observed that the
characteristic SR-like maximum is already well developed after 1 second, where roughly
half of the atoms are lost. Thus one can conclude that the SR-like maximum of the
contrast should be observable in ongoing experiments.

The stochastic resonance effect introduced earlier is robust and generally not altered by
changes of the system parameters or in the presence of weak inter-particle interactions.
For instance, a change of the bias ε of the on-site energies of the two wells preserves
the general shape of α(T−1

1 , J) shown in figure 9.7, and especially the existence of a
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Figure 9.8: Relaxation to the quasi-steady state for κ = 5 s−1, T−1
1 = 1 s−1, ε = 10 s−1

and U = 0. (a) Relaxation of the contrast α(t) for J = 4 s−1. (b) Decay of the particle
number n(t) for J = 4 s−1. (c) Development of the SR-maximum of the contrast α(J).

pronounced SR-like maximum. At most, the function α(T−1
1 , J) is stretched, shifting

the position of the SR-like maximum. This shift is illustrated in figure 9.9 (a) where
we have plotted the contrast as a function of J for the dissipation rate T−1

1 = 2 s−1 and
different values of ε. Thus, this effect provides a useful tool to shift the maximum to
values of J , which are easier accessible in ongoing experiments.

Similarly, the position of the maximum of the coherence α(J) is shifted in the presence
of weak inter-particle interactions. An interacting BEC will usually not show a simple
exponential decay of the form (9.27) because the instantaneous decay rate depends on
the effective interaction strength Un(t), which also decreases [179, 197, 198]. However,
the discussion of quasi-steady states and instantaneous decay rates is still useful if the
decay is weak. In this case the system can follow the quasi-steady states adiabatically
and the decay of the population is given by

dn(t)

dt
= −ξ(n(t))n(t) and

d`(t)

dt
= −ξ(n(t))`(t) (9.33)

in good approximation. Substituting this ansatz into the equations of motion (9.16)
yields four coupled nonlinear algebraic equations, which can be disentangled with a
little algebra. For a given number of particles n, the instantaneous decay rate ξ is
obtained by solving the fourth order algebraic equation[

(ξ − T−1
2 )2 + (Un)2(ξ − T−1

1 )2
] [

(ξ − T−1
1 )2 − f 2

aT
−2
1

]
+ 4J2f 2

aT
−2
1 (ξ − T−1

1 )(ξ − T−1
2 ) = 0. (9.34)
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Figure 9.9: Steady state values of the contrast α as a function of the tunneling rate,
for U = 0 and different values of the energy bias ε (a), and as a function of the effective
interaction strength g = Un for ε = 0 (b). The remaining parameters are κ = 5 s−1

and T−1
1 = 2 s−1.

The Bloch vector for the corresponding quasi-steady state is then given by

`x0 =
ξ − T−1

1

ξ − T−1
2

(ξ − T−1
1 )2 − f 2

aT
−2
1

4Jf 2
aT
−2
1

Un2,

`y0 =
(ξ − T−1

1 )2 − f 2
aT
−2
1

4JfaT
−1
1

n,

`z0 =
ξ − T−1

1

2faT
−1
1

n. (9.35)

The fourth order equation (9.34) yields four solutions for the decay rate ξ. Discarding
unphysical values, one finds either one or three quasi-steady states. The effects of the
appearance of novel nonlinear stationary states on the dynamics is reminiscent of the
bifurcation of fixed points discussed in section 9.1 and will be analysed in more detail
in chapter 10 in the context of Landau-Zener tunneling.

The resulting contrast α(J) in a quasi-steady state is shown in figure 9.9 (b) for different
values of the effective interaction constant g = Un. One observes that the position of
the SR-like maximum of the contrast is shifted to larger values of the tunneling rate,
while the height remains unchanged. Furthermore the shape of the stochastic resonance
curve α(J) is altered, becoming flatter for J < Jmax and steeper for J > Jmax. For even
larger values of the interaction constant Un one finds a bifurcation into three distinct
quasi-steady states as introduced earlier. This case will be discussed in detail below
(cf. section 9.3.3).

The reasons for the occurrence of an SR-like maximum of the contrast in terms of the
underlying many-particle dynamics are illustrated in figure 9.10. To obtain these results
we have simulated the dynamics generated by the Master equation (8.70) using the
Monte Carlo wave function (MCWF) method averaging over 100 quantum trajectories.
For a given particle number n, the probabilities P to obtain the population imbalance
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Figure 9.10: (a) Histogram of the probabilities to measure the relative phase φ and the
relative population imbalance `z in a single experimental run after t = 1.5 s obtained
from a MCWF simulation of the many-body dynamics. The initial state was chosen to
be a pure BEC (equivalent to a product state) with `z = n/4 and n(0) = 100 particles
and the remaining parameters are κ = 5 s−1, T1 = 0.5 s, ε = 10 s−1, U = 0.1 s−1.
(b) Average contrast α = 2

√
`2
x + `2

y/n (solid black line) after t = 1.5 s compared to√
`2
x + `2

y/|`| and 2|`|/n (dashed red lines).

`z and the relative phase φ in a projective measurement are thereby given by

P (`z) = tr (|`z〉 〈`z| ρ̂) and

P (φ) = tr (|φ〉 〈φ| ρ̂), (9.36)

where the L̂z eigenstates

|`z〉 = |n/2− `z, n/2 + `z〉 with

`z = −n/2,−n/2 + 1, . . . , n/2 (9.37)

and the phase eigenstates

|φ〉 :=
1√
n+ 1

+n/2∑
`z=−n/2

eiφ`z |`z〉 with

φ = 0, 2π
1

n+ 1
, . . . , 2π

n

n+ 1
(9.38)

each form a complete basis.

Part (a) of figure 9.10 shows a histogram of the probabilities to observe the relative
population imbalance `z/n and the relative phase φ in a single experimental run for
three different values of the tunneling rate J after the system has relaxed to the quasi-
steady state. With increasing J , the atoms are distributed more equally between the
two wells so that the single shot contrast increases. Within the mean-field description
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this is reflected by an increase of
√
`2
x + `2

y/|`| at the expense of |`z|/|`| (cf. part (b)
of the figure). However, this effect also makes the system more vulnerable to phase
noise so that the relative phase of the two modes becomes more and more random and
|`|/n decreases. The average contrast (9.26) then assumes a maximum for intermediate
values of J as shown in part (b) of the figure.

9.3.2 Stochastic resonance of a driven Bose-Einstein conden-
sate

So far we have demonstrated a stochastic resonance of the contrast for a BEC in a
static double-well trap with biased particle losses. In the following we will show that
the system’s response to a weak external driving also assumes a maximum for a finite
dissipation rate – an effect which is conceptually closer to the common interpretation
of stochastic resonance. From a mathematical viewpoint, however, one can rather
relate the undriven case discussed earlier to the stochastic resonance effect in nuclear
magnetic resonance [196]. In fact, the Bloch equations for the magnetization have
constant coefficients in the rotating wave approximation, and should thus be compared
to the undriven equations of motion (9.16).

Let us consider the response of the system to a weak sinusoidal driving of the tunneling
rate

J(t) = J0 + J1 cos(ωt) (9.39)

at the resonance frequency ω =
√
J2

0 + ε2, while the amplitude of the driving is small
and fixed as J1/J0 = 10%. A variation of J can be realized in a quite simple way in an
optical setup [157–159], where the tunneling barrier between the two wells is given by
an optical lattice formed by two counter-propagating laser beams. A variation of the
intensity of the laser beams then directly results in a variation of the tunneling rate J .
Figure 9.11 shows the resulting dynamics for T1 = 0.5 s and three different values of J0

and U = 0. After a short transient period, the relative population imbalance `z(t)/n(t)
oscillates approximately sinusoidally. One clearly observes that the response, respective
the amplitude of the forced oscillations, assumes a maximum for intermediate values
of J0 matching the external time scale of the dissipation given by T−1

1 .

For a detailed quantitative analysis of this stochastic resonance effect, we evaluate the
amplitude of the oscillation based on a linear response argument for U = 0. In the
following, we will use a complex notation for notational convenience, while only the
real part is physically significant. The equations of motion (9.16) are then rewritten in
matrix form as

d

dt

(
`

n

)
=
(
M0 + M1e

iωt
)(`

n

)
. (9.40)
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Figure 9.11: Dynamics of the relative population imbalance `z(t)/n(t) in a weakly
driven double well trap for three different values of the tunneling rate: J0 = 0.5 s−1

(a), J0 = 1.5 s−1 (b) and J0 = 5 s−1 (c). The amplitude of the forced oscillations
assumes a maximum for intermediate values of J0 as shown in part (b). The remaining
parameters are T−1

1 = 2 s−1, U = 0, ε = 0, κ = 5 s−1 and J1/J0 = 10%. Please note
the different scalings.

The matrices M0 and M1 are defined by

M0 =


T−1

2 2ε0 0 0

−2ε0 T−1
2 −2J0 0

0 2J0 T−1
1 faT

−1
1

0 0 faT
−1
1 T−1

1

 (9.41)

and

M1 =


0 0 0 0

0 0 −2J1 0

0 2J1 0 0

0 0 0 0

 . (9.42)

As before we consider the dynamics after all transient oscillations have died out, as-
suming that `(t) as well as n(t) decay exponentially at the same rate. However, we
now also have an oscillating contribution so that we make the ansatz

`(t) = (`0 + `1e
iωt)e−ξt,

n(t) = (n0 + n1e
iωt)e−ξt. (9.43)

The amplitude of the oscillations, respective the system response, is thus directly given
by `1/n0. Substituting this ansatz in the equations of motion and dividing by e−ξt
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Figure 9.12: (a) Response (amplitude of the oscillations of `z(t)/n(t)) of a weakly
driven double well trap vs. T−1

1 and J0 calculated within linear response theory. (b)
For a fixed value of the tunneling rate J0 = 2.5 s−1. (c) For a fixed value of the
dissipation rate T−1

1 = 2 s−1. The remaining parameters are U = 0, ε = 0, κ = 5 s−1

and J1/J0 = 10%.

yields

−ξ
(
`0

n0

)
+ (iω − ξ)

(
`1

n1

)
eiωt (9.44)

=
[
M0 + M1e

iωt
]
×
[(
`0

n0

)
+

(
`1

n1

)
eiωt

]
.

Neglecting the higher order terms ∼ e2iωt in a linear response approximation and
dividing equation (9.44) in the time-dependent and the time-independent parts yields
the equations

[−M0 + (iω − ξ)1]

(
`1

n1

)
= M1

(
`0

n0

)
(9.45)

and (9.28), which determine `1 and n1. The resulting values of the system response
are shown in figure 9.12. One observes the characteristic signatures of a stochastic
resonance: If one of the two parameters J0 and T1 is fixed, the response assumes a
maximum for a finite value of the remaining parameter as shown in part (b) and (c) of
the figure. Part (a) shows that this maximum is assumed if the external (T−1

1 ) and the
internal (J0) timescale are matched similar to the undriven case illustrated in figure
9.7.

A different situation arises if the energy bias is driven instead of the tunneling rate J
such that

ε(t) = ε1 cos(ωt). (9.46)
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Figure 9.13: Dynamics of the coherence `x(t)/n(t) (a) and the relative population
imbalance `z(t)/n(t) (b) for a double well trap with a driven energy bias ε for J0 = 2 s−1

and T−1
1 = 4 s−1. (c) Response (amplitude of the oscillations of `x(t)/n(t)) vs. T−1

1

and J0 calculated within linear response theory. The remaining parameters are U = 0,
ε1 = 1 s−1, κ = 5 s−1.

As in the case of a driven tunneling strength, we can evaluate the amplitude of the
forced oscillations within the linear response theory, however with

M1 =


0 −2ε1 0 0

2ε1 0 0 0

0 0 0 0

0 0 0 0

 . (9.47)

Solving the equations (9.45) and (9.28) then yields `1y = `1z = 0. Remarkably, a
driving of the energy bias does not affect the population imbalance in leading order.
Only the first component of the Bloch vector `x, and thus also the contrast α is strongly
affected.

This is illustrated in figure 9.13 (a) and (b) where the relative population imbalance
`z(t)/n(t) and the first component of the Bloch vector `x(t)/n(t) are plotted for J0 =
2 s−1, T−1

1 = 4 s−1 and ε1 = 1 s−1. The coherence oscillates strongly at the fundamental
frequency ω, while the population imbalance oscillates only with a tiny amplitude at
the second harmonic frequency 2ω. The oscillation amplitude of the coherence then
again shows the familiar SR-like dependence on the parameters J0 and T1 as illustrated
in figure 9.13 (c).

9.3.3 Dissipation induced coherence in a strongly-interacting
Bose-Einstein condensate

Let us finally discuss the case of strong interactions, which is experimentally most
relevant and theoretically most profound. An example for the dynamics of a strongly-
interacting BEC is shown in figure 9.14 (a) for an initially pure BEC with `z = n/4, cal-
culated both with the MCWF method and within the mean-field approximation (9.16).



168 Dynamics of an open two-mode Bose-Einstein condensate

0

0.5

1 contrast !

0

0.5

1 purity p(a)

0

0.5

1(b)

0

0.5

1

0 1 2 3
0

0.5

1

t [s]

(c)

0 1 2 3
0

0.5

1

t [s]

Figure 9.14: (a) Time evolution of the purity p and the contrast α for J = U = 10 s−1,
ε = 0, T1 = 0.5 s. (b) Time evolution without interactions (U = 0) and (c) without
dissipation (T−1

1 = T−1
2 = 0) for comparison. The occasional revivals are artifacts

of the small particle number. The initial state is a pure BEC with `z = n/4 and
n(0) = 100 particles. The results of a MCWF simulation averaged over 100 runs are
plotted as a thin solid line in (a) and (c), while the mean-field results are plotted as a
thick line in (a) and (b). Note that the mean-field approximation is exact in case (b),
whereas it breaks down in case (c) and is thus not shown.

One observes that the purity p and the contrast α first drop rapidly due to the phase
noise and, more importantly, due to the interactions. This is an effect well-known from
the non-dissipative system and can be attributed to a dynamical instability. However,
a surprising effect is found at intermediate times: The purity p is restored almost
completely and the contrast α is slightly increasing.

Most interestingly, the observed values of the purity and the coherence are much larger
than in the cases where one of the two effects – interactions and dissipation – is missing.
The time evolution for these two cases are also shown in figure 9.14. In the case of no
interactions both purity and coherence rapidly drop to values of almost zero and do
not revive. This case has been discussed in detail in section 9.3.1. In the interacting
case without dissipation one observes regular revivals, which are artifacts of the small
particle number in the simulation and become less pronounced with increasing particle
number. Apart from these occasional revivals, however, the purity and the coherence
relax to values which are much smaller than in the interacting and dissipative case.

The effects which lead to this surprising re-purification of a strongly-interacting BEC
by particle dissipation can be understood within the phase space picture introduced in
section 9.2.2 and illustrated in figure 9.4. Parts (a) and (d) of the figure 9.4 show the
phase space structure without dissipation and Un = 0 and Un = 4J , respectively. One
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Figure 9.15: Time evolution of the purity p and the contrast α for J = U = 10 s−1,
ε = 0 and T−1

1 = 0.5 s−1 (a), T−1
1 = 1.5 s−1 (b) and T−1

1 = 2.5 s−1 (c). The initial
state is a pure BEC with `z = n/4 and n(0) = 100 particles. The results of a MCWF
simulation averaged over 100 runs are plotted as a thin solid line, while the mean-field
results are plotted as a thick line.

observes the familiar self-trapping bifurcation of the fixed points for Un > 2J [69,173].
The phase space structure is significantly altered in the presence of particle loss as
shown in parts (b), (c), (e) and (f), with the most important consequence being the
occurrence of an attractive and a repulsive fixed point instead of the elliptic fixed points
in the dissipation-free case.

In the course of time the dissipative, interacting system will thus relax to the attractive
stationary state, as illustrated in figure 9.4 (e). A many-particle quantum state can
now be represented by a quasi-distribution function on this classical phase space (cf.
section 6.3.1). In this picture, a pure BEC is represented by a maximally localized
distribution function and the loss of purity corresponds to a broadening or distortion.
The existence of an attractive fixed point clearly leads to the recontraction of the phase
space distribution function and thus to a re-purification of the many-particle quantum
state as observed in figure 9.14 (a).

