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INTRODUCTION 

It is the purpose of this paper to study some of the properties 

of the general linear group and its subgroups and q'IX>tient groups. 

The general linear group will be considered as the group of linear 

transfonnations of a vector space onto itself under composition of map

pings and as the group of nonsingular matrices under matrix multipli

cation (chapter I). Several notations are used to denote the general 

linear group. They include: GL(m,F), (Rotman, 1965, p. 155); GLH(m,q), 

(Dickson, 1958, p. 76); and L(F,m), (Schenkman, 1965, p. 116}. 

In chapter II, the general linear group is discussed in more de

tail. Some of its normal subgroups such as its center and its commu

tator subgroup are introduced. The special linear group is then discussed 

in more detail since the quotient group of this group by its center is 

a source of simple groups of finite order. The orders of these groups 

are determined in the case where the underlying field is finite. Various 

notations used to denote the special linear group are: SL (m,F) , (Rotman, 

1965, p. 157); SLH(m,q}, (Dickson, 1958, p. 82); and S(F,m), (Schenkman, 

1965, p. 116). 

The quotient group of the special linear group by its center, 

called the projective uninodular group, is then shown to be simple for 

all but two cases (chapter III) • The projective unimodular group is, 

in some cases, not isomorphic to other known simple groups such as the 

alternating groups. Several notations are used to denote the projective 

unimodular group as well. They include PSL(m,F), (Rotman, 1965, p. 161); 
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LF (m ,q) , (Dickson, 195 8, p. 87) ; and J? (F ,ml , (_Schenkman, 1965, p. 116}_ .. 

Although all of the results of this paper are known, some of the 

proofs are original, e.g., theorem 12. Those proofs which are not 

original have been :rrodified by the author in an attempt to make them 

m::>re readible. In addition to the theory which is developed in the 

text of the paper, there are three tables. These tables, using the 

nonsingular matrices associated with the linear transformations, dis

play the elements of the general linear groups of orders 6 and 48 and 

the projective l.lllinodular group of orde~; 12, and note some of the char

acteristics of these gr9ups. 

'1'he following group theoretic n.otation will be used where convenient. 

H 6.. G shall mean that H is a nonial subgroup of G. 

G/H shall be the quotient grol.lP ~£ G by H where H 6.. G. 

lG:H] shall be the index of a sul:)group H of G in G. 

I Gj shall be ~. order of G, 

Standard set theoretic notation will be used· throughout. 

a .. = 1 if i = J. , a .. = a if i -:;. j. 
1] 1] · · 



CHAPTER I 

LINEAR TRANSFORMATIONS AND MATRICES 

In this chapter, we will develop the. fundamental concepts on which 

the rest of the work is based. We will show that under proper restrictions 

on the underlying vector space and under.c .-ppropriate definitions for ad

dition, multiplication, and scalar multiplication, the met:.,of linear trans

fo:r:mations fo:r::ms an algebra. We then define corresponding operations for 

matrices and note that the set of m by Jn matrices also fo:r:ms an algebra. 

We then show the existence of an isomorphism between these two algebras. 

In this way, we can, depending on which approach ·is roore convenient, de

velop the rest of the work by looking at the general linear group as a 

group of linear transfo:rma,tions or as a gz:oup of square matrices under 

matrix multiplication. 

Definition 1. Let u and V be vector spaces over a field F. A mapping f 

of u into Vis a linear transformation of U into V if and only if f sat

isfies the following: 

(x + y)f = xf + yf for all x e u and ye U, 

(ax)f = a(xf) for all a e F and x e u. 

Denote by L(U,V) the set of all linear transformations of u into V. 

(1) 

We may define addition of two elements of L(U,V) by: 

x(f + g) = xf + xg for all x e U. 

3 



4. 

We may also define scalar multiplication of an element f of L(U,V) by 

an element a of F by: 

(2) x(af) = a(xf) for all x€U. 

Lemma 1.1. Let u and V be vector spaces over a field F. L (U, V) is a 

vector space under the operacions ae~inea aoove. 

Proof: Let f and g be in L{U,V). If x,y€U, then 

(x + y) (f + g) = (x + y) f + (x + y) g = xf + yf + xg + yg 

= xf + xg + yf + yg = x(f + g) + y(f + g). 

The preceeding equalities follow directly from (1) and from definition 1. 

Let f and g be in L(U,V). If a€F and XEU, then 

(ax) (f + g) = {ax) f + (ax) g = a(xf) + a(xg) 

= a{xf + xg) = a[x(f + g)]. 

The above equalities fellow from (2) and.definition 1. Therefore 

(f+g1EL(U,V). L(U,V) foms an abelian group under+. The identity is 

OEL(U,V) (defined by xO = 0 for every XEU) since x(f + 0) = xf + xO = xf 

and x(O + f) = xO + xf • xf. The additive inverse for fEL(U,V) is -f 

(defined by x (-f) = - (xf) for all x€U) since for x€U, x [f + (-f)] 

= xf + x(-f) = xf - xf = 0. Associativity and commutativity for L(U,V) 

follow from the corresponding properties in V. 

