The Relationship of Selected Cumulative Grade Point Averages to Intelligence Quotient

Donald G. Varner
Eastern Illinois University
This research is a product of the graduate program in Elementary and Junior High School Education at Eastern Illinois University. Find out more about the program.

Recommended Citation

Varner, Donald G., "The Relationship of Selected Cumulative Grade Point Averages to Intelligence Quotient" (1971). Masters Theses. 3978.
https://thekeep.eiu.edu/theses/3978

TO: Graduate Degree Candidates who have written formal theses
SUBJECT: Permission to reproduce theses.

The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied.

Please sign one of the following statements.

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because \qquad
\qquad
\qquad

Date
Author

THE RELATIONSHIP OF SELECTED CUMULATIVE GRADE

POINT AVERAGES TO INTEILIGEIDE QUOTIENT
© C

Donald G. Darner

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQLin MENTS for the degree Of Master of Science in Education
in the Graduate school, EASTERN Illinois university CHARLESTON, ILLINOIS

1 HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING this Part Of the graduate degree cited above

Aug 10,1971
An g. 10,1971

TABLis OF CONTENTS

Pase

ACKNOWLEDGMENTS • 111
LIST OF TABLES iv

Chapter
I. INTRODUCTION TO THE PROBLEM 1
II. REVIEN OF RELATED RESEARCA 7
III. METHODS AIID PROOEDURES 16
IV. STATISTICAL ANALYSIS 21
v. SUMMARY AND CONCLDSIONS 30

BIBLIOGRAPHY • • • 32

A CKNOWLEDGY ANTS

The author wishes to express his gratitude to his advisor, Dr. Louis Grado, for his guidance and assistance in the organization and writing of the thesis.

Special thanks is given to Dr. Joseph Carey who was kind enough to give advice on the processing, analysis. and interpretation of the data. His interest and concern: were greatly appreciated.

Acknowledgment is also given to Mr. Don Long and Mr. Charles Smith of Morrisonville Community Unit No. 1 for their cooperation in this project.

Finally, the writer owes a very special thanks to his wife, Joyce, for her assistance; patience, and understanding during the writing of this thesis.

LIST OF TABLES

Table
Page

1. Intelligence Quotients and Oumulative Grade Point Averages--Grades 1 through 6
2. Calculating the Pearson ProductaMoment Correlation Coefficient: A Correlation of Intelligence Quotient and Over-all Cumulative Grade Point Average22
3. Calculating the Pearson Product-Monent Correlation Coefficient: A Correlation of Intelligence Quotient and Social Studies Marks
4. Calculating the Pearson Product-Moment Correlation Coefficient: A Correlation of Intelilgence Quotient and Physical Eaucation Marks
5. Calculating the Pearson Product-M oment Correlation Coefficient: A Correlation of Intelligence Quotient and Mathematics Marks 28

INTRODUCTION TO TAE PROBLEM

Although many schools have printed statements of their marking policy, apparently few teachers adhere strictly to them. Very often the policies.are amblguously worded so that various interpretations can be made. Even where the marking system of the district is specific, teachers tend to mark on their own. They may all use the same set of symbols, but there the resemblance ends. ${ }^{l}$

In spite of this lack of uniformity in the assignent of school marks, some students tend to receive similar marks from different instructors as they progress through school. G1rls, for example, are well known to receive higher marks than boys, at least in the United States. ${ }^{2}$ Teachers, as menbers of a group, have also demonstrated differences, e.g. men are reported ${ }^{\prime}$ o assign lower marks than women, on the average. ${ }^{3}$
$1_{\text {Joseph }}$ W. Halliwell, "The Relationship of Certain Factors to Marking Practices in Individual Reporting Programs," Journal of Educational Research, IIV, (January, 1960), p. 77.
${ }^{2}$ clifford Swenson, "Packing the Honor Society," Clearing iouse, XVI, (M ay, 1942), p. 524.

3R. W. Edm 1ston, "Do Teachers Show Partiallty toward Boys or G1rls?" Peabody Journal of Education, XX, (January, 1943), p. 238.

In an historical review of the development of modern intelligence tests, Guilford states that there should De a high reistionship between sc:\%ool achievement and inteilizence test results because the majority or early intelligence tests were attempts to predict acaciemic success 。 ${ }^{4}$
dames McKeen Cattell was one of the first Americans to attempt to preâict success in college by means of a test of intelligence. 5 he was unsuccessful ia his attempt to show a significant relationship between scores on his test and success in college. Nelson believes that this may have be \in n due to the nature of his test as he measured such abilities as color vision, sensitivity to pain, rote memorization, freeness of hearing and vision, reaction time, and color preference. ${ }^{6}$

Alfred Bine and Theodore Simon developed the first successful intelligence test, the immediate use being to determing which students in Paris should be segregated for special instruction. The first Binet-Simon scale was pubEtched in 1905 in France, and American versions followed. 7

4j. P. Guilford, Personality (New York: MCGraw-Hill Book Company, 2959), 0. 240 .

5ioid. p. 241.
$\sigma_{\text {Martin }}$. Nelson, "Intelligence and Special Aptitude Testes," in Racyclopedia of Education Research, ed. by
 p. 657.
?Guiliord, Personality, p. 240.

