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Abstract

We apply a non-perturbative analytical method, known as the Optimized Perturba-
tion Theory (OPT), to the Polyakov�Nambu�Jona-Lasinio (PNJL) model in order
to investigate physical quantities associated with the QCD phase transitions. We
consider the Taylor expansion of the pressure in powers of µ/T obtaining the second
cumulant (c2) which is associated to the quark number susceptibility. We discuss how
the OPT �nite Nc radiative (quantum) corrections induce a contribution to the pres-
sure which behaves as a vector repulsion even when such a channel is absent in the
original classical potential. Our results are then compared with the ones furnished by
lattice QCD simulations and by the large-Nc approximation showing that, physically,
the OPT results resemble those furnished by the latter approximation when a repul-
sive vector channel is explicitly included in the classical potential. In this case, both
approximations fail to correctly describe the Stefan-Boltzmann limit at high temper-
atures. We discuss how this problem can be circumvented by taking the couplings to
be temperature dependent so as to simulate the phenomenon of asymptotic freedom.
Since this is the �rst time the OPT is applied to the PNJL we also discuss many
technicalities associated with the evaluation of two loop (exchange) diagrams.

Key words: Optimized Perturbation Theory, Polyakov�Nambu�Jona-Lasinio model,
cumulants, susceptibilities, vector channel, lattice QCD, large-Nc approximation,
Stefan-Boltzmann limit, chiral symmetry, con�nement, non-perturbative methods.
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Resumo

Neste trabalho o método analítico não perturbativo conhecido como Teoria de Per-
turbação Otimizada (OPT) é aplicada ao modelo de Polyakov�Nambu�Jona-Lasinio
(PNJL) para que quantidades físicas, associadas com as transições de fase da QCD,
possam ser calculadas. A expansão da pressão em potências de µ/T é considerada
para obter o segundo cumulante (c2) que é uma quantidade relacionada com a sus-
ceptibilidade do número de quarks. Primeiramente discutimos como as correções ra-
diativas de Nc �nito geradas pela OPT produzem uma contribuição que se comporta
como um termo vetorial repulsivo mesmo quando este tipo de canal está ausente no
potencial clássico original. Em seguida, nossos resultados são comparados com aque-
les fornecidos pelas simulações na rede e também pela aproximação de Nc grande
(LN). Fisicamente, os resultados da OPT são similares aqueles fornecidos pela aprox-
imação LN quando um canal vetorial repulsivo é explicitamente incluido no potencial
clássico. Neste caso, nenhuma destas aproximações analíticas produz corretamente
o limite de Stefan Boltzmann para altas temperaturas. Contudo, nossos resultados
sugerem como estes problemas podem ser contornados tomando-se as constantes de
acoplamento como sendo dependentes da temperatura, de maneira que o fenômeno
da liberdade assimptótica possa ser simulado. Esta é a primeira vez que a OPT é
aplicada ao modelo de PNJL e por isto vários aspectos técnicos relacionados com o
cálculo de diagramas de dois laços são também aqui apresentados.

Palavras chave: Teoria de Perturbação Otimizada, modelo de Polyakov�Nambu�
Jona-Lasinio, cumulantes, susceptibilidades, canal vetorial repulsivo, simulações na
rede, aproximação de Nc grande, limite de Stefan Boltzmann, simetria quiral, con�-
namento, métodos não perturbativos.
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1. Introduction

The existence of the universe as we know it, relies on the properties of nuclei and,
strictly speaking, on the dynamics of quarks and gluons in quantum chromodynamics
(QCD).
In the early universe the matter was in a state of pure quarks and gluons called

the quark-gluon plasma (QGP), where density and temperature were extremely high.
The relativistic Heavy-Ion Collider (RHIC) discovered the QGP at high temperatures
and the Large Hadron Collider (LHC), at CERN, con�rmed this discovery at an even
higher energies.
It is also believed that the QGP exists in the deep interior of compact stellar objects

such as neutron stars where dense QCD matter is realized [1].
Without strong medium e�ects quarks and gluons are con�ned inside hadrons and

this property is generally called color con�nement, which is a consequence of the
non-perturbative and non-linear dynamics of QCD. Although con�nement is a very
di�cult aspect of QCD, it can be formulated unambiguously in hot QCD with quarks
made in�nitely heavy. This implies that the order parameter of quark con�nement
cannot have a strict meaning in the presence of light quarks. At the same time, since
gluons have no mass, gluon con�nement cannot be given in a simple way.
Quantum electrodynamics (QED) is a perturbative theory, because it has a weak

coupling constant (α = 1/
√

137) and perturbation theory is permitted. In contrast,
the QCD coupling constant is high at low energies and perturbation theory is not
valid. Nevertheless, due to the asymptotic freedom phenomenon, at high energies the
coupling is low again. The coupling constant of QCD at one loop order is given by
[2]

αs
(
Q2) ≡ g2

(
Q2
)

4π
=

4π(
11− 2

3
Nf
)

ln
(
Q2/Λ2

QCD

) , (1.1)

where Q2 is the three-momentum, Nf is the number of �avors and ΛQCD (' 200
MeV) is the QCD scale parameter, which can be determined, for example, by �tting
Eq. (1.1) to the experimental data.
Another important feature of QCD is the dynamical generation of quark masses

due to the condensation of quark�anti-quark pairs, the chiral condensates. Although
the QCD Lagrangian has an approximated chiral symmetry in the light quark sector,
this symmetry is spontaneously broken in the vacuum, or ground state, due to a
non-vanishing chiral condensate. Therefore, the chiral condensate works as an order
parameter for spontaneous chiral symmetry breaking.
Due to the di�culties to treat QCD with perturbation theory at energies relevant

to nuclear physics, the development of alternative approximations is of utmost im-
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1. Introduction

portance. The most powerful non-perturbative method is the Monte-Carlo numerical
simulation on the lattice, known as lattice QCD (LQCD). However, so far, its prac-
tical use at low temperatures and high chemical potentials is limited due to the sign
problem. There are many non-perturbative models designed to mimic some aspects
of QCD, but each one of them has its shortcomings. Nevertheless, using results found
in each model, one is able to construct a presumable scenario for the QCD phase
structure.