The following arguments which complete the proof use properties 

(ll, (2) and definition 1. We have a(f + g) = af + ag for all aEF and 

f,gEL(U,V) since .for each xEU, 

xla(f + g)J = a{x(f + g)J = a(xf + xg) 

=a(xfl + a(xg) = x(af) + x(agl = x(af + ag). 

Also (a+ b)f = af + bf for all a and bin F and fEL(U,V) since for xEU, 
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x[(a + b)f] = (a+ b) (xf) 

=a(xf) + b(xf) = x(af + bf). 

Further, (ab)f = a(bf) for all a,beF and every feL(U,V) since if xeU, 

x[(ab)f] = (ab) (xf) = a[b(xf)] 

= a[x(bf)] = xfa(bf)]. 

Finally, x(lf) = l(xf) = xf. Thus L(U,V) is a vector space over F. 

If feL(U,V) and geL(V,W) where U, V, and Ware vector spaces over 

F, then we define: 

(3) 

(4) 

x(fg) = (xf)g for all xeu, and 

(ax)fg = I(ax)f]g for all aeF. 

Then for x,yeu, 

(x + y) fg = [ (x + y) f] g 

= (xf + y~)g = x(fg) + y(fg). 

So that fgeL(U,W) by (1), (3) and definition 1. Also if aeF and xeu, 

then for every feL(U,V) and geL(V,W), by definition 1, (3) and (4), 

(ax)fg = [(ax)f]g = [a(xf)]g 

= a[(xf)g] = a[x(fg)]. 

Hence the composition mappi~g fg is also a linear transformation of U 

into W. 

Thaorem 1. If U is a vector space over a field F, L(U,U) is an algebra 

over F where the addition and scalar multiplication are defined as in 

lemma 1.1 and the multiplication of two elements f and g of L(U,U) is 

defined in (3) above·. 

Proof: By lemma 1.1, L(U,U) is a vector space over F. Associativity 
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for multiplication follows directly from (3), while the distributive pn>p-

erty of composition of mappings over addition holds due to (3) and (1). 

If xEU, then for all aEF and f,gEL(U,U), using (2) and (3); x[a(fg)] 

= a{x(fg) J = (xf) (ag) = x{f (ag)]. Similarly x[a (fg)] = x [ (af) g] , by (2) , 

(3) and definition 1. Hence L(U,U) il:I an algebra over F. 

Corollary 1.1. If U and V are finitec dimensional vector spaces with 

dim U = m and dim V = n, then dim L(U,V) • .mn. In particular, 

dim L(U,U) = m2. 

For a proof of the corollary see Berstein (1964, p. 145). We remark 

only that if u1 , u2 , ... ,1,n is a basis fo,:,,,U and v
1

, v 2 , ... ,vn is a basis 

for V, then fij such that ~ifij = vj and Uiclij ~ a fo~ i, lSiSm and j, 

l,Sj~n, k,'i, is the corresponding basis for L(U,V). 

Let M be the set of all m by n matrices (a, , ) where the entries -,nn l.J 

are elements of a field F. We shall define the sum of two elements (aij) 

and (b .. ) of M by; l.J -,nn 

(5) 

If aEF and (a .. ) is in Mmn' then we shall define scalar multiplication 
l.J 

as follows: 

(6) a(a .. ) = (aa .. ). 
l.J l.J 

The following lemma and theorem follow from these definitions using 

m by n matrices E .. having zeros for all entries except the ijth entry 
l.J 

which is 1, as the basis. 

Lemma 2 .1. ~ is a vector space of dimension mn over F. 
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We may also define multiplication for matrices. Lf la .. 1 is in 
1-J 

Mmn and (bij) is in ~.t' the product is defined by: 

l7) 

Note that the product of an m by n ma~ix and an n by ,.t matrix is an m by .t 

matrix·. 

Theorem 2. If m = n, l\nn is an algebra over F where addition and scalar 

multiplication are as in (5) and (6) and multiplication :J,.a as defined 

in (7). 

Theorem 3. Let U be a vector space of dimension m over a field F. M:mm 

and L (U ,U) are isomorphic as algebras over F. These algebras are isomor

phic in many ways, however there is a unique isomorphism defined relative 

to a fixed basis for u. 

Proof: Let u1 , u2 , ••• , 11_m be a basis for u. Let feL(U,U) and 
m m m 

x = L biu. be any element in u. 
i=l l. . 

Then xf =(L biu. ).f = Lb. (Uff). 
i=l l. i=l l. 

