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Abstract: In this paper, we study linear relations propagating across block ciphers from the key input to the ciphertext
(for a fixed plaintext block). This is a usual setting of a one-way function, used for instance in modes of
operation such as KFB (key feedback). We instantiate the block cipher with the full 16-round DES and
s2-DES, 10-round LOKI91 and 24-round Khufu, for which linear relations with high bias are well known.
Other interesting targets include the full 8.5-round IDEA and PES ciphers for which high bias linear relations
exist under the assumption of weak keys. Consequences of these findings impact the security of modes of
operation such as KFB and of pseudorandom number/bit generators. These analyses were possible due to the
linear structure and the poor diffusion of the key schedule algorithms. These findings shall motivate carefull
(re)design of current and future key schedule algorithms.

1 INTRODUCTION

The technique of linear cryptanalysis was exten-
sively developed by Matsui (Matsui, 1994a; Matsui,
1994b) in attacks initially aimed at the DES (NIST,
1993) and FEAL (Matsui and Yamaguishi, 1992)
block ciphers. These attacks used so called linear re-
lations that are linear combinations of bits from the
plaintext, ciphertext and key that hold with high bias
(deviation of the linear relation’s probability from
0.5). The conventional strategy is to derive these rela-
tions piecewise, starting from an S-box or other non-
linear components and then extend the relations into
larger components, and further to a full round and
then to multiple rounds.

Let a block cipher have signature E : ZZk
2×ZZn

2→
ZZn

2, where n is the block size and k is the key size. A
linear attack in a block cipher setting assumes the key
to be fixed but unknown, while the plaintext is vari-
able, so that the cipher behaves as a (pseudorandom)
permutation: EK : ZZn

2→ ZZn
2 for any secret key K. In

this paper we analyse the setting in which the plain-
text is fixed and randomly chosen, while the key is
variable: E(P) : ZZk

2 → ZZn
2. In this setting, the plain-

text is considered secret.
In this paper we focus only on attacks in the

∗Research funded by INNOVIRIS, the Brussels Institute
for Research and Innovation, under the ICT Impulse pro-
gram CRYPTASC.

distinguish-from-random setting.
This paper is organized as follows: Sect. 2 stud-

ies linear relations across a pseudorandom function
based on the full 16-round DES and s2-DES ciphers,
as well as 10-round LOKI91; Sect. 3 studies linear re-
lations across a pseudorandom function based on the
IDEA and PES ciphers; Sect. 4 studies linear relations
across a pseudorandom function based on variable-
round Khufu cipher; Sect. 5 concludes the paper.

2 LINEAR RELATIONS FOR DES,
S2-DES AND LOKI91
FUNCTIONS

In (Matsui, 1994a), Matsui performed a divide-
and-conquer analysis to determine the best linear ex-
pression for variable-round DES, that is, linear rela-
tions covering multiple rounds of DES with the high-
est possible bias. We adopt the same notation and
bit numbering for DES as (Matsui, 1994a): a bit-
mask will be represented by either Γ or a sequence
of numbers between square brackets, for instance,
X [i, j, . . . ,z] = X [i]⊕X [ j]⊕ . . .⊕X [z]. In both cases,
the bits ’1’ in Γ or the numbers between brackets in-
dicate the bits participating in the linear relation. For
n-bit strings a and b, the dot (or inner) product is
denoted a · b = ⊕n−1

i=0 ai · bi and it gives a parity bit.
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A plaintext P for DES is split into its left and right
halves as P = (PL,PR) and similarly for the ciphertext
C = (CL,CR).

A linear relation for the full 16-round DES (Mat-
sui, 1994b) without the IP and FP bit permutations,
and where the i-th round subkey is denoted Ki, is

PL[7,18,24]⊕PR[12,16]⊕
CL[15]⊕CR[7,18,24,27,28,29,30,31] =

K1[19,23]⊕K3[22]⊕K4[44]⊕K5[22]⊕K7[22]⊕
K8[44]⊕K9[22]⊕K11[22]⊕K12[44]⊕K13[22]⊕

K15[22]⊕K16[42,43,45,46], (1)

holding with bias 1.49 ·2−24, which leads to 4 · (1.49 ·
2−24)−2 = 248.84 messages for a high success rate dis-
tinguishing attack.