However, we have already seen in section 9.2.2 that this nonlinear stationary state
exists only as long as the particle number exceeds a critical value given by

U2n2 ? 4J2 − f 2
aT
−2
1 . (9.48)

This was at the origin of the metastable behaviour discussed in section 9.2.3. Here, we
observe a similar effect: As particles are slowly lost from the trap, the particle number
eventually falls below the critical value. For this reason the attractive fixed point
vanishes and the purity drops to the values expected for the linear case U = 0. Since
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Figure 9.16: Purity p (a) and contrast α (b) after t = 2 s as a function of the dissipation
rate T−1

1 for different values of the interaction strength Un calculated within the mean-
field approximation. The remaining parameters are chosen as in figure 9.14 (a).

the attractive fixed point tends towards the equator maximizing `x/|`|, the contrast
assumes a maximum just before the disappearance of the attractive fixed point, while
the purity is still large. In figure 9.14 (a) this happens after approx. 2.5 seconds.

The surprising effect of the re-purification of a BEC is extremely robust – it is present
as long as the condition (9.48) is satisfied. A variation of the system parameters does
not destroy or significantly weaken the effect, it only changes the time scales of this
relaxation process. Figure 9.15 compares the time evolution of the purity and the
contrast for three different values of the particle loss rate T−1

1 . With increasing losses,
the nonlinear stationary state is reached much faster, but is also lost earlier. One can
thus maximize the purity or the contrast at a given point of time by engineering the
loss rate. This effect is further illustrated in Figure 9.16, where the purity and the
contrast after 2 seconds of propagation are shown in dependence of the loss rate T−1

1 .
Both curves assume a maximum for a certain finite value of T−1

1 .

9.4 Conclusion

In this chapter, we have discussed the dynamics of a Bose-Einstein condensate in a
double-well trap subject to phase noise and particle loss. Starting from the full many-
body dynamics described by a master equation the mean-field limit has been derived
resulting in an effective non-hermitian (discrete) Gross-Pitaevskii equation and a de-
tailed analysis of its fixed points has been presented. The structure of the phase space
reflects the metastable behaviour of the many-body system, which is at the origin of a
repurification of the state mediated by the dissipation. This manifestation of a stochas-
tic resonance effect in a many-body system was analysed in three different settings: The
phase coherence of a weakly-interacting condensate, experimentally measured via the
contrast in an interference experiment, assumes a maximum for a finite value of the
dissipation rate matching the intrinsic time scales of the system. In the same manner,
the response to an external driving assumes a maximum for a finite value of the dissipa-
tion rate. Most interestingly for strong inter-particle interactions acting in concurrence
with dissipation, the purity of the condensate is almost completely restored and the
phase coherence can be significantly increased.



Chapter 10

Landau-Zener transitions and Bloch
oscillations in optical lattices

In this chapter we discuss the dynamics of Bose-Einstein condensates (BECs) in an
optical lattice under the influence of an additional static or a periodic force. Contrary
to our intuition, a weak external field inhibits quantum transport in a periodic potential
and leads to a periodic motion instead. These so-called Bloch oscillations [199] have
been observed in a variety of systems, from electrons in semiconductor superlattices
[200–203] to light in photonic materials [204–208]. A realization by ultracold atoms in
optical potentials [209–211] provides not only near-perfect control and an astonishing
accuracy, but also the possibility to observe the dynamics in-situ [81]. In an optical
lattice the accelerating force can be either implemented by a chirp of the difference
between the lattice beams [211], by magnetic gradient fields [212] or directly by the
gravitational force in a vertical lattice setup [213]. In vertical setups Bloch oscillations
can even be used for high precision measurements of the gravitational acceleration [214].

However, if the external field is so strong that the atoms can no longer adiabatically
follow the lowest energy band, transitions to higher Bloch bands can occur at the
edge of the Brillouin zone, such that directed transport becomes possible again. Such
nonadiabatic transitions at avoided level crossings are generally referred to as Landau-
Zener tunneling.

In the standard Landau-Zener scenario, the dynamics is restricted to two levels with
a constant coupling J , whose energy difference varies linearly in time, ε(t) = αt. Of
particular interest is the Landau-Zener tunneling probability between the two adiabatic
states which is found to be

PLZ = e−πJ
2/α, (10.1)

independent of the initially occupied level. Due to its generality, this result has been
applied to numerous problems in various contexts like, e.g., spin-flip processes in nano-
scale systems [215], molecular collisions [216], quantum-dot arrays [217], dissipative
systems [218, 219] or quantum information processing tasks [220–223], to name but a
few examples.
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The Landau-Zener scenario was one of the first major problems addressed within time-
dependant quantum theory. While the single-particle case was solved independently by
Landau, Zener, Majorana and Stückelberg already in 1932 [224–227], the generaliza-
tion of the results to interacting many-particle systems remains an open question up to
today, and even the mean-field dynamics is not yet fully understood. The non-linear
self-interaction fundamentally alters the dynamics, leading to a breakdown of adia-
baticity due to the bifurcation of nonlinear stationary states [170, 171, 228–232]. The
many-particle Landau-Zener problem is of fundamental interest not only from the the-
oretical but also from the experimental point of view and has in recent years attracted
a lot of interest, especially in the context of the dynamics of Bose-Einstein condensates
(BECs) in optical lattices [233–237]. In a tilted or accelerated optical lattice successive
Landau-Zener tunneling at the Brillouin zone edge lead to a pulsed coherent output of
atoms, called coherent droplets [210].

In this chapter, we will give a detailed analysis of the dynamics of an interacting
Bose-Einstein condensate in tilted and driven optical (super-)lattices, including both
Bloch oscillations and Landau-Zener tunneling. The effective nonlinearity due to the
interactions between the particles leads to a dynamical instability, which results in rapid
depletion going far beyond the mean-field regime. Thus, we will especially focus on the
relation between the full many-particle problem and the mean-field approximation.

This chapter is divided into two parts. In the first section, we analyze the influence of
the interactions between the particles onto the transition for the illustrative case of a
driven double-well potential. The extension of this system to a chain of driven double-
wells has only recently been studied experimentally [238, 239]. In the first section
of this part, we will review the basic features of non-linear Landau-Zener tunneling
and study the breakdown of adiabaticity due to the nonlinearity in more detail. In
section 10.1.2, we will show that the phase space techniques presented in chapter 6,
are not only an extremely useful tool to depict the dynamics, but can also be used
to simulate the evolution including the depletion of the condensate, which plays a
dominant role, as well as squeezing effects occurring during the transition (cf. section
10.1.3). In particular, going beyond the usual mean-field limit resolves the formerly
imputed incommutability between adiabatic and semiclassical limits [170, 229, 230].
This subject will be addressed in section 10.1.5. Moreover, in section 10.1.6 we study
the influence of phase noise and propose a Landau-Zener sweep as a sensitive, yet
readily implementable probe for decoherence, since this has a significant effect on the
transition rate for slow parameter variations.

In the second part of this chapter we turn to extended systems and study the dynam-
ics of a Bose-Einstein condensate in a tilted (and driven) bichromatic optical lattice,
which is ideally suited to study the coherent superposition of Bloch oscillations and
Landau-Zener tunneling. The main objective of this part is the influence of the in-
teractions onto the coherent dynamics of the macroscopic matter wave, and how this
effective nonlinearity can lead to instabilities of the condensate. In section 10.3.1, we
calculate the nonlinear Bloch bands and analyze their dynamical stability. Based on
these results, we provide a thorough analysis for four different dynamical settings in a
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bichromatic lattice. In section 10.3.2, we will study nonlinear Landau-Zener tunneling
in a bichromatic lattice. The depletion of the condensate will be addressed in section
10.3.3. In section 10.3.4 the coherent interplay between Bloch oscillations and Zener
tunneling and in section 10.3.5 the coupling of Bloch bands by a periodic driving is
explored. The chapter closes with a short conclusion and an outlook.

10.1 Interacting BEC in a time-varying double-well

trap

To get a feel for the influence of the interactions onto a Landau-Zener transition and
the conceptual differences between the single- and many-particle problem, we consider
the dynamics of the double-well model system (9.1), which has been introduced in
chapter 9. As presumed in the standard Landau-Zener setting, we choose a linear time
variation of the energy difference between the wells, ε(t) = αt, and assume a constant
coupling J . The resulting description by a Bose-Hubbard type Hamiltonian thus reads

Ĥ = ε(t)
(
â†2â2 − â†1â1

)
− J

(
â†1â2 + â†2â1

)
+
U

2
(n̂1(n̂1 − 1) + n̂2(n̂2 − 1))

= 2ε(t)L̂z − 2JL̂x + UL̂2
z. (10.2)

As in the preceding chapters, we will set ~ = J = 1 in all numerical examples, thus
measuring time in units of the tunneling time ~/J .

Initially, the two modes are energetically well separated and the ground state of the
Bose-Hubbard Hamiltonian (10.2) is

|Ψ(t→ −∞)〉 = (N !)−1/2(â†1)N |0〉, (10.3)

thus we assume that initially all particles are localized in the first well, corresponding
to a fully condensed state. The many-particle Landau-Zener transition probability for
the population is then given by

Pmp
LZ :=

〈n̂1(t→ +∞)〉
〈n̂1(t→ −∞)〉 . (10.4)

In the following, the many-particle quantum state is denoted by a capital Ψ, while we
use x = (x1, x2) for the components of the mean-field state vector in close connection
to the parametrization introduced in section 9.1 (cf. equation (9.13)). To distinguish
the transition probabilities we use the superscripts mp and mf for the many-particle
and mean-field quantities, respectively.

In the mean-field approximation (cf. section 9.1, and especially equation (9.12)), the
time evolution is given by the discrete Gross-Pitaevskii equation [172,173]:

i
d

dt

(
x1

x2

)
=

(
αt+ g|x1|2 −J
−J −αt+ g|x2|2

)(
x1

x2

)
, (10.5)
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where g = UN is the macroscopic interaction strength and x is normalized to one,
|x1|2 + |x2|2 = 1. In this setting, the Landau-Zener tunneling probability in the level
j = 1, 2 is defined as

Pmf
LZ :=

|xj(t→ +∞)|2
|xj(t→ −∞)|2 . (10.6)

As for the many-particle problem (10.3), we assume that all particles are initially
localized in one of the modes, that means x1(t→ −∞) = 1.

In chapter 6 we have introduced the generalized phase space representation of Bose-
Hubbard type systems and discussed the relation between the (single-trajectory) mean-
field approximation, respective the GPE (10.5), and the Hamiltonian flow, which allows
to go beyond expectation values and take also the higher moments and their time
evolution into account at least approximately (cf. especially section 6.3.4, as well
as section 7.2.2 for the numerical implementation). Here, we just review the basic
definitions, which we will need in the following sections, for the two-mode case.

Starting from the Husimi or Q-Function, which is defined as the projection onto the
set of Bloch coherent states (9.6)

Q(θ, φ, t) = |〈θ, φ|Ψ(t)〉|2, (10.7)

one can calculate the exact dynamics as

∂

∂t
Q(θ, φ) =

{
2ε(t)

∂

∂φ
+ 2J

(
sinφ

∂

∂θ
− cosφ cot θ

∂

∂φ

)

−g cos θ
∂

∂φ
+

g

N
sin θ

∂2

∂φ∂θ

}
Q(θ, φ). (10.8)

The evolution equations thus consist of a classical Liouvillian phase space flow, which is
equivalent to the discrete Gross-Pitaevskii equation (10.5) in the appropriate parametriza-
tion (cf. section 7.2.2), and a quantum correction term which vanishes as 1/N . Hence,
the truncated dynamics provides a semiclassical approximation of the phase space flow,
which allows to calculate the dynamics of the higher moments of the quantum state
approximately: The initial state is mapped to its Husimi function, which is then pro-
pagated according to a classical Liouville equation omitting the quantum corrections in
equation (10.8). Equivalently one can consider an ensemble of classical phase space tra-
jectories whose starting points are distributed according to the initial Husimi function
(cf. section 6.3.4). This method is referred to as ensemble simulation in the following.

Section 6.3.2 comments on the evaluation of expectation values by an integration over
quasi-probability densities. In particular, the expectation value of the generalized
angular momentum operators (9.3) can be calculated as

〈L̂〉 = (N + 2)

∫
s(θ, φ)Q(θ, φ) sin θdθdφ, (10.9)
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Figure 10.1: Landau-Zener tunneling probability in the lower level (left) and the upper
level (right) for J = 1 and g = 0, 1, 5. Mean-field results Pmf

LZ (α) are plotted as solid
blue lines, many-particle results Pmp

LZ (α) for N = 50 particles as red circles.

thus the eigenvalues of the reduced single-particle density matrix (SPDM, cf. equa-
tion (9.25)),

ρ =

(
1/2− 〈L̂z〉/N 〈L̂x〉/N − i〈L̂y〉/N

〈L̂x〉/N + i〈L̂y〉/N 1/2 + 〈L̂z〉/N

)
, (10.10)

are no longer restricted to {0, 1}, as it is the case in the mean-field approximation. This
allows to study the consequences of dynamical instabilities, which will be at the focus
of the following sections. Moreover, this approach allows to investigate the dynamics
of different initial states, since it is not restricted to product states alone.

10.1.1 Nonlinear Landau-Zener tunneling

The linear Landau-Zener tunneling probability is strongly affected by the nonlinear
self-interaction, where the most striking feature is the breakdown of adiabaticity, that
is the non-vanishing transition probability in the adiabatic limit α → 0 for a large
enough interaction strength. Numerical results illustrating this behaviour are shown
in figure 10.1.

The solid lines show the mean-field Landau-Zener tunneling probability (10.6) in de-
pendence of the parameter velocity α for different values of the interaction strength
g. Note, that for this calculation the common (single-trajectory) mean-field approx-
imation has been used. However, there are no visible differences to the phase-space
ensemble simulation for the actual parameters. The open circles represent the cor-
responding many-particle results. In the linear case g = 0, one recovers the result
(10.1) for the Landau-Zener tunneling probability. For a slow parameter variation, the
state can adiabatically follow the instantaneous eigenstates and thus most particles
tunnel coherently to the other well. For a faster sweep, this coherent tunneling effect
is strongly disturbed such that the Landau-Zener transition probability no longer van-
ishes. This effect is present in the transition probability in the upper and the lower
level.
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Figure 10.2: Energy of the mean-field stationary states (10.11) in comparison to the
eigenenergies of the two-mode Bose-Hubbard model (9.1) in dependence of the offset ε
for J = 1 and g = 1 (left) and g = 5 (right) and N = 20 particles.

In the nonlinear case, the tunneling probability becomes strongly asymmetric: it in-
creases as g increases in the upper level, while it decreases in the lower level. To
understand this effect, it is useful to consider the total energy of the mean-field sys-
tem. Figure 10.2 shows the eigenenergies of the Hamiltonian (10.2) in dependence of
the difference of the on-site energies ε = ε1 − ε2 in comparison to the total energies of
the ‘nonlinear eigenstates’, i.e. the stationary states of the mean-field dynamics (10.5),

Emf = ε(|x2|2 − |x1|2)− J(x∗1x2 + x∗2x1) +
g

2
(|x1|4 + |x2|4). (10.11)

Compared to the non-interacting case g = 0, the left-hand side of figure 10.2 shows that
the upper level is sharpened, while the lower level is flattened for small interactions
0 < g < 2J . This flattening suppresses the tunneling probability from the lower level
to the upper level, leading to a decreased Landau-Zener probability in the adiabatic
regime. On the other hand, the sharpening of the upper level makes it more difficult to
follow the adiabatic eigenstates, which results in a increased Landau-Zener probability
for the upper level, as can be seen on the right-hand side of figure 10.1.

Most remarkably, the tunneling probability in the upper level does not even vanish
in the adiabatic limit α → 0 for g > 2J , as expected from the linear case. Thus
adiabaticity breaks down in the strongly interacting case.