Thus 

the action off on U is uniquely determined by the action off on the 
m 

basis u 1 , u 2 , ••• ,um. If feL(U,U), u.f = .~ a.J.u., 11i~m, a. ,E:F. Define l. p l. J l.J 
J=l 

a mapping from L (U, U) to M by 11: f+ (a .. ) • This mapping is on to since 
nun l.J m 

if (aiJ.)E:?\un, then the.re?exists an fe.:L(U,U) such that uif = I,a. ·U·, 
. 1 l.J J 
J= 

11i~m where the a. ,E:F are uniquely determined by the basis and f. 
l.J 

jo(f + g) = jo{f) + fiJ(g) since if (aij) is the matrix associated with f 

relative to u1 , u
2

, ••• , '1m and if (bij) is the matrix associated with 

g relative to the same basis, then for each i, l~i~m, 
m m m 

u. (f + g) = u.f + u.g = La .. u. + 'z:b .. u.= L (a .. + b .. )u .• 
1 1 1 ' 1 l.J J ' 1 l.J J ' 1 l.J l.J J J= J= J= 



8 

If a£ F, then ~(af} = a~(f) since for each i, 1 ~ism, 

u. (af} = a(uif) :::: a! a .. u. = I, (aa .. )u .• 
1 j=l 1J J j=l 1] J 

To see that multiplication is also preserved under~, 

m m 
L < I a .. b 'k>u.. 
k=l j=l 1 l) .IC 

Thus ~(fg} = f'(f}~(g) by (7). We conclude that f' is a hom:morphism 

of L(U,U) onto M.mm· The unique determination of f by the aij, 1 ~ i :s: m, 

1 :S: j :s: m assures that~ is one-to-one and is an isomorphism. 



CHAPTER II 

THE GENERAL LINEAR GOOUP AND RELATED GROUPS 

We now begin our discussion of the general linear group and certain 

of its subgroups and quotient groups. When the field is finite, we will 

determine the order of these_ groups and the characteristics and order 

of their centers. We also include some of. the interesting theorems re lat-

ing these groups. 

Definition 2. Let u be a finite dilnensional vector space over a field 

F. f E L(U,U) is nonsingular (or regular) if and only is f is invertible, 

i.e., there exists g E L(U,U) such that fg = gf = I. 

It is clear that the set of all nonsingular linear transformations 

actually form a group under composition. 

Definition 3. Let U be a vector space of dimension m over F. The general 

linear group, denoted GL(m,F) is the group of nonsingular elements of 

L(U,U) under multiplication as defined in (6). 

The matrix ~(f) where f is a nonsingular linear transformation 

and~ is an isomorphism described in theorem 3 is also called nonsingular. 

The image of GL (m, F) in M is thus the group of nonsingular matrices. mm . 

We will frequently identify GLun,Fl with this group of m by m nonsingular 

matrices over F. 

9 
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Theorem 4. An element of Mxam is nonsingular if and only if its deter-

minant is nonzero. 

Proof: If A E: Mxam is nonsingular, then there exists a B E ~ such that 

A·B = I. Thus det (A·B) = det I or det A•det B = det I= 1. We conclude 

det A ~ 0. If det A ~ 0, a standard proceedure allows the computation 

of a ~atrix B such that AB= I. See Shields (1968, p. 145) for the details. 

When Fis of finite order q = pa, a> 1, the notation generally used 

for the general linear group is GL(m,q). Examples of GL(2,q) for q = 2 

and 3, using the nonsingular matrices associated with the linear trans

formations are given in tables 1 and 2. 

For the. remainder of this chapter, we shall be primarily concerned 

with general linear groups over finite fields. 

m-1 
Theorem 5. The order of GL(m,q) is n (qffi - qi). 

i=O 

Proof: Let U be an m dimensional vector space over a field F of order q. 

Consider the basis e 1 = (l,O, •.• ,O), e 2 = (0,1,0, ••• ,o), •.. , em= (0,0, ••• ,1) 

m 
forU. Letu1 ,u2 , ••. ,u beanotherbasisforU. 'lhenu· = E aiJ,eJ, 

1II l. j=l 

= (ail'ai21•••,aim) for each i, 1 ~ i ~ m; this representation is unique. 