In this vein, the Nambu�Jona-Lasinio model (NJL) is one of the most successful ef-
fective theories used to describe interacting quarks. This model was proposed in 1961
in two papers by Yoichiro Nambu and Giovanni Jona-Lasinio who pursued analogies
with superconductors [3, 4].

The standard version of the NJL model, which is non-renormalizable in (3 + 1)
dimensions, fails to describe the con�nement of quarks because it does not consider
gluons but this property can be enforced by adding the so called Polyakov loop to
the standard NJL Lagrangian [5]. Then, with the Polyakov�Nambu�Jona-Lasinio
model (PNJL) we can obtain thermodynamical quantities such as the pressure, the
energy density, the entropy density, etc, in terms of two order parameters (one for
chiral symmetry and the other for con�nement) setting an appropriate framework to
investigate the QCD phase transitions.

It is generally believed that e�ective theories used to describe compressed strongly
interacting matter should include vector channels [2, 6�11] such as the ones which
appear in the Walecka model for nuclear matter [12] and in the extended version
of the NJL model for quark matter [13]. To emphasize its importance let us point
out few recent applications which consider this channel in the framework of the NJL
model starting with Ref. [14] where the three �avor version of this theory has been
used to reproduce the equation of state (EoS) for cold magnetized quark matter
[14]. In agreement with Ref. [15] the results show that the magnetic �eld and the
vector channel tend to in�uence the �rst order chiral transition in opposite ways:
while the �rst softens the EoS the second hardens it so that higher stellar masses
may be reproduced giving further insight to the modeling of stellar objects such as
the two recently measured pulsars, PSR J1614-2230 [16] and PSR J0348+0432 [17],
whose masses are about 2M�. Another timely important application [18] shows that
the presence of a vector interaction is crucial for the NJL to reproduce the measured
relative elliptic �ow di�erences between nucleons and anti-nucleons as well as between
kaons and antikaons at energies carried out in the Beam-Energy Scan program of the
Relativistic Heavy Ion Collider. As a �nal example, let us recall that although most
investigations seem to support the QCD critical point (CP), an interesting observation
against its existence has been advanced by de Forcrand and Philipsen [19] who, using
numerical simulations of QCD at imaginary chemical potential, observed that the
region of quark masses where the transition is presumably of the �rst order tends
to shrink (for quark masses smaller than the physical ones) at small positive values
of the chemical potential. On the other hand, evaluations which support the critical
point existence indicate that this �rst order transition region should expand when the
chemical potential increases so that the physical quark mass point hits the critical

8



1.1. The QCD phase diagram

line at some �nite value of the temperature and chemical potential locating the CP
position. A possible explanation for this disagreement has been given in Ref. [20]
where it was suggested that a strong (repulsive) vector coupling may account for the
initial shrinkage of the �rst order region, that would then start expanding again at
larger values of the chemical potential, forcing the critical surface to bend back so
that a CP naturally appears as the quark masses reach their physical values.

In practice, within the NJL model, a vector channel can be easily implemented
by adding a term such as −GV (ψ̄γµψ)2 to the original lagrangian density. Then,
within the mean �eld approximation (MFA), only the zeroth component survives so
that the net e�ect produced by this channel is to add a term like −GV ρ2 to the
pressure (ρ represents the quark number density) weakening (strengthening) the �rst
order transition when GV is positive (negative) [20]. As a result, in the repulsive case
(GV > 0), the �rst order transition region covers a smaller range of temperatures as
compared to the GV = 0 case while the coexistence chemical potential for a given
temperature is shifted to a higher value. Then, as a consequence, the CP happens
at smaller temperatures and higher chemical potentials than in the case of vanishing
GV .

1.1. The QCD phase diagram

Figure 1.1 summarizes the phase structure of QCD, which nowadays is constructed
by schematic conjectures, constrained by a relatively small number of theoretical and
empirical facts.

The QCD phase transition at �nite temperatures and vanishing chemical potential
has been studied extensively by LQCD. The results depend on the number of colors
and �avors as expected from e�ective theories on the basis of the renormalization
group as well as universality arguments [21, 22]. For three colors and the light �a-
vors, LQCD analyses based on staggered fermions and Wilson fermions, indicated a
crossover from the hadronic phase to the QGP for realistic u, d and s quark masses
[23]. The pseudocritical temperature, Tpc, which characterizes the crossover location,
is likely to be in the region 150 − 200 MeV. At the same time, most of the chiral
models suggest a critical point (second order phase transition) for the hadron-quark
phase transition, where the chiral transition becomes �rst-order, for higher chemical
potentials and a crossover for lower chemical potential values. Color superconductiv-
ity takes place at low temperatures and µ� ΛQCD, where QCD becomes analogous
to condensed matter physics with �Cooper" pairs formed by quark-quark pairs.

1.2. The sign problem of QCD at �nite densities

In order to evaluate the QCD partition function at �nite chemical potentials one has to
consider the determinant of the quark matrix, which is given byM (µ) = /D+m−γ0µ.
However, it turns out that this quantity, which is complex when µ is real and non-zero,

9



1. Introduction

Figure 1.1.: Conjetured QCD phase diagram with transition boundaries between dif-
ferent states of matter. Figure taken from Ref. [24]

satis�es [25�28]

det
(
/D +m+ γ0µ

)
= det∗

(
/D +m+ γ0µ

∗) . (1.2)

The above relation is complex if the real part of µ is �nite. But since a complex
determinant cannot be interpreted as a probability measure, the Monte Carlo method
used by LQCD does not work, resulting in the QCD sign problem. Then, in order to
study compressed quark matter, one has to consider an alternative such as the use of
e�ective models which are simpler than pure QCD. Within LQCD, another possible
approach is to consider µ to be an imaginary number and then to perform an analytic
continuation back to the real µ-axis. Meanwhile, other LQCD workers prefer to apply
a Taylor expansion in powers of µ/T around µ = 0.