To explore the origin of this breakdown of adiabaticity we compare again the eigenstates
of the many-particle system to the stationary states of the mean-field system. For
g > 2J the mean-field eigenenergies show a swallow’s tail structure in the upper level,
reflecting the occurrence of a bifurcation of one of the steady states into three new
ones, one of them hyperbolically unstable (dashed line) and two elliptically stable (solid
lines). This so called self-trapping effect has been discussed in detail in section 9.1.
The system can adiabatically follow the steady states as long as these are elliptically
stable. This is possible only until the end of the swallow’s tail where the elliptic fixed
point vanishes in an inverse bifurcation with the hyperbolic fixed point [228,229]. Then
the dynamics becomes unstable and adiabaticity is lost even for very small values of α.



10.1. Interacting BEC in a time-varying double-well trap 177

The swallow’s tail in the mean-field energy corresponds to a caustic of the many-particle
eigenenergy curves in the limit N →∞, which are bounded by the mean-field energies
from below and above. Within this caustic we find a series of quasi-degenerate avoided
crossings of the many-particle levels. The level splitting at these crossings tends to
zero exponentially fast in the mean-field limit N → ∞ with g = UN fixed [171, 240].
Thus the system will show a complete diabatic time evolution at these quasi-crossings
even for very small values of α. Outside the swallow’s tail one finds common avoided
crossings, where the system evolves adiabatically for small values of α.

Note, however, that the breakdown of adiabaticity is only approximate for the many-
particle system. It is known that for a symmetric tridiagonal Hamiltonian, such as the
one we are considering (9.1) with J 6= 0, the level spacings in the spectrum may be
exponentially small but nevertheless is always non-zero [241]. Thus adiabaticity can
be restored when the parameter velocity α is decreased well below the square of the
residual level splitting ∆ [240,242]:

α
!� ∆2 with ∆ ∝ N exp(−ηN), (10.12)

where η is a proportionality constant which depends of the system parameters. How-
ever, the adiabaticity condition on the velocity becomes exponentially difficult to fulfill
for large particle numbers. Thus the breakdown of adiabaticity is also present in the
full many-particle system for any realistic set of parameters. The same dynamics is
found for attractive nonlinearities, g < 0, only the roles of the upper and lower level
are exchanged.

10.1.2 Landau-Zener tunneling in phase-space

Further insight into the dynamics of nonlinear Landau-Zener tunneling can be gained
within the phase space picture introduced in chapter 6, and briefly reviewed at the
beginning of this chapter.

According to the remarks in the previous section, the system will undergo a series
of diabatic transitions up to the end of the swallow’s tail and evolve adiabatically
afterwards. To verify these claims, we compare the actual many-particle quantum
state |Ψ(t)〉 to the instantaneous eigenstate in figure 10.3 at four points in time during a
Landau-Zener passage. To visualize the quantum states, we use the Husimi distribution
Q(θ, φ, t) in polar representation (9.8) as defined in section 9.1 . The right-hand side
of figure 10.3 illustrates the series of diabatic/adiabatic transitions and the specific
instantaneous eigenstates shown in upper panels of the figure. One observes a good
agreement between the dynamical state and the instantaneous eigenstates, during the
transition as well as afterwards. However, the crossover from diabatic to adiabatic
transitions is not absolutely sharp. The final state contains small contributions from
other instantaneous eigenstates.

To characterize the many-particle quantum state during the Landau-Zener transition,
we have plotted the eigenvalues of the single-particle density matrix (10.10) on the
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Figure 10.3: Dynamics of the many-particle Landau-Zener transition for J = 1, g = 5,
N = 20 and α = 0.1. The upper figures show a contour plot of the Husimi distribution
of the instantaneous eigenstates marked in the level scheme on the right at times
tj = −10, 0.5, 5.5, 16. The lower figures show the Husimi distribution of the dynamical
quantum state |Ψ(t)〉 at the same times.

left-hand side of figure 10.4. One eigenvalue remains equal to unity, while the other
one vanishes, indicating a fully coherent state until the crossover from diabatic to
adiabatic transitions. Then we observes an oscillation of the SPDM eigenvalues: The
contributions of the different many-particle eigenstates de- and rephase periodically
giving rise to a beat signal which is genuinely quantum. The oscillation of the coherence
is mirrored in the evolution of the uncertainties of the angular momentum operators
∆L̂x and ∆L̂y shown on the right-hand side of figure 10.4. The uncertainties are
strongly enhanced when the coherence is (partly) lost. This behaviour can be intuitively
explained in terms of the dynamics of the Husimi distribution. The centre of mass of
the Husimi function oscillates rapidly in the φ-direction, leading to oscillations of the
expectation values 〈L̂x〉 and 〈L̂y〉. Furthermore the distribution breathes in the φ-

direction at a slower timescale, leading to the oscillations of the width ∆L̂x and ∆L̂y
and the periodic revivals of the coherence. The oscillations of the expectation values
die out at the times when the Husimi function is spread nearly uniformly in the φ-
direction, that is at the times where the coherence is minimal. In contrast, the Husimi
distribution is well localized in the θ-direction for long times and the corresponding
uncertainty ∆L̂z remains small. The population difference 〈L̂z〉 is thus well described
by the simple Bogoliubov mean-field approximation. Many-particle and mean-field
results for the Landau-Zener tunneling rate show an excellent agreement (cf. figure
10.1), because they depend only on the population difference and not on the coherence.

The evolution of the coherence and the uncertainties ∆L̂x and ∆L̂y certainly goes be-
yond the Bogoliubov mean-field approximation, but most of the effects can be taken
into account by the semi-classical phase space approach. Figure 10.6 shows the dynam-
ics of the many-particle Landau-Zener scenario in quantum phase space in comparison
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Figure 10.4: Dynamics of the many-particle Landau-Zener transition for g = 5, N =
50 and α = 0.1. The left figure shows the eigenvalues of the SPDM (10.10). The
expectation values 〈L̂k〉 and widths ∆L̂k of the angular momentum operators (9.3) for
k = x (blue), k = y (red) and k = z (green) are plotted on the right-hand side. The
onset of the oscillatory dynamics corresponds to the cusp of the swallow-tail structure
in the mean-field representation (cf. figure 10.2).
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Figure 10.5: Semiclassical simulation of the many-particle Landau-Zener transition
for J = 1, g = 5, N = 50 and α = 0.1. The left figure shows the eigenvalues of
the ensemble approximation for the SPDM ρkl = 〈ψ∗kψl〉cl. The ensemble expectation
values N〈sk〉cl and the standard deviation N∆sk of the Bloch vector (9.8) for k = x
(blue), k = y (red) and k = z (green) are plotted on the right-hand side.

to the dynamics of a classical phase space ensemble. The expectation values and vari-
ances of the Bloch vector L̂ (9.8) calculated from such an ensemble simulation are
plotted in figure 10.5. It is observed, that the spreading of the Husimi distribution in
the direction of the relative phase φ and the loss of coherence are well reproduced by
the classical ensemble. However, the quantum beat oscillations of the coherence are of
course not present in the classical distributions as shown in figure 10.5. The expecta-
tion value and the fluctuations of the classical Bloch vector s as defined in equation
(9.8) show a similar effect. The global dynamics of the angular momentum operator
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Figure 10.6: The many-particle Landau-Zener scenario in phase space. The dynamics
of an ensemble of 150 classical trajectories (upper panels) is compared to the evolution
of the Husimi distribution (lower panels) at times t = −16,−8, 0, 8, 16 (from left to
right). Parameters are chosen as in figure 10.3.

L̂ plotted in figure 10.4 is well reproduced, whereas all the quantum beats are absent.
These are genuine many-particle quantum effects.

10.1.3 Number squeezing during the transition

The previous results show that the many-particle quantum state after a nonlinear
Landau-Zener sweep is far from being a pure BEC. In particular it has been claimed that
the final state is strongly number squeezed in comparison to a pure BEC with the same
atomic density distribution [243]. The figures 10.4 and 10.5 show the evolution of the
expectation values and variances of L̂, comparing many-particle results to a phase space
approximation. One observes that the number fluctuations ∆L2

z are strongly increased
during the sweep, but relax to a smaller value again afterwards. This evolution is well
described within the semiclassical phase space picture. A further quantitative analysis
of number squeezing during a Landau-Zener sweep is provided in figure 10.7, comparing
exact results (red) to an ensemble simulation (green). For a pure BEC with a given
atomic distribution, number fluctuations are given by ∆L2

z,ref = 〈n̂1〉〈n̂2〉/N . Thus one
can define the parameter

ξ2
N =

∆L2
z

∆L2
z,ref

=
N∆L2

z

〈n̂1〉〈n̂2〉
, (10.13)

which measures the suppression of number fluctuations in comparison to a pure BEC.
Figure 10.7 (a) shows the value of ξ2

N during a slow Landau-Zener sweep with α = 0.1.
Indeed, ξ2

N drops well below one for long times indicating number squeezing. Again,
this feature is well reproduced by a phase space simulation (green). The final value of
ξ2
N after the sweep is shown in Figure 10.7 (b) as a function of the parameter velocity
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Figure 10.7: Number squeezing during a Landau-Zener sweep. Many-particle results
(red) are compared to an ensemble simulation (green). (a) Evolution of the relative
squeezing parameter ξ2

N for a slow sweep with α = 0.1. (b) Final value of ξ2
N (10.13)

after the sweep as a function of the parameter velocity α. (c) Evolution of the spectro-
scopic squeezing parameter ξ2

S (10.14) for a slow sweep with α = 0.1. (d) Dependence
of the revival time of the occurrence of a squeezed state on the particle number N .
The remaining parameters are J = 1, g = −5 and N = 200 particles.

α. Number squeezing with ξ2
N < 1 is observed for small values of α in the regime of the

breakdown of adiabaticity, e.g. for a large interaction strength, 2J < g . The phase
space simulation overestimates the variances and thus also ξ2

N , but gives the correct
overall behaviour. For a fast sweep, ξ2

N tends to one as the state remains approximately
coherent.

However, an application of number squeezing in quantum metrology requires a reduc-
tion of number fluctuations as well as a large phase coherence. Thus, a quantum state
is defined to be spectroscopically squeezed if and only if

ξ2
S := N

∆L̂2
z

〈L̂x〉2 + 〈L̂y〉2
< 1. (10.14)

Spectroscopic squeezing indicates multipartite entanglement of the trapped atoms [244,
245]. The evolution of the squeezing parameter ξ2

S during a slow Landau-Zener sweep
with α = 0.1 is plotted in figure 10.7 (c). While the number fluctuations ∆L̂2

z assume
a small constant value after the sweep, the phase coherence 〈L̂x〉2 + 〈L̂y〉2 strongly
oscillates due to the periodic de- and rephasing of the many-particle eigenstates (cf.
figure 10.4). True spin squeezing with ξ2

S < 1 is present only temporarily in the periods
of maximum phase coherence. The timescale of the occurrence of these minima depends
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Figure 10.8: Left panel: Landau-Zener tunneling probability as a function of of the
interaction strength UN for a slow parameter variation α = 0.1 and J = 1, N = 50.
Right panel: Eigenvalues of the SPDM for t → +∞. The exact many-particle results
(red line) are compared to a phase space ensemble simulation (green diamonds) and
the single-trajectory mean-field results (blue line).

linearly on the particle number N , as shown in figure 10.7 (d). For macroscopic particle
numbers it takes very long before the states rephase such that ξ2

S < 1 is observed.
Moreover these revivals are extremely sensitive to phase noise. Thus, it is doubtful
that for realistic particle numbers Landau-Zener sweeps may be useful to generate
squeezed states in a controlled way. Finally we note that the revivals of the phase
coherence are not described by the phase space picture. Even small fluctuations in the
phase coherence lead to large errors. Therefore the phase space approximation cannot
account for the short periods where true spin squeezing ξ2

S < 1 is observed.

10.1.4 Influence of interactions onto the Landau-Zener tran-
sition probability

Let us finally investigate the global dependence of the Landau-Zener tunneling rate on
the interaction strength g = UN in more detail. To this end we calculate the quantum
and the classical tunneling rates given by equations (10.4) and (10.6), respectively,
as well as the eigenvalues of the SPDM (9.25). We consider an initial state that is
localized in the upper level for t→ −∞ so that adiabaticity breaks down for a repul-
sive nonlinearity g > 2J . As discussed earlier, a change of the sign of the interaction
strength g corresponds to an interchange of the two modes. For an attractive nonlin-
earity, adiabaticity breaks down in the lower level instead. Thus we obtain a global
picture of the dynamics either by calculating the tunneling rate in the upper and the
lower level for g > 0, or by calculating the tunneling rate in the upper level alone for
g > 0 and g < 0. In the following we choose the latter option.

Figure 10.8 shows the results for J = 1 and α = 0.1, where the linear system evolves
completely adiabatically. The left-hand side shows the many-particle and mean-field
Landau-Zener tunneling probabilities as defined in equation (10.4) and (10.6), respec-
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Figure 10.9: Left panel: Landau-Zener tunneling probability as a function of of the
interaction strength g = UN for a fast parameter sweep α = 10 and J = 1, N = 50.
Right panel: Eigenvalues of the SPDM for t → +∞. The exact many-particle results
(red line) are compared to a phase space ensemble simulation (green diamonds) and
the single-trajectory mean-field results (blue line).

tively. The right-hand side shows the eigenvalues of the SPDM (9.25) for t → +∞.
Note, however, that the eigenvalues of the SPDM oscillate for t > 0 as shown in fig-
ure 10.4, indicating a periodic loss and revival of coherence. Figure 10.8 shows the
eigenvalues of the SPDM for large times, omitting the temporal revivals explicitly. As
expected, adiabaticity breaks down as soon as g > 2J and the Landau-Zener tunneling
rate increases with g. In the adiabatic regime, one eigenvalue of the SPDM is close to
one, indicating a fully coherent state. Coherence is lost when the adiabaticity breaks
down and particles are scattered out of the condensate mode.

Figure 10.9 shows the results for a fast sweep α = 10 for J = 1. In the linear case,
equation (10.1) predicts a Landau-Zener tunneling rate of PLZ = 0.7304. Surprisingly,
the basic structure of the numerical results is very similar to the adiabatic case shown
in figure 10.8. The curves are shifted, but the general progression remains the same.
This is understood as follows. As argued earlier, an attractive nonlinearity flattens the
upper level so that Landau-Zener tunneling is decreased. The current example shows
that this effect is so strong that the tunneling process is completely suppressed so that
PLZ → 0 for large negative values of g. On the contrary, a repulsive nonlinearity leads
to an increase of PLZ. The transition between an effectively adiabatic and non-adiabatic
dynamics occurs at g = 2J for a slow parameter variation α → 0. For a fast sweep,
PLZ is non-zero in the linear case g = 0. However, a strong attractive nonlinearity
can flatten the level so much that adiabaticity is restored again. Thus one can always
enforce an adiabatic transition, but the necessary interaction strength |g| increases
monotonically with α. This behaviour is also reflected in the coherence properties of
the final state shown on the right-hand side of figure 10.8 and 10.9.

One astonishing feature observed in the figures 10.8 and 10.9 is the excellent agreement
of the Landau-Zener tunneling rate PLZ and the eigenvalues of the SPDM. Deviations
are only found around g = 0 in figure 10.9. This can be understood by a loss of the
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coherence between the two modes for long times, that is

〈â†1â2〉 → 0 for t→ +∞, (10.15)

if we do not take into account the temporal revivals illustrated in figure 10.4. This
happens either if the atoms are not in a coherent state any longer or if all atoms are
localized in one of the modes. In any case we can rewrite the reduced SPDM as

ρ(t→ +∞) ≈
(
〈n̂1(t→ +∞)〉 0

0 〈n̂2(t→ +∞)〉

)
=

(
1− PLZ 0

0 PLZ

)
. (10.16)

So the eigenvalues of the SPDM are directly given by the Landau-Zener tunneling rate
if the two modes are not coherent. For strong nonlinearities g this is always the case
and so the left- and the right-hand sides of the figures 10.8 and 10.9 show an excellent
agreement except for a small region around g = 0 in figure 10.9. In the non-interacting
case (g = 0) the dynamics of all atoms is identical and the condensate will be fully
coherent at all times. Thus the leading eigenvalue of the SPDM is always equal to one
independent of the Landau-Zener tunneling rate, such that the approximation (10.16)
is no longer valid in the non-interacting case.