In (Junod, 2000), Junod showed experimentally
that Matsui’s key-recovery attack complexity was
pessimistic, that is, Junod’s results indicate a high
success rate (85%) can be achieved with one eighth
of the original attack complexity that is, 243 known
plaintexts (KP) instead of 247 KP predicted by Mat-
sui. If the same results apply for a distinguish-from-
random setting, then we can expect only about 243

plaintext-ciphertext pairs are needed for a high suc-
cess rate attack.

Taking into account the key schedule of
DES (except that PC1 bit selection trans-
formation is omitted) (NIST, 1993), the
right-hand side of (1) can be summarized as
K[8,14,0,54,24,20,46,17,13,39,9,5,51,55,45,39] =
K · ΓK, where K stands for the original 56-bit key.
Note that the linear relations stretch all across the key
schedule up to the original 56-bit key.

Now, unlike the original linear attack setting, let P
be fixed to a random value, but the key be variable2.
We can rewrite (1) as

CL[15]⊕CR[7,18,24,27,28,29,30,31]⊕
K[8,14,0,54,24,20,46,17,13,39,9,5,51,55,45,39]

= PH [7,18,24]⊕PR[12,16], (2)

where the right-hand side is a fixed value. Note
that (2) contains the same bits as (1) but some terms
were rearranged because now P is fixed instead of
K. This means (2) is applied to a random mapping
E(P) : ZZ56

2 → ZZ64
2 instead of a random permutation

EK : ZZ64
2 → ZZ64

2 . This is a typical construction of
one-way functions (Winternitz, 1983) and in the KFB
mode of operation (Hastad, 2000). Nonetheless, the
linear relation still covers the full 16-round DES, with

2The mapping from key to plaintext (or from key to ci-
phertext) is modeled as a random, non-injective mapping,
thus not a permutation.

the same bias as before. Note that knowledge of the
full 64-bit P is not actually needed, since (2) only re-
lies on one bit: PH [7,18,24]⊕PR[12,16]. Since the
masks and P are fixed, knowledge of P is not neces-
sary, and the bias of (2) does not change. Only the
sign of the deviation changes according to the par-
ity of PH [7,18,24]⊕PR[12,16]. Nonetheless, to avoid
trivial attacks based on the knowledge of the block ci-
pher, we assume that P is secret.

A similar equation can be derived by fixing the
ciphertext block C = (CL,CR) and varying the key K
(the plaintext P is the output).

PL[7,18,24]⊕PR[12,16]⊕
K[8,14,0,54,24,20,46,17,13,39,9,5,51,55,45,39]

= CL[15]⊕CR[7,18,24,27,28,29,30,31], (3)

which also applies to a random function E(C0) :
ZZ56

2 → ZZ64
2 , where C0 is a random 64-bit string.

In (Matsui, 1994c), a 2-round iterative lin-
ear relation for DES was described3 with the
form F(X ,K)[0,5,10,11,20,25,27] = K[4,5,6,7]
and probability 1/2 + 2(40/64 − 172)(20/64 −
1/2) = 0.453, that is, with bias 1/2 − 0.453 =
0.047 ≈ 2−4.411. This is a so called 2-round itera-
tive Type-II linear relation with a single active F func-
tion (only the output of F is approximated) every two
rounds, with only two active neighbouring S-boxes,
S7 and S8, every two rounds. For the full 16-round
DES, concatenating the linear relation eight times, the
bias becomes 27 ·28·(−4.411)≈ 2−28.289. Thus, this bias
is smaller than (1). The data complexity for a high
success rate becomes 8 · (2−28.289)−2 = 23+56.579 =
259.579 known plaintexts (KP). This is more data than
can be expected by operating DES from the key entry
(the key input is only 56 bits). Note that even though
the original 2-round relation is iterative, when con-
catenated eight times for the full DES, the resulting
linear relation is not iterative because there is no swap
of half blocks in the last (sixteenth) round.