Hence there is associated with every change of basis for U a linear trans

formation. Further, since we are mapping a basis to a basis, the linear 

transformation is nonsingular. Conversely every nonsingular linear trans

formation applied to e 1 ,e2 , .•. ,em yields a basis for U, since for i = l, ••• ,m 

m 
u1· = E a, ,e, is a basis for U. In order to obtain the order of GL(m,q) 

j=l l.J J 

we need only count the number of possible bases. for u. In constructing 
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a basis u ,u2 , ••• ,u for u, there are cf1 - 1 possible vectors to choose 
1 m 

for u1 since we must exclude the zero vector. Having chosen u1 , u2 

must be chosen so that it does not lie in the linear span of u1 , so as 

to be independent of u1 • Th.us there are qm - q choices for u2 • Next, 

u3 must be chosen such that it does. not lie in the linear span of u1 

and u2 • So a total of q2 vectors must be excluded, leaving cf1 - q2 

choices for u 3• In general, when picking the basis element u. , there 
i 

are qm - qi-l choices. Thus there are (cfl - 1) Ci°' - q) • • • Ccf1 - q111-11 

possible bases for u. Correspondingly, the order of GL(m,q) is 

Ccf1 - 1) Ccfl - q)··· (<fl - cf1-1}. For example, IGL(3,2) I = 168 and 

IGL(2,49) I = (492 - '1) (_49 2 - 49) = 5,644,800. 

An element A £ M.mm which has determinant 1 is said to be unimodular. 

The set of these unimodular matrices forms a '.stibgronp of GL (m,F) since 

if A,B £ M where A and Bare uniraodular, then det AB= det A·det B = 1. 
mm 

If B is unimodular, then det BB-l = det B0 det B-1 = 1 and 

det B-1 = (det B)-1 = 1. Hence det AB-l '"' det A•det B-1 = l. This ar-

gument establishes that the set of unimodular matrices form a subgroup 

of GL (m,F). 

Definition 4. The multiplicitive group of all m by m unimodular matrices 

over a field Fis the special linear group, denoted SL(m,F). 

Theorem 6. SL (m, F) /1 GL Cm ,F) • 

Proof; Consider the following mapping, let ~(x) = det x for all 

x £ GL(m,F). ~ is clearly a homomorphism of GL(m,F) onto the nonzero 
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elements of F since for any square .matrices A and B, det AB= det A·det B. 

'!he kernel of~ is SL(m,F) since SL(m,F) consists of all the unimodular 

matrices. Thus SL(m,F) A GL(m,F). 

m . 

Corolla.y 6.1. 

n qm- ql. 

The order of SL un ,ql :s ..,..:!,_=.._Q,... ___ _ 
. :;,q-1 

Proof: Recall the mapping t of GL(m,<a) ont:(> the multiplicative group of 

the nonzero elements of F described in theorem 6. This group has order 

q - l when F is finite. So ISL(m,q) ;GL(m,q)J = q - 1 and 
m 

lsL(m,q}j = (n <f1 - qil/(q - 1). 
i=O 

Definitions~ Let A be a nonzero element of F and i # j integers between 

1 and m. A transvection Bij. (;X) = E
1
, i. (U + I where E, . (A) is an m by m 
., J.J 

matrix withA as· its ijth entry and'~O elsewhere and I is the identity 

matrix. 

Theorem 7. SL(m,F} is generated by '!::hai~211fc~svections. 

Proof: Every element x of GL(m,F) can be ~;i:-itte.n x = UD(µ) where U is 

a product of transvections and D(µ} is tl\e diagonal matrix with diagonal 

entries 1,1, ••• ,1,µ (Rotman, 1965, p. 158)~ Ifx e: SL(m,F}, 

det x = det [UD(µ)] = det u·det D()) =µso that if xis unimodular, 

D(µ} = D(L) .= I and so x = U is a product of transvections. 

Theorem 8. The commutator subgroup G1 of GL(m,q) is SL(m,q) when m ~ 3 

or m = 2 and q 2:. 3. 
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Proof: G1 is generated by elements of the fonn x-ly-1.xy, where 

x,y e: GL(m,q). Using the detenninant map w of theorem 6, w(x-1y-lxy) 

= (det x)-1 (det y)-1det xdet y = 1. So that G'CSL(m,q). To show that 

SL(Jn,q) C G1 , we need only show that.evei:y, q;;msvection is contained 

in G' since SL(m,q) is generated by transvections by theorem 7. 

Case I. m = 2. Let a,~,A be nonzero ele...._s of F. Th.en 

(~ ~)-1(~ ~)-1 (~ ~)(a i) 
= ( ~ ab-~A ~ A) . 

( a-1 o )(1 -).}{a 0)(1 >-) 
~ a b-1 o · 1 ab o 1 

-1 . :.; ,;, ' 
So that all transvecti<;>ns B12 (al = ~12 ICab . - 1)>.] can be generated 

in G' as long as there exist a and b in F su~ th~~ ab :..i - 1 'i, 0, i.e. I 

a 'i, b. Clearly this is true for all fields of order greater than 2. 

B · · la.) can be realized in a similar manner. Since the transvections are 21 

contained in G', SL (2 ,q) C G' for q i:: 3 so that SL (2 ,q) = G'. The com-

mutator subgroup for GL (2 ,2) is not SL (.2 ,2) • See table 1. 

