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Abstract 

Gall making insects form a special feeding guild of phytophagous animals, and by 

manipulating host plant tissue differentiation, are able to avoid plant chemical defenses 

and thus have no need for counter defense mechanisms. Host plant selection is crucial to 

the evolution of these insects because successful gall formation is largely dependent on 

host plant ability to respond to stimuli. In Illinois and neighboring states, Antistrophus 

gall wasps associated with the rosin weed (S. integrifolium) and the cup plant (S. 

perfoliatum) are morphologically indistinguishable and thus have been treated as 

belonging to single species. However, the wasps from the host plant species display 

strong host preference to the host plant species from which they are reared as well as 

other life history differences, suggesting that they may represent two distinct, although 

cryptic, species. In order to test the competing hypotheses regarding the identity of these 

wasps, I investigated whether there exists genetic discontinuity between wasp 

populations defined by host plant species based on molecular data. Wasps associated with 

either host plant species, mostly from sympatric populations, were collected from Illinois, 

Wisconsin, Indiana, Missouri and Iowa and extracted total DNA were PCR amplified and 

sequenced for three DNA loci, including two mitochondrial genes, (Cytb and COI) and 

one nuclear gene (28S D2). Phylogenetic reconstruction for all samples based on the Cytb 

and COI genes did not recover any monophyletic lineage consisting exclusively of wasps 

sampled from either of the two host-plant species but revealed a clear pattern oflineage 

bias toward host plant species in the tree resolved from Cytb gene. Examination of 

haplotype diversity revealed five haplotypes among our Cytb (n= 60) and COI (n= 59) 

sequences, respectively and three haplotypes for the 28S gene (N= 65). Further analyses 
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of the genealogical relationship among the haplotypes using network method uncovered a 

distinct host affiliation pattern for Cytb, but not for the COi gene, similar to the results of 

the phylogenetic analyses. For the more conservative 28S gene, the wasps associated with 

the two host plant species can be readily separated based on a single indel event at 

position 181, except for one single sample (R28), which was associated with rosin weed, 

but without the extra T at 181 position found in other wasps associated with rosinweed. 

Except for this indel and an additional transitional mutation for R28, there was no 

variation throughout the entire 524 bp length of the 28S gene. These results do not 

provide unambiguous support for the cryptic species hypothesis, but revealed significant 

discontinuity between the gall wasp gene pools associated with the two host plant 

species, which may indicate incipient host plant mediated speciation. 
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Introduction 

Plant galls are abnormal plant tissue growth formed at specific reactive sites of 

vascular plants, thought to entirely to benefit the gall inducing organisms, typically 

insects and enable the gall makers to complete their life cycles. As such, a gall is a 

complex, subtle biological system that involves two important participants: gall making 

insects and their host plants (Raman et al 2005). During the process of gall development, 

the gall maker inhibits the normal plant tissue growth by triggering new morphological 

and physiological responses of their host plants (Meyer and Maresquelle 1983 ). The 

parasitic action of the gall making organisms consequently induces all types of original 

growth, including some abnormal differentiation, in the tissues of the host plant (Meyer 

1987). In this sense, plant galls are manifestation of an intricate relationship between the 

gall making insects and their host plants, where the gall making insects are intimately 

dependent on their host plants. Ultimately, the biology, ecology and evolution of gall 

making insects can be influenced by the characteristics of their host plants, resulting in 

different patterns in the interactions between gall making insects and their host plants 

(Schoonhoven et al 1998). 

The evolution of gall maker and host plant interactions is the driving force behind 

the creation of gall phenotype which is influenced by both insect genotype and plant 

genotype, where the insect phenotype represents a stimulus and plant phenotype 

represents a response (Weis 1986, 1988). From the host plants' aspect, the formation of 

insect galls originates from the environmental stimuli, and from the insects' aspect, the 

insect galls are extended phenotypes. As an extended phenotype, the gall making insect 

can to some extent control the morphology of the galls, and the physiological structure 
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changes in host plant tissues under the influence of the gall maker contribute to the insect 

gall formation (Stern 1995). Multiple studies have demonstrated that the insect genotype, 

rather than the plant genotype, is the determining factor for insect gall formation and gall 

shape, representing extended insect phenotypes of various insect groups, including 

wasps, flies, aphids and thrips (Cook 1902, Dawkins 1982, Kinsey 1920, Stern 1995, 

Stone and Cook 1998). 

As a special guild of plant feeders, the gall making insects are tremendously 

diverse; there may exist up to 211,000 species of gall making insects in 7 orders and 20 

families in the world (Espirito-Santo and Fernandes 2007). Cynipid wasps (Cynipidae, 

Hymenoptera), better known as gall wasps, represents one of the largest radiations of gall 

making insects, consisting of over 1,500 described species alone (Ronquist et al. 2015), 

especially noticeable on the oak host plant group (Cornell 1983). Members of the family 

are primarily gall making wasps, and also include inquiline wasps that do not make their 

own galls, but live in the galls made predominantly by other cynipid wasps (Ronquist et 

al 2015) and rarely by other insect so (van Noort et al. 2007, Wachi et al. 2011). It is 

generally accepted that the species diversity of Cynipidae is probably much higher than 

what is known at the present and may have as many as at least 3,000 species worldwide if 

properly studied (Ronquist 1999, Ronquist and Liljeblad 2001, Ronquist et al 2015). 

Because of the intricate nature of the interactions between a gall maker and its 

host plant, it is not surprising that most gall making insect species are highly host and 

even plant organ specific (Dreger-Jauffret & Shorthouse 1992). In Cynipidae, this 

specificity of host plant associations is seen at two different levels - they are extremely 

phylogenetically conservative in host-plant use at higher levels as compared to most other 
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phytophagous insects (Ronquist et al 2015). Cynipidae are highly diversified at the 

species level, not only host plant species specific, but also showing specificity in tissues I 

organs (Ronquist and Liljeblad 2001 ), resulting in the high species diversity associated 

with limited host plant lineages (Cornell 1983, Askew 1984). In fact, the 1,500 known 

species of cynipid wasps utilize plants belonging to a limited number of plant families. 

The tribes of Cynipini and Diplolepidini, for instance, are each exclusively associated 

with Fagaceae and Rosaceae host plants, respectively (Ronquist and Liljeblad 2001, 

Ronquist et al, 2015). 

In spite of the high species diversity and high degree of host specificity, the 

general structure of cynipid galls are nonetheless very similar, and the typical cynipid gall 

consist of three major tissue layers, the outer most peripheral tissue layer that forms the 

diverse external morphology of the galls and usually contains tannins in considerably 

higher concentrations than the normal plant tissue from which they are derived (Cornell 

1983), the middle sclerenchyma consisting of tightly aligned small and thick-walled cells, 

and the inner most layer of nutritive tissue of large, thin-walled cells that are rich in 

sugar, lipids, and protein contents and free of tannins and other secondary metabolites 

(Cornell 1983, Bronner 1992, Ronquist and Liljeblad 2001). The outer tissue layers for 

physical protection from the developing gall wasp larva receives from desiccation for the 

developing gall wasp larva (Fernandes and Price 1992, Miller et al 2009), extreme 

temperatures (Williams et al 2002), and natural enemies (Price and Pschorn-Walcher 

1988) while the developing larva derives all its nutrient needs exclusively from the inner 

nutritive tissue (Cornell 1983, Bronner 1992). 
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The interactions between plants and their specialist herbivores have long been 

considered important for the evolution of both, and the coevolutionary arms race model 

has been constructed based on the interactions between butterflies and their host plants 

(Ehrlich and Raven, 1964). According to the arms race coevolution model, herbivores 

feeding on plants select for individuals that have novel defensive compounds, which 

would provide full or partial protection against the herbivores, while those not producing 

antiherbivore compounds would have a full set of insect herbivores, resulting in reduced 

fitness relative to the mutants. The novel plant genotypes will have increased fitness 

through reducing the herbivore insect damage and therefore become more common. 

Through this process, plants can escape some or all of their herbivores, entering a "new 

adaptive zone", which represent an empty niche available for colonization by the insect 

herbivores that would subsequently evolve the ability to use them. Further defense trait 

evolution in the host plant would be necessary to counter the new attacks by the new 

insect herbivore genotype, engaging a cycle of reciprocal evolutionary responses between 

the two parties, resulting in host plants with increasingly effective defense chemistry 

against their herbivores and the herbivores with increasingly effective counter defense 

mechanisms against host plant in return (Ehrlich and Raven 1964, Marquis et al 2016). 

Because insects and angiosperm plants are the two most diverse organismal groups on the 

earth, much of the terrestrial biological diversity could be accounted for by the 

coevolutionary process that drives both the evolution and speciation of herbivorous 

insects and their host plants. 

The arms race coevolutionary model between herbivores and host plants requires 

the existence of plant defense chemicals to force host plant specialization of the 
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herbivorous insects. These host defense chemicals belong to one of the two major groups 

of internal plant compounds - secondary metabolites that may have various functions, but 

nonetheless are not essential for the basic plant growth, when compared to the nutrient 

compounds that are essential to plants' basic growth (thus the term primary metabolites) 

(Bernays & Chapman 1995). These secondary plant compounds function as toxins and 

deterrents to the herbivores (Bernays & Chapman 1995, Strauss and Zangerl 2001 ). 

Although the plant families whose members are potentially hosts to gall making insects 

contain various secondary defense chemicals (Bernays & Chapman 1995), these 

chemicals would be reallocated in differentiated cell layers of the galls. For example, 

concentrations of tannins, which are digestion inhibiting to herbivores, are found to be 

higher in the outer layers of cynipid galls than in the normal oak organs from which the 

galls are derived (Cornell 1983) while almost absent from the inner nutritive cells 

(Bronner 1992, Ronquist and Liljeblad 2001 ). This tissue differentiation of the galls 

would create an effective defense barrier against gall predators, fungi and 

microorganisms (Cornell 1983) while the nutritive cell layer free of secondary chemicals 

would relax the selection pressure for the gall making insects to deal with plants' 

chemical defense, effectively disrupting reciprocal coevolutionary cycle involving the 

regular herbivore-host plant relationship. As such, host plant specificity of gall making 

insects could not be explained as a response to the host plants' chemical defense. 