Thus, (2) represents a new framework for the lin-
ear relation originally applied to the full DES. It was
possible because the key schedule of DES is a linear
mapping, that is, there are only bit permutations and
bit selections but no S-boxes nor other nonlinear com-
ponents. So, the original key bitmasks for the DES
round subkeys could propagate up to the original key
K without any bias penalty. This fact demonstrates,
once more, the need for the key schedule algorithm to
be nonlinear.

The mapping from the key to the ciphertext is not
injective. Assuming that a linear relation such as (3)
holds with the same bias 2−28.289 for each fixed key

3Without the IP and FP bit permutations.
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K when the probability is taken over all P, then one
gets that (3) holds with bias 2−28.289 when the prob-
ability is taken over P and K. This assumption may
not always hold, but is necessary to the analysis in
this paper. Taken it as granted, one can, by letting
the key vary, generate as much data as needed without
worrying about possible collisions between the values
EK(P) for variable K.

In the Key-FeedBack (KFB) mode of operation
(Hastad, 2000) proposed for NIST’s Advanced En-
cryption Standard (AES), the ciphertext produced for
a fixed plaintext P is fedback as key to the next
block cipher instantiation: C0 = br(EK(P)) and Ci =
br(Eg(Ci−1(P)), were g converts the ciphertext to the
appropriate size for the key input, and br is the out-
put transformation that extracts hard-core bits for
each instantiation of E. In (Hastad, 2000), br(x)
is the dot product between an n-bit selection vec-
tor r = (r1,r2, . . . ,rn) and an n-bit ciphertext block
x = (x1,x2, . . . ,xn). Alternatively, the output trans-
formation can be larger than a single bit, leading to
a larger throughput per encryption, and is denoted
Bm

R (x) corresponding to m = O(logn) bits selected ac-
cording to a random m×n matrix. This matrix is not
invertible.

Thus, in an attack using (2), the initial 56-bit
key K is secret, but subsequent keys to DES invoca-
tions are derived from previous ciphertexts Ci. If a
single br is used, then a single bit is generated for
each DES encryption. Otherwise, up to logn bits
are output per encryption. We assume that some
of the coefficients of the Bm

R matrix match the bits
CL[15]⊕CR[7,18,24,27,28,29,30,31] in (2). The
matrix Bm

R is not secret or we assume it could be cho-
sen by the adversary. Moreover, the fact that Bm

R (x)
is not invertible means that the full n-bit plaintext P
is not disclosed. Otherwise, if Bm

R (x) was invertible,
then knowing two consecutive n-bit ciphertexts, say
Ci and Ci+1, and knowing the block cipher E, one
could easily compute P as P = E−1

Ci
(Ci+1).

Starting from the second DES instantiation, there
is a nonzero correlation between the key, which is
g(C0) from the previous encryption, and the cipher-
text, Bm

R (Eg(C0)(P)). This correlation can be detected
after collecting 243 keystream bits from this instantia-
tion of KFB.

Similar attacks apply to the full 16-round s2-DES
(Kim, 1991). The s2-DES cipher operates on 64-bit
blocks and has a 56-bit key, just like the DES. In
(Tokita et al., 1994), Tokita et al. described a lin-
ear relation for the full 16-round s2-DES with bias
1.19 ·2−26. Denoting the plaintext as P = (PL,PR) and
the ciphertext as C = (CL,CR), the linear relation can

be denoted

(PR⊕CL)[5,10,11] = (K2⊕K4⊕K6⊕K8⊕
K10⊕K12⊕K14⊕K16)[4,5,6,7], (4)

following the same bit-numbering as in DES. This lin-
ear relation is based on a 2-round iterative linear rela-
tion (PL⊕CR)[5,10,11] = Ki[4,5,6,7], with a single
active F function.

Now, consider that the plaintext P is fixed to a ran-
dom value, but the key is variable. We can rewrite (4)
as

CL[5,10,11]⊕ (K2⊕K4⊕K6⊕K8⊕K10⊕
K12⊕K14⊕K16)[4,5,6,7] = PR[5,10,11], (5)

where the right-hand side is a fixed value. This means
(5) applied to a random mapping E(P) : ZZ56

2 → ZZ64
2

(for a fixed P) instead of a random permutation EK :
ZZ64

2 → ZZ64
2 . The data complexity for (4) is 248.3 keys.