1.3. Scope and outline of this dissertation

The aim of the present work is to analyze the two-�avor PNJL model beyond the
standard Large-Nc (LN) limit. This investigation is carried with the Optimized Per-
turbation Theory (OPT) and the results are compared with those furnished by the
Large-Nc approximation and LQCD. We also show that the OPT radiatively gener-
ates a vector repulsive term as a �nite Nc correction such as the one which appears
in extended version of the NJL model for quark matter.
In chapter 2 we review the standard two-�avor NJL model, considering the OPT

and the LN approximation. We use Feynman's formalism to obtain the e�ective
potential and, with it, we analyze the thermodynamics of the system paying special
attention to spontaneous chiral symmetry breaking in the vacuum, and its restoration

10



1.3. Scope and outline of this dissertation

at �nite T . Several thermodynamical quantities at zero chemical potential are studied
and the vector repulsive term is introduced in the NJL model at the large-Nc limit.
In chapter 3 the Polyakov loop is introduced in order to simulate con�nement and

the results obtained with the PNJL model are compared with those furnished by the
NJL model. Next, the second cumulant is calculated with the PNJL model using the
OPT and the LN approximation (with GV = 0 and with GV 6= 0) and the results are
compared with those furnished by LQCD.
In chapter 4 the entanglement vertex is added to the PNJL model via the Polyakov

loop in order to decrease the scalar coupling constant, giving place to the so called
entangled Polyakov�Nambu�Jona-Lasinio (EPNJL). The results obtained with this
model using the OPT and the LN approximation are compared with LQCD data.
Finally, in chapter 5 the conclusions and future perspectives are presented.
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2. The Nambu�Jona-Lasinio Model

In this chapter we will discuss the standard two �avor NJL model for quark matter
using two di�erent non perturbative methods: the large-Nc approximation and the
Optimized Perturbation Theory.

2.1. The model and its symmetries

The two �avor NJL Lagrangian density can be written as [3]

LNJL = ψ̄
(
i/∂ − m̂0

)
ψ +GS

[(
ψ̄ψ
)2

+
(
ψ̄iγ5τψ

)2]
, (2.1)

where ψ (sum over �avor and colour degrees of freedom is implicit) represents a
isodoublet in �avor (u, d) and a Nc-plet quark �eld (Nc is the number of colors), τ are
the Pauli matrices and GS represents the coupling strength. The quark mass matrix
is m̂0 = diag (mu,md), and we work in the isospin-symmetric limit mu = md = m0.

2.1.1. Chiral Symmetry

We say that an object is a chiral object when its image in a mirror cannot be super-
posed with the object. For example, when we see the image of our right hand in a
mirror, it looks like our left hand and, since these two images cannot be superposed,
we say that our hands are chiral objects. On the other hand, if we see the image of a
sphere in a mirror, the image on the mirror can be superposed and we say that this
object is a non-chiral object.

In physics fermions have an attribute called helicity that describes the projection
of the spin in the direction of motion. When the projection of the spin is in the same
direction of the motion, the fermion helicity is de�ned as being positive and, when
the projection is in the opposite direction, the helicity is de�ned as being negative.

Suppose that a massive fermion particle has a positive helicity. Now, to an observer
moving in the same direction but with a higher velocity, the same particle appears
as having a negative helicity, which means that the helicity can be frame dependent.
However, if the fermion is massless it moves at the speed of light so that helicity
becomes a well de�ned quantity yielding the same eigenvalue in any reference frame.

The mathematical description of chirality can be done in terms of right (R) and
left (L) projectors , PR and PL, de�ned as follows[29�33]

PR =

(
1 + γ5

2

)
, PL =

(
1− γ5

2

)
. (2.2)

13



2. The Nambu�Jona-Lasinio Model

Right-handed means the projection of the spin and the momentum are in the same
direction, and left-handed means projection of the spin in opposite direction to the
momentum.
Now the quark �eld ψ can be decomposed into two chiral components,

ψR = PRψ, and ψL = PLψ, (2.3)

and we can perform the chiral transformations

ψR → ψ′R =ei
τ
2
·θRψR,

and

ψL → ψ′L =ei
τ
2
·θLψL.

Then,

ψ → ψ′ = ei
τ
2
·θRPRei

τ
2
·θLPLψ, (2.4)

where exp (iτ · θ/2) ≈ (1 + τ · θ/2) and θ is a free parameter. This is the transfor-
mation of the symmetry group SU(2)R × SU(2)L.
It is more enlightening to change this transformation to a vector transformation

and an axial transformation as follows

ei
τ
2
·θRPRei

τ
2
·θLPLψ →

(
1 + i

τ

2
· θRPR

)(
1 + i

τ

2
· θLPL

)
ψ

=
(

1 + i
τ

2
· θRPR + i

τ

2
· θLPL

)
ψ +O

(
θ2)

=

[
1 + i

τ

2
·
(
θR + θL

2

)
+ iγ5 τ

2
·
(
θR − θL

2

)]
ψ +O

(
θ2)

= ei
τ
2
·θV eiγ

5 τ
2
·θAψ, (2.5)

which is known as the SU(2)V × SU(2)A symmetry group. Now, we have a vector
transformation

ΛV : ψ → ψ′ = ei
τ
2
·θV ψ ≈

(
1 + i

τ

2
· θV

)
ψ, (2.6)

ΛV : ψ̄ →
(
ψ′
)†
γ0 =

(
ψ′
)†
e−i

τ
2
·θV γ0

= ψ̄e−i
τ
2
·θV ≈ ψ̄

(
1− iτ

2
· θV

)
, (2.7)

and an axial transformation

ΛA : ψ → ψ′ = eiγ
5 τ

2
·θAψ ≈

(
1 + iγ5 τ

2
· θA

)
ψ, (2.8)

ΛA : ψ̄ →
(
ψ′
)†
γ0 =

(
ψ′
)†
e−iγ

5 τ
2
·θAγ0

= ψ̄eiγ
5 τ

2
·θA ≈ ψ̄

(
1 + iγ5 τ

2
· θA

)
. (2.9)
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2.1. The model and its symmetries

It is easy to check that the Lagrangian density, Eq. (2.1), is invariant under the
vector transformation. With this purpose, let us apply the axial transformation to
each term appearing in the Lagrangian density. Then,

ψ̄iγµ∂µψ →
(
ψ′
)†
γ0iγµ∂µψ

′ = ψ̄eiγ
5 τ

2
·θA iγµ∂µe

iγ5 τ
2
·θAψ

= ψ̄
(

1 + iγ5 τ

2
· θA

)
iγµ

(
1 + iγ5 τ

2
· θA

)
∂µψ

= ψ̄iγµ∂µψ − ψ̄γ5γµ
τ

2
· θA∂µψ − ψ̄γµγ5 τ

2
· θA∂µψ

+O
(
θ2
A

)
= ψ̄iγµ∂µψ − ψ̄γ5γµ

τ

2
· θA∂µψ + ψ̄γ5γµ

τ

2
· θA∂µψ

+O
(
θ2
A

)
= ψ̄iγµ∂µψ, (2.10)