For the successful formation of galls, the female insects have to choose an 

appropriate location for oviposition, a process that involves two criteria - the correct host 

plant species and a reactive site on the plant (Weis et al. 1988). Because of the intricate 

nature between the gall making insect and its host plants as discussed above, the 
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successful gall formation depends on the appropriate response of the host plant to the 

stimuli of the gall making insects (Weis et al 1988, Raman et al 2005). In cynipid gall 

wasps, the oviposition of the female into the right plant tissue and at the right time is 

essential for successful gall induction (Ronquist and Liljeblad 2001), mostly because gall 

formation is organ specific (Cornell 1983, Askew 1984) and requires undifferentiated 

plant tissue (Weis et al 1988). In this sense, plant defenses might be more evolutionarily 

labile than being driven by herbivore traits related to the association and not constrained 

by the gall makers while the gall makers are under strong pressure to choose the right 

host plant. A mutation that causes the gall maker female to lay eggs on the wrong host 

plant species or genotype, if successful, may lead to new species event, especially when 

the original host is in short supply while the "wrong" host are abundant (Larsson and 

Ekbom 1995). This would result in an asymmetry in the evolutionary interactions 

between the gall makers and their host plants, leading to a pattern more consistent with 

ecological fitting or resource tracking hypothesis (Agosta et al, 2008, 2009) than with the 

arms race model of coevolution. This is considered especially likely for the relationship 

between insect herbivores and their host plants, leading to what has been known as 

ecological speciation for the insect herbivores (Matsubayashi et al 2010) as have been 

observed in multiple scenarios (Funk 1998; Berlacher & Feder 2002; Dres & Mallet 

2002; Jiggins 2008). A recent study by Endara et al (2017) on the tropical Inga species 

and their lepidopteran herbivores provided strong evidence for the resource tracking 

"coevolutionary" model. In the relationship between cynipid gall makers and their host 

plant, an asymmetrical evolutionary process is highly likely with the gall wasps track 
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their host plants, and host specificity and host shifting play a major role in the formation 

of new species and overall evolution of the group. 

The acceptance or rejection of a plant by insect herbivores depends on their 

behavioral responses to the plant's physical or chemical traits. All plants release a 

characteristic mixture of volatile molecules, including various short chain alcohols, 

aldehydes, ketones, esters, aromatic phenols, and lactones, as well as mono- and 

sesquiterpenes, which gives a plant its distinctive odor (Bernays and Chapman 1995). 

This characteristic mixture of volatiles varies with, and therefore, reveals significant 

information about plant identity, such as plant species and varieties within a species 

(Vivaldo et al 2017, Ahmed et al 2019) as well as plant conditions such as herbivore 

damages (McDaniel et al., 2016). Many insect herbivores use these plant volatiles as cues 

for locating their preferred host plants (e.g., Ahmed et al 2019, Gray et al 2015, Tooker 

and Hanks 2004, Tooker et al 2005). Because the mostly sessile life history of gall 

making insects, the host selection for most gall makers are completely reliant on the 

choices of the egg-laying female and thus the responses of the female to plant volatile 

cues can potentially lead to host isolation and hence speciation of the gall-maker. 

Gall making insects, due to their concealed habits, frequently show some 

specialized characteristics in their life history that may contribute to their high 

reproductive success. The typical life history of gall making insects can be categorized 

into four major types: multivoltine, bivoltine, univoltine and overlapping generations, of 

which the univoltine life history is the most common type (Weis et al. 1988). The 

univoltine life history is apparently an adaptation to the annual phenology of the host 

plants, allowing the gall makers to synchronize its development with the seasonal growth 
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of their host plants, especially when the host plants are annual or perennial herbs. As a 

specific example of univoltine gall making insects, adult females of Eurosta solidaginis 

gall fly laid an egg into the bud of the host plant in late spring. After hatching, the larva 

bores into the stem and resides in the central chamber, which will be surrounded by 8-9 

mm thick tissue layer within two months. The larva reaches full size in October and adult 

emergence from the gall takes place the next May. Cynipid gall wasps associated with 

herbaceous host plants are typically univoltine (Askew 1984). 

Highly similar life history can also lead to morphological convergence. This 

phenomenon is particularly obvious in the gall wasp family of Cynipidae: all cynipid gall 

wasps are round in general body shape, with a relatively large and round abdomen, with 

weak flight capability, and lacking characteristic external morphology other than being 

smooth, which renders species identification extremely difficult in Cynipidae (Ronquist 

1994, 1999, Ronquist et al., 2015). Taxonomy and species identification in Cynipidae 

often requires molecular data (Nicholls et al., 2018, Zhu et al., 2015, Yang et al, 2019). 

The genus Antistrophus (Cynpoidea: Cynipidae) comprises 10 valid species, of 

which eight species are primarily found in Illinois and neighboring states in the 

Midwestern USA, while only two species, i.e., A. chrysothamni and A. microseris, are 

from Arizona from California, respectively (Table 1) (Liljeblad 2018, Ginder & Liu, 

unpublished data). When life history information is available, all species of the genus are 

univoltine (Burks 1979, Fay & Hartnett, 1991, 1993; Fay et al 1996, Fay & Throop 2005, 

Tooker and Hanks 2004, Tooker et al 2005, Liu, unpublished data). Most of these galls 

are sealed galls formed inside the stems of the host plant, except for one species, A. 

silphii, which induces enlarged galls terminally on the stems of the host plant species 
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Silphium perfoliatum (Gillette 1891, Burks 1979). Fay and colleagues reported the effects 

of gall formation by A. silphii on a different host plant species, In a series studies on the 

effects of gall formation on host plant vegetative growth, Fay and colleagues for the first 

reported A. silphii on a different host plant species, the rosinweed S. integrifolium (Fay & 

Hartnett, 1991, 1993; Fay et al 1996, Fay & Throop 2005). The species identification, 

however, were apparently not subjected to solid taxonomic studies. 

Recent studies showed that wasps of Antistrophus spp. from different Silphium 

species in the Midwestern United States were reproductively isolated because of volatiles 

of the host plants (Silphium spp. ) (Tooker and Hanks 2004, Tooker et al 2005). Adult 

females rely on olfactory reception to distinguish between host plant species by receiving 

volatiles; females then choose an appropriate host plant location for oviposition (Tooker 

and Hanks 2004). The plant volatiles appear to serve as important behavioral cues for 

mate location of adult gall wasps and females of A. rufus were able to discriminate the 

monoterpene blend emitted by the stems of S. laciniatum (Tooker et al 2005). Adult 

males of the wasps species are protandrous, i.e., males emerge before the females, and as 

such are challenged for finding the appropriate mate location. Field data suggested that 

the males apparently used the plant volatiles as surrogates for sex hormone to locate the 

females by relying on plant volatiles to locate where females may choose to oviposit on 

stems of the host plant species (Tooker and Hanks 2004). In fact, the reproductive 

isolation between wasp populations associated with different host plant species were 

found to be complete such that what were considered to represent host races were 

convincingly demonstrated to be separate species (Tooker et al 2004). 
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In the case involving Antistrophus silphii complex associated with rosin weed (S. 

integrifolium) and cup plant (S. perfoliatum), the galls from the two Silphium species 

have different morphological characteristics, for example, galls on cup plants, compared 

to those on rosinweed plants, are larger on the average, softer, and lack rough pubescence 

and resin. The wasps from the cup plant galls appear to have a slight, but distinctly earlier 

emergence peak. Lab experiments have also demonstrated that the female wasps from 

both host plant species had strong preference for their own original host plant species 

(Ginder, unpublished data). Nonetheless, the wasps reared from the two host plant 

species are morphologically indistinguishable. The discrepancies between the life history 

traits and the adult morphology of the gall wasps may indicate two competing scenarios -

either the gall wasps from both Silphium species belong to the same species, as 

previously suggested (Fay & Hartnett, 1991, 1993; Fay et al 1996, Fay & Throop 2005), 

and the differences in gall morphology and life history are phenotypic variations as a 

result of the interactions with the host plants. Alternatively, the differences in gall 

morphology and life history do represent genotypic differentiation associated with host 

plant species, but relatively recent divergence time and convergent evolution, due to 

similar hosts and life history, resulted in two morphologically very similar species 

(cryptic species) or host races. 

DNA sequence data have been shown to especially useful in solving taxonomic 

problems that are not possible based on morphology and are used extensively in the 

discovery of DNA-based species identification of specimens, and characterization of 

genetic diversity of species as well as for distinguishing intraspecific from interspecific 

genetic variations (Sheth and Thaker 2017, Joy and Crespi 2007). The technique of DNA 
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barcoding relies on analyzing DNA sequences and can be used as a supplementary 

system for traditional taxonomy to distinguish millions of species, particularly those 

species without properly studied or morphological characteristic details or simply lacking 

such characteristics (Vogler and Monaghan 2007, Sheth and Thaker 2017, Hebert et al 

2003a, Hebert et al 2003b, Hebert and Gregory 2005, Nicholls et al 2010). The DNA 

barcoding system not only has the potential to database the DNA sequences, but also 

contains a wealth of analytical and bioinformatics tools to derive large numbers of 

meaningful conclusions about biological diversity as well as facilitates specimen 

identification by using simple molecular protocols (Teletchea 2010, Kress and Erickson 

2008, Ji et al 2013, Bhargava and Sharma 2013). The synergistic use of DNA barcoding 

and traditional taxonomy can be beneficial in constructing a proper mechanism for 

biodiversity conservation and overcome drawbacks of each method alone (Sheth and 

Thaker 2017). 