Other American tests followed. The Terman scale, produced at Stanford University, became popular during. World War I. ${ }^{8}$ Special tests of intelligence were constructed for use by the Army, and after the war similar tests were constructed for use in schools. 9

Although intelligence tests have been largely constructed as predictors of academic success in school, researchers have measured suocess in terms of achlevement test scores. Degree of success in school, however, can also be measured by cumulative grade point averages. It is the purpose of this study to investigate the relationship of intelligence quotient to cumulative grade point average.

NEED POR THE STUDY

In a review of the literature numerous studies were discovered which attempt to relate intelligence quatient to achlevement test scores. However, relatively few studies relating intelligence quotient to cumulative elementary school grade point averages, or other indication of school marks, could be located. The research relating intelligence quotient to school marks is somewhat dated and no study could be located which involved the children of central

8Herbert Sorenson, Psychology in Education (3rd. ed., New York: McGraw-Hill Book company, 1954), p.240.
$9_{\text {Guilford, Personality, p. } 242 .}$

Illinois as subjects.
Since school marks have become an important measure of success in school on the elementary level, a need erists for study of the correlation of cumulative grade point average with soores on intelligence tests.

STATEMENT Of THE PROBLEM

The purpose of this study is to determine the ertent of the relationship of the intelligence quotient of each child in the sirth grade of Morrisonville Blementary School to his over-all six year cumulative grade point average as well as to his six year cumulative grade point. average in social studies, mathematics, and physical education.

HYPOTHESIS

There is no significant correlation between an individual's cumulative grade point average and his intelligence quotient.

DEPINITION OF TERMS

Achlevement test. A test which measures skills, knowledges, and understanding of a specific school subjeot.

Coefficient of correlation. The relationship between two or more sets of data which usually vary from +1 through 0 to -1.

Cumulative grade point average. A measure of average scholastic success in all school subjects taken by a student during an accumulation of several terms, semesters, or years.

General intelligence test. A composite test made up of parts that have been found empirically to correlate well with some practical indirect measure of intelilgence ability, such as success in school.

Intelilgence quotient (I.Q.). The most commonly used device for expressing level of mental development in relation to chronological age; obtained by dividing the mental. age (as measured by a general intelligence test) by the chronological age and multiplying by 100.10

Mental age. The level of a person's mental ability expressed in terms of norms based on the median mental age of a group of persons having the same chronolozical age.

Pearson product-moment coefficiant correlation. A

statistical process which expresses the degree of relationship between two sets of data. The technique is more thoroughly discussed in chapter IV.

Permanent cumulative record. An individual record that 1 is kept up to date by a member of the counseling staff and includes educational, social, vocational, health, and•
${ }^{10}$ Carter V. Good, ed. Dictionary of Education (New York: McGraw-Hill Book Company, 1959), p. 436.
personal data. 11
School Mark. The evaluation that a teacher makes of pupil progress or achievement as based on defined standards. Commonly called grade or teacher's mark. 12

11Ib1d. p. 148.
12Ib1d. p. 330.

Chapter II

REVIEN OF RELATED LITERATURE

Speculation about what is actually measured by general 1ntelligence tests is as old as the tests thomselves. It is an accepted fact in education, however, that many complex factors, such as mental development, personal and social adJustment, interest patterns, and amount and kinds of information picked up through experience interact with each other to influence greatly the child's educational progress. ${ }^{1}$

In today's schools, the school marks students recelve seem to be influenced by many of these same complex factors. For example, such items as effort, punctuality, interest, behavior, and neatness of written wark may effect the school marks assigned by some teachers in the elementary school. ${ }^{2}$

Studies relating intelligence quōtient to sohool marks are described in this chapter, in chronological order.

SCHOOL MARKS AS RELATED TO INTELLIGENCE QUOTI ENT

In a study to check the validity of Stanford University'
$l_{\text {Miles A. Tinker and Constance M. MoCulloujh, Teach1ng }}$ Elementary Reading (New York: Appleton-Century-Crofts, Ino., 1952), p. 53.

2I. L. Russell and Willlam H. Talman, "Personal1ty: Does It Influence Teacher's Marks?" Journal of Educational Research, XLVIII, (Apr11, 1955), p. 563.
revision of the Binet-Simon Intelligence Test, Whitcomb supervised the administration of this individual intelligence test to 2360 children who were pupils in the kindergarten and primary grades of Council Bluffe, Iowa, with the cooperation of Dr. Terman of Stanford University. The result ing intelligence quotient obtained for each child was then compared with the grade point average the same child recelved from the subjects studied during the previous school semester. In interpreting her sumary it is necessary to know that the teachers adhered strictly to the school policy assigning the school mark of H (honor) to the best ten per cent of the pupils in each classroom, and that the school marks of A, B, and C were assigned to the remaining students, in successively lower groups, each thirty per cent in all. ${ }^{3}$ Her summary table follows:

In another early study Sh1delar administered the Terman Group Intelilegnos Test to 170 otudents and oorrelated the combined school marks received during both semesters of the 1920-1921 school year in all subjects taken by the students.
${ }^{3} M_{\text {. }}$ Edith Whitcomb, "Intelligence Tests in the Primary Grades," Journal of Educational Research, V. (January, 1922), p. 58-61.