10.1.5 Semiclassical and adiabatic limit

Having discussed various aspects of the mean-field many-particle correspondence in
the previous sections, we now investigate the convergence to the mean-field limit quan-
titatively. The left-hand side of figure 10.10 compares the mean-field Landau-Zener
tunneling probability PLZ(α) (10.6) to the corresponding many-particle results (10.4)
for different particle numbers and g = −5. While the many-particle dynamics usually
converges rapidly to the mean-field limit, the occurrence of a dynamical instability for
|g| > 2J leads to a breakdown of adiabaticity for small values of α. In this param-
eter region the convergence to the many-particle limit is logarithmically slow. This
is further illustrated in figure 10.10 on the right-hand side, where the Landau Zener
tunneling probability Pmp

LZ is plotted as a function of the inverse particle number 1/N .

Another observation from the numerical data presented in figure 10.10 is that a simple
mean-field description gives qualitatively wrong results in the adiabatic limit of small
α. As already discussed in section 10.1.1, the many-particle Landau-Zener tunneling
probability Pmp

LZ (α) will always tend to zero for α → 0 since the level splittings in the
many-particle spectrum may become small, but are always non-zero for finite N . Its
mean-field counterpart Pmf

LZ (α) , however, is always affected by the appearance of the
dynamical instability which destroys adiabaticity also for infinitesimally small values
of α. Consequently, the Landau-Zener tunneling probability is believed to be non-zero
even in this limit. This difference led to the claim that the adiabatic limit α→ 0 and
the semiclassical limit 1/N → 0 do not commute [240]. However, this claim is true only
for arguments based on expectation values assuming a pure condensate at all times,
which is obviously no longer true in the present case.



10.1. Interacting BEC in a time-varying double-well trap 185

10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

!

P L
Z

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

1/N

P L
Z

Figure 10.10: Left panel: Landau-Zener tunneling probability PLZ as a function of α
for g = −5. Single-trajectory mean-field results (solid black line) are compared to
exact many-particle results for N = 10 (green diamonds), N = 20 (red squares) and
N = 40 (blue circles) particles. The lines are drawn to guide the eye. Right panel:
Slow convergence to the mean-field limit in the adiabatic regime. The Landau-Zener
tunneling probability PLZ is plotted as a function of the inverse particle number for
α = 0.01 and g = −5. The black line corresponds to the single-trajectory mean-field
results which are approached in the limit 1/N → 0.

As discussed in the previous section, the proper semiclassical limit of the quantum dy-
namics is a phase space flow rather than a single phase space trajectory. This descrip-
tion is valid also if the classical dynamics is unstable and the many-particle quantum
state deviates from a pure condensate. The left-hand side of figure 10.11 shows the
Landau-Zener tunneling probability P ens

LZ (α) for different particle numbers calculated
from the propagation of a semiclassical phase space ensemble. It is observed that the
many-particle results (cf. figure 10.10) can be reproduced to a very good approxima-
tion even for small values of α. Thus there is no incommutability of the adiabatic and
semiclassical limits if the latter is interpreted correctly. Also the slow convergence to
the single-trajectory limit is well described by the semiclassical phase space approach.
The right-hand side of figure 10.11 shows P ens

LZ as a function of the inverse particle
number 1/N for α = 0.01 which is well in the adiabatic regime. Significant differences
to the many-particle results (cf. figure 10.10) are observed only for very small particle
numbers, N > 10.

10.1.6 Influence of phase noise

We finally want to approach the question how an interaction with the environment
affects the transition from quantum-many body to the classical mean-field dynamics.
To this end we consider the Landau-Zener problem subject to phase noise, which is
the dominant influence of the environment provided that the two condensate modes
are held in sufficiently deep trapping potentials (cf. section 8.5.1). The many-particle



186 Landau-Zener transitions and Bloch oscillations in optical lattices

10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

!

P L
Z

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

1/N

P L
Z

Figure 10.11: Left panel: Landau-Zener tunneling probability P ens
LZ as a function of α

calculated from a semi-classical ensemble simulation for g = −5 and N = 10 (green
diamonds), N = 20 (red squares) and N = 40 (blue circles) particles. The lines are
drawn to guide the eye. The black line corresponds to the single-trajectory mean-field
results which are approached in the limit 1/N → 0. Right panel: The Landau-Zener
tunneling probability P ens

LZ as a function of the inverse particle number calculated from
a semi-classical ensemble simulation for α = 0.01 and g = −5.

dynamics is then given by the master equation

d

dt
ρ̂ = −i[Ĥ, ρ̂]− κ

2

∑
j=1,2

(
n̂2
j ρ̂+ ρ̂n̂2

j − 2n̂j ρ̂n̂j
)
. (10.17)

Phase noise leads to transversal relaxation degrading the coherences sx and sy of the
two condensate modes. Note that the magnitude of the Bloch vector |s| is no longer
conserved because of this effect.

The resulting Landau-Zener tunneling probabilities are plotted in figure 10.12 as a
function of α for different values of the noise strength κ. It is observed that phase
noise has an important effect only for small values of α, where it drives the system to
a completely mixed state with equal population in both wells such that PLZ = 1/2. On
the contrary, almost no consequences are observed for fast parameter sweeps. In this
case, the tunneling time during which the atoms are delocalized is so short that phase
noise cannot affect the dynamics. The transition to the incoherent regime occurs when
the time scale of the noise κ−1 is smaller than the tunneling time which is roughly
given by α−1. Therefore the sweep is incoherent such that PLZ = 1/2 if

α > κ, (10.18)

while the interaction strength g has a minor effect only.

Comparing mean-field and many-particle results, significant differences are observed
for very small values of α and g = −5 in the non-dissipative case κ = 0, which has
been discussed in detail in section 10.1.3. In addition we note that already a small
amount of phase noise is sufficient to remove these differences. For α → 0 and κ 6= 0
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Figure 10.12: Landau-Zener tunneling probability PLZ(α) in the presence of phase noise
for g = −1 (left) and g = −5 (right). The strength of the phase noise is chosen as
κ = 0 (green diamonds), κ = 0.01 (red squares) and κ = 0.1 (blue circles). Mean-field
results (solid lines) are compared to many-particle results N = 40 particles (symbols).

the mean-field approximation (10.5) correctly predicts the transition to a completely
mixed state with PLZ = 1/2. Furthermore, significant differences are observed for
g = −5 and intermediate values of α. In this case the many-particle quantum state is
no longer a pure BEC but rather strongly number squeezed as discussed earlier. This
state is more easily driven to a completely mixed state by phase noise than a pure
BEC, a process which certainly cannot be described by the simple single-trajectory
mean-field approximation.

Finally, these results suggest that Landau-Zener sweeps may actually be used as a
probe of decoherence in systems of ultracold atoms (cf. also [218]). A measurement
of the transition point to the incoherent regime where PLZ = 1/2 gives an accurate
quantitative estimate of the noise strength κ with a fairly simple experiment.

10.2 Bloch oscillations

In the subsequent sections we will be concerned with the dynamics of ultracold atoms
in a tilted optical (super-)lattice. As is known from solid state physics, the single-
particle dynamics in such a periodic one-dimensional potential under the influence of
an additional static field features a periodic motion, the Bloch oscillations. In this
section, we explain the basic principles of the dynamics of Bloch oscillations in the
context of ultracold bosons in an optical potential. For reasons of simplicity, we neglect
the interactions between the atoms and consider a single Bloch band only. This allows
an analytic treatment in the tight-binding approximation, which will be presented in
this section following the presentation in [246]. In the subsequent sections, we will
then analyze the dynamics in a bichromatic lattice, where the Bloch band splits up in
two minibands and the atoms can undergo Landau-Zener transitions between them,
including the effects of inter-particle interactions.
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Under the assumption that the dynamics is restricted to the lowest energy band in
each of the potential minima, the dynamics of a dilute gas of ultracold atoms in an
optical lattice subject to an additional static force is given by the Bose-Hubbard type
Hamiltonian

H = −J
M−1∑
j=1

(
â†j+1âj + â†j âj+1

)
+ F

M∑
j=1

j â†j âj. (10.19)

Here, F denotes the difference of the strength of the static field at two neighbouring
lattice sites and J is the tunneling matrix element, as introduced in section 8.3.

A transformation of the problem, using a representation in terms of creation and an-
nihilation operators of Bloch waves with quasi-momentum −π

2
≤ q ≤ π

2

âq =

√
1

2π

∞∑
j=−∞

eijq âj, (10.20)

instead of creation operators in the Wannier basis (8.24) localized at the j-th lattice
site

âj =
1√
2π

∫
e−ijq âq dq, (10.21)

reduces the computational effort significantly. In this basis, the Hamiltonian (10.19) is
diagonal and reads

Ĥ(q) = −2J cos(q) â†qâq + iF â†q
∂

∂q
âq . (10.22)

The eigenstates of this Hamiltonian are the so-called Wannier stark states, which are
given by

wm(q) =
1√
2π
e−imq+

2J
F

sin(q) with m ∈ Z

= wm(q + 2π) (10.23)

in the Bloch wave basis. These states correspond to the eigenenergies Em = mF . This
is often referred to as the Wannier-Stark ladder [247–249].

With a little bit of algebra, we obtain the time evolution operator

Û =
∑
m

∫ ∫
wm(q) e−iEmtw∗m(q′) â†qâq′ dq′ dq

=
1

2π

∫ ∫
e−i2J/F (sin(q)−sin(q′))

∑
m

e−im(q−q′+Ft) â†qâq′ dq′ dq

=

∫ ∫
e−i2J/F (sin(q)−sin(q′)) δ(q − q′ + Ft) â†qâq′ dq′ dq (10.24)

The quasi-momentum depends linearly on the time

q(t) = q(0)− Ft, (10.25)
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Figure 10.13: Bloch oscillations in real (a) and momentum space (b). Shown is the
time evolution of the particle density |ψ|2 in dependence of the lattice sites, respective
the quasi momentum q. We assume that the initial state is a pure BEC (10.30) in the
ground Bloch band with q = 0 weighted by a Gaussian envelope (10.45) with σ = 4
and n0 = 15. The parameters are J = 1 and F = 0.2.

such that the dynamics is periodic with an oscillation period

TBloch =
2π

F
. (10.26)

The dynamics can be compared to a classical particle which is accelerated at a constant
rate until it reaches the edge of the Brillouin zone, where it is Bragg-reflected. This
result is also known as the acceleration theorem [250].

A Fourier transformation yields the time evolution operator in the Wannier basis

Û =
∑
j,k

Jj−k
(

4J

F
sin(

Ft

2
)

)
ei(j−k)(π−Ft)/2−ikF t â†j âk , (10.27)

where we used the integral representation of the Bessel function Jj−k [251]. Using this
representation, it is straightforward to calculate the dynamics of a wave packet or of
expectation values.

In figure 10.13 one example of Bloch oscillations in an extended lattice of 50 lattice sites
is shown. Depicted is the particle density |ψ|2 in real (a) and momentum space (b).
The initial state is chosen to be a pure BEC distributed over the lattice sites according
to a Gaussian distribution. One clearly observes the periodic motion in real space and
the linear dependence of the quasi momentum on time, as well as the Bragg-reflections
at the edge of the Brillouin zone.
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10.3 Interacting BEC in a bichromatic lattice

As we have seen in the preceding section, Bloch oscillations of ultracold atoms in optical
lattices occur if the atoms are accelerated by a weak external field until they are Bragg
reflected at the edge of the Brillouin zone leading to a periodic motion. Though for
stronger fields a directed motion is re-introduced by repeated Landau-Zener transitions
to higher Bloch bands. Since the band gap between the excited bands decreases more
and more the atoms are irretrievably lost due to tunneling to higher bands on a short
time scale [210,235].

For a bichromatic lattice, each Bloch band split up into two minibands, whereas all
higher bands are energetically well separated. Here, the external field induces also
Landau-Zener tunneling [236], but the atoms are confined to the two lowest bands.
Thus, the dynamics of a BEC in a tilted bichromatic optical lattice is governed by an
interplay of the intraband dynamics and the transitions between the two minibands. On
longer timescale repeated Landau-Zener tunneling takes place, which leads to a complex
dynamics due to the interference effects of atoms in the two minibands [232,252,253].
This makes bichromatic lattices a perfect model system to study nonlinear Bloch-Zener
tunneling.

Moreover, these effects can be used as a coherent beam splitter for atomic matter waves.
Therefore the coherent superposition of Bloch oscillations and Landau-Zener tunneling
between two minibands provides a natural realization of a matter wave Mach-Zehnder
interferometer [232, 252] and thus enable a variety of possible applications in matter
wave interferometry and quantum metrology [253].

Here, we will consider ultracold atoms in a bichromatic optical lattice with an al-
ternating depth of the lattice wells. The many-body dynamics is described by the
Bose-Hubbard type Hamiltonian

H = −J
M−1∑
n=1

(
â†n+1ân + â†nân+1

)
+
U

2

M∑
n=1

â†2n â
2
n

+
M∑
n=1

(
δ

2
(−1)n + Fn

)
â†nân, (10.28)

where ân and â†n are the bosonic annihilation and creation operators, respectively. As
discussed in section 8.3 the parameter J is defined as the tunneling rate between the
wells and U is the interaction strength. Moreover, F denotes the strength of the static
external field which accelerates the atoms and the parameter δ ≥ 0 is the difference of
the on-site energies between adjacent wells.

The corresponding mean-field dynamics is then given by a generalization of the GPE
(8.58) [81]

iẋn = −J(xn+1 + xn−1) +
[

(−1)nδ

2
+ Fn+ UN |xn|2

]
xn. (10.29)

Bichromatic lattices have been implemented by superimposing two incoherent optical
lattices [123,124], or by combining optical potentials based on virtual two-photon and
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four-photon processes [236, 253–256]. These superlattices allow to engineer the Bloch
band structure of the system by tuning few experimental parameters, e.g. the tunneling
rate can be controlled to a large extent by tuning the lattice parameters and the
difference of the on-site energies between adjacent wells, δ ≥ 0, is directly proportional
to the intensity of the double-periodic optical lattice [254].

One of the main objectives of this section is a careful analysis of how the interactions
affect the coherent dynamics of a BEC in a bichromatic lattice and how they possibly
lead to instabilities of the condensate. In the following we thus assume that the system
is initially prepared as a pure BEC with N particles:

|Ψ(0)〉 =
1√
N !

(∑
n
ψnâ

†
n

)N
|0〉 . (10.30)

Dynamical instabilities lead to a depletion of the condensate such that the mean-field
approximation is no longer applicable. To simulate the dynamics beyond mean-field
we use the Bogoliubov backreaction (BBR) method introduced in section 8.4.4 which
also gives a quantitative prediction for the depletion of the condensate [69, 140, 141].
In particular the nature of the many-body quantum state is indicated by the reduced
single-particle density matrix (SPDM)

σj,m =
1

N
〈â†j âm〉, (10.31)

as introduced in section 8.3. The leading eigenvalue of this matrix, λ0, gives the fraction
of atoms in the condensate mode. Consequently, the non-condensed fraction is given
by 1− λ0, cf. section 9.2.3.

10.3.1 Stability of Bloch bands

Bloch states for the bichromatic lattice are the simultaneous eigenstates of the field-
free Hamiltonian and a translation over two lattice sites. The dynamics of a BEC in
a bichromatic lattice can be understood to a large extent from the properties of linear
and non-linear Bloch states. In this section, we thus give a detailed analysis of the
Bloch states and their stability properties.

In the simplest case of a single atom, where interactions are obviously irrelevant, the
Bloch bands are easily calculated as [252]

Eα(q) =
(−1)α+1

2

√
δ2 + 16J2 cos2(q), (10.32)

where α = 0, 1 labels the two minibands and q ∈ [−π/2,+π/2] denotes the quasimo-
mentum. The band gap between the two minibands is directly given by the parameter
δ. The corresponding Bloch states are given by |χα,q〉 = b̂†α,q|0〉, where

b̂0,q =
1√
Nq

∑
n

uqe
i(2n+1)qâ2n + vqe

i(2n+2)qâ2n+1

b̂1,q =
1√
Nq

∑
n

vqe
i2nqâ2n − uqei(2n+1)qâ2n+1 (10.33)
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Figure 10.14: Nonlinear Bloch bands in a bichromatic optical lattice with δ = 1 and
F = 0 for different values of the interaction strength: g = −2 (a), g = +2 (b),
g = −0.5 (c) and g = +0.5 (d). (e) Comparison of the linear Bloch bands (g = 0) in
a bichromatic lattice δ = 1 (solid line) and for δ = 0 (dashed line) corresponding to a
simple lattice.

and

uq = 4J cos(q)

vq = δ +
√
δ2 + 16J2 cos2(q),

Nq = π(u2
q + v2

q ) being a normalization constant.