The mitochondrial DNA barcodes are commonly used in systematic and 

ecological studies for species-level identification by sequencing high variable gene 

regions, such as cytochrome oxidase I gene (COI) and cytochrome b gene (Cytb ). Their 

applications were found in studies of phylogeny reconstruction, population genetics, 

evolutionary mechanisms of phytophagy and other life history traits, and coevolutionary 

relationship between host plant and gall making insects as well as evolution and 

geographic expansion of invasive pests including some gall making insects (Ndong et al 

2015, Ballard and Whitlock 2004, Detwiler and Janovy 2008, Avise 2009, Muths et al 

2008). COI barcodes in particular have been shown to reliable for defining 

phylogeographic groups within species and identifying taxa from species complexes 
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(Hebert et al 2003a, Porter and Hajibabael 2018) while Cytb sequences can provide 

information on within-species variation as well as between-species relationships (Rogers 

and Gonzalez 2010). Because both COi and Cytb genes have strong interspecific 

variability and intraspecific polymorphism, they are commonly more discriminating than 

nuclear genes in the study of DNA barcoding (Borsa et al 2009, Acs et al 2010) and have 

become the standard genetic markers for species identification and lower level phylogeny 

reconstruction (e.g., Kjer et al. 2014, Zhu et al., 2015, Zhou et al. 2016, Nicholls et al., 

2018, Huang et. al, 2019, Yang et al., 2019). 

In studies on phylogenetic relationship at lower taxonomic levels above species, 

some moderately conservative nuclear gene markers, such as the large nuclear ribosomal 

RNA gene 28Sgene, are considered more useful (Acs et al, 2010, Leon et al 2016). 

Sequence data of these genes are often combined with mitochondrial sequence data to 

determine the species-level identification and description (Friedrich and Tautz 1997, Acs 

et al 2010, Li et al 2010, Ronquist et al., 2015, Schweger et al 2015a, 2015b, Yang et al. 

2019). Because the ribosomal 28S gene is relatively conserved limited intraspecific and 

interspecific variation (Low et al 2014), it is not suitable for DNA barcoding. However, 

non-coding regions of nuclear DNA genes may also be highly variable and thus useful for 

genealogical as well as taxonomic studies at the species level or below, such as the 

internal transcribed spacer (ITS) gene makers ITS 1 and ITS2 (De Rojas et al. 2006, 

Zhang et al. 2019). For that reason, ITS 1 and ITS2 DNA were also sequenced as part of 

the effort to decode the identity of the Antistrophus gall wasps associated with S. 

integrifolium and S. perfoliatum plants (Ginder and Liu, unpublished data). For my thesis 

project, I used DNA sequence data of three gene markers, including mitochondrial (COi 
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and Cytb) and one nuclear (28S) to examine whether the populations of Antistrophus gall 

wasps associated the two Silphium species represent distinct gene pools and discuss the 

implication of the results regarding host plant species mediated speciation of the gall 

making insects as a specialized herbivores. 
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Materials and methods 

Sampling 

Galls were collected in the winter months of the previous year or in early spring 

before May and kept in screened containers. Adult wasps were killed and fresh preserved 

in 100% ethanol after emergence and specimens were stored in freezer at -20 cc or lower 

temperature. The entire set of samples consisted of 68 Antistrohpus species (35 from 

rosin weed and 33 from cup plant) collected as galls from Batavia, Illinois and adults 

from Charleston, Illinois; Clinton, Indiana; Marshall, Iowa; Trempealeau, Wisconsin; 

Missouri (Ginder and Liu, unpublished data). These samples were code named as Rl to 

R37 and Cl to C34, representing their respective host association with the rosin weed (S. 

integrifolium) and the cup plant (S. perfoliatum ). The entire collection includes 4 

samples from cup plant and 8 from rosin weed from F ermilab, Batavia, Illinois, 10 

samples from rosin weed and 2 from cup plant from Marshall, Iowa, 12 samples from 

rosin weed and 8 from cup plant from Trempealeau, Wisconsin, 5 samples from rosin 

weed from Missouri, and 17 and 2 samples from cup plant from Clinton, Indiana and 

Lincoln Log Cabin, Charleston, Illinois, respectively (Fig.1, Table 2). 

DNA extraction and sequencing 

Whole genomic DNA was extracted from the entire insect with wings removed 

using proteinase K protocol (Schwenk et al 1998). Extracted DNA was eluted in RNAse 

free water and stored in -20 cc freezer until being used for PCR amplification. 

In this study, two mitochondrial genes, cytochrome b (Cytb) and cytochrome c 

oxidase subunit I (COI), and one nuclear gene, ribosome RNA gene D2 region 28S D2 

(28S). A Cytb fragment about 492 bp long was amplified using the forward primer CB 1 
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(5' TAT GTA CTA CCA TGA GGA CAA ATA TC 3') and reverse primer CB2 (5' ATT 

ACA CCT CCT AAT TTA TTA GGA AT 3') (Jermiin and Crozier 1994). A COi 

fragment about 703 bp long was amplified using the forward primer LC0-1490 (5' GGT 

CAA CAA A TC AT A AAG AT A TTG 3 ') and reverse primer HC0-2198 ( 5' T AA ACT 

TCA GGG TGA CCA AAA AAT CA 3') (Folmer et al 1994). A 524 bp long fragment of 

the D2 expansion of28S gene was amplified using forward primer D2f (5' CGT GTT 

GCT TGA TAG TGA AGC 3') and reverse primer D2r (5' TCA AGA CGG GTC CTG 

AAA GT 3 ') (Hancock et al 1988). For all genes, each 25 µl polymerase chain reaction 

(PCR) mix cocktail was carried out in a PTC-100 Programmable Thermal Controller (MJ 

Research) and consisted of 12.5µ1 2X GoTaq Green MasterMix, 2.0µ1 of each primer, 

7.5~tl RNase Free water and 1.0µ1 DNA template. MasterMix are ready-to-use 2X 

solutions that contain optimal concentrations of GoTaq DNA polymerase, dNTPs, MgCb 

and reaction buffer for efficient amplification of DNA templates. The Cytb mix cocktails 

were denatured initially with 5 min at 95°C, followed by 35 cycles of 1 min denaturation 

at 95°C, 1 min annealing at 48°C and 1 min elongation at 72°C, with final step of 5 min 

at 72°C for final extension. The cycling conditions of COi gene were almost the same as 

for Cytb, except that only 30 thermal cycles were used. The PCR thermal regime of 28S 

D2 was very similar to that for Cytb amplification, except that a lower annealing 

temperature ( 45°C) was used. The amplified PCR products were then loaded onto precast 

1 % agarose gel (0.8g molecular grade agarose and 40ml TBE buffer) with 1 µl 6 x 

GelRed loading dye (Biotium, USA) added and run on Owl EasyCast Minigel System B2 

(Thermal Fisher, USA) at l 20V DC for detection of successful amplification. After 

running for 30 min, the gel was visualized using Gel Doc XR+ gel imager (Bio-Rad, 
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USA). Successfully amplified PCR products were sequenced by Invitrogen (Shanghai, 

China). 

Sequence analysis and Phylogenetic reconstruction 

All samples sequence by Invitrogen were reviewed for sequence quality and 

sequences with ambiguous peaks were discarded. Out of the 204 sequenced samples (68 

for each genes), a total of 185 sequences were kept for further analysis, including 60 for 

Cytb, 59 for COI, and 65 for 28S D2. For outgroup comparison, Cytb sequence of 

Periclistus brandtii (GenBank accession number: AF395141.l) and COI gene sequence 

of Antistrophus rufus (GenBank accession number: DQ012626.1) were retrieved from 

GenBank. All new sequences acquired in this project were also submitted to GenBank for 

permanent depository (Table 2). 

Multiple sequence alignment was conducted separately for gene using Clustal X 

implemented in MEGA X using default parameters (Kumar et al 2018). Each sequence 

set was then trimmed to remove excessive leading and trailing gaps and the final aligned 

sequence lengths for Cytb, COI, and 28S were 390bp, 638bp, and 524bp, respectively. 

The best-fit model of base substitutions was tested using MrModeltest 3.7 (Nylander 

2004) using the Akaike information criterion (AIC). The chosen best-fit models of base 

substitution, GTR for Cytb, HKY for COi, and F81 for 28S D2 were incorporated into 

subsequent phylogenetic analysis. All the phylogenetic analysis was carried out in 

Mrbayes 3.2 (Ronquist et al 2011) and ran under the parameters of the above best 

models. GTR model (nst = '6', rates= 'equal') for Cytb, HKY model (nst = '2', rates= 

'equal') for COi and F81 model (nst = '1 ',rates= 'equal') for 28S D2. For all analyses, 

1,000,000 generations were run and were sampled every 10001h generations (10,000 trees 
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were sampled). A majority consensus tree was calculated after discarding the initial 30 

percent sampled trees from all trees saved in Bayesian analysis using Monte Carlo 

Markov Chain sampling. The final phylogenetic trees were manipulated for better 

presentation in Figtree 1.4.3 (Rambaut 2012). Host plant association of wasps were 

optimized onto Cytb, COI and 28S D2 gene trees using PAUP* 4.0blO (Swofford 2003) 

to examine whether phylogeny matches with host association, and hence provide 

evidence for cryptic species or genotypic isolation associated with host plant species. 

Haplotypes diversity and genealogical relationship among gene haplotypes 

Aligned sequence data for each gene were subjected to PAUP* 4.0blO (Swofford 

2003) for detecting haplotypes. Since genetic exchange between population of same 

species and even between closely related species, although to a much less degree, the 

genealogical relationship among samples from different populations is rarely bifurcating. 