He concluded that: (1) There is a positive correlation between school marks and intelligence quotients. (2) The correlation is higher in subjects which are purely academic and taught by traditional methods. (3) The correlation 18 less marked in the so-called drill subjects. (4) The oorrelation is less marked in subjects in which the teacher has an opportunity to hold pupils to the task until they have mastered 1 t. (5) Intelligence tests are valuable as a supplement to teacher's judgment in determing whether pupils are working up to their mental capacity. ${ }^{4}$

In an attempt to group children for 1nstruction, Glenn5 administered three different intelligence tests, four separate academic tests, and five different "motor" tests to each of the children in grades six through eight of a school in Somerville, Massachusetts. She then correlated the score the pupils received on each of the fifteen tests with their rank in class as determined by the teacher. The results were a serles of low correlations, except for the oorrelation of general intelligenoe and language comprehension, which was high. In general, the correlations between the various academic subjeots and the resultb of the penoral intelligenoe
${ }^{4}$ John W. Sh1deler, "Correlations of Teacher's Grades and Scores on Intelligence Tests," School Review, XaSIX, (December, 1921), pp. 733-734.

SIrene Glenn, "A Report on the Correlation of Psychological Tests with Academic and Manual Subjeots." Journal of Educational Psychology, XIII, (November, 1922), pp.496-500.
tests were higher than the correlations of test combinations involving non-academic areas of the curriculum.

Feingold discovered that the coefficient of correlation in the three upper elementary grades of the school he studied varled from +.4 to +.7 between intelligence quotients obtained from a modified form of the Army Alpha Tests and the final examination scores in a variety of subjects. He also concluded that the degree of correlation between intelligence and what he terms scholarsh1p is greatly influenced by the method of measuring scholarship. To prove this point he correlated the school mariss received on final written examinations with the intelligence quotients and compared the results with the correlations between the same intelligence quotient and achlevement as measured by the school marks received as a result of oral recitation. The average of all the correlations between intelligence quotient and achlevement as measured by the written final examination was found to be twenty-six per cent higher than the average correlation between intelligence quotient and achievement as measured by oral recitation school marks. ${ }^{6}$

In an ambitious study, Fleming used the students of the Horace Mann School for Boys and the Horace Mann School for Girls. The following factors were analyzed: average school.
${ }^{6}$ Gustave A. Feingold, "Correlations Between Intelligence and Scholarsh1p," School Rev1ew, XXXII, (June, 1924). p.466.
mark and general intelligence, reading and achievement score, chronological age, health, energy, teacher's estimate of Intelligence, industry, attitude, emotional balance, leadersh1p, perseverance, conscientiousness, desire to excel, mean of teacher's ratings for all groups, speed of movement, freedom from inertia, speed of objective decision, verbal memory, coordination of 1mpulses, and volitional preservation. Unfortunately, most of her study was based on the opinions of teachers and 18, therefore, of limited value. The factors which appeared to have the most influence on school marks were the teachers' estimates of intelligence, school attitude, energy, and chronological age. Fleming also recorded the fact that the school marks of girls were higher than those of boys.?

Using the data obtained from a long range Harvard University study of child growth, St. John complled the intelligence quotients obtained from several tests of general Intelligence administered to 958 students of the elementary schools of a Boston suburb. A correlation was then produced between the composite intelligence quotient aind each of the following: teacher's marks, records of promotion, soores on the Haggerty Reading Examination, Scores on the Ayres Reading Scale, and scores on the Peet-Dearborn Progress Test in

7 Cecile W. Fleming, A Detailed Analysis of Achlevement In the High School (New York: Teacher's College, Columbla Universits, 1927), pp. 66-68.
 inteillgence quotient anc tine four vear cumiaifve grade point averase for eaci individual chile mas 4.44 for the joys and $\therefore .55$ For tize fifis. Concerning school marks, de co:nciudes tlat the coenficient of correlation betueen eface posnt zivanse ani intelligent quotient is approximateiy i.50, but warns that there are marked eacentions to this generalization, espeaiaily for the boys. ${ }^{8}$

During the 1930° s and 1940^{\prime} s numerous studites were corducted on the cumulative grade point averages of stuaents grouped by ser: The universal conciusion was that Eiris receive higher cumulative grade point averages than boysu one sucin study inciuded over 10,000 school marks and presentec. aditional evidercathat both men and women teachers assign girls the higher marks, women more so than men。9 Speciation: were maie about the possible reasoas For the aiffereace an cumiative crade point average betreen the seats, but no conciusion was reached. Gre researcker sought the opinions or his fellow teachers and found that the most compor reasous given were that the glris had achieved greater maturity, vere fore metlculous, more punctual, and neater about thein

Bramies T. St. Join, Dducationst Achievement in Pela-

${ }^{9}$ Cnazles 2 . Carner, "Survey of Teachers" Narks," Sohool ans Commaty, XXI (Üanuary, I942) D. 42.
written work. 10
Tyler notes that because achievement tests and intellsence tests both rely on questions. Which are deliberately designed to give the same mean for both seres, they are of no value in determining whether or not girls are more intelli gent than boys:11

Tertbooks in measuremeat and evaluation, as well as in some other areas of psychology, typically quote the figures +.50 to +.70 as the coefficient of correlation of school marks and intelligence quotients without any reference to the source of the coefficient of correlation. An example is the following from Guilford: 12

Designed originally for predicting academic success, intellizence tests have shown their greatest practical validity in that area. In the elementary grades and in high school, correlations between verbal-intelligence scores and achievement in terms of school marks have been typically in the range .5 to . 7 .