In the mean-field approximation one can also analytically calculate the ’nonlinear’
Bloch states, which are defined as stationary states of the discrete nonlinear Schrödinger
equation (DNLSE)

µφn = −J(φn+1 + φn−1) + UN |φn|2φ+ (−1)n
δ

2
φn, (10.34)

respecting the translation symmetry φn+2 = e2iqφn. Making the ansatz

φn ∼
{
uqe

iqn n even

vqe
iqn n odd,

(10.35)

one finds that the coefficients uq, vq are determined by the two-mode DNLSE(
δ/2 + g|uq|2 −2J cos(q)

−2J cos(q) −δ/2 + g|vq|2

)(
uq

vq

)
= µ

(
uq

vq

)
. (10.36)

Using the normalization |uq|2 + |vq|2 = 1, the effective coupling constant is given by
g = 2Uρ, where ρ is the average particle density.

Examples of nonlinear Bloch bands are shown in figure 10.14. One observes that the
bands become strongly asymmetric – the ground band is sharpened and the excited
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Figure 10.15: Stability map for a nonlinear Bloch state with quasimomentum q in the
ground band for δ = 1 and for different values of the interaction strength: g = −2 (a),
g = +2 (b), g = −0.5 (c) and g = +0.5 (d). The gray scale map shows the stability
exponent, i.e. the growth rate of a perturbation with quasimomentum q. Dynamical
instability leads to a depletion of the condensate if the stability exponent is non-zero
for at least one value of q.

band is flattened for a repulsive nonlinearity g > 0 and vice versa for an attractive
nonlinearity g < 0. For strong nonlinearities novel stationary states appear at the band
edge q = ±π/2, forming the so-called looped Bloch bands [230, 257]. A quantitative
analysis shows that DNLSE (10.36) admits four solutions if [229]

g2/3 > δ2/3 + |2J cos(q)|2/3. (10.37)

Thus the critical nonlinearity for the existence of looped levels is directly linked to the
band gap δ. The deformation of the Bloch bands has significant consequences for the
dynamics which will be discussed in detail in section 10.3.2. An adiabatic dynamics is
hindered by a sharpening of the levels and becomes completely impossible as soon as
the loops form.

The nonlinear Bloch states calculated in equation (10.35) are stationary states of the
DNLSE (10.29). However, they can become dynamically unstable due to the nonlinear
interaction term, which also indicates a rapid depletion of the BEC. To determine
the stability properties of a Bloch state (10.35), we add a small perturbation with
quasimomentum q̃:

ψn(t) = e−iµtφn (10.38)

+

{
ei(qn−µt)(ξ0,qe

iq̃n + ζ∗0,qe
−iq̃n) n even

ei(qn−µt)(ξ1,qe
iq̃n + ζ∗1,qe

−iq̃n) n odd
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and analyze the consequences for the energy and the dynamics of the condensate.
If every perturbation increases the total energy given by the Gross-Pitaevskii energy
functional

E = −J
∑
n

ψ∗n+1ψn + ψ∗nψn+1 +
UN

2

∑
n

|ψn|4

+
δ

2

∑
n

(−1)2|ψn|2, (10.39)

then the Bloch state represents a local energy minimum and thus a stable superflow.
Otherwise a perturbation may lower the energy and the Bloch state suffers a Landau
instability. Here, we are more concerned with the dynamical instability of a Bloch
state, which occurs if a perturbation grows exponentially, as this indicates a rapid
depletion of the condensate mode [52, 53, 137, 258]. Note that dynamical instability
always indicates energetical instability, but not vice versa [230].

To determine the energetical stability we substitute the ansatz (10.38) into the Gross-
Pitaevskii energy functional (10.39) and expand it up to second order in the perturba-
tion. The variation of the energy is then given by

δE =

∫
dq̃ Ξ†qLen(q, q̃)Ξq (10.40)

with the matrix

Len(q, q̃) =

(
H(q + q̃) gV

gV ∗ H(q − q̃)

)
. (10.41)

Here we have introduced the abbreviations

H(k) =

(
δ
2

+ 2g|u|2 − µ −2J cos(k)

−2J cos(k) − δ
2

+ 2g|v|2 − µ

)
,

V =

(
u2 0

0 v2

)
and

Ξq = (ξ0,q, ξ1,q, ζ0,q, ζ1,q)
T . (10.42)

The Bloch state represents a stable energy minimum if δE is positive for any pertur-
bation, i.e. if the matrix Len(q, q̃) is positive definite for every perturbation q̃.

The dynamical stability properties are found by substituting the ansatz (10.38) into the
DNLSE (10.29). In first order, the perturbation evolves according to the Bogoliubov-de
Gennes equation (cf. section 8.4.3)

i
d

dt
Ξq = LBdG(q, q̃)Ξq (10.43)

with

LBdG(q, q̃) = σzLen(q, q̃)

=

(
H(q + q̃) gV

−gV ∗ −H(q − q̃)

)
. (10.44)
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Figure 10.16: Many-particle Landau-Zener tunneling between two minibands for two
different values of the band gap, δ = 0.2 (a) and δ = 1 (b). The dynamics has been
calculated with the BBR method for the parameters J = 1, F = 0.2, UN = 2 and
N = 100 particles. The upper panels show the survival probability (10.46) in the upper
half of the lattice.

A dynamical instability occurs if a perturbation grows exponentially, that means if
there is any q̃ for which the eigenvalues of the matrix LBdG(q, q̃) are not purely real.

The dynamical stability for the Bloch states in the ground band is depicted in fig-
ure 10.15 for the same parameters as in figure 10.14. A grey scale map shows the
stability exponent, that means the maximum imaginary part of the eigenvalues of the
Bogoliubov-de Gennes matrix LBdG(q, q̃) in dependence of q and q̃. This imaginary
part indicates the growth rate of a perturbation with wavenumber q̃ and thus also the
depletion rate of the condensate. A Bloch state with quasimomentum q is dynamically
stable only if the growth rate is zero for all values of q̃. One observes that two different
kinds of dynamical instability exist in a bichromatic lattice. In the attractive case
g < 0, the Bloch states in the center of the Brillouin zone become strongly unstable
already for a quite modest nonlinearity. Thus we face the surprising conclusion that
an attractive interaction on the one hand flattens the ground band and thus facilitates
an adiabatic evolution, but on the other hand leads to instability. In contrast, a strong
repulsive nonlinearity is required to introduce a weak dynamic instability at the edge
of the Brillouin zone, which is associated with the occurrence of looped Bloch bands.
Thus one can infer that a significant depletion takes place only for a much stronger
interaction than in the attractive case and that it sets in at the edge of the Brillouin
zone around q = π/2.

10.3.2 Nonlinear Zener tunneling

To begin with, we explore the basic features of the dynamics in a tilted bichromatic
lattice – Bloch oscillations and Landau-Zener tunneling – for the weakly interacting



196 Landau-Zener transitions and Bloch oscillations in optical lattices

0  0.2 0.4 0.6 0.8 1  0

0.2

0.4

0.6

0.8

1

P LZ

band gap !
 

 

Figure 10.17: Landau-Zener tunneling probability PLZ between two minibands as a
function of the band gap δ for UN = −2 (◦), UN = 0 (·), UN = +2 (�) and UN = +4
(O) and N = 100 particles. The solid line shows the analytic approximation (10.47)
for the linear case. Dashed lines are plotted to guide the eye.

case. We assume that the initial state is a pure BEC (10.30) in the ground Bloch band
with q = 0 weighted by a Gaussian envelope

ψn(0) ∼ φn exp(−(n− n0)2/4σ2) (10.45)

with a width of σ = 5 sites centered around the site n0 = 35. In the forthcoming
examples we choose the total particle number to be N = 100 located in a lattice with
M = 46 sites and F = 0.2, unless otherwise stated. A weak nonlinearity induces a
reversible dephasing, which damps Bloch oscillations [212, 258, 259], and, of course,
alters the Landau-Zener tunneling rate between the two minibands.

Figure 10.16 shows two examples of the many-body dynamics starting from the initial
state (10.30) for a weak repulsive interaction, UN = 2, and two different values of
the band gap δ. The figures show the evolution of the density 〈n̂j(t)〉, j = 1, . . . ,M
in false color. Here and in the following, we take the Bloch time TB = 2π/F of the
single-periodic lattice (δ = 0) as the reference time scale. One observes that the BEC
is first accelerated by the external field F until it reaches the edge of the Brillouin zone
at T = TB/4. If the band gap δ is large (cf. figure 10.16 (b)), the BEC matter wave
stays in the ground miniband and performs Bloch oscillations with a period of TB/2.
In contrast, the matter wave tunnels to the excited miniband if the gap is small and
performs Bloch oscillations with the full period TB (figure 10.16 (a)). At time t = TB/2
it is located at the turning point of the Bloch oscillations. For intermediate values of
the band gap, only a fraction of the condensate tunnels to the excited miniband and
the wavepacket splits.

For a further quantitative analysis of the Landau-Zener tunneling rate we estimate the
survival probability in the ground miniband by the number of atoms remaining in the
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Figure 10.18: Unstable dynamics in a tilted bichromatic optical lattice for a strong
repulsive interaction UN = +20 (a,b) as well as a strong attractive interaction UN =
−10 (c,d). The left panels (a,c) show the evolution of the density and the right-panels
(b,d) show the magnitude of the scaled SPDM N |σj,k| = |〈â†j âk〉| at t = TB/2 in a
colormap plot. The remaining parameters are δ = 0.2 and N = 1000.

upper half of the lattice:

PSV(t) =
1

N

46∑
j=24

〈n̂j(t)〉. (10.46)

Hence, the Landau-Zener tunneling probability to the excited band is given by PLZ :=
1 − PSV(TB/2). The time dependence of the survival probability (10.46) is shown in
the upper panels of figure 10.16 together with PLZ.

Figure 10.17 shows the Landau-Zener tunneling probability PLZ in dependence of the
band gap δ for different values of the interaction strength UN . In the linear case
UN = 0 one can approximate the avoided crossing of the two minibands at the edge of
the Brillouin zone by an effective two-level model, which yields the following approxi-
mation for the Landau-Zener probability [252]:

P
(0)
LZ ≈ exp

(
− πδ2

8JF

)
. (10.47)

This approximation shows an excellent agreement with the numerical results shown in
figure 10.17. In the weakly nonlinear case one observes an increase of the Landau-Zener
tunneling rate PLZ for a repulsive nonlinearity U > 0 and a decrease for an attractive
nonlinearity U < 0, which has also been demonstrated experimentally [233]. This
effect can be understood from the structure of the nonlinear Bloch states introduced
in equation (10.35). With increasing interaction strength, the nonlinear Bloch bands
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Figure 10.19: Depletion of the condensate during nonlinear Landau-Zener tunneling.
Temporal growth of the non-condensed fraction 1−λ0 for a strong repulsive interaction
UN = +20 (a,b) and an attractive interaction UN = −10 (c,d). The remaining
parameters are δ = 0.2 (a,c) and δ = 1.2 (b,d), respectively, and N = 1000.

µ(q) become strongly asymmetric as shown in figure 10.14. For UN < 0, the ground
band is flattened so that adiabaticity is facilitated and PLZ decreases, while the excited
band is sharpened. The inverse effect is found for UN > 0 such that PLZ increases.
If the nonlinearity UN exceeds a critical value, a Bloch state at the edge of a band
bifurcates to a looped structure, which prevents an adiabatic evolution even for very
small values of the field strength F .

10.3.3 Depletion of the condensate

In the preceding chapters we have seen that strong inter-atomic interactions alter the
dynamics of the BEC completely. This effect is present in bichromatic lattices, too.
Examples are shown in figure 10.18 for a repulsive (a,b) and an attractive (c,d) in-
teraction, respectively. One observes that the familiar Bloch oscillation pattern is
significantly disturbed, especially in the case of attractive interactions. In the repul-
sive case, the atoms are distributed over several lattice sites, but the phase coherence
between theses sites is lost almost completely. This is indicated by a strong suppression
of the non-diagonal parts of the SPDM (10.31) as shown in figure 10.18 (b). A strong
attractive nonlinearity leads to a collapse of the condensate. Figure 10.18 (c) shows
that the atoms are strongly focused to a single lattice site at t ≈ 0.15TB. Afterwards,
a fraction of the atoms explodes from the focus and the condensate mode is rapidly
depleted.

To further analyze the different mechanisms of instability due to repulsive and attrac-
tive interactions we calculate how the condensate is depleted. Figure 10.19 shows the
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time evolution of the non-condensed fraction 1−λ0 for a strong repulsive (UN = +20)
and a strong attractive nonlinearity (UN = −10), respectively. In the attractive case,
instability sets in much earlier and takes place on a very short time scale. This dif-
ference can be explained by the results of a linear stability analysis as discussed in
section 10.3.1. In the repulsive case the onset of dynamical instability can be associ-
ated with the emergence of looped Bloch bands. The condensate becomes dynamically
unstable at the edge of the Brillouin zone where the loops emerge. In contrast, al-
ready modest attractive interactions lead to a dynamic instability at the center of
the Brillouin zone (cf. figure 10.15) such that the depletion of the condensate sets in
immediately.

A quantitative analysis of the depletion of the condensate is provided in figure 10.20,
where we have plotted the non-condensed fraction at t = TB/2 as a function of the
interaction strength UN in (a) and the particle number N for a fixed value of the
interaction strength UN = ±6 in (b). Figure 10.20 (a) clearly shows the qualitative
difference between an attractive and a repulsive interaction. In the first case, one
observes a rapid increase of the non-condensed fraction when the interaction strength
exceeds the critical value for the onset of a dynamical instability. For a repulsive
interaction, however, the dynamics is rather stable so that the non-condensed fraction
remains small for all values of |UN | < 10 shown in the figure. The non-condensed
fraction decreases with the particle number and tends to zero in the mean-field limit
N → ∞. However, the speed of convergence depends crucially on the stability of the
dynamics as shown in figure 10.20 (b). In the repulsive case, UN = +6, the dynamics
is stable and thus convergence is fast. The non-condensed fraction decreases rapidly
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with increasing particle number such that the mean-field description by the DNLSE is
valid already for quite small values of the particle number. In contrast, the convergence
is logarithmically slow for UN = −6 due to the dynamical instability.

10.3.4 Bloch-Zener oscillations

On a longer timescale, the dynamics of a BEC in a tilted optical lattice is governed
by the interference of Bloch oscillations and Zener tunneling between the Bloch bands.
Figure 10.21 (b) shows an example of the dynamics of the atomic density for δ = 0.5.
The condensate wave packet is coherently split by Landau-Zener tunneling between
the two minibands at t = TB/4 and recombined again at t = 3TB/4, thus realizing
an effective matter wave Mach-Zehnder interferometer. The splitting ratio of this
interferometer, which is given by the Landau-Zener tunneling rate (10.47), is easily
tunable by changing the band gap δ.

For very small and for very large values of δ, the condensate occupies only one miniband
– it remains in the ground band for large δ and tunnels completely to the other miniband
for small δ as shown in figure 10.21 (c). In both cases the condensate shows simple
Bloch oscillations and returns back to its initial state at t = TB. For intermediate
values of δ, the condensate is split into two parts at t = TB/4. The further dynamics
and especially the occupation of the two minibands is governed by the interference of
the two possible paths. For the given parameters, about one half of the population is
still localized in the excited miniband at t = TB = 2π/F . In this parameter range,
the dynamics is very sensitive even to small nonlinearities as shown in figure 10.21 (d).
The survival probability at t = TB differs significantly for UN = −1 and UN = +1,
although the nonlinearity is still comparatively weak.

For the given interaction strength |U | ≤ 1, the splitting and also the recombination
of the condensate is fully coherent; the fraction of non-condensed atoms is less than
0.4% at t = 2TB as shown in figure 10.21 (a). A significant depletion of the condensate
is observed only for stronger nonlinearities; for instance the non-condensed fraction at
t = 2TB exceeds 10% for UN ? 5.