Tather, population level genealogical relationship is very likely to be reticulate due to 

genetic exchange between organism. Therefore, network methods have been extensively 

used to infer population level genealogies based on nucleotide sequences, especially 

when divergence level are low. In this study, genealogical relationship network among 

the haplotypes of the three gene markers was each estimated using TCS 1.21, a software 

package useful for estimating relationships among organisms with traditional methods or 

for exploring phylogeographic history of organisms with a nested analysis procedure 

(Clement et al 2005). The final networks of haplotype relationships were incorporated 

with information on host plant association as well as frequency of association types. 
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Results 

Phylogenetic analyses 

The phylogenetic tree among Cytb sequences found using Bayesian method 

resolved one major monophyletic clade consisting of all wasps associated with rosin 

weed, together with 6 samples associated with cup plant (Fig 2). Shown in the umooted 

tree, the Cytb sequences is divided into two clusters, one consisting of two haplotypes 

exclusively associated with cup plant and other consisting of three haplotypes 

predominantly associated with rosin weed host plant on (Fig 3). The phylogenetic tree 

among COI sequences did not show much resolution nor reveal any consistent host 

association pattern (Fig 4). The radiate phylogenetic tree based on COI also did not show 

much resolution pattern (Fig 5). No relationship was resolved at all for the 28S D2 

sequences (Fig 6). 

Haplotype diversity and network analyses 

Five haplotypes were detected for Cytb and COI, respectively (Table 3). The five 

Cytb haplotypes can be further grouped into two sets based on genealogical relationship: 

CTI and satellites (CT3 and CT5), which are predominantly associated with rosin weed, 

and CT2 and satellite CT4, which are exclusively associated with cup plant (Fig. 7). CTI 

as the largest clade comprised 26 samples from rosin weed and only 2 samples from cup 

plant, whereas CT2 comprised 20 samples from rosin weed and 0 from cup plant. Clade 

CT2 only showed one mutation from clade CTI, which illustrated a C-to-T substitution at 

nucleotide position 44 in the 390bp Cytb segment. Clade CT3 consisted of 2 samples 

from cup plant with single mutation from clade CTI, and the substitution was transferred 

from C to T at 233 diagnostic nucleotide position. Clade CT5 comprised 5 samples from 
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rosin weed and 2 samples from cup plant. It also showed one single mutation from clade 

CTI, which is a T-to-C substitution at 230 diagnostic nucleotide position. Clade CT4 

comprised 2 samples from cup plant that revealed two mutations from clade CTl and one 

mutation from clade CT2. One mutation was the same as the C-to-T substitution of CT2 

from CTl, and the other substitution was a T-to-A at 390 diagnostic nucleotide position. 

For COi, most sequences (87%) belong to the single dominant haplotype COl 

and no haplotype with a membership size larger than 3 display exclusive or dominant 

host plant association or affinity (Fig. 8). Clade C02 with only one sample from rosin 

weed revealed 4 mutations from clade CO 1. These substitutions were transferred from A 

to Tat 624 diagnostic nucleotide position in the 638bp COi segment, and deleted three 

codons A, T and A from 636-638 diagnostic nucleotide positions, respectively. Clade 

C03 with only one sample from cup plant revealed one G-to-A substitution at 404 

diagnostic nucleotide position from clade CO 1. Clade C04 comprised 3 samples from 

rosin weed and also revealed one mutation from clade COl. It identified as a G-to-A 

substitution at 554 diagnostic nucleotide position. Clade COS comprised 3 samples from 

rosin weed and 2 samples from cup plant. It contained the same mutation as C04 and 

also had another G-to-A substitution from clade COl 

Only three haplotypes were detected with 28S D2 sequences and they are 

separated from each other by only a single mutation: 28S 1 separated from 28S2 and 

28S3 by one single INDEL, with an extra Tat nucleotide 181 position while the 

monotypic 28S3 is separated from 28S2 and 28S3 haplotypes by one single transition at 

148 diagnostic nucleotide position - the 28S3 has "T" instead of "G". Based on 

comparison with outgroup Hedickiana levantina, "T" at 148 position for sample R28 is 
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autoapomorphic while an insertion of a "T" at 181 position is synapomorphic for all 

samples associated with rosin weed except R28, which lacks the assumedly inserted "T" 

(Fig. 10). With regard to host plant association, 28S2 is exclusively associated with cup 

plant, while 28S 1 and 28S3 are both exclusively associated with rosin weed (Fig. 9). 
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Discussion 

Phylogenetic trees can represent the phylogenetic relationships among the studied 

populations and phylogenetic reconstruction of barcode sequences can reveal 

susceptibility at the species level (Ndong et al 2015). Populations that share more novel 

molecular variations are more likely to belong the same species and therefore conclusions 

about species identity is dependent on the level of variation detected in used gene 

regions. Gene markers differ in their evolution rate and therefore are suitable for 

resolving phylogenetic relationships at different levels - the more conservative genes are 

more suitable to resolve relationships rooted in evolutionary time while the less 

conservative genes are more useful for resolving relationships that are relatively recent in 

evolutionary time (Simon et al 1994, Brower & DeSalle 1994). Because of the 

uncertainty as to whether the Antistrophus wasps associated with rosin weed and cup 

plant belong to the same or two different species, our team has chosen 4 relatively more 

variable gene makers (itsl, its2, Cytb, and COI) that are considered and often used in 

resolving genealogical relationship at within species or at species level or slightly beyond 

(Simon et al 1994, Acs et 1010, Yang et al 2019). In addition, we also included a 

relatively conservative gene marker, the 28S rNRA nuclear gene D2 region (Brower & 

DeSalle 1994, Acs et al 2010), which may display limited variation among closely related 

species (Acs et al 2010, Schweger et al 20 l 5a, 2015b, Yang et al 2019). The variation of 

its 1 and its2 genes is currently studied in a parallel sub-project and not yet clear at this 

stage. For the gene makers used in my thesis project, 28S D2 gene was only variable at 

two of the 628 molecular loci, which was not sufficient to provide any resolution about 
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phylogenetic relationship among the included sample sequences. This is expected given 

the that this is a conservative gene as discussed above. COi has been frequently used for 

DNA barcoding (Borsa et al 2009, Acs et al 2010, Kjer et al. 2014, Zhu et al., 2015, Zhou 

et al. 2016, Nicholls et al., 2018, Huang et. al, 2019, Yang et al., 2019). Phylogenetic 

reconstruction using the COi sequences of the samples included in this study resulted in 

only limited resolution; the only resolved relationship is a clade consisting of 8 samples, 

of which 6 were from rosin weed and 2 from cup plant (Fig. 4). The phylogenetic tree 

based on Cytb gene marker were able to reveal more detail about relationships among the 

sequences - most samples (63%) were shown to form a monophyletic clade, within which 

the small clades were supported. It is interesting to notice that all samples of one of the 

two smaller supported clades of the Cytb tree, are the same samples supported as a 

monophyletic clade on COi tree, except one extra sample in the COi tree (R4) (Fig. 5). 

Cytb, and especially COI, are commonly used for DNA barcoding, especially for 

Cynipoidea and other insect groups (Acs et al 2010, Kjer et al. 2014, Zhu et al., 2015, 

Zhou et al. 2016, Nicholls et al., 2018, Huang et. al, 2019, Yang et al., 2019). The 

extremely low variation of the two gene markers among our samples may indicate all 

samples belong to a single species. Nonetheless, the Cytb tree did indicate some genetic 

differentiation, all rosin weed associated samples, together with 6 samples, or 21.4% of 

all that were associated with cup plants, form a monophyletic clade (Fig. 5). 

The fact that five haplotypes were identified among the Cytb and COi sequences 

while only three haplotypes were identified for 28S D2 sequences (Table 3) is consistent 

with the current literature in that 28S is more conservative than Cytb and COi (Bower & 

DeSalle 1994, Simon et al 1994, Acs et al 2010, Yang et al 2019). For the two relatively 
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variable genes COI and Cytb, the network analyses of haplotype genealogical 

relationship did not reveal any haplotype divergence associated with the two host plant 

species among COI haplotypes (Fig. 8) whereas a distinct pattern of haplotype 

divergence associated with host plant species was observed for the Cytb haplotypes - the 

Cytb haplotypes can be divided into two groups (Fig. 7). The first Cytb haplotype group 

consists of CTI, the most common haplotype and its two satellite haplotypes CT3 and 

CT5 and is predominantly associated with S. integrifolium (87% ). The second Cytb 

haplotype group consists of CT2, the second most common haplotype, and CT4, and is 

completely associated S. perfoliatum. Although both COI and Cytb genes are frequently 

used for DNA barcoding, COI is generally considered to be more reliable in defining 

species, especially for insects and other invertebrate groups (Acs et al 2010, Kjer et al. 

2014, Zhu et al., 2015, Zhou et al. 2016, Nicholls et al., 2018, Huang et. al, 2019, Yang et 

al., 2019). The lack of COI sequence divergence in correspondence with host plant 

species association might suggest that the populations of the Antistrophus gall wasps 

associated with the both host plant species belong to one single species. Nonetheless, the 

clear pattern of Cytb sequence divergence in correspondence with host plant species 

association strongly indicate the lack of gene flow between the populations of the 

Antistrophus gall wasps associated with the both host plant species belong to one single 

species, suggesting high level of reproduction isolation of the wasp populations 

associated with the two host plant species, and thus the existence of two distinct species, 

or highly isolated host races. 

With regard to 28S D2 gene marker, it is not surprising to see the low variability 

among the sequences, and in fact, the gene marker was not much expected to be useful at 
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all. The limited, yet consistent variation of this gene among the Antistrophus wasp 

samples in the current study provides strong support, like the Cybt gene marker, for the 

hypothesis of the existence of two distinct species, especially considering the fact that 

28S is highly conservative gene (Acs et al 2010, Yang et al 2019). 