In (Tokita et al., 1994), Tokita et al. also de-
scribed linear relations for reduce-round variants of
LOKI91 (Brown et al., 1991; Sakurai and Furuya,
1997), a Feistel Network cipher operating on 64-bit
blocks, under a 64-bit key and iterating 16 rounds.
We focus on a 10-round linear relation with bias
2−28.24 based on the one-round iterative linear rela-
tion (X ⊕F(X))[18,22,26] = K[18,22,26], with bias
0.687 ·2−5 ≈ 2−5.54.

Denoting the plaintext to LOKI91 as P = (PL,PR)
and the ciphertext as C = (CL,CR), the linear relation
can be denoted

(PR⊕CR)[18,22,26] =
(K2⊕K3⊕K5⊕K6⊕K8⊕K9)[18,22,26]. (6)

This linear relation contains only six active F func-
tions across ten rounds. If we now consider that the
plaintext P is fixed to a random value, but the key is
variable. This is facilitated by the fact that the key
schedule of LOKI91 consists only of bit rotations.
There are only linear components in the key sched-
ule.

We can rewrite (6) as

(CR⊕K2⊕K3⊕K5⊕K6⊕K8⊕K9)[18,22,26] =
PR[18,22,26], (7)

where the right-hand side is a fixed value. This means
relation (7) is applied to a random mapping E(P) :
ZZ56

2 → ZZ64
2 (for a fixed P) instead of a random per-

mutation EK : ZZ64
2 → ZZ64

2 . The data complexity for
(6) is 8 ·29 ·2−4 · (25.54)−6 = 259.48 keys.
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3 LINEAR RELATIONS FOR
IDEA AND PES FUNCTIONS

The IDEA block cipher (Lai et al., 1991) oper-
ates on 64-bit blocks, iterates eight rounds plus an
output transformation and is parameterized by a 128-
bit key. IDEA was designed as an alternative to the
DES (NIST, 1993) and is well-known for the use of
three incompatible group operations on 16-bit words:
bitwise xor, addition modulo 216 and multiplication
in GF(216 + 1), where 0 = 216. The key schedule
of IDEA is linear and consists only of bit permuta-
tions. All multiplication operations in IDEA involve
a round subkey and that is the main feature explored
in (Daemen and Vandewalle, 1993). Daemen et al.
described linear attacks on the full IDEA cipher using
weak keys. In this setting, a weak key is a 128-bit key
that leads, through the key schedule, to some round
subkeys which are either 0 or 1 for the multiplication
operations4. Note that multiplication (together with
addition) are the main nonlinear operations in IDEA.
Using weak keys and the (linear) key schedule, Dae-
men et al. were able to determine a series of linear
relations, some of which are iterative, across the full
8.5-round IDEA. Due to the use of weak keys, their
linear relations hold with maximum bias.

As an example, let P = (p1, p2, p3, p4) denote
a plaintext block, and C = (c1,c2,c3,c4) the corre-
sponding ciphertext. The i-th round subkeys are de-
noted Zi

1, Zi
2, . . ., Zi

6, for 1≤ i≤ 8, and Z9
1 , Z9

2 , Z9
3 , Z9

4
for the output transformation. In (Daemen and Vande-
walle, 1993), Table 2, Daemen et al. provided a list-
ing of all 1-round linear relations: they called them
linear factors. Each such relation holds with maxi-
mum bias once the weak subkey conditions are satis-
fied. These conditions imply that some round subkeys
should be 0 or 1, so that the corresponding linear trail
is satisfied. For instance, (1,0,1,0) 1r→ (1,1,0,0) is
a 1-round linear trail that stands for p1 · 1⊕ p3 · 1 =
c1 ·1⊕ c2 ·1 that holds with maximum bias 2−1 once
Zi

1 ∈ {0,1}. A larger linear relation across the full

8.5-round IDEA has the form (1,0,1,0) 8.5r→ (0,1,1,0)
which can be translated into