This example demonstrates that Landau-Zener tunneling and Bloch-Zener oscillations
are versatile tools in quantum metrology. These tools can be used, for instance, to
directly measure the band structure of a bichromatic potential as demonstrated in [253].
This is a unique feature of bichromatic optical lattices. In a simple periodic potential,
a matter wave will be accelerated further towards −∞ after it has escaped from the
ground band, such that no interference can be observed.

10.3.5 Coupling of bands by a periodic driving

Previously, we have discussed the effects of Zener tunneling between the two minibands
induced by the external field F . A coupling of the bands can also be introduced in the
field free case by a periodic driving of the system parameters. This has the advantage
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Figure 10.21: Bloch-Zener oscillations of a BEC with N = 300 atoms in a tilted
bichromatic lattice. (a) Non-condensed fraction 1 − λ0 for δ = 0.5 and UN = 1. (b)
Atomic density in real space for δ = 0.5 and UN = 1. (c,d) Survival probability (10.46)
in the upper half of the lattice after t = TB/2 (c) and t = TB (d), respectively, for
UN = −1 (◦) and UN = +1 (�).

that the quasi momentum q is conserved such that a different regime of the dynamics
can be explored.

Here we consider a BEC initially prepared in the ground miniband with a well defined
quasimomentum q. The strength of the double-periodic optical lattice is varied in time
to realize a harmonic driving of the energy offset

δ(t) = δ0 + δ1 cos(ωt). (10.48)

This driving induces transitions between the two minibands if the frequency is chosen
to be resonant with the band gap, ω = E1(q, δ0)− E0(q, δ0). In the following example
we set δ0 = 0.4, δ1 = 0.2 and U = 0. The initial state is assumed to be pure BEC
(10.30) with momentum q = 0.1π, weighted by a Gaussian envelope (cf. equation
(10.45)) with σ = 10. The resulting dynamics is shown in figure 10.22 in real (left)
and momentum space (right). One clearly observes the transitions between the two
minibands, while the quasimomentum of the BEC is conserved (panel (b)). A further
quantitative analysis of this effect is provided in panel (d), where the occupation of
the two minibands p0,1 is plotted. The oscillation between the bands has remarkable
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consequences for the real-space dynamics of the BEC shown on the left-hand side of
the figure. As the two minibands have opposite curvature, a transition between the
bands reverses the group velocity of the matter wave. This leads to an oscillatory
motion of the mean position, which can be understood as a quantum analogue of the
Zitterbewegung of a Dirac spinor. This relativistic effect results from the interference of
particle and anti-particle contributions moving to opposite directions. In the discussed
quantum simulator, the two minibands thus play the role of particle and anti-particle
contributions, respectively. Similar effects were recently predicted for optical waveguide
arrays [260,261].

10.4 Concluding remarks

In the first part of this chapter we have presented an analysis of nonlinear Landau-Zener
tunneling between two modes in quantum phase space. It was shown that adiabaticity
breaks down if the interaction strength g = UN exceeds the critical value gc = 2J
– the Landau-Zener tunneling probability does not vanish even for an extremely slow
variation of the system parameter. This phenomenon can be understood by the disap-
pearance of adiabatic eigenstates in an inverse bifurcation in the mean-field approxima-
tion. Within the full many-particle description, the breakdown of adiabaticity results
from the occurrence of diabatic avoided crossings, where the level separation vanishes
exponentially with the number of particles.



10.4. Concluding remarks 203

The correspondence of the quantum dynamics and the ‘classical’ mean-field approx-
imation has been discussed in detail in section 10.1.2. The many-particle and the
mean-field Landau-Zener tunneling probability show an excellent agreement, because
quantum fluctuations of the populations are small. In contrast, there is no fixed phase
relation between the two modes, which certainly goes beyond the simple Bogoliubov
mean-field theory. An improved classical approximation using phase space ensembles
can describe the depletion of the condensate mode and the loss of phase coherence as
well as number squeezing ξ2

N of the final state. Yet temporal revivals of this coher-
ence are genuine many-particle effects and cannot be described classically. Thus, the
spectroscopically relevant squeezing parameter ξ2

S is not reproduced by the ensemble
simulation, as shown in section 10.1.3. However, the timescale for the occurrence of
these revivals and accordingly of the spectroscopical squeezing increases linearly with
the particle number. For realistic setups, this is way to long compared to decoher-
ence and phase noise rates. Before the system reaches the squeezed state, nearly all
coherences are already lost.

In section 10.1.5, we have studied how the dynamics depends on the number of particles
N and compare our results to the discrete Gross-Pitaevskii equation that describes the
dynamics in the limit N → ∞. We show that the contradiction between the mean-
field prediction and the exact many-particle transition rate in the adiabatic regime is
no longer present in the phase space approach, and must therefore be considered as
an artifact of the single-trajectory description. However, to reproduce true quantum
features such as quantum beats semiclassically, a more refined treatment is necessary.

Furthermore, we show in section 10.1.6 that already the presence of a small amount of
phase noise is sufficient to introduce enough decoherence to make the system ’classical’,
so that the many-particle dynamics is well reproduced with a simple single-trajectory
mean-field approach. Finally we have argued that a measurement of the transition to
an incoherent Landau-Zener sweep could be used as a sensitive probe of decoherence.

In the second part of this chapter, we have discussed the dynamics of a Bose-Einstein
condensate in a bichromatic optical lattice. In such a lattice, the ground Bloch band
splits up into two minibands with a controllable band gap. And, since the higher
bands are energetically well separated, the atoms are mainly confined to these bands.
Hence, bichromatic lattices are ideally suited to study the complex quantum dynamics
resulting from the interplay of the intraband dynamics and Landau-Zener transition
between the minibands.

The basic dynamics of a BEC in an optical lattice can be inferred from the band
structure of the system. Within the tight-binding approximation, one can readily
calculate the linear as well as the nonlinear Bloch states. In particular, this treatment
yields an explicit expression for the critical interaction strength for the occurrence of
looped Bloch bands, which leads to a breakdown of adiabatic motion. The stability
properties of the Bloch states have been analyzed in detail in section 10.3.1 by the
Bogoliubov-de Gennes approach.

The dynamics of a BEC in an extended lattice was simulated using the Bogoliubov
backreaction method which also provides a quantitative estimate for the depletion of
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the condensate. The Landau-Zener tunneling of a BEC between minibands in a tilted
or accelerated bichromatic lattice has been investigated in detail in section 10.3.2. For
weak interactions, the condensate remains essentially intact, whereas the Landau-Zener
tunneling process is strongly affected. Repulsive interactions increase the tunneling rate
in particular in the ’adiabatic regime’ of large band gaps, while attractive interactions
suppress Zener tunneling. Strong interactions cause a dynamical instability and thus
a rapid depletion of the condensate mode. However, the mechanism of dynamical
instability is significantly different: In the repulsive case, instability sets in at the
edge of the Brillouin zone and is intimately related to the occurrence of looped Bloch
bands. A condensate with attractive interactions is unstable already in the center of
the Brillouin zone, leading to a collapse and finally to the destruction of the condensate,
cf. section 10.3.3.

On longer timescales, the interplay of Bloch oscillations and Landau-Zener tunneling
leads to a complex dynamics due to the interference of the contributions in the two
minibands studied in section 10.3.4. A quantitative analysis of this effect has been
given, which also shows the applicability of Bloch-Zener oscillations in matter wave
interferometry. A remarkable dynamics is also observed in section 10.3.5, where the
transitions between the bands are not induced by a static external field, but by a
periodic driving which leaves the quasimomentum unchanged. Because of the different
curvature of the minibands, the matter waves in the two minibands move into opposite
directions. The interference of the two contributions then leads to a dynamics which
is comparable to the Zitterbewegung of a Dirac spinor.

The results presented in this chapter can also be used to understand the dynamics in
more complicated systems. Only recently, a system of pairwise tunnel-coupled one-
dimensional Bose liquids has been studied experimentally [238, 239] with focus on the
influence of the inter-particle interactions. Just as in single two-mode system, adia-
baticity breaks down and the Landau-Zener transition probability is strongly affected
by the effective nonlinearity. Moreover, one finds the same quantitative dependence of
the tunneling rate on the starting wells, respective the sign of the interaction strength
as we have discussed in section 10.1.4. As discussed in the second part of this chapter
depletion due to the interactions plays a dominant role, which implications on ther-
malization and non-equilibrium dynamics.



Chapter 11

Decay of a Bose-Einstein
condensate in an optical lattice

Decoherence and dissipation, caused by the irreversible coupling of a quantum sys-
tem to its environment, represent a major obstacle for the long-time coherent con-
trol of quantum states. However, in the last years it has been realized that dissipa-
tion can be extremely useful if it is controlled accurately. Recent experiments have
shown that strong correlations can be induced by two-body losses in ultracold quan-
tum gases [147,148]. Three-body losses can be tailored to generate effective three-body
interactions [262] and to prepare strongly correlated states for quantum simulations of
color superfluidity [263], quantum hall physics [264] or d-wave pairing [265]. Even more,
dissipation can be used as a universal tool in quantum state preparation [144,145], en-
tanglement generation [266] and quantum information processing [146].

These concepts of controlling quantum dynamics and transport are particularly im-
portant for experiments with ultracold atoms in optical lattices, where it is possible to
optically address the quantum system with single-site resolution [105, 267]. An even
higher spatial resolution has been realized with a focused electron beam, removing
atoms one by one from the lattice [150,268].

In chapter 9 we have analyzed the dynamics of a Bose-Einstein condensate (BEC) in
a double-well trap subject to phase noise and particle loss. We have seen that an
asymmetric loss can be used to restore the purity of the condensate almost completely
and increase the phase coherence significantly. In this chapter we consider a Bose-
Einstein condensate in an extended, but finite lattice. So far, most studies of the
dynamical effects of localized particle loss and phase noise have only been concerned
with nonlinear effects, discussing the possibility to induce nonlinear structures such as
bright breathers [181,269], dark solitons [270] or ratchets [271]. All these studies were
based on a mean-field approximation, where the loss was introduced heuristically as
an imaginary potential.

In this chapter we investigate the possibility to control the macroscopic dynamics of
a Bose condensed state in a Bose-Hubbard chain using localized dissipation in the
mean-field limit and beyond. To this end, we use the BBR approximation introduced
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in section 8.4.4, taking into account higher-order moments explicitly. The validity of
both approximations is tested by a comparison to numerically exact simulations of the
many-body quantum dynamics for small systems using the Monte-Carlo wave function
method (cf. section 8.5.2).

To be able to analyze the deviations from mean-field results properly it is necessary
to focus on an intermediate regime, where a mean-field approximation still provides a
good description of the system, though quantum effects are no longer negligible. This
is the case for intermediate filling factors.

This chapter is organized as follows: Starting from the master equation introduced
in section 8.5.1, we discuss the mean-field limit and generalize the BBR method (cf.
section 8.4.4) to the dissipative case. In this section, we will also see that the mean-
field treatment of loss by an imaginary potential is only valid in the absence of phase
noise. In the second section, we test the BBR approach by a comparison to the full
many-body dynamics for a double well trap with loss from a single site, a system for
which we have discussed the mean-field dynamics in great detail already in chapter
9. Unlike the mean-field approximations, the BBR results are able to reproduce the
repurification predicted by the exact simulation. Beside the obvious loss of particles,
strongly biased loss rates inhibit quantum tunneling between the respective sites. This
effect is spotlighted in section 11.2.

After this illustrative preface, we go on to larger lattices. In section 11.3, we analyze
how boundary dissipation induces localization and can be used to purify a BEC. In
section 11.4, we consider localized loss from a single lattice site, which creates a vacancy
and leads to a fragmentation of the condensate. Remarkably, strong dissipation can
suppress the decay of the condensate and a coherent dark soliton can be generated by
properly engineering the dynamics. These novel opportunities to control the quantum
dynamics will be addressed in section 11.5. Note that all techniques presented there
can be directly applied in ongoing experiments [150,268].

In the last section, a short outlook on possible future research directions is given.

11.1 Dissipative mean-field dynamics and beyond

As in the preceding chapters, the coherent part of the dynamics of ultracold atoms in
optical lattices is described by the Bose-Hubbard Hamiltonian

Ĥ = −J
∑

j

(
â†j+1âj + â†j âj+1

)
+
U

2

∑
j
â†j â
†
j âj âj, (11.1)

introduced in section 8.3. In the presence of dissipation, the dynamics is given by a
master equation in Lindblad form [165],

˙̂ρ = −i[Ĥ, ρ̂] + Lρ̂. (11.2)

Here, we are especially interested in the effects of localized particle loss, which can be
implemented by an electron beam [150, 268] or by a strongly focused resonant blast
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laser. Furthermore, phase noise is always present in experiments, which degrades the
phase coherence between adjacent wells and heats the sample [158,159]. In section 8.5.1
we have argued that these two processes are described by the Liouvillians [154,155,165]

Lρ̂ = Llossρ̂+ Lphaseρ̂

= −1

2

∑
j
γj

(
â†j âj ρ̂+ ρ̂â†j âj − 2âj ρ̂â

†
j

)
−κ

2

∑
j
n̂2
j ρ̂+ ρ̂n̂2

j − 2n̂j ρ̂n̂j, (11.3)

where γj denotes the loss rate at site j and κ is the strength of the phase noise.

To derive the mean-field approximation, we start from the single particle reduced den-
sity matrix (SPDM) σjk = 〈â†j âk〉 = tr (â†j âkρ̂), as defined in (8.29). The equations of
motion for σjk are obtained from the master equation (11.2), as follows

i
d

dt
σj,k = tr

(
â†j âk[Ĥ, ρ̂] + iâ†j âkLρ̂

)
= −J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k)

+U (σkkσjk + ∆jkkk − σjjσjk −∆jjjk)

−iγj + γk
2

σj,k − iκ(1− δj,k)σj,k, (11.4)

where we have defined the covariances ∆jk`m = 〈â†j âkâ†`âm〉 − 〈â†j âk〉〈â†`âm〉. In the
mean-field limit N → ∞ with g = UN fixed, one neglects the variances ∆jk`m in
equation (11.4) to obtain a closed set of evolution equations:

i
d

dt
σj,k = −J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k) (11.5)

+U (σkkσjk − σjjσjk)− i
γj + γk

2
σj,k − iκ(1− δj,k)σj,k.

If phase noise can be neglected, respective κ = 0, the equations of motion (11.5) are
equivalent to the non-hermitian discrete nonlinear Schrödinger equation

i
d

dt
ψk = −J(ψk+1 + ψk−1) + U |ψk|2ψk − i

γk
2
ψk (11.6)

by the identification σj,k = ψ∗jψk. This argument provides a proper link between the
many body-dynamics and the non-hermitian Schrödinger equation, which has previ-
ously been applied only heuristically [181, 269, 270]. In contrast, if only phase noise is
present, all coherences, i.e. the non-diagonal elements of the SPDM decay at a constant
rate κ. Thus it is no longer possible to map the mean-field equations to a nonlinear
Schrödinger equation.

The mean-field approximation assumes a pure BEC and is strictly valid only in the
limit N → ∞. To describe many-body effects such as quantum correlations and the
depletion of the condensate for large, but finite particle numbers, one has to take into
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Figure 11.1: Dynamics of a BEC in a leaky double-well trap: (a) Trajectory of the
Bloch vector s(t), (b) total particle number 〈n̂tot(t)〉 and (c) condensate fraction λ0/ntot,
comparing the exact results (thick red line) to the mean-field (green dash-dotted line)
and the BBR approximation (solid blue line). Atoms are lost from the right well only at
a rate γ2 = 20 s−1. The initial state is assumed to be a pure condensate of 200 particle
and s = (−1/2, 0, 0). The remaining parameters are J = 10 s−1 and U = 0.5 s−1, κ = 0.

account the variances ∆jmkn explicitly. One possibility to do so at least approximately
is the BBR approach introduced in section 8.4.4.