Case II. m ~ 3. The following 

is ·true: 

.. -1 -1 -
B1. J. (µ}BJ·k- U)B1 .. (µ) BJ.kU) = B .. (µ)B .k().)B. , (-µ)B .k(-;\) 

· J 1J J · 1J J · 

=II+ E1 .• (µ)]II+ E.k(;\)JII + E .. (.-µ)]II+ Ejk(-;\)] 
J J 1J . 

=JI+ Eij(µ) + Ejk{A} + Eik(µ1,)JII + Eij(-µ) + Ejk(-).) + Eik(µ).)] 

~ I + E .. (-J.l) 
1J 

+ 0 + E.k{A) J . 

(.µ 2 2 = Eik . >. ) • 

+ E (.-).) + E1, k (µt,) + E .. (µ) 
jk. . _ 1J 

+ 0 + Cl + 0 + Eik (µ;\) + 0 ·+ 0 

+ 0 + Eik(-µA) 

+ E. (µ2;\2) 
1k · 

So that any transvection Bik (a.) = I + Eik (a.} can be realized by a commu

tator of appropriate transvections. Hence SL(m,q) CG' form~ 3 and 

SL Cm ,q) = GI • 
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Theorem 9. The center of GL(m,q) is of order q - land consists of 

scalar multiples of the identity matrix. 

For a proof of this theorem, see Rotman (1965, p. 158). 

Corollary 9.1. The center of SL(m,F), which we denote z
0

, consists 

of all scalar mao:-ices kl with km= 1 .. 

Proof: Since SL(m,F) A GL(m,F), Z
0 

= SL(m,F) n Z, where Z is the center 

of GL(m,F). Thus x e: z
0 

must be a scalar multiple of the identity 

matrix. Since every x e: SL(m,F} must be uninodular, it follows immed

iately that km= l. 

Corollary 9.2. :tf Zo is the centerof.~L(~,q} then !z0 I = d, where 

d = ~,q-1). 

Proof: By corollary 9.1 we must detexmine the number of elements x e: F 

such that x1t1 = 1. Let p be a primitive element of F. Then .p has order 

q .. l. Define • ==p (q-1)/d, where d = (m,q;,-1). T'.nere are exactly d dis

tinct powers of T and (Ti) m = l for each i, since 

(Ti)m = Ipi(q-1)/d]m = p(q-l)im/d 

· (pq-l)im/d = (l)ic = 1 

where cd = m. 

We shall now prove that if (pt) m = 1, then pt is a power of T. 
l 

since (m/d, q-1/d) = 1, there are integers a and b with am/d + b(q-1)/d = 1. 
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Then since T = p(q-l)/d and Ip(q-l)i/d]m = 1, 

,im = p<q-l)im/o 

(,im)am/d + b(q-1)/d = fp(q-l)im/d]l 

,iam2/d.,(q-l)imb/d = p(q-l)im/d 

I · 1 · f 1.· __ d, .,.iam2/d __ (.,.ma)m __ l. n particu ar 1. , , Substituting 

t = (q-l)im/d we have ,bt = pt. So there are exactly d = (m, q-1) 

elements in Z0 • 

The next group to be introduced is the quotient group of SL(m,F) 

by its center Z
0

• This is a group of considerable interest. We shall 

discuss its properties in more detail in chapter III. 

Definition 6. The projective uninodular group PSL(m,F) is the group 

SL(m,F)/Zo. 

m 
Theorem 10. jPSL(m,q) j = n qm - qi/d(q - 1), where d = (m, q-1). 

i=O 

Proof: The theorem follows directly from definition 6. 
m 

I PSL(m,q) I = I SL(m,q) j /I zol = n cf1 - qi/d(q-1). 
i=O 

At this point let us note an interesting relationship between PSL(m,q) 

and the following group of mappings of the field F. 

Definition 7. If Fis a field, LF(F) is the group of all unimodular 

linear transformations x -+ (ax + b) / (ex + d) under composition of mappings 

where a,b,c,d E: F and ad - be= 1. 
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Theorem 11. PSL (2 ,F) "' LF (F). 

Proof: If (~ ~) E SL(2,F), define a mapping 6 as follows: 

e ( ac bd) ~ ~ {x-+- (ax+ b)/(cx + d)}. 

If ( ac bd) (AB) and CD are elements of SL(2,F), then 

= e (aA + bC 
cA + cC 

aB + bD) 
cB + dD 

= [ (aA + bC) X + aB + bD] / [ (cA + cc) X + cB + dD] 

= e (: ~) e (~ ~) . 

Thus 6 is a homomorphism. It is onto since for any f E LF(F), the 

pre-image of f(x) = (ax+ b)/(cx + d) is the ~atrix (~ ~). The kernel 

of e is [(~ ~) E SL(2,F): e (~ :J = {x-+- x}] . But this means 

(ax+ b)/(cx + d) = x so that a= d and c = b = 0. So that we have 

elements of the form (; ~J which by corollary 9 .1 is Z0 • Then by the 

first isomorphism theorem, PSL(2,F) "'SL(2,F)/Z
0 

"'LF(F). 