Despite the fact that Guilford footnoted extensively, he did not indicate the source of his ifgures.

The folly of reading the published marising procedures and objectives of a school system and then assuming that all
${ }^{10}$ Dean Lobaugh, "Girls, Grades and I. Q.'s", Nation's Schools, XXX (January, 1942), pp. 42-43.
${ }^{1 l_{\text {Leona }}}$ E. Tyler, "Sex Differences," in Robert L. Ebel, ed.: Encyclopedia of Educational Research (4th ed:Macmillañ Company; 1969 , p: 1218.

12 J. P. Guilford, Personality (McGraw-Hill Book Co., 1959 pp. 244-245.
teachers follow the stated procedures and objectives was demonstrated by Halliwell. He discovered that when a school system adopted an official policy of marking on an "individual basis", the teachers did not comply. Supposedly, in the school system he studied, teachers were to grade on the relative achlevement of the student, regardless of intelligence quotient. Therefore, a studeat with a low intelligence quotient who demonstrated higher achievement than he had in the past was to be given a better school mark than a student with a high intelligence quotient who demonstrated little achlevement in comparison with his past record of educational growth. The conclusion in this study was that there was no relationship between learning efficiency, 1.e. achievement, and the school marks assigned by the teachers. Opon further examination he concluded that teachers were marking as they had in the past. 13

According to Manson, any study of the relationship of Intelligence quotient to cumulative grade point average must take into account the marking system utilized by the school system under study. He describes a school system in British Oolumbia which gave intelligenoe tests to eaoh olass and then required teachers to give only the specified number of $A^{\prime} s$,

13Joseph W. Halliwell, "The Relationship of Certain Factors to Marking Practices in Individual Reporting Programs," Journal of Educational Research; IIV, (October, 1960). p. 77.
$B^{\prime} s, C^{\prime} s, D^{\prime} s$, and $F^{\prime} s$ to correspond to a normal curve for that class. ${ }^{14}$ In a follow-up study of one such system, however, he found that the school mariss did not differ significantly from those given before the requirement was mandatedt5 SUMMARY

The earliest studies coincided with the appearance of intelligence tests. Studies during the $1930^{\prime} \mathrm{s}$ and $1940^{\prime} \mathrm{s}$ were concerned with sex differences. The interest in sex differences continued 1ato the $1950^{\prime} \mathrm{s}$. Later studies have tended to use achlevement tests instead of school marks as Indicators of school success on the elementary level.
${ }^{14}$ Geoffrey Manson, "Studies and Reports-An Empirical Analysis of a System of Achievement Grading Based on the Distribution of Scholastic Aptitude in a Class." British Columbia Educational Research Council Report No. 8,1965 , in ERIC (ED-014113), pp. 1-7.
${ }^{15}$ Geoffrey Manson, An Investigation of Achlevement Grading Based on Scholastic Ability Distribution (Victoria: British Columbia Educational Research Council, 1967) in ERIC (ED-014132), pp. 17-22.

Chapter III

METHODS AND PROGEDURES

It has been postulated that cumulative grade point averafes are not rellable indicators of intelligence quotients. To test the stated hypothesis an examination was made of the permanent cumulative records of the fifty-two students of the 1970-1971 sixth grade class of Morrisonville Elementary School, Morrisonville, Illinois, a midwest community of approximately 1100 population.

The permanent cumulative records indicated that thirtyeight of the fifty-two students had attended Morrisonville Elementary School exclusively for the complete sif years of their elementary education. The permanent cumulative records of these thirty-eight students were selected for use in the study, and the others were rejected.

At the close of each of the six school years, the ch1ld's teacher recorded on the permanent cumulative records a "yearly average" school mark for each of nine subjects: language, spelling, reading, social studies, mathematics, physical education, music, handwriting, and solenoe. Thus for eaoh child the permanent cumulative records contained six school mark averages for each of the nine subjects. All school marks were recorded on the cumulative records as \mathbb{A}, B, C, D, or F. The cumulative grade point averages for each
student are recorded in Table l.
The permanent cumulative records also contained two intelligence quotients. Information on the permanent oumulative records indicates that the earlier test, the Otis Guick-Scoring Test of Mental Ability. Beta Form, ${ }^{1}$ was administered by a guidance counselor to part of the class on April 24, 1968, and to the remainder of the class on April. 25, 1968. The permanent cumulative records also indicate that the second intelligence quotient was obtained from the SRA Test of Primary Mental Abilities ${ }^{2}$ on October 15, 1970, and was administered by the same guidance counselor.