As 28S D2 gene is concerned, there are two equally plausible evolutionary 

scenarios concerning the genealogical relationship among the wasp samples, whether 

they are considered to belong to one or two distinct species. It is possible that the 

ancestral host association of these wasps was with rosin weed and a rosin weed in host to 

association with cup plant, accompanied by the 181 position indel, separated 28S 1 from 

the ancestor of 28S2 and 28S3, which subsequently reversed back to rosin weed, 

accompanied with a G-to-T transition at 148 diagnostic nucleotide position. 

Alternatively, the ancestral host association of the complex was with cup plant, the 

transition occurred in 28S3, in accordance with host association change while the 181 

position indel event took place in accordance with host shift to rosin weed. 

Plant volatiles as the most important parameter to identify the chemical defense of 

host association in the outer cell layers of galls especially the cue of secondary defense 

chemicals (Cornell 1983). A phylogenetic study based molecular data has shown that 

rosin weed and cup plant belong to a crown group with another Silphium species 

(Clevinger and Panero 2000). Therefore, the two species may share similar metabolic 

mechanisms to respond to stimuli by egg laying female as well as developing larva of any 

gall wasp species that may be able to form galls on any of the species. Therefore, errors 

by ovipositing females are likely to succeed, especially at high gall density (Larson & 

Ekbom 1985) and yield fertile offspring. When the emerging females prefer the original 
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host due to simply being used to the volatile blend characteristic of the original host and 

males rely on their olfaction to locate females (Tooker and Hanks 2004, Tooker et al 

2005), assortative mating could occur, which would eventually lead to the formation of 

new species given enough time. The results of my study demonstrated that this is highly 

likely, although the exact mechanisms of genotype divergence with host association need 

to be examined using well control host selection experiments. 

25 



Reference 

Acs, Z., Challis, R., Bihari, P., Blaxter, M., Hayward, A., Melika, G., Cs6ka, Gy., Penzes, 

Z., Pujade-Villar, J., Nieves-Aldrey, J.L., Schonrogge, K. & Stone, G.N. (2010). 

Phylogeny and DNA barcoding of inquiline oak gall wasps (Hymenoptera: 

Cynipidae) of the Western Palaearctic. Molecular Phylogenetics and Evolution 55, 

210-225. doi: 10.1016/j.ympev.2009.12.004 

Agosta, Salvatore J.; Jeffrey A. Klemens. (2008). Ecological fitting by phenotypically 

flexible genotypes: implications for species associations, community assembly and 

evolution. Ecology Letters. 11 (11): 1123-1134. 

Agosta, Salvatore J.; J. A. Klemens. (2009). Resource specialization in a phytophagous 

insect: no evidence for genetically based performance trade-offs across hosts in the 

field or laboratory. Journal of Evolutionary Biology, 22: 907-912. 

Ahmed, N., Darshanee, H. L. C., Khan, I. A., Zhang, Z-F., Liu, T.-X. (2019). Host 

Selection Behavior of the Green Peach Aphid, Myzus persicae, in Response to 

Volatile Organic Compounds and Nitrogen Contents of Cabbage Cultivars. 

Frontiers in Plant Science, 10:79.doi: 10.3389/fpls.2019.00079. 

Askew, R.R. (1984). The biology of gall wasps. In: Ananthakrishnan, T. N. (Ed.). 

Biology of Gall Insects, pp. 223-271, Edward Arnold, London. 

A vise, J.C. (2009). Phylogeography: retrospect and prospect. Journal of Biogeography, 

vol.36, pp.3-15. 

Ballard, W.J.O., and M.C. Whitlock. (2004). The incomplete natural history of 

mitochondria. Molecular Ecology, vol.13, pp.729-744. 

26 



Bassett, H.F. (1900). New species of North American Cynipidae. Transactions of the 

American Entomological Society. 26: 310-36. 

Berlocher S. H. & Feder J.L. (2002). Sympatric speciation in phytophagous insects: 

moving beyond controversy? Annual Review of Entomology 47: 773-815. 

Bernays, E.A. and R.F. Chapman. (1995). Host-plant Selection by Phytophagous Insects. 

Chapman and Hall, New York. 

Beutenmueller. (1908). A new Cynipid from Arizona. Journal of the New York 

Entomological Society. 16: 45. 

Bhargava, M. and A. Sharma. (2013). DNA barcoding in plants: Evolution and 

applications of in silico approaches and resources. Molecular Phylogenetics and 

Evolution. 67(3 ): 631-641. 

Bronner R. ( 1992). The role of nutritive cells in the nutrition of cynipids and 

cecidomyiids. In: Shorthouse JD, Rohfritsch 0, eds. Biology of insect-induced 

galls. Oxford: Oxford University Press, 118-140. 

Brower, A. V. Z., and DeSalle, R. (1994). Practical and theoretical considerations for 

choice of a DNA sequence region in insect molecular systematics, with a short 

review of published studies using nuclear gene regions. Ann. Entomol. Soc. Am. 

87: 702-716. 

Burks, B. D. (1979). Superfamily Cynipoidea. In. K. V. Krombein et al, P. D. Hurd, Jr., 

D.R. Smith, and B. D. Burks (eds.), Catalog ofHymenoptera in America north of 

Mexico, vol.I, Symphyta and Apocrita, 1045-1107. Smithsonian Institution Press, 

Washington, DC. 

27 



Borsa, P., S. Lerner, W.J. Chen, A. Collet, A.Carassou, and D. Ponton. (2009). 

Identification par barcode (sequences nucleotidiques d'un fragment du gene 

ducytochrome b) des larves de Lethrinidae capturees en baies de Dumbea et Ouano 

(Nouvelle-Caledonie). Programme d'evaluation des ressources marines de la zone 

economique de Nouvelle-Caledonie, IRD, UR 128, Noumea, Nouvelle-Caledonie. 

Clement, M, Posada, D, and Crandall KA. (2000). TCS: a computer program to estimate 

gene genealogies. Mol. Ecol. 9: 1657-1660. Doi: 10.1046/j .1365-294x.2000.01020 

Clevinger, J., & Panero, J. (2000). Phylogenetic Analysis of Silphium and Subtribe 

Engelmanniinae (Asteraceae: Heliantheae) Based on ITS and ETS Sequence 

Data. American Journal of Botany, 87(4), 565-572. Retrieved from 

http://www.jstor.org/stable/2656600 

Cornell, J.L., Paicos, P. (1983). Downy woodpecker predation of goldenrod galls. 

Journal of Field Ornithology. 56: 56-64. 

Cook, M.T. (1902). Galls and the insects producing them. Ohio Nat. II: 263-278. 

Dawkins, R. (1982). The extended phenotype. Oxford University. Press, Oxford, U.K. 

De Rojas, Manuel, Ubeda, Jose Manuel, Cutillas, Cristina, Mora, Ma. Dolores, Ariza, 

Concepcion, and Guevara, Diego. (2007). Utility ofITS1-5.8S-ITS2 and 16S 

mitochondrial DNA sequences for species identification and phylogenetic inference 

within the Rhinonyssus coniventris species complex (Acari: Rhinonyssidae ). 

Parasitology Research, 100: 1041-1046. 

Detwiler, D., and J. Janovy. (2008). The role of phylogeny and ecology in experimental 

host specificity: insights from a eugregarine-host system. Journal of Parasitology., 

vol.94(1), pp.7-12. 

28 



Dreger-Jauffret, F. and J. D. Shorhouse. (1992). Diversity of gall-inducing insects and 

their galls. In: Shorthouse JD, Rohfritsch 0, eds. Biology of insect-induced galls. 

Oxford: Oxford University Press, 8-33. 

Dre's M. and Mallet J. (2002). Host races in plant-feeding insects and their importance in 

sympatric speciation. Philosophical Transaction of the Royal Society of London B: 

Biological Sciences, 357: 471-492. 

Endara, M., Coley, P.O., Ghabash, G., Nicholls, J.A., Dexter, k.G., Donoso, D.A., Stone, 

G.N., Pennington, R.T. and Kursar, I.A. (2017). Coevolutionary arms race versus 

host defense chase in a tropical herbivore-plant system. Proceedings of the National 

Academy o[Sciences. 114(36): 7499-7505. DOI: 10.1073/pnas.1707727114 

Ehrlich, P.R. and P.H. Raven. (1964). Butterflies and plants: a study in coevolution. 

Evolution 18: 586-608. 

Espirito-Santo, M. M. and G. W. Fernandes. (2007). How Many Species of Gall

Inducing Insects Are There on Earth, and Where Are They? Annals of the 

Entomological Society ofAmerica, 100: 95-99. 

Fay, P.A. and D. C. Hartnett. (1991). Constraints on growth and allocation patterns of 

Silphium integrifolium (Asteraceae) caused by a cynipid gall wasp. Oecologia. 88: 

243-250. 

Fay, P.A., D. C. Hartnett, and A. K. Knapp. (1993). Increased photosynthesis and water 

potentials in Silphium integrifolium galled by cynipid wasps. Oecologia. 93: 114-

120. 

Fay, P.A., Hartnett, D.C., and Knapp, AK. (1996). Plant tolerance of gall-insect attack 

and gall-insect performance. Ecology. 77(2): 521-534. 

29 



Fay, P.A. and Throop, H.L. (2005). Branching responses in Silphium integrifolium 

(Asteraceae) following mechanical or gall damage to apical meristems and neighbor 

removal. American Journal of Botany. 92(6): 954-959. 

Fernandes GW and Price PW. (1992). The adaptive significance of insect gall 

distribution: survivorship of species in xeric and mesic habitats. Oecologia. 90: 14-

20. 

Folmer, 0., Black, M., Wr, H., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for 

amplification of mitochondrial Cytochrome C oxidase subunit I from diverse 

metazoan invertebrates. Molecular marine biology and biotechnology. 3. 294-9. 