(
ψ̄ψ
)2 → ((

ψ′
)†
γ0ψ′

)2

=
(
ψ̄eiγ

5 τ
2
·θAeiγ

5 τ
2
·θAψ

)2

=
(
ψ̄ψ + 2ψ̄iγ5 τ

2
· θAψ

)2

=
(
ψ̄ψ
)2

+ 2ψ̄ψψ̄iγ5 τ

2
· θAψ + 2ψ̄iγ5 τ

2
· θAψψ̄ψ +O

(
θ2
A

)
=
(
ψ̄ψ
)2

+ 2ψ̄ψψ̄iγ5 τ

2
· θAψ − 2ψ̄ψψ̄iγ5 τ

2
· θAψ +O

(
θ2
A

)
=
(
ψ̄ψ
)2
, (2.11)

(
ψ̄iγ5τψ

)2 → ((
ψ′
)†
γ0iγ5τψ

′
)2

=
(
ψ̄eiγ

5 τ
2
·θA iγ5τe

iγ5 τ
2
·θAψ

)2

=
(
ψ̄
(

1 + iγ5 τ

2
· θA

)
iγ5τ

(
1 + iγ5 τ

2
· θA

)
ψ
)2

=
(
ψ̄iγ5τψ − 2ψ̄

τ

2
· θAτψ +O

(
θ2))2

=
(
ψ̄iγ5τψ

)2 − 2ψ̄iγ5τψψ̄
τ

2
· θAτψ

− 2ψ̄
τ

2
· θAτψψ̄iγ5τψ +O

(
θ2)

=
(
ψ̄iγ5τψ

)2 − 2ψ̄iγ5τψψ̄
τ

2
· θAτψ

+ 2ψ̄iγ5τψψ̄
τ

2
· θAτψ +O

(
θ2)

=
(
ψ̄iγ5τψ

)2
. (2.12)

Note that we have used the fact that τ and γµ act on di�erent spaces, so that they
commute.
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2. The Nambu�Jona-Lasinio Model

So far, all the terms in the Lagrangian density are invariant under SU(2)A. Finally,
let us see what happens with the mass term. A straightforward evaluation yields

mψ̄ψ → m
(
ψ′
)†
γ0ψ′ = mψ̄eiγ

5 τ
2
·θAeiγ

5 τ
2
·θAψ

= mψ̄
(

1 + 2iγ5τψψ̄
τ

2

)
ψ

= mψ̄ψ + 2miψ̄γ5τψψ̄
τ

2
ψ, (2.13)

showing that, as expected, the presence of a massive term in the Lagrangian density
breaks the chiral SU(2)A symmetry. In this case, we say that chiral symmetry is
explicitly broken because the Lagrangian density is not chirally invariant.
Neutrons and protons have a mass of approximately 1 GeV so that the e�ective mass

of up and down quarks within these baryons should be about 330 MeV. However, the
bare (or current) mass of a light quark is about 5 MeV, thus the interaction between
quarks gives mass to the neutrons and protons and, in general, to all hadrons. Then,
even if one considers the current mass to be zero (exact chiral symmetry) the e�ective
mass breaks the symmetry as the hadronic spectra shows. This is known as the chiral
dynamical symmetry breaking mechanism.

2.2. The e�ective potential

In order to investigate how symmetry breaking occurs in a particular theory, one
can analyze its free energy. For example, in statistical mechanics the free energy
functional for a ferromagnetic material can be expressed as

F [M (x)] =

∫
d3x

[
E (M (x)) +

1

2
KT (M (x)) (∇ ·M (x))2 + · · ·

]
, (2.14)

where E is the free bulk energy density and KT represents a constant while the
magnetization, M(x), characterizes the order parameter for the phase transitions.
The free energy described by Eq. (2.14) takes eventual inhomogeneities into account
since M is position dependent but when the order parameter is constant the phase
transitions can be described in terms of E(M) only. In quantum �eld theory (QFT),
the phenomenon of symmetry breaking can be studied in terms of an analogous object,
namely, the e�ective action [34]

Γ [σ (x)] =

∫
d4x

[
−F (σ (x)) +

1

2
Zσ (∂µσ)2 + · · ·

]
, (2.15)

where σ (x) represents a (classical) scalar �eld, Zσ represents a (renormalization)
constant while F is known as the e�ective potential. In our case, we consider the
order parameter to be independent of position and time (σ (x) = σ), which means
that the system is composed by homogeneous and static in�nite matter. In this case,
the e�ective action is reduced to

Γ (σ) = −
∫
d4xF (σ) , (2.16)
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2.2. The e�ective potential

and, the scalar �eld σ represents the order parameter for symmetry breaking.
To calculate the e�ective potential (or the Landau's free energy), one can use the

path integral formalism. Within this approach the partition function, Z, can be
written in terms of the e�ective potential as follows (for details see Refs. [34, 35]):

Z = exp

[
−i
∫
d4xF

]
. (2.17)

Then, as within statistical mechanics, all the relevant thermodynamical quantities,
such as the pressure, can easily be obtained once the free energy (or the partition
function) is known. However, the complete evaluation of F is an impossible task
within most interacting theories so that one needs to invoke an approximation scheme,
such as the OPT or the LN approximation studied here.
Before solving Eq. (2.17), for the NJL model case it is convenient to write down the

Lagrangian density in terms of the auxiliary �elds, σ and π, by using the Hubbard-
Stratanovich transformation, which consists in adding the following quadratic terms
to the Lagrangian density:

Θ2 = − 1

GS

[σ
2

+GS
(
ψ̄ψ
)]2

, Ω2 = − 1

GS

[π
2

+GS
(
ψ̄iγ5τψ

)]2
. (2.18)

Then, the the original theory can be written in a bosonized fashion as

LNJL = ψ̄
(
i/∂ −m0

)
ψ − 1

4GS

(
σ2 + π2)− ψ̄ [σ + iγ5π · τ ]ψ. (2.19)

Applying the Euler-Lagrange equations to the Lagrangian density for the auxiliary
�elds σ and π, we get

σ = −2GSψ̄ψ and π = −2GSψ̄iγ5τψ, (2.20)

which means that Θ2 and Ω2 are equal to zero. Note that within the bosonized
theory the interactions are described by Yukawa vertices while the σ and π �elds
do not propagate. This version is advantageous if one wants to apply the large
Nc approximation since, in this case, GS → GS/Nc which means that the mesonic
propagators carry a 1/Nc factor while a closed fermionic loop contributes with a factor
Nc. Then, the counting of 1/Nc powers can be easily carried out [36].