The intelligence quotients obtained from the SRA Test of Primary Mental Abilities and the intelligence quotients obtained from the Otis Quick-Scoring Test of Mental Maturity, Beta Form, were averaged to obtained an average intelligence quotient for each child. All are listed in Table l.

Three of the nine subjects were selected for the study: mathematics, a skill subject; social studies, a content subject; and physical education, a non-academic subject. For these three subjects, the letter marks listed on the per-: manent cumulative records were converted to a number system as follows: $A=5 ; B=4 ; C=3 ; D=2 ;$ and $F=1$. Three

[^0]${ }^{2}$ published by Science Research Associates, 1963.

TABEE I
IITELモIGENCE QUO'IIENTS ANU CUIULATIVE GRADE POINT AVERAGES
GRADES 1 THROUGH 6

TABLE I-Continued

cumulative grade point averages were established for each of the thirty-eight students by averaging the six "yearly average" school marks in the following subjects: social studies, mathematics, and physical education. An overall cumulative grade point average was established for the nine subjects, also.

The Pearson product-moment coefficient of correlation was then applied to the data to obtain the relationship between the intelligence quotient and each of the three cumulative grade point averages as well as the overall cumulative grade point average. Significance was determined by means of a table of significant r^{\prime} s for varying degrees of freedom. ${ }^{1}$ Longmans, Green and Company, 1956), p. 152.

Chapter IV

STATISTIGAL ANALYSIS OF THE DATA

Intelligence quotient scores and six year cumulative grade point averages in aine sohool subjects were obtained from the permanent cumulative records of each of thirtyeight sixth grade students at the close of the 1970-1971 school year. An analysis of the correlation of each student's over-all cumulative grade point average, as well as cumulative grade point average in social studies, physioal education, and mathematios with intelligence quotient is presented here.

INTELLIGENCE QUOTIENT AND OVERのALL GRADE POINT AVERAGE

The thirty-eight individual sets of scores were listed randomly in pairs (see Table 2). The X scores represent the median intelligenoë̀ quotient as obtained by averaging the scores from the Otis Quick-Scoring Mental Ability Test, Beta Form and the SRA Primary Mental Abilities Test, Revised Form; the Y column represents the overiall oumulative grade point average obtained by averaging the "yearly average" sohool marks reoorded in the permanent oumulative records of eaoh child. The individual scores in columns X and Y were "squared" and noted in the columns marked X^{2} and Y^{2}. The final column represents the produot of the individual?

TABLE 2

GALCULATING THE PEARSON PRODUCT_MOMENT CORRELATION COEFFICIENT: A CORRELATION OF INTELLIGENGE QUOTIRNT AND OVER-ALL CUMULATIVE GRADE POIINT AVERAGE

X	x^{2}	Y	y^{2}	$X Y$
99.0	9801.00	3.56	12.6736	352.440
105.0	11025.00	3.72	13.8384	390.600
118.5	14042.25	4.61	21.2521	546.285
91.0	8281.00	3.35	11.2225	304.850
90.0	8100.00	3.06	9.3636	275.400
102.0	10404.00	2.57	6.6049	262.140
113.5	12882.25	3.87	14.9769	439.2 '45
108.5	11772.25	4.35	18. 9225	471.975
111.5	10302.25	4.22	17.8084	470.530
105.5	11130.25	3.82	14.5924	403.010
113.0	12769.00	4.30	18.4900	485.900
121.5	14762.25	3.93	15.4449	477.495
100.5	10100.25	3.69	13.6161	370.845
97.0	9409.00	3.57	12.7449	346.290
111.0	12321.00	3.91	15.2881	434.010
110.0	12100.00	4.20	17.6400	462.000
91.0	8281.00	3.41	11.6281	310.310
109.5	11990.25	3.48	12.1104	381.060
102.0	10404.00	3.57	12.7449	364.140
88.5	7832.25	3.13	9.7969	277.005
- 127.0	16129.00	4.57	20.8849	580.390
103.5	10712.25	3.74	13.9876	387.090
97.5	9506.25	3.50	12.2500	341.250
83.0	6889.00	2.33	5.4289	193.390
115.0	13225.00	4.13	17.0569	474.950
113.0	12769.00	4.00	16.0000	452.000
106.0	11236.00	2. 98	8.8804	315.880
116.5	13572.25	4.70	22.0900	547.550
104.5	10920.25	4.43	19.6249	462.935
- 124.5	15500.25	4.67	21.8089	581.415
115.5	13340.25	4.57	20.8849	527.835
105.0	11025.00	3.24	10.4976	340.200
133.5	17822.25	4.74	22.4676	632.790
92.5	8556.25	3.89	15.1321	359.825
103.0	10609.00	3.78	14.2884	389.340
76.0	5776.00	2.74	7.5076	208.240
88.5	7832.25	3.28	10.7584	290.280
103.5	10712.25	3.72	13.8384	385.020
3986.5	423841.75	3.33	554.1471	295.910

Intelligence quotient and over-all cumulative grade point average over the six year period. To determine the relationsh1p between the two sets of scores, the Pearson product-moment coefficient of correlation was computed. The formula used was:

The calculated results were:
$r=\frac{38(15295.91)-(3986.5)(143.33)}{\sqrt{\left.B^{38(423841.75)-(3986.5)}\right]\left[38(544.1471)-(1433.33)^{2}\right]}}$
$r=\frac{581244.58-571385.045}{\sqrt{(16105986.5)-(15893182.25)(21057.59)-(20543.49)}}$
$r=\frac{9859.535}{\sqrt{(213804.25)(514.10)}}$
$r=\frac{9859.535}{\sqrt{10991674.925}}$
$r=\frac{9859.535}{10484.120}$
$r=9.80$
The results of this data indicate a positive relationship between intelligence quotient and over-all cumulative grade point averade. Significance is at the . 01 level. 1

[^1]the following: "Values of r, the Coefficient of Correlation, at the .05 and .01 levels of significanoe," in Henry E. Garrett. Elementary Statistics (New York: Longmans, Green and Company, 1956), p. 152.

CALCULATING THE PEARSON SRODUCT-MOMEIVT CORRELATION COEFFICIENT: A CORRELATION OF INTELLIGENCE QUOTIENT AND SOCIAL STUDIES MARKS
$x, \frac{X^{2}}{} X$

INTELLIGENCE QUOTIEIT AND SOCIAL STUDIES

The same procedure was emplojed to determine the relationship between intelligence quotient and oumulative grade point average in social studies.

The calculated results were:
$r=\frac{38(14849.24)-(3986.5)(138.83)}{\sqrt{[88(423841.75)-(3986.5) 2][38(524.4713)-(138.83)]}}$
564271.12 - 553445.795
$r=\sqrt{\sqrt{(16105986.5)-(15893182.25)(19929.91)-(19273.77)}}$
$r=\frac{10825.325}{\sqrt{(213804.25)(656.14)}}$
$r=\frac{10825.325}{\sqrt{140285627.5}}$.
$r=\frac{10825.325}{11844.223}$
$r=.91 .81$
The results of this data indicate a positive relationship between intelligence quotient and oumulative grade point averages in social studies. Significance is at the . Ol level. ${ }^{2}$
${ }^{2}$ Significance was determined by consulting the following: "Values of r, the Coefficient of Correlation, at the . 05 and Ol. levels of significance," in Henry E. Garrett, Elementary Statistics, (New York: Longmans, Green and Company, 1956) p. 152.

TABLE 4

CALCULATING TRE P.EARSON PRODUCT-MOMENT CORRELATION COEHEICIENT: A CORRELATION OF INTELLIGENCE QUOTIENT AND PHYSICAL EDUCATION MARKS

INTELLIGENCE QUOTIENT AND PHYSICAL EDUCATION

The same procedure was employed to determine the reIationship between intelligence quotient and cumulative grade point average in physical education.

The calculated results were:
$r=\frac{38(15395.97)-(3986.5)(145.31)}{\sqrt{[38(423841.75)-(3986.5) 3]\left[38(566.76)-(145.31)^{2}\right]}}$
$r=\frac{585046.86-579278.315}{\sqrt{(16105986.5)-(15893182.25)(21536.98)-(21115.00)}}$.
$r=\frac{5768.545}{\sqrt{(213804.25)(421.98)}}$
$r=\frac{5768.545}{\sqrt{22117: 415}}$
$r=\frac{5768.545}{9498.48}$
$r=61.60$
The results of this data indicate a positive relationship between intelligence quotient and cumulative grade point average in physical education. Significance is at the . 01 level. ${ }^{3}$
3^{3} significance was determined by consulting the following: "Values of r, the Coefficient of Correlation, at the . 05 and .01 levels of significance," in Henry E. Garrett, Elementary Statistics (New York: Longmane, Green and Company, 1956), p. 152.

TABLE 5

CALCULATING THE PEARSON PRODUCT-MOMENT CORRELATION COEr'EICIENT: A CORRELATION Or INTELLIGENCE QUOTIENT AND MATHEMAMICS MARKS

X	x^{2}	Y	Y^{2}	XY
99.0	9801.00	2.50	6.2500	247.000
105.0	11025.00	4.17	17.3889	437.850
118.5	14042.25	5.00	25.0000	592.500
91.0	8281.00	3.17	10.0489	288.470
90.0	8100.00	2.83	8.0089	254.700
102.0	10404.00	2.67	7.1289	272.340
-113.5	12882.25	4.17	17.3889	473.295
108.5	11772.25	4.33	18.7489	469.805
111.5	20302.2512432.25	3.83	14.6689	427.045
105.5	11130.25	3.67	13.4689	387.185
113.0	12769.00	4.00	16.0000	452.000
121.5	14762.25	3.83	14.6689	465.345
100.5	10100.25	4.00	16.0000	402.000
97.0	9409.00	3.67	13.4689	355.990
111.0	12321.00	4.17	17.3889	462.870
110.0	12100.00	4.67	21.8089	513.700
91.0	8281.00	3.50	12.2500	318.500
109.5	11990.25	3.67	13.4689	401.865
102.0	10404.00	3.50	12.2500	357.000
88.5	7832.25	4.00	16.0000	354.000
127.0	16129.00	4.33	18.7489	549.910
103.5	10712.25	3.67	13.4689	379.845
97.5	9506.25	3.17	10.0489	309.075
83.0	6889.00	2.67	7.1289	221.610
115.0	13225.00	4.50	20.2500	517.500
113.0	12769.00	4.00	16.0000	452.000
106.0	11236.00	2.83	8.0089	299.980
116.5	13572.25	5.00	25.0000	582.500
104.5	10.920 .25	4.50	20.2500	470.250
124.5	15500.25	5.00	25.0000	622.500
115.5	13340.25	4.83	23.3289	557.865
105.0	11025.00	3.00	9.0000	315.000
133.5	17322.25	5.00	25.0000	667.500
92.5	8556.25	4.17	17.3889	385.725
103.0	10609.00	3.67	13.4689	378.010
76.0	5776.00	2.17	4.7089	164.920
88.5	7832.25	3.00	9.0000	265.500
103.5	10712.25	3.83	14.6689	396.405
3986.5	423841.75	4.00	571.8746	15470.055