Friedrich, M., and Tautz, D. (1997). Evolution and phylogeny of the Diptera: a molecular 

phylogenetic analysis using 28S rDNA sequences. Systematic Biology. 46(4): 674-

698. 

Funk JD, Filchak KE, and Feder JL. (1998). Herbivorous insects: model systems for the 

comparative study of speciation ecology. Genetica 116: 251-267. 

Gillette C. P. (1891). Descriptions of new Cynipidae in the collection of the Illinois State 

Laboratory of Natural History. Bulletin of the Illinois State Laboratory of Natural 

History. 3: 191-197. 

Gray, C.A, Runyon, J.B, Jenkins, M.J, Giunta A.D. (2015). Mountain Pine Beetles Use 

Volatile Cues to Locate Host Limber Pine and A void Non-Host Great Basin 

Bristlecone Pine. PLoS ONE. 10(9): e0135752. 

Hancock, J. M., and G. A. Dover. (1988). Molecular coevolution among cryptically 

simple expansion segments of eukaryotic 26S/28S rRNAs. Mol. Biol. Evol. 5:377-

392. 

30 



Hebert, P.D. & T.R. Gregory. (2005). The promise of DNA barcoding for taxonomy. 

Systematic Biology. 54(5): 852-859. 

Hebert, P. D., Cywinska, A., and Ball, S.L. (2003a). Biological identifications through 

DNA barcodes. Proceedings of the Royal Society B: Biological. Sciences. 

270(1512): 313-321. 

Hebert, P.D., S. Ratnasingham, and J. R. deWaard. (2003b). Barcoding animal life: 

cytochrome c oxidase subunit 1 divergences among closely related species. 

Proceedings of the Royal Society B: Biological Sciences. 270: S96-S99. 

Huang, T-F, Liu, Z., Gong, X-Y, Wu, T., Liu, H., Deng, J-X., Zhang, Y-X, Peng, Q-Z., 

Zhang, L-B., & Liu, Z-X. (2019). Vampire in the darkness: a new genus & species 

of land leech exclusively attacking cave-dwelling bats from China (Hirudinia: 

Arhyinchobdellida: Haemadipsidae). Zootaxa 4560 (2): 257-272. DOI: 

10.11646/zootaxa.4560.2.2 

Jermiin, L.S. and Crozier, R.H. (1994). The cytochrome B region in the mitochondrial 

DNA of the ant Tetraponera rufoniger-sequence divergence in Hymenoptera may 

be associated with nucleotide content. J Mol Evol 38:282-294 

Ji, Y., L. Ashton, S.M. Pedley, D.P. Edwards, Y. Tang, A. Nakamura, et al. (2013). 

Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. 

Ecology Letters. 16(10): 1245-1257. 

Jiggins, C.D. (2008). Ecological speciation in mimetic butterflies. BioScience 58: 541-

548. 

Joy, J.B., and B. J. Crespi. (2007). Adaptive radiation of gall-inducing insects within a 

single host-plant species. Evolution. 61: 784-795. 

31 



Kjer KM, Zhou X, Frandsen PB, Thomas JA, Blahnik RJ. (2014). Moving toward 

species-level phylogeny using ribosomal DNA and COI barcodes: an example from 

the diverse caddisfly genus Chimarra (Trichoptera: Philopotamidae). Arthropod 

Syst. Phylogeny 72, 345-354. 

Kress, W. J. and D. L. Erickson. (2008). DNA barcodes: genes, genomics and 

bioinformatics. Proceedings of' the National. Academy of Sciences of the United 

States ofAmerica. 105(8): 2761-2762. 

Kinsey, A.C. (1920). Phylogeny of Cynipid genera and biological characteristics. Bulletin 

of the American Museum National History. 42:357-402. 

Kumar, Sudhir & Stecher, Glen & Li, Michael & Knyaz, Christina & Tamura, Koichiro. 

(2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing 

Platforms. Molecular biology and evolution. 35. 10.1093/molbev/msy096. 

Larsson, S. and B. Ekbom. (1995). Oviposition Mistakes in Herbivorous Insects: 

Confusion or a Step Towards a New Host Plant? Oikos. 72: 155-160. 

Le6n, G.P., Pinacho-Pinacho, C.D., Mendoza-Garfias, B., Choudhury, A., & Garcia

Varela, M. (2016). Phylogenetic Analysis Using the 28S rRNA Gene Reveals That 

the Genus Paracreptotrema (Digenea: Allocreadiidae) Is Not Monophyletic; 

Description of Two New Genera and One New Species. The Journal of 

parasitology, 102: 131-42. 

Li, Y., X. I. N. Zhou, G. Feng, H. Hu, L. Niu, P. D. Hebert, and D. Huang. (2010). COI 

and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig

associated Sycophila. (Hymenoptera, Eurytomidae ). Molecular Ecology Resources. 

10: 31-40. 

32 



Liljeblad, J. (2018). Hymenoptera Online (HOL). [Online] Available from 

https://hol.osu.edu/search.html?limit=50&name=Antistrophus. [accessed 27 

November 2018]. 

Low V.L., Tan, T.K., Lim, P.E. et al. (2014). Use of COi, CytB and ND5 genes for intra

and inter-specific differentiation of Haematobia irritans and Haematobia exigua. 

Veterinary Parasitology. 204: 439-442. 

McDaniel, T., Tosh, C. R., Gatehouse, A. M. R., George, D., Robson, M., and Brogan, B. 

(2016). Novel resistance mechanisms of a wild tomato against the glasshouse 

whitefly. Agronomy for Sustainable Development. 36: 14. doi: 10.1007Is13593-016-

0351-4. 

Matsubayashi, K. W., I. Ohshima, and P. Nosil. (2010). Ecological speciation in 

phytophagous insects. Entomologia Experimental is et Applicata 134: 1-27. 

Marquis RJ, Salazar D, Baer C, Reinhardt J, Priest G, Barnett K. (2016). Ode to Ehrlich 

and Raven or how herbivorous insects might drive plant speciation. Ecology. 97: 

2939-2951. PMID 27870033 DOI: 10.1002/ecy.1534 

McCracken, I., and Egbert, D. (1922). California gall-making Cynipidae with 

descriptions of new species. Stanford University Publications, University Series. 

Biological Sciences, 3(1): 1-70. 

Meyer, J. (1987). Plant galls and gall inducers. Gebruder Brontraeger, Stuttgart, Germay. 

Meyer, J., and H.J. Maresquelle. (1983). Anatomie des galles. Handbuch der 

Pjlanzenanatomie, Volume XIII, 1. Gebruder Brontraeger, Stuttgart, Germay. 

33 



Miller, D. G., C. T. Ivey, and J. D. Shedd. (2009). Support for the microenvironment 

hypothesis for adaptive value of gall induction in the California gall wasp, Andricus 

quercuscalifornicus. Entomologia Experimentalis et Applicata. 132: 126-133. 

Morrison, D .A. and Ellis, J. T. (1997). Effects of nucleotide sequence alignment on 

phylogeny estimation: A case study of 18S rDNAs of apicomplexa. Molecular 

Biology and Evolution. 14, 428-441. 

Muths, D., E. Tessier, and J. Bourjea. (2008). Contribution de la genetique des 

populations a l' etude de la connectivite regionale de certaines especes de poissons 

commerciaux presents dans la Reserve N aturelle Marine de La Reunion: etude de 

faisabilite. Pare Marin, Reunion. Pp.23. 

Ndong, A., Thiaw, C., Diallo, B., Sarr, M., Diome, T., Kane, M., and Sembene, M. 

(2015). Barcoding- Comparison of variation degree of COI and Cytochrome b 

Markers in two species primary maize pests (Sitophilus zeamais and Sitophilus 

oryzae). International Journal of Sciences: Basic and Applied Research. 2307-

4531. 

Nicholls J. A., S. Preuss, A. Hayward, Melika, et al. (2010). Concordant phylogeography 

and cryptic speciation in two Western Palaearctic oak gall parasitoid species 

complexes. Molecular Ecology. 19: 592-609. 

Nicholls, J., Melika, G., DeMartini, J. & Stone, G. (2018). New species of Dryocosmus 

Giraud gallwasps from California (Hymenoptera: Cynipidae: Cynipini) galling 

Chrysolepis Hjelmq. (Fagaceae). Zootaxa. 4532. 407. 10.11646/zootaxa.4532.3.6. 

34 



Nylander, J. A. A. (2002). MrModeltest v.1.0. Program distributed by the author. 

Department of Systematic Zoology, Uppsala University, Uppsala, Sweden. Website 

http://www.ebc.uu.se/systzoo/staff/ nylander.html. 

Porter, T. M., & Hajibabaei, M. (2018). Over 2.5 million COi sequences in GenBank and 

growing. PloS one, 13(9), e0200177. doi:l0.1371/journal.pone.0200177 

Price PW and Pschorn-Walcher H. (1988). Are galling insects better protected against 

parasitoids than exposed feeders? A test using tenthredinid sawflies. Ecological 

Entomology 13: 195-205. 

Raman, A., Schaefer, C. W., & Withers, T. M. (2005). Galls and gall-inducing 

arthropods: An overview oftheir biology, ecology, and evolution. In A. Raman, C. 

W. Schaefer, & T. M. Withers (Eds.), Biology, ecology, and evolution of gall

inducing arthropods (pp. 1-33). New Hampshire: Science Publishers, Inc. 

Rambaut, A. (2012). Computer program distributed by the author, website: 

http://tree.bio.ed.ac.uk/software/figtree/ [accessed January 4, 2011] 

Rogers, D.S. and M. W. Gonzalez. (2010). Phylogenetic relationships among spiny 

pocket mice (Heteromys) inferred from mitochondrial and nuclear sequence data. 