(p1⊕ p3⊕ c1⊕ c3) ·1 =

(Z1
3 ⊕Z2

2 ⊕Z3
2 ⊕Z3

3 ⊕Z4
3 ⊕Z5

2 ⊕Z6
2⊕

Z6
3 ⊕Z7

3 ⊕Z8
2 ⊕Z9

2 ⊕Z9
3) ·1, (8)

so, the right-hand-side of (8) stands for K · ΓK. It
is required that eleven round subkeys be weak: Z1

1 ,
Z2

1 , Z2
5 , Z3

5 , Z4
1 , Z5

1 , Z5
5 , Z6

5 , Z7
1 , Z8

1 and Z8
5 . Since

4In (Daemen and Vandewalle, 1993), the restriction is
that a weak subkey belongs to the set {−1,1}

the key schedule of IDEA consists simply of bit per-
mutation, this restriction on eleven subkeys can be
translated into restrictions on 105 bits of the origi-
nal 128-bit key. Following (Daemen and Vandewalle,
1993), only the key bits with indices in the ranges
16–28, 72–74 and 111–127 are free of any condi-
tions, which means 23 key bits. In summary, for 223

weak keys, the linear relation (8) holds with maxi-
mum bias. This linear attack applies to the setting in
which EK : ZZ64

2 → ZZ64
2 is a permutation with E be-

ing the full IDEA and a key K ∈ ZZ128
2 with the above

restriction on 105 bits. Thus, a distinguishing attack
would require about 8 · (2−1)−2 = 32 KP and equiva-
lent effort.

Now suppose we operate on E(P0) : ZZ128
2 → ZZ64

2
for E being the full IDEA, and a fixed plaintext P0 ∈
ZZ64

2 . Suppose, we apply once more the linear relation
(8), but this time to E(P0) instead of EK . This means
that the key is variable, while the plaintext is fixed.
The new linear relation becomes

(c1⊕ c3⊕Z1
3 ⊕Z2

2 ⊕Z3
2 ⊕Z3

3⊕
Z4

3 ⊕Z5
2 ⊕Z6

2 ⊕Z6
3 ⊕Z7

3 ⊕Z8
2 ⊕Z9

2 ⊕Z9
3) ·1 =

(p1⊕ p3) ·1. (9)

Because of the key restrictions, we have only 223

keys as input. Under any of the weak keys, rela-
tion (9) holds with maximum bias. Each time we
test it, it shall hold only with probability 1

2 for a ran-
dom permutation. Thus, we can efficiently distinguish
E(P0) : ZZ23

2 → ZZ64
2 from a random function over the

same domain and range. We estimate that 32 keys will
be needed (out of 223).

A similar analysis can be performed on the pre-
decessor of IDEA, called PES (Proposed Encryption
Standard) (Lai and Massey, 1990), since both use the
same key schedule algorithm. The PES cipher oper-
ates on 64-bit blocks, under a 128-bit key and iterates
8.5 rounds. In (Nakahara Jr et al., 2003), Nakahara
et al. describe linear relations for large sets of weak
keys. For instance, (0,0,0,1) 8.5r→ (0,0,0,1) is an it-
erative linear relation covering the full PES under the
assumption that subkeys Zi

6, 1 ≤ i ≤ 8 are weak. Ac-
cording to the key schedule of PES, this implies that
key bits 0–12, 49–65, 95–108 and 124–127 are un-
restricted. In summary, the following linear relation
holds5 for E(P0) : ZZ48

2 → ZZ64
2 for E being the full

8.5-round PES cipher, and a weak-key class of size
248:

(c4⊕Z1
4 ⊕Z2

4 ⊕Z3
4 ⊕Z4

4 ⊕Z5
4 ⊕Z6

4⊕
Z7

4 ⊕Z8
4 ⊕Z9

4) ·1 = p4 ·1. (10)

5Note the updated domain size.
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Thus, we can efficiently distinguish E(P0) : ZZ48
2 →

ZZ64
2 from a random function over the same domain

and range. We estimate that 32 keys will be needed
(out of 248).