Obviously the interaction Hamiltonian leads to higher-order correlation functions. To
obtain a closed set of evolution equations, these functions ought to be truncated ac-
cording to

〈â†j âmâ†kânâ†râs〉 ≈ 〈â†j âmâ†kân〉〈â†râs〉+ 〈â†j âmâ†râs〉〈â†kân〉
+〈â†kânâ†râs〉〈â†j âm〉 − 2〈â†j âm〉〈â†kân〉〈â†râs〉. (11.7)

While the coherent part of the evolution of the variances is given by [69,140]

i
d

dt
∆jmkn = (εm + εn − εj − εk)∆jmkn (11.8)

−J
[
∆j,m,k,n+1 + ∆j,m,k,n−1 + ∆j,m+1,k,n + ∆j,m−1,k,n

−∆j,m,k+1,n −∆j,m,k−1,n −∆j+1,m,k,n −∆j−1,m,k,n

]
+U
[
∆mmknσjm −∆jjknσjm + ∆jmnnσkn −∆jmkkσkn

+∆jmkn (σmm + σnn − σkk − σjj)
]
,

particle loss and phase noise affect the dynamics of the variances as follows

d

dt
∆jmkn = −γj + γm + γk + γn

2
∆jmkn + δmkγmσjm

−κ(δmn + δjk − δjn − 2δkm)(∆jmkn + σjmσkn)

−κ(2− δjm − δkn)∆jmkn. (11.9)
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The BBR method is especially useful if the many-body state is close to, but not exactly
equal to a pure BEC, since it includes higher order moments at least approximately.
In particular, it accurately predicts the onset of the depletion of the condensate mode.
The number of particles in this mode is given by the leading eigenvalue λ0 of the SPDM
σj,k, whereas the total number of atoms is given by the trace of σj,k [69, 94]:

ntot(t) = tr σj,k. (11.10)

Thus, the time-dependent condensate fraction is given by λ0/ntot.

The BBR approach has been extensively tested for closed systems in [140]. There-
fore, we only briefly comment on the performance of this method in the presence of
dissipation. To get a first idea of the scope of the mean-field approximation and the
BBR approach for a BEC in an optical lattice with particle loss, we consider the same
setup as we have discussed in great detail in chapter 9.2.3 and especially in figure
9.5. There we have analysed the mean-field dynamics of an interacting Bose-Einstein
condensate in a double-well trap with strongly biased loss rates. Figure 11.1 shows an
example of the dynamics in the Josephson regime, now comparing not only the exact
many-particle results calculated with the Monte-Carlo wave function method with the
mean-field approximation (11.5), but also the results of the BBR method, as given by
equations (11.4), (11.8) and (11.9). The initial state has been chosen to be a pure
Bose-Einstein condensate

|Ψ〉 =
1√
N !

(∑
j
ψj â

†
j

)N
|0〉 , (11.11)

with equal population distribution between the two wells, ψ2 = −ψ1 = 1/
√

2. Figure
11.1 (a) shows the microscopic dynamics of the BEC in terms of the Bloch vector
s = 〈L̂〉/〈n̂tot〉. Figure 11.1 (b) and (c) show the dynamics of the total particle number
〈n̂tot〉 and the condensate fraction, respectively. While the decay of the total particle
number is already well described by the simple mean-field approximation, one observes
significant deviations from the exact results for the Bloch vector s(t). The mean-field
approximation overestimates the oscillations of the components of s(t), as it cannot
take into account the decoherence of the BEC. In contrast one observes almost no
differences between the BBR and the exact results.

The most important advantage of the BBR method is that it accurately predicts the
depletion and repurification of the condensate mode. Figure 11.1 (c) shows the con-
densate fraction, which is defined as the leading eigenvalue of the SPDM λ0 rescaled
by the total particle number ntot. The simple mean-field approximation (11.5) always
assumes a pure condensate, respective λ0/ntot = 1, while the BBR results show a very
good agreement with the exact results. Significant differences from the exact results
are visible only for very long times. However, at this time the particle number has
already dropped to approx. 20 particles, so that it is not surprising to find deviations
from mean-field and BBR predictions.

The dependence of the quality of the BBR approximation on the strength of dissi-
pation is further analyzed in figure 11.2. Figure 11.2 shows two examples for the
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Figure 11.2: Numerical test of the BBR methods for a leaky double-well trap with loss
in the second well. (a) and (b) Dynamics of the population imbalance 〈n̂2− n̂1〉 for two
different values of the loss rate, comparing the BBR approximation (solid blue line) to
numerically exact results (thick red line). (c) Condensate fraction λ0/ntot as a function
of time and the loss rate γ2. (d) Trace distance (11.12) between the exact rescaled
SPDM σ(t)/n(t) and the respective BBR approximation. In all cases the initial state
is assumed to be a pure BEC with with equal population and a phase difference of π
between the two modes. The remaining parameters are J = 10 s−1, κ = 0, U = 0.5 s−1

and n(0) = 200 atoms.

dynamics of the population imbalance in a leaky double-well trap, comparing the BBR
approximation (solid blue line) and numerically exact results (thick red line) for two
different dissipation rates. The initial state is assumed to be a pure BEC with equal
population and a phase difference of π between the two modes. In the case of strong
dissipation, the BBR approximation predicts the correct evolution of the population
imbalance 〈n̂2 − n̂1〉 with an astonishing precision. In contrast, significant differences
are observed for weak losses. This means that the presence of particle loss actually
improves the performance of the BBR method, as the dissipation drives the many-body
quantum state towards a pure BEC. This is confirmed by the numerical results for the
condensate fraction λ0/ntot plotted in figure 11.1 (c). A significant depletion of the
condensate is only observed for small values of the loss rate γ2.
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Figure 11.3: Inhibition of quantum tunneling by particle loss of a BEC initially pre-
pared in the first well. In the lossless case (upper panels) one observes fast Rabi
oscillations between the two wells for g < 2J (left) and nonlinear self-trapping for
g > 2J (right). Strong losses in the second well (γ2 = 100 s−1, lowest panels) slow
down the quantum tunneling significantly. The remaining parameters are J = 5 s−1

and N = 100. Mean-field results are plotted as dash-dotted lines and BBR results as
solid lines.

For a further quantitative analysis we compare exact and BBR results for the rescaled
SPDM σ(t)/n(t). Figure 11.2 (d) shows the trace distance of the exact matrix and the
matrix obtained by the BBR method,

d :=
1

2
tr
(
|σBBR/nBBR − σex/nex|

)
, (11.12)

as a function of time for different values of γ2. For sufficiently large dissipation, one
observes that the distance approximately vanishes for all times. In this regime the
quantum dynamics is faithfully reproduced by the BBR approximation.

11.2 Inhibition of quantum tunneling

The most obvious effect of particle dissipation as described by the Liouvillian (11.3)
is the loss of atoms from the lattice. A less obvious, but nevertheless important effect
is that dissipation actually inhibits quantum tunneling to and from a leaky lattice site
as illustrated in figure 11.3. As in the preceding chapters, we use the two-mode case
with decay from the second well as an illustrative model. In the examples shown in in
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figure 11.3 all atoms are initially localized in mode 1, while particle loss occurs from
mode 2 with a rate γ2. In the unitary case (γ2 = 0), depicted in the upper panels, one
observes the familiar Rabi and self-trapping oscillations, depending on the interaction
strength g = Un(t = 0) [157, 173, 272]. For strong losses (γ2 = 100s−1) the dynamics
effectively slows down, as can be seen in the lowest panels. Tunneling to the second
mode is much slower than in the Rabi regime, where atoms tunnel back and fro with a
period J−1. In the strongly interacting case, the effects of particle loss are much more
diverse. As observed on the right-hand side of figure 11.3, the self-trapping of atoms
in mode 1 is effectively destroyed by the dissipation.

The inhibition of quantum tunneling to a leaky lattice site can be understood by a
simple analogy to wave optics: A large mismatch of the index of reflection leads to an
almost complete reflection of a light wave from a surface. This is true for real index of
refraction just as well as for an imaginary index describing an absorbing material such
as a metal. Similarly, a strong difference of the on-site potential, real or imaginary,
prevents tunneling of the atoms to the respective lattice site. Another interpretation
has been given in [273] in term of the quantum Zeno effect. The decay of atoms can
be viewed as a continuous measurement of the quantum state of the leaky lattice site.
This measurement causes a Zeno effect in that it prevents tunneling to the observed
site.

To understand this phenomenon more quantitatively, consider first the non-interacting
case U = 0, for which the equations of motion can be solved analytically. For γ < γc =
4J , the dynamics of the populations is exactly given by

n1(t) = n0e
−γt/2

[
cos(ωt) +

γ

4ω
sin(ωt)

]2

,

n2(t) = n0e
−γt/2J

2

ω2
sin2(ωt), (11.13)

with the frequency ω = (J2−γ2/16)1/2. One can see that the frequency decreases with
the decay rate for small values of γ. For γ > γc the frequency becomes imaginary, such
that the Rabi oscillations are suppressed completely. Notably, for the critical decay
rate, γc = 4J , the population of the second well is always zero, n2(t) ≡ 0. In this case
every atom that tunnels to the second well is immediately lost from the lattice. For
strong interactions, the dynamics becomes more involved, and a quantum state can
be localized due to the dissipation as well as due to nonlinear self-trapping. We shall
explore the resulting dynamics in section 11.4 in more detail.

11.3 Boundary dissipation

In this section we show that coherent discrete breathers are formed and stabilized
dynamically in a lattice with boundary dissipation. To test the mean-field and the BBR
approximation, we first consider the dynamics in small systems for which numerically
exact solutions of the many-particle dynamics are still possible.
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Figure 11.4: Dynamics of a BEC in a triple-well trap with boundary dissipation in
dependence of the interaction strength: (a) atomic density 〈n̂j(t)〉, (b) total particle
number and (c) the condensate fraction λ0/ntot for J = 5 s−1, γ = 20 s−1, κ = 0 and
n(0) = 60 atoms for U = 2.5 s−1 (left) , respective U = 30 s−1 (right). Mean-field
(− · −) and BBR (—) results are compared to numerically exact simulations with the
quantum jump method averaging over 200 trajectories (thick red line).

To get a first intuition, we analyse the decay of an initially pure, homogeneous BEC
in a triple-well trap with boundary dissipation. Figure 11.4 shows the evolution of the
atomic density and the total particle number, and the purity of the BEC for weak (left
side) and strong (right side) interactions, respectively. In both cases, the population at
the boundary rapidly decays from the lattice. For longer times, however, the dynamics
is significantly different. If interactions are weak (U = 2.5 s−1), the population at
the central lattice site tunnels to the boundary, where it decays. The tunneling is
slightly slowed down by the dissipation as discussed in section 11.2, but the decay
rate is not strong enough to suppress the tunneling completely. This is remarkably
different in the case of strong interactions U = 30 s−1, for which the population at
the central site is remarkably stable. The total atom number rapidly drops to about
one third of its initial value, where it approximately saturates for the observed span of
time. This counterintuitive localization phenomenon in the presence of repulsive atomic
interaction is a consequence of the dynamical formation of a discrete breather centered
in the middle of the triple well trap. Generally, a discrete breather is a spatially
localized and stable (or at least long-lived) excitation in a periodic discrete system
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Figure 11.5: Formation of a discrete breather in a triple-well lattice with boundary dis-
sipation. Total particle number after a fixed propagation time tfinal = 0.2 s as a function
of the interaction strength U . The remaining parameters are chosen according to figure
11.4. As above mean-field (− · −) and BBR (—) results are compared to numerically
exact simulations with a quantum jump method averaging over 200 trajectories (thick
red line).

[274–276]. Discrete breathers arise intrinsically from the combination of nonlinearity
and the discreteness of the system. In the presence of boundary dissipation, these
excitations become attractively stable such that the quantum state of the atoms will
converge to a BEC with a breather-like density for a wide class of initial states. Once the
breather has formed in the triple well trap, it remains stable even when the dissipation
is turned off.

The crucial role of strong interactions is further illustrated in figure 11.5, where the
residual atom number after a fixed propagation time tfinal = 0.2 s is plotted as a function
of the interaction strength U . The particle number increases for large values of U to
ntot(tfinal) ≈ 20 due to the breather formation. For strong interactions a simple mean-
field approximation fails. It strongly underestimates the residual particle number as
it predicts that discrete breather are formed only for stronger losses. In contrast, the
BBR results agree well with the many-particle simulation even for large values of U . We
thus conclude that quantum fluctuations facilitate the formation of repulsively bound
structures.

As expected, a mean-field approach cannot account for genuine many-body features of
the dynamics. This is illustrated in figure 11.4 (c), which shows the evolution of the
condensate fraction λ0/ntot. In the beginning, interactions lead to a rapid depletion of
the condensate. On a longer time scale, however, dissipation restores the coherence and
drives the atoms to a pure BEC localized at the central lattice site, which can be seen
as another manifestation of the stochastic resonance effect discussed in chapter 9. The
BBR approach faithfully reproduces the depletion and re-purification but additionally
predicts unphysical temporal revivals. This example thus demonstrates the strength
but also the limitations of this method.
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Figure 11.6: Decay of a discrete breather state for J = 5 s−1, γ = 20 s−1, κ = 0 and
U = 15 s−1. Numerical results calculated with the BBR method (—) are compared to
the analytic estimates (11.14) and (11.15), respectively (− − −).

The decay dynamics of the discrete breather state is further analyzed in figure 11.6.
The total atom number ntot(t) decreases rapidly until the discrete breather is formed
around t ≈ 0.2s. Afterwards the decay is much slower and clearly non-exponential.
In both regimes, one can calculate the evolution of ntot(t) approximately, starting
from the relation ṅtot = −γ(n1 + n3). Initially, all sites are filled homogeneously,
n1 = n3 = ntot/3, such that the total particle number decays as

ntot(t) ≈ ntot(0)e−2γ/3 t. (11.14)

When the discrete breather is formed, the population of the outer wells is given by
n1 = n3 = J2/(U2ntot) in first order perturbation theory. The atom number then
decays as

ntot(t) ≈
√
n2

db − 4tγJ2/U2, (11.15)

where ndb is the number of atoms bound in the discrete breather state. In figure 11.6
both approximations are compared to the BBR simulation results, assuming a breather
with ndb = 16 atoms. One observes an excellent agreement in the both regimes, that
is an exponential decay for very short times (t > 0.1 s) and an algebraic decay when
the discrete breather is formed. The transition between the linear and nonlinear decay
takes place at t ≈ 0.2 s. A deviation from the algebraic decay (11.15) for the discrete
breather is observed only for very long times when the atom number is very small such
that the simple perturbative estimate for n1,3 is no longer valid.

11.4 Localized loss

Recent experiments with ultracold atoms have demonstrated an enormous progress in
spatial addressability using specialized optical imaging systems [105,267] or a focused
electron beam [150, 268]. Especially the latter experiment allows to manipulate a
Bose-Einstein condensate in an optical lattice dissipatively with single-site resolution.
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Figure 11.7: Formation of vacancies by localized loss at the central lattice site. (a,b)
Evolution of the atomic density 〈n̂j(t)〉 (color scale as in figure 11.4). (c,d) Final value
of the total particle number after a fixed propagation time tfinal as a function of the
loss rate γ, without (solid lines) and with strong phase noise (dashed lines, κ = 50 s−1).
The remaining parameters are J = 5 s−1, U = 0.2 s−1 and n(0) = 1000 particles (a-c)
and U = 2 s−1 and n(0) = 50 particles (d). The dynamics has been simulated with the
BBR (thin blue lines) and the quantum jump method (thick red lines).

In the following, we study the quantum dynamics in a finite lattice of 11 sites with
closed boundary conditions and loss occurring from the central site only, which leads to
a quite different decay scenario as in the case of boundary dissipation studied earlier.

A remarkable feature of the quantum dynamics is illustrated in figure 11.7, showing
the results of a BBR simulation for an initially pure homogeneous BEC. For a modest
loss rate γ = 20 s−1, cf. figure 11.7 (a), atoms tunnel to the central site where they
are dissipated with a rate γ, such that the BEC decays almost homogeneously. In
contrast, stronger losses (γ = 100 s−1) depicted in (b) lead to a formation of a stable
vacancy. The central site is rapidly depleted, but the atoms in the remaining wells are
mostly unaffected. Thus one faces the paradoxical situation that an increase of the loss
rate can suppress the decay of the BEC. Two effects contribute to this counterintuitive
behavior: (i) The absorbing potential suppresses tunneling to the leaky lattice site, as
discussed in section 11.2. (ii) A dark breather stabilizes the vacancy and prevents the
flow of atoms to the central site. This nonlinear structure remains stable also if the
dissipation is reduced or switched off afterwards (cf. also [274,276,277]).