CHAPTER III 

THE SIMPLICITY OF THE PROJECTIVE UNIMODULAR GROUP 

In this ,chapter, we will be concerned mainly with the simplicity 

of the projective unimodular group. We begin by showing that PSL(2,F) 

is simple for those cases when the order of F is greater than 3. We 

then show that PSL(3,F) is simple as the first step for an induction 

proof that PSL(m,F) is simple for all m ~ 3. 

The following lemma can be proved using the method of theorem 8. 

Lemma 12 .1. If a normal subgroup H of SL (2 ,F) contains a transvection 

B .. (A), then H = SL(2,F). 
l.J 

Theo·rem 12. The group PSL (2 ,F) is simple except when I Fl :1 3. 

Proof: Since I PSL (2 ,2) I = 6 and I PSL (2 ,3) I = 121 and there are no simple 

groups of order less than 60, these groups are not simple 

Let H be a normal subgroup of SL(2,F) which contains a matrix not 

in Z
0

, the center of SL (2, F) . By the correspondence theorem, it suffices 

to show that H = SL(2,F), since if we let n:SL(2,F) + SL(2,F)/Z0 where 

n is the natural map,n defines a one-to-one correspondence between the 

set of those subgroups of SL (2 ,F) containing Zo and the set of all sub

groups of SL(2,F)/Z0 • 

Suppose H contains a matrix A=(~~) where r ~ ±1. 

17 
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If S = (i ~) , then due to the fact that H ~ SL(2,F), H also contains 

Since det A = 1 = rt, t ; ±1 and 1 - t 2 ; o. This last matrix is thus 

a transvection and so H = SL(2,F) by lemma 12.1. 

To complete the proof, we have only to produce a matrix in H whose 

first row is (r 0) where r; ±1. 

H contains an element M not in Z0 of the form 

M = ( ~ ~) , ad - be = 1. 

If b = O, a= d = 1, c; 0, then Mis a transvection. If b = O, 

a= d = -1, c; O, them M2 is a transvection. If b = O, a= d = ±1, 

c = 0, then M £ Zo contrary to assumption. 

If b ; 0, then 

~H: !H-~ (-1~ 
so that C e: H. 

-1 
Let T = (~ 

~) = 

~), then H contains 

U = TCT-lc-l = f a.-
2 

\-(a+ d) (a.2 - 1)/b 

-2 4 U will be the desired matrix if a. ; ±1. This is equivalent to a ; 1. 

If jFI > 5 or Fis infinite, such a nonzero a does exist since a.
4 - 1 

has at most 4 roots. If IFI = 4, then every a.£ F satisfies a 4 = a, 

so that if a. ; 1, then a.4 ; 1. For l E'.I = 5, a 4 = 1 is true for all 

a; 0 so that a.2 = 1 or a.
2 

= -1. 'Choose a such that a2 • -1. Then 

u = (
-1 

" 
0

) where;\= -(a+ d) (a.
2 - 1)/b; 0. 

-1 

is also in H, but u2 = f 1 
\-2;\ 

Since u e: H, then u2 
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Lemma 13.1. Let H !), SL(m,F), and let Ac: .H. If A is similar to 

C = 

Where c• is an (m - 1) by (m - 1) matrix, then there is a nonzero µ c: F 

such that H contains 

c• = 

For proof of the lemma see lotman (1965, p. 159). 

Theorem 13. PSL(3,F) is simple for every field F. 

Proof: Let H be a no:r:mal subgroup of SL(~,F) which contains Z0 , and 

let A€: H be a scalar matrix. There are three possible canonical forms 
I 

for A: 

i) a direct sum of three 1 by 1 companion matrices; 

ii) a direct sum of a 2 by 2 and a 1 by 1 companion matrix; 

iii) a 3 by 3 companion matrix. 

Case (i). A is similar to 
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where D is nonscalar. Therefore ac-1 ,; L By lemma 13.1, D s. H. If 

then 

0 
1 
0 

e: H, 

but this is a transvection, so by lemma 12.1, H = SL(3,F). 

Case (ii). A is similar to 

a 
b 
0 

, then 

~) . 

0 
1 
1 
n EH. 

Now the characteristic polynomial of M is (x - 1) 3 • Since M ,; I and 

M satisfies (x - 1) 2 , the minimum polynomial of Mis (x - 1) 2 • Since 

the characteristic roots of Mare all equal to 1, they lie in F, so 

by Rotman (1965, p. 72) , M is similar to its Jordan canonical form 

J = U i ~) . If we write the characteristic polynomial (x - 1) 3 

in the form (-1) (x3 - 3x2 + 3x - 1), then the trace of J is 3 and the 

determinant of J is 1. Thus a + a + b = 3 and aab = L Solving these 

simultaneously yields (a - 1) (2a2 - a - 1) = o. so that a= 1 and b = 1, 

so that J _ u [ V By lemma 12.1, this transvection is in H so 
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H = SL(3,F). 