The threat of a linear key schedule can be mea-
sured by the fact that there is at least one weak
key even for 17.5-round PES (Nakahara Jr et al.,
2003), using the 1-round iterative linear relation
(0,1,0,1) → (0,1,0,1). Moreover, there are 24

weak keys for 14-round IDEA using a 3-round iter-
ative relation (1,0,0,1)→ (0,1,0,1)→ (0,0,1,1)→
(1,0,0,1).

4 LINEAR RELATIONS FOR
KHUFU FUNCTION

Khufu is a block cipher designed by Merkle
(Merkle, 1991) for fast software encryption. Khufu is
a Feistel Network cipher operating on 64-bit blocks,
under a user key of up to 512 bits and iterating 8r
rounds, for 1≤ r≤ 8, where r is called the number of
octets. Originally, r = 2 was suggested. Khufu oper-
ates on 8- and 32-bit words and its internal operations
include: exclusive-or, byte rotations and an 8×32-bit
S-box. Each S-box is key dependent, represents 213

bits of the secret key and is used for one octet only.
Let a plaintext block be denoted P = (L0,R0), the S-
box by S, a leftwards rotation of a data x by n bits by
x ≪ n and the least significant n bits of x by lsbn(x).
Then, the ith round of Khufu outputs (Ri,Li), where
Ri = Li−1 ≪ si, where si is a fixed rotation amount,
multiple of 8 bits, and Li = Ri−1⊕S[lsb8(Li−1)]. For
each round in an octet, the values of si are 16, 16, 24,
24, 16, 16, 8 and 8 in this order and repeated cycli-
cally. There is a pre-whitening in which two 32-bit
subkeys K1 and K2 are xored to the plaintext and an
output transformation in which subkeys K3 and K4 are
xored to the output of the last round.

We will use the 2-round iterative linear analy-
sis of Khufu described in (Nakahara Jr, 2007), with
bias 2−3, which holds for a fraction of 5% of the
keys. This fraction corresponds to a weak-key class.
This 2-round iterative linear relation has the form
Li ·mmmmx = Li+2 ·mmmmx, for 0 < m ≤ 255, and
mmmmx stands for a 32-bit mask. This mask is ro-
tation invariant, that is, mmmmx ≪ 8t = mmmmx for
any t, because rotations are over multiples of 8 bits.

Repeating this 2-round iterative relation, we can
achieve a linear distinguisher for 24-round Khufu
with bias 211−12·3 = 2−25, and requiring 8(2−25)−2 =
253 known plaintexts (KP):

(L0⊕L24) ·mmmmx = (K1⊕K3) ·mmmmx, (11)

where we include the pre- and post-whitening keys.
Fixing the plaintext (L0,R0) and making the key vari-
able in (11), we arrive at the following linear relation

(L24⊕K1⊕K3) ·mmmmx = L0 ·mmmmx. (12)

To match the block size, we assume a key of 64
bits. This means (12) applied to a random mapping
E(P) : ZZ64

2 → ZZ64
2 , for a fixed P = (L0,R0) instead

of a random permutation EK : ZZ64
2 → ZZ64

2 . The data
complexity for a distinguishing attack on (12) is 253

keys.

5 CONCLUSIONS

This paper applied linear analyses originally de-
signed against the full DES, the full s2-DES, 10-round
LOKI91, 24-round Khufu, variable-round IDEA and
PES block ciphers under a (pseudo-)random func-
tion setting. In other words, instead of applying
linear relations from the plaintext input to the ci-
phertext, under a fixed key, the (same) linear rela-
tions were applied from the key input to the cipher-
text, under a fixed plaintext. This is possible be-
cause the key schedule algorithms are linear map-
pings, which means the linear approximation through
the key schedule framework does not affect the bias
of the original linear relation.

These linear relations are a potential threat to ap-
plications of such block ciphers in pseudorandom
number generators and PRFs, since they provide a lin-
ear relationship between the inputs and outputs in a
known-input-output setting.

The linear relations emphasize the need for non-
linearity in the key schedule algorithms to avoid lin-
ear relations to be applied from the key input to the
ciphertext, and holding with the same bias as the orig-
inal attack from plaintext to ciphertext.
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