2.2.1. The interpolated model

To implement the OPT approximation (also known as linear delta expansion, LDE,
see [37, 38] for earlier references) in the NJL model we follow Ref. [39].
Basically, this method consists in modifying the Lagrangian of a particular theory

by introducing a dummy expansion parameter, δ.
Let L be the original Lagrangian density we want to solve, and L0 a Lagrangian

density of a free theory that we know how to solve exactly. Then, the Lagrangian
density in terms of δ can be written as

L (δ) = (1− δ)L0 + δL = L0 + δ (L − L0) . (2.21)
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2. The Nambu�Jona-Lasinio Model

As one can easily see, L (δ) interpolates between the original theory (δ = 1) and
a free (exactly solvable) theory (δ = 0). Then, the relevant physical quantities are
evaluated as a power series in δ, which is formally treated as a small number.
It is is crucial to note that for dimensional balance, the Lagrangian density L0

must have at least one arbitrary mass parameter (η). This is a welcome fact since
η will act as an infra red regulator if the original theory is massless. One can then
�x the arbitrary η by requiring that any physical quantity P (η), be at least locally
η-independent. This optimization criterion translates into the following variational
condition

∂P (η)

∂η

∣∣∣∣
η̄

= 0, (2.22)

which is known as the principle of minimal sensitivity (PMS) [40]. The solution of
the PMS equation gives η̄ as a function of the original parameters of the theory. The
convergence of the OPT in the case of critical theories is given in Ref. [41].
The OPT has already established itself as a powerful method in dealing with critical

theories. For example, in the Bose-Einstein condensation case this method and its
di�erent variations have provided some of the most precise analytical results for the
shift in the critical temperature for weakly interacting homogeneous Bose gases [42,
43]. Other applications to condensed matter situations include a precise evaluation
of the critical density for polyacetylene [44]. Also, when extended by hard-thermal
loops, the method was successful in predicting QCD thermodynamical properties at
the three-loop level [45]. Improved by the renormalization group (RG), and inspired
by similar properties [46] in the Gross-Neveu model, a variation of the OPT has been
recently used in the evaluation of ΛQCD

MS [47] and αS [48], where the stability and
convergence at higher orders of this RG-OPT form was demonstrated.
Now, in order to apply this method to the NJL Lagrangian density, Eq. (2.19), one

can de�ne the quadratic term, L0, as

L0 = ψ̄
(
i/∂ −m0 − η

)
ψ.

Then, following the OPT interpolation prescription, Eq. (2.21), one gets

LNJL (δ) =ψ̄
(
i/∂ −m0 − η

)
ψ

+ δ

[
ηψ̄ψ − 1

4GS

(
σ2 + π2)− (σψ̄ψ + ψ̄iγ5π · τψ

)]
. (2.23)

To compare the OPT results with the ones furnished by the LN approximation it is
convenient to take GS → λ/ (2Nc) so that to each Yukawa vertex contributes with a
1/Nc factor. Note that, within the LN approximation, the number of colors, Nc, is
formally treated as a large number which is set to 3 at the end.
It is easy to see that Eq. (2.23) can be written as

LNJL (δ) = ψ̄
[
i/∂ −m0 − δ (σ + iγ5π · τ)− η (1− δ)

]
ψ − δNc

2λ

(
σ2 + π2) . (2.24)
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2.2. The e�ective potential

To order δ, the e�ective potential is given by the Feynman diagrams shown in Fig.
2.1, where the mass term appearing in the OPT dressed propagators is de�ned by
[49]

η̂ = η +m0 − δ [η − (σ + iγ5π · τ )] . (2.25)

so that all the η, σ and π insertions are automatically accounted for.

Figure 2.1.: Diagrams contributing to F (η̂) to order δ. The thick continuous lines rep-
resent the OPT dressed fermionic propagators, the dashed line represents
the σ propagator and the dashed-doted line represents the π propagator
(Figure taken from Ref. [49])

Applying the Feynman rules one then obtains [49]

F =
Nc
2λ

(
σ2 + π2)+ i

∫
d4p

(2π)4 Tr ln
(
/p− η̂

)
+ δ

λ

2Nc

∫
d4p

(2π)4

∫
d4q

(2π)4 Tr

[(
/p+ η̂

p2 − η̂2

)(
γ5τi

/q + η̂

q2 − η̂2
γ5τi

)]
− δ λ

2Nc

∫
d4p

(2π)4

∫
d4q

(2π)4 Tr

[(
/p+ η̂

p2 − η̂2

)(
/q + η̂

q2 − η̂2

)]
. (2.26)

It is clear that (after taking the trace over colors) the �rst two terms are of order
Nc while the last two, which are of order N0

c , would not contribute to a LN type
of calculation. This important remark emphasizes the fact that already at the �rst
non-trivial order the OPT considers terms which belong to the NLO (next to the
leading order) order in a 1/Nc type of expansion. Here, the �rst 1/Nc corrections due
to the OPT type of expansion have the topology of exchange (Fock) type of diagrams
as Fig. 2.1 explicitly shows.