Case (iii) • A is similar to a 3 by 3 companion matrix, 

0 

C =U 0 ~). a 'f' a since A is nonsingular, and by lemma 13.1, H contains 
1 

c* ·O a µ-la) 
0 -lb }J • 

µ C 

Therefore, H contains the 

D= •-1 * C B21 (-l)C B21 (1) 

1 
0 
0 

( 

l 0 
Since De H, D-l = -1 1 

0 0 

commutator 

(-ba-1 l 
Q ) (1 0 = •ca-1 0 µ-1 -11 

µa-1 0 o.- . a o 

this is a transvection so that H = SL (.3 ,F) • 

: ..... -,' 

L J, 

-~.(;...;;,L 

vu 0 p:~a) (1 0 ~) a ll b 1 1 
p C 0 0 

Lemma 14.1. Let HI::,. SL(m,F) and let H contain {! ~) • where B is a k by k 

matrix that is not scalar. Then H. contains a matrix (~ ~) , where I 

is an identity matrix and D is a k by k matrix that is not scalar. 

Proof: Since H I::,. SL(m,F) we know that if{~~) e:: H, then if B is a 

diagonal matrix and is not scalar, then B = 

for some i,j, 1 5 i ~ k, 1 ~ j S k. Since 

which is not scalar, we use 

(b1 , •• bk) , such that bi ; bj 

B-lB .. (1);1BB .. (l)= B .. (1 - b. -lb.) 
1J 1) 1J 1 ] 
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= ( ~ 

and D = -1 -1 B B,.{1) BB,,{1) is not scalar 
l.J l.J 

If B = (bij) is not diagonal, then use D = (dij) where dij = 0 

if i ':/ j, d,, ':/ O for each i and d1, 1, ':/ d .. for any i,j, 1 ~ i 6 k, 
].]. JJ 

1 ~ j 1 k. Assume B-lo-lBD = xI. Then BD = xDB, so that 

Therefore BD = xDB if and only if b.hdhh = xd, ,b,h for each i,h. When 
]. ].]. ]. 

therefore dhh = dii for some i ,h which contradicts dii ':/ dhh for any 

i ,h. Therefore 

and Eis not scalar. 

Lemma 14.2. Suppose that PSL(m,F) is simple, for some fixed m ~ 3. 

If a normal subgroup Hof SL(m,F) contains a nonscalar matrix, then 

H = SL(m,F). 

Proof: If PSL(m,F) is simple, then z0 , the center, is a maximal normal 

subgroup of SL(m,F). Since Hand Z0 are both normal in SL(m,F), then 

Hz0 is the smallest subgroup of SL(m,F) containing Hand z0 • But for 

-.1 -1 · hz0 E: HZ0 , ghz0 g = ghg z0 'E: HZ0 for all g E: SL(m,F). Hence HZ0 is 

a normal subgroup which contains z0 but since z0 is maximal, HZ0 = SL (m,F) • 
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It follows that H must contain A, a scalar multiple of a transvection 

a. µ 0 0 0 
0 a. 0 0 0 
0 0 a. 0 0 

A= 

0 0 0 0 ••• a. 

and its inverse 

Cl.-1 -µa.-2 0 0 ... 0 
0 a.-1 0 0 0 
0 0 -1 0 0 

-1 
Cl. 

A = 

• 
0 0 0 0 

·-1 ... Cl. 

If !Fl = 2 then A is a transvection and by Leillma 12.1 H = SL(m,F). 

If !Fl ~ 3 then there is a nonze:r:o SE F with -µa.- 2 + S ~ O. 

is similar to B where 

B = 

since for 

D = 

-1 Cl. 
0 
0 

0 

a 
0 

-µa.-2 + s 
Cl. 
0 

0 0 
0 0 
a.:-:1 0 

0 
0 
0 

0 0 0 ••• 0 

b 
-2 2 -aµa. / (-µa.- + S) 

0 
0 

I 

-1 Now A 

A-lo= DB. SE H by lemma 13.1 as long as m ~ 3. But AB= B12 (a.S), 

H contains a transvection, and so H = SL(m,F). 
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Theorem 14. PSL(m,F) is simple for ever:y field F and all m ~ 3. 

Proof: The theorem is proved by induction on m, where m ~ 3. Theorem 13 

completed the initial step where m = 3. Let H A SL(m,F), where m > 3 

and H properly contains Z
0

• Now H contains a nonscalar matrix A, and 

A is similar to a direct sum of companion ~ices 

by lemma 13.1, this matrix lies in H if we adjust the last row and colunm. 