The suppressed decay of the BEC is further illustrated in figure 11.7 (c), where the
residual atom number after a fixed propagation time is plotted as a function of the
loss rate γ. First, the number of remaining atoms decreases with the loss rate, as
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Figure 11.8: Decay of a BEC in a lattice with 11 wells and particle loss from the
central site. Shown is the fraction of particles decaying from the lattice after a fixed
propagation time tfinal as a function of the loss rate γ and the tunneling rate J calculated
with the BBR method (blue solid line). The shaded plane indicates the critical decay
rate γc(J) = 4J . The remaining parameters are g(0) = 200 s−1, n(0) = 1000 and
tfinal = 10/J .

one would naively expect. However, for higher loss rates the inhibition of quantum
tunneling becomes more and more important. The atoms can no longer tunnel to the
leaky lattice site and remain in the lattice. Thus, the fraction of lost atoms decreases
again and assumes a maximum for a finite loss rate γc.

Since a comparison of the BBR result to an exact calculation with a maintainable effort
is only possible for smaller lattices, figure 11.7 (d) shows the respective results for a
triple-well trap with loss from the central site. A comparison of the BBR approximation
to a numerically exact many-particle simulation features a good agreement for all values
of γ. Moreover, one can see that phase noise suppresses decay as it effectively decouples
the lattice sites. Thus, only the atoms initially loaded at the leaky lattice site decay
as e−γt, while the other atoms remain at their initial positions. With increasing loss
rate γ, the number of atoms lost from the trap approaches ≈ n(0)/M with M being
the number of lattice sites as shown in figure 11.7 (c,d) independent of the amount of
phase noise κ.

A comparison of figure 11.7 (c) and (d) shows another interesting feature: An important
quantity for the breather formation and stability is the effective nonlinearity of the
system λ = Untot(t)/2J , which, due to particle loss, is time-dependent. Strikingly,
though λ depends on the interaction strength U (which is different in figure 11.7 (c) and
(d) by one order of magnitude), the fairly good estimate γc is to first order independent
of U .

In the following, we will have a closer look at dependence on the tunneling rate J of the
extremum at γc and show that the extremum is reminiscent of the quantum stochastic
resonance discussed in chapter 9. In figure 11.8 the fraction of atoms which decay from
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the lattice during a fixed propagation time tprop = 10/J is given as a function of the
loss rate γ and the tunneling rate J . As seen in the preceding example, the coherent
output of the system, that is the number of lost atoms, assumes a well-pronounced
maximum for a finite loss rate. However, one clearly sees that this maximum depends
on the tunneling rate.

The position of the maximum, respective γc can be estimated by determining a lower
bound for γ for the dynamical breather formation. As a single (both bright and dark)
breather exhibits a pronounced population imbalance between the central site and the
neighbouring sites, we estimate γc by matching the timescales of dissipation τD = 2/γ
and tunneling τJ , that is τD = τJ . For smaller values of γ, atoms can tunnel away
from the leaky lattice site again before they are lost, while for larger values of γ a
population imbalance can form. When the timescales of dissipation and tunneling are
matched, τD = τJ , all atoms tunneling to the central site are dissipated. Note that the
factor 1/2 in τJ = 1/(2J) accounts for atoms tunneling from two sites to the leaky site.
This estimate leads to a critical loss rate γ = 4J , which we identify with γc defined in
section 11.2. Indeed, the increase of the position of the maximum with the tunneling
rate J is well described by a linear dependence γc = 4J as illustrated in figure 11.8.
Likewise, we find good agreement of our qualitative estimate for γc (dotted vertical
lines in figure 11.7 (c)) with the dip in the total particle number.

11.5 Engineering quantum states by dissipation

The previous reasoning suggests to use dissipation as a tool to coherently engineer the
quantum state of a BEC in an optical lattice. Moreover mean-field theory predicts
that dissipation can be used to efficiently create a coherent dark soliton [270].

In this section, we will analyze the possibilities to generate dark solitons beyond nonlin-
ear theory and especially focus on the coherence properties of the generated structures.
In addition, we give a short outlook on the possibilities to control a BEC by a dynamic
loss event.

In figure 11.9 we consider the setup discussed in section 11.4, a cloud of ultracold atoms
in an lattice with loss from the central site. The results of a BBR and a quantum jump
simulation of the many-body dynamics reveal the limitations of the phase coherence
of a soliton generated by local dissipation. This is depicted in figure 11.9. The upper
panels (a,b) show the rescaled eigenvalues λm/ntot of the SPDM. One observes that
there are two macroscopic eigenvalues approaching 1/2, while all remaining eigenvalues
vanish approximately. This proves that the dissipation generates a fragmented BEC
consisting of two incoherent parts rather than a single BEC with a solitonic wavefunc-
tion. The BBR simulations correctly describe the fragmentation of the condensate, but
predict temporal revivals of the coherence which must be considered as artifacts of the
approximation. Experimentally, one can test the coherence by the interference of the
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Figure 11.9: Coherence of a vacancy generated by loss from the central site in a lattice
consisting of three wells (left) and 11 wells (right): (a,b) Atomic density, (c,d) rescaled
eigenvalues λm/ntot of the SPDM and (e,f) phase coherence g(1) between the two BEC
fragments. Parameters are the same as in figure 11.7 with γ = 100 s−1 and κ = 0.
Results of a quantum jump simulation are plotted as thick red lines, BBR results as
thin blue lines.

two fragments in a time-of-flight measurement. Figure 11.9 (e,f) shows the coherence

g(1)(`,m) =
〈â†`âm + a†mâ`〉√
〈n̂`〉〈n̂m〉

(11.16)

between the wells `,m = 1, 3 (left) and `,m = 3, 9 (right), respectively. One clearly
observes the breakdown of phase coherence between the two condensate fragments.

To overcome the loss of coherence, one can, however, engineer the many-body dynam-
ics. Figure 11.10 illustrates the generation of dark solitons comparing three different
strategies. If the dissipation is switched off after the generation of a vacancy at t = 0.1 s,
the condensate remains pure for long times. However, the vacancy is not stable but
decays into two dark solitons traveling outwards [270], where they are reflected at the
boundaries. The effects of a phase imprinting, which is an established experimental
method (cf. e. g. [278]), are shown in figure 11.10 (b). A local potential is applied to
the lower half of the lattice for t < 0.1 s imprinting a phase difference of π. Again co-
herence is preserved but the generated solitons travel outwards. A coherent and stable
dark soliton can be engineered by combining both methods, as shown in figure 11.10
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Figure 11.10: Generation of dark solitons using loss imprinting at a rate γ = 100 s−1 at
the central site (a,c) and phase imprinting in the lower half of the lattice (b,c), both for
times t < 0.1 s only. Shown are the atomic density (left, color scale as in figure 11.4)
and the rescaled eigenvalues of the SPDM (right) calculated with the BBR method.
Parameters are J = 5 s−1, U = 0.1 s−1, κ = 0 and n(0) = 1000 particles.

(c). The generated dark soliton stays at its initial position and remains coherent over
a long time.

Another surprising effect is that loss can actually exert a drag on the atoms if it is
scanned through the lattice. This can be used to compress a Bose-Einstein condensate
as shown in figure 11.11, while keeping its purity. In this example we consider the
situation where particle loss is induced at a single site in an extended lattice, e.g. by
an electron beam [150,268]. The beam is then slowly scanned through the lattice, such
that loss occurs at different sites as illustrated in figure 11.11 (a). Obviously, this leads
to the loss of atoms in the lattice. However, the remaining atoms are repelled from
the leaky lattice site, which can be understand as another instance of the inhibition of
quantum tunneling as discussed in section 11.2. This suppression has a stronger effect
on the matter wave than the actual loss of atoms such that the atomic density in the
lower part of the lattice increases as shown in figure 11.11 (b). Notably, the dissipation
at the boundary again induces coherence such that the BEC remains almost completely
pure during the complete time evolution as shown in figure 11.11 (c).
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Figure 11.11: Compressing a BEC by moving loss. (a) Loss at a rate γ = 1600 s−1 is
induced at one lattice site which is slowly scanned over the lattice. The black lines
indicate the position of the leaky lattice site. (b) The BEC is compressed in the lower
part of the lattice although a significant fraction of the atoms is lost. Shown is the
atomic density assuming a BEC of n(0) = 1000 atoms in the GPE ground state at t = 0.
The maximum atomic density increases to ρmax = 113.6 atoms per site after t = 4 s
of propagation. (c) The condensate fraction λ0/ntot remains larger than 99.6 % during
the whole propagation. The remaining parameters are J = 40 s−1 and g = 100 s−1.
The dynamics was simulated with the BBR method.

11.6 Outlook

In this chapter we have discussed the influence of particle loss on the dynamics of a
Bose-Einstein condensate in a dissipative lattice. Localized loss can generate vacan-
cies and dark solitons, while boundary dissipation facilitates the formation of bright
breathers.

Starting from the many-body master equation, we have derived the mean-field approx-
imation and the dissipative Bogoliubov backreaction method, which allows a consistent
calculation of the depletion of the condensate. To back up the BBR results, we have
analysed the differences to the exact dynamics in a small lattices consisting of only 2
or 3 wells, respectively.

Two important special cases have been studied in detail: Particle loss at the boundary
leads to localization and the formation of coherent discrete breathers. Surprisingly,
dissipation together with interactions can re-purify a BEC. A striking effect of localized
loss is that strong dissipation can effectively suppress decay and induce stable vacancies.
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The decay shows a pronounced maximum for intermediate values of the loss rate, when
the timescales of the dissipation and the tunneling are matched. Combined with an
external potential, these effects can be used to generate stable coherent dark solitons.
These examples show that engineering the dissipation is a promising approach for
controlling the dynamics in complex quantum many-body systems.

Ultracold atoms provide a distinguished model system for the dynamics of interacting
quantum systems, such that the effects discussed here may be observed in different
systems, too. In particular, quantum transport of single excitations driven by local
dissipation has recently been studied in a variety of physical systems ranging from
spin chains [279] to light-harvesting biomolecules [280]. On the other hand, it has also
been shown on the mean-field level that nonlinear excitations such as discrete breathers
play an important role for quantum transport in these systems (cf. [274, 276, 281] and
references therein). Thus it is of general interest to further explore the regime which
interpolates between the nonlinear mean-field dynamics and the many-body quantum
dynamics.
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C. Nägerl, Control of Interaction-Induced Dephasing of Bloch Oscillations, Phys.
Rev. Lett. 100 (2008) 080404

[213] B. P. Anderson, T. L. Gustavson, and M. A. Kasevich, Atom Trapping in Nondis-
sipative Optical Lattices, Phys. Rev. A 53 (1996) R3727

[214] N. Poli, F.-Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino,
Precision Measurement of Gravity with Cold Atoms in an Optical Lattice and
Comparison with a Classical Gravimeter, Phys. Rev. Lett. 106 (2011) 038501

[215] Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters,
W. Wernsdorfer and R. Sessoli, Science 284 (1999) 133

[216] M. S. Child, Molecular Collision Theory, Academic Press, London, 1974

[217] R. J. C. Spreeuw, N. J. Van Druten, M. W. Beijersbergen, E. R. Eliel, and J. P.
Woerdman, Classical realization of a strongly driven two-level system, Phys. Rev.
Lett. 65 (1990) 2642

[218] M. Wubs, K. Saito, P. Hänggi, and Y. Kayanuma, Gauging a quantum heat bath
with dissipative Landau-Zener transitions, Phys. Rev. Lett. 97 (2006) 200404

[219] S. Kohler, P. Hänggi, and M. Wubs, Bath-independent transition probabilities in
the dissipative Landau-Zener problem, in W. Janke and A. Pelster, editors, Path
Integrals: New Trends and Perspectives. World Scientific, 2008

[220] K. B. Cooper, M. Steffen, R. McDermott, R. W. Simmonds, S. Oh, D. Hite,
D. P. Pappas, and J. M. Martinis, Observation of Quantum Oscillations between
a Josephson Phase Qubit and a Microscopic Resonator Using Fast Readout, Phys.
Rev. Lett. 93 (2004) 180401



238 BIBLIOGRAPHY

[221] G. Ithier, E. Collin, P. Joyez, D. Vion, D. Estve, J. Ankerhold, and H. Grabert,
Zener Enhancement of Quantum Tunneling in a Two-Level Superconducting Cir-
cuit, Phys. Rev. Lett. 94 (2005) 057004

[222] W. D. Oliver, Y. Yu, J.C. Lee, K. K. Berggren, L. S. Levitov, and T. P. Orlando,
Mach-Zehnder Interferometry in a Strongly Driven Superconducting Qubit, Sci-
ence 310 (2005) 1653

[223] K. Saito, M. Wubs, S. Kohler, P. Hänggi, and Y. Kayanuma, Limitation of
entanglement due to spatial qubit separation, Europhys. Lett. 76 (2006) 22

[224] L. D. Landau, A theory of energy transfer II, Phys. Z. Sowjet. 2 (1932) 46

[225] C. Zener, Non-Adiabatic Crossing of Energy Levels, Proc. Roy. Soc. Lond. A 137
(1932) 696

[226] E. Majorana, Atomi orientati in campo magnetico variabile, Nuovo Cim. 9 (1932)
43

[227] E. C. G. Stückelberg, Theory of inelastic collisions between atoms,
Helv. Phys. Acta 5 (1932) 369

[228] O. Zobay and B. M. Garraway, Time-dependent Tunneling of Bose-Einstein Con-
densates, Phys. Rev. A 61 (2000) 033603

[229] J. Liu, D. Choi, B . Wu and Q. Niu, Theory of nonlinear Landau-Zener tunneling,
Phys. Rev. A 66 (2002) 023404

[230] Biao Wu and Qian Niu, Superfluidity of Bose-Einstein condensates in an optical
lattice: Landau-Zener tunneling and dynamical instability, New J. Phys. 5 (2003)
104

[231] E. M. Graefe, H. J. Korsch, and D. Witthaut, Mean-field dynamics of a Bose-
Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates,
Landau-Zener models, and stimulated Raman adiabatic passage, Phys. Rev. A 73
(2006) 013617

[232] B. M. Breid, D. Witthaut, and H. J. Korsch, Manipulation of matter waves using
Bloch and Bloch-Zener oscillations, New J. Phys. 9 (2007) 62

[233] M. Jona-Lasinio, O. Morsch, M. Cristiani, N. Malossi, J. H. Muüller, E. Cour-
tade, M. Anderlini, and E. Arimondo, Asymmetric Landau-Zener tunneling in a
periodic potential, Phys. Rev. Lett. 91 (2003) 230406

[234] L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Sears, C. Fort, and M. In-
guscio, Observation of dynamical instability for a Bose-Einstein condensate in a
moving 1D optical lattice, Phys. Rev. Lett. 93 (2004) 140406



BIBLIOGRAPHY 239

[235] C. Sias, A. Zenesini, H. Lignier, S. Wimberger, D. Ciampini, O. Morsch, and
E. Arimondo, Resonantly Enhanced Tunneling of Bose-Einstein Condensates in
Periodic Potentials, Phys. Rev. Lett. 98 (2007) 120403

[236] T. Salger, C. Geckeler, S. Kling, and M. Weitz, Atomic Landau-Zener tunneling
in Fourier-synthesized optical lattices, Phys. Rev. Lett. 99 (2007) 190405

[237] A. Zenesini, H. Lignier, G. Tayebirad, J. Radogostowicz, D. Ciampini, R. Man-
nella, S. Wimberger, O. Morsch, and E. Arimondo, Time-resolved measurement
of Landau-Zener tunneling in periodic potentials, Phys. Rev. Lett. 103 (2009)
090403

[238] Y.-A. Chen, S. D. Huber, S. Trotzky, I. Bloch, and E. Altman, Many-body
Landau-Zener dynamics in coupled one-dimensional Bose liquids, Nature Phys.
7 (2011) 61

[239] C. Kasztelan, S. Trotzky, Y.-A. Chen, I. Bloch, I. P. McCulloch, U. Schollwöck,
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