INTELLIGENCE QUOTIENT AND MATHEMATICS

The same procedure was employed to determine the relationship between intelligence quotient and cumulative grade point average in mathematics.

The calculated results were:
$r=\frac{38(15470.06)-(3986.5)(144.69)}{\sqrt{\left[88(423841.75)-(3986.5)^{2}\right]\left[38(571.8746)-(144.69)^{2}\right]}}$
$r=\frac{587862.11-576806.69}{\sqrt{(16105986.5)-(15893182.25)(21731.23)-(20935.20)}}$
$r=\frac{11055.424}{\sqrt{(213804.25)(796.04)}}$
$r=\frac{11055.424}{\sqrt{170196735.17}}$
$r=\frac{11055.424}{13045.947}$
$r=85,73$
The results of this data indicate a positive relationship between intelligence quotient and cumulative grade point average in mathematics. Signifioanoe is at the . 01 level. ${ }^{4}$
${ }^{4}$ Significance was determined by consulting the following: "Values of r, the Coefficient of Correlation, at the .05 and . 01 levels of significance," in Henry E. Garrett, Elementary Statistics (New York: Longans, Green and Company, 1956), p. 152.

Chapter V
 SUMMARY AND CONCLUSIONS

Summary

The purpose of this study was to attempt to determine the relationship of the intelligence quotient of each ohild In the sixth grade of Morrisonville Elementary Schood to the six year cumulative grade point average he obtained in three selected subjects; social studies, physical education, and mathematics, as well as to his over-all six year cumulative grade point average.

In a review of the literature it was found that the early studies of cumulative grade point averages coincided with the widespread use of intelligence tests, and that the studies involving cumulative grade point averages during the 1930's and $1940^{\prime \prime}$ s were often concerned with sex differences. Later studies have tended to use achlevement tests instead of cumulative grade point averages to determine success in school.

This study involved data from thirty-eight sixth grade students of the Morrisonville Blementary Sohool. The data was obtained at the close of the 1970-1971 school year from the permanent cumulative records of each child. The latelligence quotients were obtained by averaging the intelligence quotients each child received from the Otis

Quick-Scoring Test of Mental Ability. Beta Form and the SRA Test of Primary Mental Abilities. The resulting score was correlated with the cumulative grade point average the child had acquired in three selected subjects; social studies, physical education, and mathematics; as well as with the child's over-all cumulative grade point average. The correlation was accomplished by the Pearson productmoment correlation coefficient technique. The results indicated the following positive correlations: over-all cumulative grade point average aud intelligence quotient, social studies cumulative grade point average and intelligence quotient, $\frac{.81}{91 ;}$ physical education cumulative grade point average and intelligence quotient, dofi mathematics cumulative grade point average and intelligence quotient.,85*

A table of significant r 's for various degrees of freedom was consulted, and all four $r^{\prime} s$ were found signlflcant at the .Ol level.

CONCLUSIONS

This study found a high positive correlation to exist between intelligence quotient and over-all cumulative grade point average, as well as with cumulative grade point averages in social studies, physical education, and mathematics. All four relationships were found to be significant at the . Ol level.

BIBLIOGRAPHY

Books

Bradfleld, James M. and Moredock, H. Stewart. Measurement and Evaluation in Education. New York: Macmillan Co.. 1957.

Buros, Oscar K. (ed.) The Sixth Mental Measurements Yearbook. Princeton: Gryphon Press, 1965.

Fleming, Cecile W. A Detailed Analysis of Achievement in the High School. New York: Teacher's College Press, 1927.

Garrett, Henry E. Elementary Statistics. New York: Longmans, Green and Company, 1956.

Good, Carter V. (ed.) Dictionary of Education. New York: McGraw-Bill Book Company, 1959.

Guilford, J. P. Personality. New York: McGraw-H1ll Book Company, 1959.

St. John, Charles W. Educational Achievement in Relation to Intelligence. Cambridge: Harvard University Press, 1930.

Sorenson, Herbert. Psychology in Education. (3rd.ed.) New York: McGraw-Hill Book Company, 1954.