If t > 1, then lenma 14.1 gives a matrix in H of the fonn (~ ~), 

where D is a k by k matrix that is not scalar. We may assume that 

k ?: 3: if for example, k = 2 , then let 

* Let S be the following isomorphic copy of SL(k,F) in SL(m,F): 

* {(I 0) l S = O U : U e: SL(k,F) • 

Now s* () H A s* and ( ~ ~) is a nonscalar matrix in this intersection. 

Since PSL(k,F) is simple, by induction, lenuna 14.2 gives s*() H = s* 

so that H contains a transvection. 

The last case is when t = 1, i.e., the original matrix A is sim

ilar to a companion matrix. Thus H contains an adjusted companion matrix 
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0 0 0 al 
1 0 0 a2 
0 1 0 a3 

C = I 

o o .•. µ am 

whereµ= a -l. Our multiplication is easier if we think of Casa 
1 

linear transformation; there is a basis a1 = 1,0, ••• ,0 a2 = O,l,O, .•• ,O 

• • • I 

The 

a = O,O, •.• ,l 
m 

with 

Ca~a! 

inverse of C also lies 

= °in' 
= 

in H; 

aiai. 

since cc-1a. = ai, its action is given 
1 

-a2µ°'1 - a3µa2 - • • • - ~-lµ°m-2 - <\nµ~-1 + µ~, 

c-la2 = al 

-1 
µ °m-1 • 

If Bis the transvection B21 (1), then 

B = 0 0 
1 
0 

and Ba1 = a1 + a2 and Bai = ai for i a 2. The trans formation 

D = BCB-lc-1 acts as follows: 

by 
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The matrix of D relative to the basis of a is in H, and 

D = 

0 
1 

-1 

0 
0 
1 

0 
0 I 

If S* = [(~ ~); U e: SL(3,F)} , thens*"' SL(3,F) and H n s* 6. s*. Since 

H () s* contains D, a nonscalar matrix, Hr\ s* = s*, by lemma 14.2. 

Therefore, s* C H and H contains a transvection. 

Further investigation of PSL (m ,F) shows that not only do these 

simple groups reproduce other simple groups, i.e., table 3 shows that 

PSL(2,3) "'A4 , but others such as PSL(3,4) which has order 20,160 is 

not isomorphic to As which is also simple and of order 20,160 (Rotman, 

1965, p. 172). 
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TABLE 1 

GL (2 ,2) 

Element Order 

(; i) ................... 
l 

(; ~) ................... 
2 

(i ~) .................. 2 

(i ~) .................... 
3 

(~ i) ................... 3 

\i ~) ................... 2 

- oommutator subgroup is, {(~ ~), (i ~) , (~ i)} 
By noting the order of the elements, it is clear that GL(2,2) ~ s3 
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TABLE 2 

GL(2 ,3) 

Element Element Element Element 

(~ i) (; ;) (~ ~) (~ i) 

(i ~) (~ ~) (; i) (i ~) 

(~ ~) (; ~) (i ~) (~ ~) 

(~ ;) (~ i) (~ ~) (~ ;) 

(~ ~) (~ ~) (~ ;) (~ ~) 
(~ ~) (i ~) (; ~) (i ~) 

(~ ~) (~ ;) \~ ;) (~ ~) 

G !) (~ ~) (~ ~) (~ ~) 

(~ i) (; ~) (~ ~) (~ ~) 

(~ ~) (~ n (~ !) (~ ~) 

(~ ~) G ~) (~ ~) (; ~) 

(~ ~) (~ ;) (; ~) (~ ~) 

The matrices in the first two columns have determinant 1 and are thus 

the group SL (2 ,3) • 
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Element 

Table 3 

PSL(2 ,3) 
Order 

Zo = Rt ~) , {~ ~J] ......... Identity 

(1 1) _ (,(1 1) (2 2),l . . . . . . . . . 3 
0 1 Zo -vo 1 ' 0 2J 

{~ ~)zo ={(~ ~, {~ ~)} ·· · · ·· ·· · 3 

(~ ;)Za =fl~ ;) I (~ ~)} • • • • • • • • • 3 

(; ;)zo =[(; ;) , {i ~iJ · ·· · · ·· ·· 3 

(~ ~)Zo =[(~ ~), (~ ~)}......... 2 

(1 1) z =fl(1 1) (2 2)1......... 2 1 2 o l\1 2 ' 2 1) 

{f ~ •o ={{i ~ ' {! ~)} · · · · · · · · · 2 

l! ~JZo =R~ ~l. lf ~l} .. . . . .. . . 3 

(~ ~)z0 ={{~ i), (~ ~¥ · • · ·· • · ·. 3 

{; ~)z0 ={(; ~), (~ ~i} · · · · · · · · · 3 

( 
1 2) z =ft 1 2) J 2 1 ,l . . . . . . . . . 3 
o 1 a l\o 1 '\o 2ff 
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