The mass term η̂ is dressed by the scalar �eld σ and the pseudoescalar �eld π and,
in order to maintain the Goldstone structure of the theory [38, 50], it must be de�ned
as [38]

η = α+ iγ5ν · τ , (2.27)

where ν is a three-vector.
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2. The Nambu�Jona-Lasinio Model

Now the PMS conditions to be satis�eld at δ = 1 are

∂F
∂α

∣∣∣∣
ᾱ,ν̄i

= 0 and
∂F
∂νi

∣∣∣∣
ᾱ,ν̄i

= 0. (2.28)

Identifying

A = γµpµ − η̂

=


p0 − a 0 −p3 − b −p1 + ip2

0 p0 − a −p1 − ip2 p3 − b
p3 − b p1 − ip2 −p0 − a 0
p1 + ip2 −p3 − b 0 −p0 − a

 (2.29)

and

B = γµpµ + η̂

=


p0 + a 0 −p3 − b −p1 + ip2

0 p0 + a −p1 − ip2 p3 − b
p3 − b p1 − ip2 −p0 + a 0
p1 + ip2 −p3 − b 0 −p0 + a

 , (2.30)

where a = α (1− δ)−m− δσ and b = iν ·τ (1− δ)− iδπ ·τ . One can use the identity
Tr ln = ln det, to expand the logarithm to order δ. Then, by taking the trace in each
one of the integrals in Eq. (2.26) one gets

F
Nc

=
1

2λ

(
σ2 + π2)+ 2iNf

∫
d4p

(2π)4 ln
[
−p2 + (α+m0)2 + ν2]

+ 4iδNf

∫
d4p

(2π)4

(α+m0) (α− σ) + ν (ν − π)

−p2 + η̂2

− 2 (nπ + 1) δ
λNf
Nc

∫
d4p

(2π)4

d4q

(2π)4

pµq
µ

(−p2 + η̂) (−q2 + η̂)

+ 2 (nπ − 1) δ
λNf
Nc

∫
d4p

(2π)4

d4q

(2π)4

(α+m0)2 − ν2

(−p2 + η̂) (−q2 + η̂)
, (2.31)

where nπ represents the number of pseudoescalars. In the U(1) version of the model,
where Nf = 1 and nπ = 1 , so that the last term does not contribute and the
OPT will bring 1/Nc corrections only at �nite chemical potential, since the other
correction term is related to the quark number density, which is zero at vanishing
chemical potential. In our case, nπ = 3 and �nite Nc corrections are expected to
occur at any regime of density and/or temperature.

Applying the PMS equation for α and νi leads to a cumbersome problem, which
can be circumvented by noticing the symmetry between α and νi, which allows us to
select the σ direction and set πi = 0, implying that ν̄i = 0 [38] and ᾱ = η̄. We also

20



2.2. The e�ective potential

note that in the third term of Eq. (2.31) only the zeroth component will eventually
survive (when µ 6= 0). Then, one �nally gets

F
Nc

=
σ2

2λ
+ 2iNf

∫
d4p

(2π)4 ln
[
−p2 + (η −m0)2]

+ 4iδNf

∫
d4p

(2π)4

(η +m0) (η − σ)

−p2 + (η +m0)2

− 8δ
λNf
Nc

[∫
d4p

(2π)4

p0

−p2 + (η +m0)2

]2

+ 4δ
λNf
Nc

(η +m0)2

[∫
d4p

(2π)4

1

−p2 + (η +m0)2

]2

. (2.32)

Let us now use the Matsubara's (imaginary time) formalism in order to introduce the
control parameters T and µ. Basically within this formalism, the time component is
replaced by the temperature since the evolution of the system follows a path where
each point of the path is a equilibrium state.

Since we are working with fermions, the solution of the Dirac equation must be
anti-periodic in time ψ (0,x) = −ψ (β,x) [51], where β = 1/T .

Now one makes the substitution p0 → iωn + µ, where

ωn =
(2n+ 1)π

β
, (2.33)

are the Matsubara frequencies for fermions, µ is the chemical potential (which is
roughly related to the di�erence between particles and antiparticles) and n = 0± 1±
2...±∞. Then replacing p0 one obtains∫

d4p

(2π)4 → i

∫
dωn

d3p

(2π)4 . (2.34)

This is only valid when T → 0, since ∆ωn = 2πT∆n → 0. Nevertheless, at �nite T ,
the integral over ωn in equation (2.34) becomes discretized as T∆n becomes �nite
[52] and one can write

dωn → 2πT

∞∑
n=−∞

,

so that ∫
d4p

(2π)4 →
i

β

∫
d3p

(2π)3

∞∑
n=−∞

. (2.35)
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2. The Nambu�Jona-Lasinio Model

In this case, Eq. (2.32), with p = (iωn + µ,p), becomes

F
Nc

=
σ2

2λ
− 2Nf

β

∫
d3p

(2π)3

∞∑
n=−∞

ln
[
(ωn − iµ)2 + p2 + (η −m0)2]

+ δ
4Nf

β

∫
d3p

(2π)3

∞∑
n=−∞

(η +m0) (η − σ)

(ωn − iµ)2 + p2 + (η +m0)2

+ 8δ
λNf
β2Nc

[∫
d3p

(2π)3

∞∑
n=−∞

ωn − iµ
(ωn − iµ)2 + p2 + (η +m0)2

]2

− 4δ
λNf
β2Nc

(η +m0)2

[∫
d3p

(2π)3

∞∑
n=−∞

1

(ωn + iµ)2 + p2 + (η +m0)2

]2

, (2.36)

where the detailed evaluation of Matsubara's sums are given in appendix B.
Finally, we can write the e�ective potential in terms of temperature and chemical

potential in the more compact form

F (η, σ, µ, T ) =
σ2

4GS
− 2NfNcI1 (µ, T ) + 2δNfNc (η +m0) (η − σ) I2 (µ, T )

+ 4δGSNfNcI
2
3 (µ, T )− 2δGSNfNc (η +m0)2 I2

2 (µ, T ) , (2.37)

where we have replaced λ→ 2GSNc. In the above equation we have also de�ned, for
convenience, the integrals

I1 (µ, T ) =

∫
d3p

(2π)3

{
Ep +

1

β
ln
[
1 + e−β(Ep+µ)

]
+

1

β
ln
[
1 + e−β(Ep−µ)

]}
, (2.38)

I2 (µ, T ) =

∫
d3p

(2π)3

1

Ep

[
1− f+ − f−

]
(2.39)

and

I3 (µ, T ) =

∫
d3p

(2π)3

[
f+ − f−

]
, (2.40)

where E2
p = p2 + (η +m0)2 is the dispersion while

f+ =
1

eβ(Ep−µ) + 1
, (2.41)

(2.42)

and

f− =
1

eβ(Ep+µ) + 1
, (2.43)
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2.2. The e�ective potential

represent the fermion distribution functions for particles and antiparticles respec-
tively.