Journal ofMammalogy. 91(4): 914-930. 

Roman, A., Schaefer, C.W., and Withers, T.M. (2005). Biology, ecology, and evolution of 

gall-inducing arthropods. Enfield, New Hampshire, Science publishers. 

Ronquist, F. (1994). Evolution of parasitism among closely related species: phylogenetic 

relationships and the origin of inquilinism in gall wasps (Hymenoptera, Cynipidae ). 

Evolution. 48: 241-266. 

35 



Ronquist F. Phylogeny, classification and evolution of the Cynipoidea. Zoologica 

Scripta. (1999). 28: 139-164. 

Ronquist F, and Liljeblad J. (2001). Evolution of the gall wasp-host plant association. 

Evolution. 51: 2503-2522. 

Ronquist, F., J. Nieves-Aldrey, M.L. Buffington, Z. Liu, J. Liljeblad, and J.A. Nylander. 

(2015). Phylogeny, evolution and classification of gall wasps: the plot thickens. 

Plos one. 10(5): 1-40.DOI: 10.1371/journal.pone.0123301 

Ronquist, F., M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Hohna, B. Larget, 

L. Liu, M.A. Suchard, and J.P. Huelsenbeck. (2012). MRBA YES 3.2: Efficient 

Bayesian phylogenetic inference and model selection across a large model space. 

Systematic Biology. 61 :539-542. 

Schoonhoven, L.M., T. Jermy, and J.J.A. van Loon. (1998). Insect-plant biology. 

Chapman &Hall, London, UK. 

Schweger, Sz. Melika, G. Tang, C.T. Bihari, P. Bozs6, M. Stone, G.N. Nicholls, J.A. & 

Penzes, Z. (2015a). New species of cynipid inquilines of the genus Synergus 

(Hymenoptera: Cynipidae: Synergini) from the Eastern Palaearctic. Zootaxa 3999 

(4): 451-497. doi: 10.11646/zootaxa.3999.4.1 

Schweger, S. Melika, G. Tang, C.T. Yang, M.M. Stone, G.N. Nicholls, J.A. Sinclair, F. 

Hearn, J. Bozs6, M. & Penzes, Zs. (2015b ). New species of cynipid inquilines of 

the genus Saphonecrus (Hymenoptera: Cynipidae: Synergini) from the Eastern 

Palaearctic, with a re-appraisal of known species world-wide. Zootaxa 4054(1 ): 1-

84. doi: 10.11646/zootaxa.4054.1.1 

36 



Schwenk K, et al. (1998). Genetic markers, genealogies and biogeographic patterns in the 

Cladocera. Aquat Ecol 32:37-5 l 

Sheth, B. P. and V.S. Thaker. (2017). DNA barcoding and traditional taxonomy: an 

integrated approach for biodiversity conservation. NRC Research Press. 60: 618-

628. 

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, 

weighting, and phylogenetic utility of mitochondrial gene sequences and a 

compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. 

Am. 87: 651-701. 

Stone, G.N., and J.M. Cook. (1998). The structure of cynipid oak galls: patterns in the 

evolution of an extended phenotype. Proceedings: Biological Sciences. 265: 979-

988. 

Stern, D.L. (1995). Phylogenetic evidence that aphids, rather than plants, determine gall 

morphology. Proceedings: Biological Sciences. 260: 85-89. 

Strauss, S.Y. and A.R. Zangerl. (2001). Invertebrate-plant Interactions. pp 77-106 In C. 

Herrera and 0. Pellmyr (eds), Plant-Animal Interactions. Blackwell Science. 

Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other 

Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. 

Teletchea, F. (2010). After 7 years and 1000 citations: comparative assessment of the 

DNA barcoding and the DNA taxonomy proposals for taxonomists and non

taxonomists. Mitochondrial DNA. 21(6): 206-226. 

37 



Tooker J. F, Deans AR, and Hanks LM. (2004). Description of the Antistrophus rufus 

(Hymenoptera: Cynipidae) species com- plex, including two new species. Journal 

ofHymenoptera Research. 13: 125-133. 

Tooker, J. F. and L. M. Hanks. (2004). Endophytic insect communities of two prairie 

perennials (Asteraceae: Silphium spp.). Biodiversity and Conservation. 13: 2551-

2566. 

Tooker, J. F., and L. M. Hanks. (2004). Stcrcochcmistry of host plant monoterpenes as 

mate location cues for the gall wasp. Journal of Chemical Ecology.30: 473-477. 

Tooker, J. F., A. L. Crumrin, and L. M. Hanks. (2005). Plant volatiles are behavioral cues 

for adult females of the gall wasp Antistrophus rufus. Chemoecology. 15: 85-88. 

Vogler, A. P. and M. T. Monaghan. (2007). Recent advances in DNA taxonomy. Journal 

of Zoological Systematics and Evolutionary Research. 45(1):1-10. 

van Noort, S. Stone, G.N. Whitehead, V.B. & Nieves-Aldrey, J.L. (2007). Biology of 

Rhoophilus loewi (Hymenoptera: Cynipoidea: Cynipidae), with implications for the 

evolution of inquilinism in gall wasps. Biological Journal of the Linnaean Society 

90: 153-172. 

Vivaldo, G., Masi, E., Taiti, C., Caldarelli, G., Mancuso, S. (2017). The network of plants 

volatile organic compounds. Scientific Reports, 7: 11050. DOI:10.1038/s41598-

017-10975-x. 

Wachi, N. Ide, T. & Abe, Y. (2011). A new inquiline species of Saphonecrus 

(Hymenoptera: Cynipidae: Synergini) associated with cecidomyiid galls on oak 

trees in Japan. Annals of the Entomological Society of America 104: 369-373. 

38 



Walsh, B.D., and Riley, C.V. (1870). Galls and their architects-2d article. American 

Entomologist, 2(3): 70-74. 

Weis, A. E. (1996). Variable selection on Eurosta's gall size, III: Can an evolutionary 

response to selection be detected? Journal of Evolutionary Biology. 9: 623-640. 

doi: 10.1046/j .1420-9101.1996.9050623.x. 

Weis, A.E., and W.G. Abrahamson. (1986). Evolution of host-plant manipulation by gall 

makers: ecological and genetic factors in the solidago-eurosta system. The 

American Naturalists. 127: 681-695. 

Weis, A.E., R. Walton, C.L. Crego. (1988). Reactive plant tissue sites and the population 

biology of gall makers. Annual Review Entomology. 33: 467-486. 

Whitham, T.G. (1979). Territorial behavior of Pemphigus gall aphids. Nature. 279: 324-

325. 

Williams, J. B., Joseph D. Shorthouse, Richard E., and Lee, Jr. (2002). Extreme 

resistance to desiccation and microclimate-related differences in cold-hardiness of 

gall wasps (Hymenoptera: Cynipidae) overwintering on roses in southern Canada. 

Journal o,fExperimental Biology. 205: 2115-2124. 

Yang, X-H., Liu. Z., Pang, Y. Su, C-Y., Zhu, D. (2019). Three New Species of Synergine 

Wasps from Same Galls on from Lithocarpus glaber (Thunb.) in Hunan, China 

(Hymenoptera, Cynipidae). Insect Systematics and Evolution (in press). 

Zhang X, Sun B, Tang Q, Chen Rand Han S. (2019). Molecular Identification and 

Phylogenetic Analysis of Nuclear rDNA Sequences of Clonorchis sinensis Isolates 

From Human Fecal Samples in Heilongjiang Province, China. Front. Microbial. 

10:26. doi: 10.3389/fmicb.2019.00026 

39 



Zhou X et al. (2016). The Trichoptera barcode initiative: a strategy for generating a 

species-level Tree of Life. Phil. Trans. R. Soc. B 371: 20160025.doi: 

10.1098/rstb.2016.0025 

Zhu, D-H., Z. Liu, P-F. Lu. X. Yang, X-H Yang, C-Y Su, P. Liu. (2015). New Gall Wasp 

Species Attacking Chestnut Trees: Dryocosmus zhuili n. sp. (Hymenoptera: 

Cynipidae) on Castanea henryi from Southeastern China. Journal of Insect 

Sciences. 15: 156; DOI: 10.1093/jisesa/iev118 

40 



WISCONSIN 

*· 

IWNOIS INDIANA 

• • * 
MISSOURI 

~·.C..-. ..... ;;,,... ~--------------'..__..__.....__ ......... ..-_..:::.-__ ~ __ _. 

Figure 1. Samples locations from Wisconsin, Illinois, Indiana, Iowa and Missouri. 