Tinker, miles A. and McCullough, Constance M. Teaching Elementary Reading. New York: Appleton-Century-Crofts, Inc., 1962.

Turabian, Kate L. A Manual for Writers of Term Papers, Theses and Dissertations. Chicago: University of. Chicago Press, 1955.

Periodicals

Bolton, F.B. "Value of Several Intelligeace Tests for Predicting Scholastic Achlevement," Journal of Educational Research, XII, (October, 1947), pp. 133-138.

Carter, Robert S. HHow Invalid are Marks Assigned by Teachers?" Journal of Educational Psycholozy, XIIII, (April. 1952),pp. 218-228.

Day, Lawrence C. "Boys and Girls and Honor Ranks," School Review, XIVI. (March, 1938), pp. 288-299.

Douglass, H. R. "Relation to High School Marks to Sex 1n Four Minnesota Senior High Schools," School Review. XLV, (March, 1937), pp. 282-288.

Edmiston, R. W. "Do Teachers Show Partiality toward Boys or Girlsz" Peabody Journal of Education, XX, (January, 1943), pp. 234-238.

Feingold, Gustave A. "Correlations between Intelligence and Scholarsh1p," School Review, XXXII, (June, 1924), pp. 455-467.

Garner, Charles E. "Survey of Teacher's Marks," School and Community, XXI, (January, 1935), pp. 116-117.

Glenn, Irene, "A Report on the Correlation of Psychological Tests with Academic and Manual Subjects," Journal of Educational Psycholozy, XIII, (November, 1922) pp. 496500.

Halliwell, Joseph W. "The Relationship of Certain Factors to Marking Practices in Individualized Reporting Programs," Journal of Educational Research, IIV, (January, 1960), pp. 76-78.

Knief, Lotus M. an"̈̀ Stroud, James B. "Intercorrelations Among Various Intelligeace, Achievement and Social Class Soores," Journal of Educational Psychology, I, (January, 1959). 117-120.

Loubaugh, Dean "Girls, Grades and I. Q.'s," Nation's Schools, EXX, (January, 1942), p. 42.

MoNemar, Quinn "Lost-Our Intelligenoe-Why?" American Psycholog1st, XIX, (December, 1964), pp. 871-882.

Nelson, Martin J. "Intelligence and Special Aptitude Tests," in Encyclopedia of Educational Research, ed. by Robert L. Ebel (4th eds London: Macmillan Company, 1969, :

Newton, R. F. "Do Men Teachers Grade Higher than Women Teachers," School and Society, IVI, (January, 1942), pp. 70-73.

Passow, A. Harry. "The Maze of research on Ability Grouping," Education Digest, XXVIII, (January, 1962), pp. 18-20.

Pressey, S.I. "The Efficiency of a Group Scale of Intelligence in Prognosticating Success and Failure in Junior High School, Journal of Applied Psychology, III, (December, 1919), pp. 381-383.

Russell, I. L. and Talman, W1lllam. H. "Personality: Does It Influence Teacher's Marks?' Journal of Educational Research, XIVIII, (April. 1955), pp. 563-564.

Shideler, John W. "Correlations of Teacher's Grades and Scores on Intelilgence Tests," School Review, MKIX, (December, 1921), pp. 733-734.

Shinner., Mack C. "Failure Ratio: Two Boys to One Girl," Clearing House, XVIII, (March, 1944), pp. 264-270.

Swenson, Clifford. "Packing the Honor Society," Clearing House, XVI, (June, 1942), pp. 521-524.

Thorndike, Robert L. "Intellectual Status and Intellectual Growth," Journal of Educational Psychology, IVII, (January, 1966), pp. 121-127.

Tyler, Leona. "Sez Differences," in Encyclopedia of Educational Research, ed. by Robert I. Ebel (4th ed.) London: Macmillan Company, 1969.

Volberding, Eleanor. "Characteristics of Successful and Unsuccessful El,even-year 0ld Pupils," Elementary School Jourral, XUIX, (May, 1949), pp. 410-419.

Yourman, Julius. "The Case Against Group I. Q. Testing," Ph1 Delta Kappan, XIVI, (February, 1964), pp. 108-110.

Waitcomb, M. Edith. "Intelligence Tests in the Primary Grades," Journal of Educational Research, V, (January, 1922). pp. 58-61

REPORTS

Manson, Geoffrey. An investigation of Achievement Grading Based on Scholastic Ability pistribution (Victoria: British Columbia Educational Research Council, 1967) in ERIC (ED-014132), pp. 17-22.

Manson, Geoffrey. "Studies and Reports-An Empirical Analysis of a System of Achlevement Grading Based on the Distribution of Scholastic Aptitude in a Class." British Columbia Educational Research Council Report No. 8, 1965, in ERIC (ED-014113).

UNPUBLISAED MATERIAL

Carey, Joseph E. "The Relationsh1p between Creative Thinking Ability, Intellectual Ability, Educational Acilevement, and Writing ability of Sixth Grade Children." Unpublished Ed.D. dissertation, Indiana University, 1966.

[^0]: ${ }^{1}$ Published by Harcourt, Brace \& World, Inc., 1962.

[^1]: lsignificance was determined by consulting