The physical interpretation of the OPT free energy, Eq. (2.37), becomes clear by
analyzing the physical meaning of each term. The �rst term represents the classical
potential while the second is similar to the standard result obtained in the case of free
fermionic gas whose masses are given bym0+η as I1 suggests. The terms proportional
to I2 ∼ ∂I1/∂η are reminiscent of the one loop scalar density, ρs =

〈
ψ̄ψ
〉
. At the

same time, the terms proportional to I3 ∼ ∂I1/∂µ only survive when µ 6= 0 as Eq.
(2.40) shows. This can be easily understood by recalling that, to one loop, the quark
number density ρ =

〈
ψ+ψ

〉
is given by I3. Then, by noting that I3 is 1/Nc suppressed

one can readily draw the basic physical di�erences between the OPT and LN (or MF)
approximations at this �rst non-trivial order. Namely, the OPT free energy is written
in terms of scalar and vector condensates while only the scalar density contributes
to the later. This observation is crucial for the discussions to be carried out in the
sequel.

An important remark, at this point, is that the integrals for the vacuum state
(T = µ = 0) are divergent and, in typical NJL evaluations, they are usually regulated
by a sharp non-covariant ultra violet momentum cut-o�, Λ, which cannot be removed
by a systematic rede�nition of the original parameters as in a renormalizable theory.
To deal with this situation one generally considers Λ to be a new �parameter" which
sets the maximum energy scale at which the model predictions can be trusted. Then,
the vacuum integrals in terms of the cut-o� Λ read

I1 (0, 0) =

∫
d3p

(2π)3 Ep

=− 1

32π2

(η +m0)4 ln


(

Λ +
√

Λ2 + (η +m0)2

)2

(η +m0)2


−2

√
Λ2 + (η +m0)2 [2Λ3 + Λ (η +m0)2]} , (2.44)

and

I2 (0, 0) =

∫
d3p

(2π)3

1

Ep

=
1

4π2

Λ
√

Λ2 + (η +m0)− (η +m0)2

2
ln


(

Λ +
√

Λ2 + (η +m0)2

)2

(η +m0)2


 .

(2.45)
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Applying the PMS equation, (2.22), and noting that

∂I1
∂η

= (η +m0) I2 (2.46)

we get for η̄{
[η − σ − 2 (η +m0)GSI2]

[
1 + (η +m0)

∂

∂η

]
I2 + 4GSI3

∂I3
∂η

}
η=η̄

= 0. (2.47)

Since we are interested in the thermodynamic quantities such as the pressure, we
must obtain the equilibrium condition for the e�ective potential

∂F (η, σ, µ, T )

∂σ

∣∣∣∣
σ̄

= 0, (2.48)

which gives the gap equation

σ̄ = 4GNfNc (η +m0) I2. (2.49)

In the LN limit the two terms proportional to GS in Eq. (2.47) do not contribute and
the PMS equation has as solutions η̄ = σ̄ and I2 = (m0 + η) ∂I2/∂η. However, the
last solution only depends on Λ and η, and as a consequence does not have information
about the theory itself. Therefore, in the large-Nc limit the solution η̄ = σ̄ is usually
considered as the physical one. With this, we reproduce the familiar expression for
F in the LN approximation

FLN (σ, µ, T ) =
σ2

4GS
− 2NfNcI1 (µ, T ) , (2.50)

showing how the OPT reproduces the �exact" result once the Nc → ∞ limit is ap-
propriately taken. This exercise helps to establish the reliability of the OPT method.
Having obtained the values of σ̄ and η̄ we can evaluate the pressure which is related

to the free energy through

P = −F (η̄, σ̄, µ, T ) . (2.51)

Then, other important physical quantities such as the density energy ε and the inter-
action measure (or trace anomaly) ∆ become available upon considering

ε = −P + Ts+ µρ, (2.52)

∆ =
ε− 3P

T 4
, (2.53)

where s is the entropy density and ρ is the quark number density

s =

(
∂P

∂T

)
µ

, (2.54)

ρ =

(
∂P

∂µ

)
T

. (2.55)
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2.3. Results at �nite temperature and zero density

Within the two �avor version of the NJL model there are three parameters to be
�xed: the current mass m0, the cut-o� Λ and the coupling constant GS .Usually
they are adjusted so as to reproduce physical observables such as the pion mass
(mπ ' 135 MeV), the pion decay constant (fπ ' 92.4 MeV) and the quark condensate

(−
〈
ψ̄ψ
〉1/3 ' 250 MeV) [33]. The (non-observable) current quark mass is related to

the observables via the Gell�Mann-Oakes-Renner (GMOR) relation [53],

m0 =
−f2

πm
2
π

2
〈
ψ̄ψ
〉 . (2.56)

There is a family of parameter sets tailored to reproduce the numerical values of
these physical observables and, in general, one chooses a set which also reproduces
the vacuum e�ective quark mass, M = m0 + Σ ' 330 MeV, where Σ represents the
self energy.
The parameter sets adopted in this work are given in table 2.1 (see Ref. [49] for

other possibilities).

Table 2.1.: Parameter set for the OPT and for the LN approximation as given in Ref.
[49]. These values were obtained to reproduce mπ = 135 MeV, fπ = 92.4

MeV and −
〈
ψ̄ψ
〉1/3

= 250 MeV.

Λ [MeV] m0 [MeV] GSΛ2

OPT 640 4.9 1.99
LN 640 5.2 2.14

2.3. Results at �nite temperature and zero density

As previously remarked, in the case of of vanishing density (µ = 0) we have I3 = 0,
and the PMS condition, Eq. (2.47), becomes much simpler. Considering the PMS
physical solution together with the gap equation, (2.49), one then obtains

η̄ = σ̄ + 2GS (η̄ +m0) I2

= σ̄

(
1 +

1

2NfNc

)
, (2.57)

which corrects the LN relation η̄ = σ̄.
Figure 2.2 displays the normalized e�ective potential for the physical case, m0 6= 0,

and for the chiral limit, m0 = 0. We see that in the chiral limit, the e�ective potential
is symmetric, while in the physical case there is a small asymmetry which is due to
the �nite mass of the pion. In the chiral limit, where the symmetry is exact, the
pion would represent the Goldstone boson of the theory but, in the real world, the
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Figure 2.2.: OPT E�ective potential as a function of σ at di�erent temperatures for
µ = 0. Left panel : the chiral limit, m0 = 0. Right panel : the physical
case, m0 = 4.8 MeV

pion represents a pseudo-Golstone boson whose mass is much smaller than the sigma
meson mass (mσ ∼ 600 MeV) or the nucleon mass (MN ∼ 1 GeV).