Samples from rosin weed are represented by red pentagrams while samples from cup 

plant are represented by blue circles. The size of the shapes is proportional to the 

frequency of the samples. 
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Figure 2. Bayesian majority rule consensus phylogenetic tree based on Cytb and rooted 

with outgroup P. brandti. Bayesian analysis assumed a GTR strict clock model of 

sequence evolution and was run for 1,000,000 generations with a 1/1,000 sampling 

frequency (with a total of 10,000 trees sampled) and a burnin time of 30%. Numbers on 

branches indicate estimated posterior clade probabilities (in% units). Samples starting 

with "C" are from cup plant while samples beginning with "R" are from rosin weed 

species. The samples with asterisk are those reared from cup plant, but nonetheless 

belong to the clade consisting mostly of samples from rosin weed. 
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Figure 3. Bayesian majority rule consensus radiation tree based on Cytb. This is the same 

tree as in Figure 2, but presented in this form to show the genealogical relationships 

among the 5 identified haplotypes. Samples starting with "C" are from cup plant while 

samples beginning with "R" are from rosin weed species. 
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Figure 4. Bayesian majority rule consensus phylogenetic tree based on COI and with 

outgroup A. rufus. Bayesian analysis assumed a HKY model of sequence evolution and 

was run for 1,000,000 generations with a 111,000 sampling frequency (with a total of 

10,000 trees sampled) and a burnin time of 30%. Numbers on branches indicate estimated 

posterior clade probabilities (in% units). Samples starting with "C" are from cup plant 

while samples beginning with "R" are from rosin weed species. 
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Figure 5. Bayesian majority rule consensus radiation tree based on COL This is the same 

tree as in Figure 4, but presented in this form to show the genealogical relationships 

among the 5 identified haplotypes. Samples starting with "C" are from cup plant while 

samples beginning with "R" are from rosin weed species. 
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Figure 6. Bayesian majority rule consensus phylogenetic tree based on 28S D2. Bayesian 

analysis assumed an F8 l model of sequence evolution and was run for 1,000,000 

generations with a 1/1,000 sampling frequency (with a total of 10,000 trees sampled) and 

a bumin time of 30%. Samples starting with "C" are from cup plant while samples 

beginning with "R" are from rosin weed species. 
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Figure 7. TCS network of Cytb haplotypes based on 95% connection limit. Each line 

segment represents a single mutation. The names of haplotypes begin with letters and the 

size of the circles is proportional to the frequency of the haplotypes. For each haplotype, 

the hatched area represents the fraction of samples in association with rosin weed while 

the solid area represents the fraction of samples in association with cup plant. The 

number next to a fraction of a circle represents the number of samples in that fraction. 
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Figure 8. TCS network of COi haplotypes based on 95% connection limit. Each line 

segment represents a single mutation. The names ofhaplotypes begin with letters and the 

size of the circles is proportional to the frequency of the haplotypes. For each haplotype, 

the hatched area represents the fraction of samples in association with rosin weed while 

the solid area represents the fraction of samples in association with cup plant. The 

number next to a fraction of a circle represents the number of samples in that fraction. 
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Figure 9. TCS network of 28S D2 haplotypes based on 95% connection limit. Each line 

segment represents a single mutation. The names of haplotypes consist of a letter and 

numbers while the size of the circles is proportional to the frequency of the haplotypes. 

For each haplotype, the hatched area represents the fraction of samples in association 

with rosin weed while the solid area represents the fraction of samples in association with 

cup plant. The number next to a fraction of a circle represents the number of samples in 

that fraction. 
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Figure 10. Nucleotides 141 to 190bp of the aligned 28S D2 sequences including that of 

the outgroup Hedickiana levantina. A single indel at 181 nucleotide position diagnostic 

nucleotide position easily separates the samples associated with rosin weed (with T at 

181) from those associated with cup plant (with gap, missing T; at 181 position). The 

only exception was R28 - it is associated with rosin weed, but has a gap, missing T, at 

181 position like those associated with cup plant. R28 is also unique in having T, rather 

than G at 148 nucleotide position. 
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Table 1. List ofknownAntistrophus species with data on known geographic distribution, host plant species, gall forming location on 

host plant, and source of data. The name of the Silphium genus is abbreviated as S. when the host plant( s) of a gall wasp species 

belong(s) to this genus. 

Antistrophus species Distribution area Host plant Gall forming sites Reference 

A. bicolor Illinois S. integrifolium Stems Gillette 1891 

A. chrysothamni Arizona Chrysothamnus spp. Stems Beutenmueller 1908 

A. laciniatus The Midwestern USA S. lacijiialutn Stems, flowers Gillette 1891 

A. lygodesmiarpisum The Midwestern USA Lygodemnia juncea Stems Walsh 1870 

A. microseris California Microseris spp. Stems 
McCracken and Egbert 

1922 

A. minor The Midwestern USA S. laciniatum Stems Gillette 1891 

S. laciniatum, 

A. rufus The Midwestern USA S. terebinthinaceum, Stems, flowers Gillette 1891 

S. perfoliatum 

A. silphii The Midwestern USA 
S. integrifolium 

Stems Gillette 1891 
S. perfoliatum 

A.jeanae The Midwestern USA S. terebinthinaceum Stems Tooker and Hanks 2004 

A. meganae The Midwestern USA S. perfoliatum Stems Tooker and Hanks 2004 

A. pisum (Invalid) The Midwestern USA Lygodemnia juncea Stems Walsh 1870 

A. leavenworthi Virginia Lactuca spp. & Mulgedium spp. Stalks Bassett 1900 
(Invalid) 
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Table 2. The accession number of three gene markers from GenBank. The collecting 

place indicates as the state abbreviation format of each sample. The dash in the table 

represents the sample based on this gene marker does not have the successful DNA 

sequence. The sequences with asterisk have in-sequence stop codons and thus were not 

accepted by GenBank. Further work is needed to identify the issues and guarantee that 

these sequences become available to the public. 

Sample# Collecting Place COi 28SD2 Cytb 

Rl IL MK878665 MK878631 MK878697 

R2 IL MK878666 MK878632 MK878698 

R3 IL MK878667 MK878633 -

R4 IL MK878668 MK878634 -

RS IL MK878669 MK878635 MK878699 

R6 IL MK878670 MK878636 -

R7 WI - MK878637 MK878700 

RS WI MK878671 MK878638 MK878701 

R9 WI MK878672 MK878639 -

RlO WI MK878673 MK878640 MK878702 

Rll WI MK878674 MK878641 MK878703 

R12 WI MK878675 MK878642 MK878704 

R13 WI MK878676 MK878643 MK878705 

R14 WI MK878677 MK878644 MK878706 

R15 IL MK878678 MK878645 MK878707 

R16 IL MK878679 MK878646 MK878708 

R17 IA MK878680 MK878647 MK878709 

R18 IA MK878681 MK878648 MK878710 

R19 IA MK878682 MK878649 MK878711 

R20 IA MK878683 MK878650 MK878712 

R21 IA MK878684 MK878651 MK878713 

R22 IA - MK878652 MK878714 
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R23 IA MK878685 MK878653 MK878715 

R24 IA MK878686 MK878654 MK878716 

R25 IA MK878687 MK878655 MK878717 

R26 MO MK878688 MK878656 MK878718 

R27 MO MK878689 MK878657 MK878719 

R28 MO MK878690 * MK878720 

R29 MO MK878691 MK878658 MK878721 

R30 MO MK878692 MK878659 MK878722 

R31 WI MK878693 MK878660 MK878723 

R32 WI MK878694 MK878661 MK878724 

R34 WI MK878695 MK878662 MK878725 

R36 WI MK878696 MK878663 * 
R37 IA * MK878664 * 
Cl IN * * * 
C2 IN * * MK876298 

C3 IN * * MK876299 

C4 IN * * -

cs IN * * MK876300 

C6 IN * * MK876301 

C7 IN * * MK876302 

cs IN * * MK876303 

C9 IN * * MK876304 

ClO IN * * MK876305 

Cll IL - * -

C12 IL * - MK876306 

C13 IL - - MK876307 

C14 IL - - -

C15 IA * * MK876308 

C16 IA * * MK876309 
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C17 WI * * MK876310 

C18 WI * * MK876311 

C19 WI * * MK876312 

C20 WI * * MK876313 

C21 WI * * MK876314 

C22 WI - * MK876315 

C23 WI * * MK876316 

C24 WI * * MK876317 

C25 IL * * MK876318 

C26 IL * * MK876319 

C27 IN * * MK876320 

C28 IN * * MK876321 

C29 IN - * MK876322 

C31 IN - * MK876323 

C32 IN * * -

C33 IN * * -

C34 IN * * MK876324 
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Table 3. List of haplotypes of Cytb, COi, and 28S identified for the successfully 

sequenced samples and the samples belonging to each haplotype. Samples starting with 

"C" are from cup plant while samples italicized and beginning with "R" are from rosin 

weed. RW/CP is the ratio of the number of rosin weed associated samples to the number 

of cup plant associated samples. 

Gene 
Haplotype# RW/CP Samples# 

Markers 

RI, R2, RS, R7, R8, RIO, RI I, RI2, R13, RI4, 
CTI 2612 RI 7, RI8, RI9, R20, R2I, R22, R23, R24, R2S, 

R26, R29, R3I, R32, R34, R36, R37, C12. Cl3 

Cl, C2, C3, C5, C6, C7, C8, C9, ClO, Cl7, 

Cytb 
CT2 0120 Cl8, Cl9, C20, C21, C22, C23, C24, C27, C28, 

C29 

CT3 012 Cl5, Cl6 

CT4 012 C31, C34 

CTS S/2 RIS, RI6, R27, R28, R30, C25, C26 

RI, R2, R3, RS, R6, R8, R9, RIO, RI I, RI2, 
R13, RI4, RI 7, RI8, RI9, R20, R2I, R23, R24, 

COI 26/24 
R2S, R26, R29, R3I, R32, R34, R36, R37, Cl, 
C2, C3, C4, C5, C6, C7, C8, C9, Cl 0, Cl 2, 
Cl5, Cl6, Cl7, Cl8, Cl9, C20, C21, C23, C24, 

COi 
C27, C28, C32, C33, C34 

C02 I/O R37 

C03 0/1 Cl2 

C04 3/0 R27, R28, R30 

cos 3/2 R4, RIS, RI6, C25, C26 

RI, R2, R3, R4, RS, R6, R7, R8, R9, RIO, RI I, 

28SI 3S/O 
RI2, Rl3, RI4, RIS, RI6, RI7, RI8, RI9, R20, 
R2I, R22, R23, R24, R2S, R26, R27, R29, R30, 
R3I, R32, R34, R36, R37 

28SD2 Cl, C2, C3, C4, C5, C6, C7, C8, C9, Cl 0, Cl 1, 

28S2 0/30 
Cl5, Cl6, Cl7, Cl8, Cl9, C20, C21, C22, C23, 
C24, C25, C26, C27, C28, C29, C31, C32, C33, 
C34 

28S3 110 R28 
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