The equilibrium state for small temperature signals a non-vanishing value for the
order parameter, σ̄, so that the quark e�ective mass is M = m0 + σ̄ ∼ 330 MeV
as Fig. 2.2 shows. So, in the vacuum state, we have a �nite e�ective mass even
when m0 = 0 when chiral symmetry is dynamically broken. As the temperature is
increased, the equilibrium state is located at σ̄ = 0 (σ̄ ' 0), and chiral symmetry is
(partially) restored in the chiral (physical) limit.

Next, using Eq. (2.57), one only needs to solve the gap equation (2.49) to obtain the
order parameter, σ̄, which controls the chiral transition. The critical (pseudocritical)
temperature, Tc (Tpc), where the chiral transition occurs, in other words, where chiral
symmetry is (partially) restored is found from the discontinuity (maximum) value of
the thermal susceptibility, −dσ/dT .
Figure 2.3 shows the e�ective mass as a function of T/Tσ, where Tσ represents Tc or

Tpc. The critical temperature is 169 MeV and 165 MeV in the chiral limit for the OPT
and for the LN approximation respectively. In the physical case, the pseudocritical
critical temperature is 174 MeV for the OPT and 172 MeV for the LN approximation.

In the chiral limit, we have a second order phase transition, while in the physical
case we have a crossover [54, 55]. In a second order phase transition the thermal
susceptibility (second derivative of the free energy) diverges in the critical point,
while in a crossover we cannot strictly speak of a phase transition since the system
goes continuously from one phase to another. This distinction becomes clear in Fig.
2.4 which displays the thermal susceptiblity as a function of T for each case and shows
that this quantity clearly diverges only in the chiral limit. In this limit the e�ective
mass becomes zero at the critical temperature and the chiral symmetry is restored,
while in the physical case drops to the values close to m0 at temperatures higher than
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Figure 2.3.: The e�ective quark mass,M , as a function of T/Tσ for µ = 0. Left panel :
m0 = 0. Right panel : m0 6= 0.

Tσ and we say that the system reaches an almost chirally symmetric phase.
Figure 2.5 shows the normalized pressure

PN (η̄, σ̄, µ, T ) = P (η̄, σ̄, µ, T )− P (η̄, σ̄, 0, 0) , (2.58)

in units of T 4. The above subtraction procedure, which is commonly adopted, means
that PN = 0 at T = 0 = µ. For simplicity, we will drop the subscript N from now on.
Both, the OPT and the LN approximation predict the same behavior for P at

µ = 0, which shows the robustness of the LN approximation when only thermal
e�ects are considered. This means that the OPT does not produce notorious changes
in the pressure at zero chemical potential, which is not so surprising if one recalls
that the term associated with

〈
ψ+ψ

〉
(I3) does not contribute in this case.

Figure 2.6 shows the trace anomaly obtained with the OPT and with the LN
approximation. The former predicts a slightly higher interaction at the crossover
region.

2.3.1. Taylor expansion coe�cients

The statistical moments, commonly determined from a measured multiplicity distri-
bution, are the mean (M), the variance (σ2) (not be confused with the scalar �eld),
the skewness (S) and the kurtosis (κ). They are related to the (net-)number N of
interest by M = 〈N〉, σ2 =

〈
(∆N)2

〉
, S =

〈
(∆N)3

〉
/σ3 and κ =

〈
(∆N)4

〉
/σ4 − 3

where ∆N = N − 〈N〉 is the �uctuation of N around its mean value. The cumulants
cn of the distribution are de�ned as c1 = M , c2 = σ2, c3 = Sσ3, and c4 = κσ4

and are, for an equilibrated system, related to generalized susceptibilities given by
appropriate derivatives of the pressure. Studying �uctuations in statistical systems is
important from several points of view. For instance, �uctuations de�ne the stability
of the system and its way of reaching the state of thermodynamic equilibrium [56]
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Figure 2.6.: Trace anomaly as a function of T/Tσ, at µ = 0, obtained with the OPT
(continuous line) and with the LN approximation (dashed line).

The number-of-particle �uctuations are characterized by the dispersion〈
(∆N)2〉 =

〈
N2〉− 〈N〉2 (2.59)

for the number-of-particles operatorN =
∫
ψ+(r)ψ(r)dr with ψ being a �eld operator.

The average number of particles, N , is a statistical averageN = 〈N〉 =
∫
ρ(r)dr where

ρ(r) =
〈
ψ+(r)ψ(r)

〉
is the density of particles. Here we keep in mind an equilibrium

state, because of which ρ(r) does not depend on time. But ρ(r) depends on the spatial
variable r, when the system is non-uniform (which is not the case under study in this
work).
As discussed in Sec 1.2, to study QCD at �nite densities using Monte Carlo simu-

lations one can Taylor-expand the pressure as a power series in µ/T ,

P

T 4
=

∞∑
n=0

c2n (T ) (µ/T )2n . (2.60)

Note that there are only even powers of µ/T due to the re�exion symmetry, which
means that the pressure is an even function with respect to µ, P (µ) = P (−µ) [25].
The coe�cients of the series (also known as cumulants) can be identi�ed with the
quark number susceptibilities.
Once the pressure has been evaluated within a given model approximation the

coe�cients can be obtained from

cn (T ) =
1

n!

∂nP (T, µ) /T 4

∂ (µ/T )n

∣∣∣∣
µ=0

. (2.61)
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Figure 2.7.: Taylor expansion coe�cient c2 as a function of T/Tσ obtained with the
OPT (continuous line) and with the LN approximation (dashed line).

Having determined some of these coe�cients one can then calculate other thermody-
namical quantities like the quark number density or the quark number susceptibility,
which are respectively given by

ρ

T 3
=
∂P (T, µ) /T 4

∂ (µ/T )
= 2c2

µ

T
+ 4c4

( µ
T

)3

+ · · · , (2.62)

χq
T 2

=
∂2P (T, µ) /T 4

∂ (µ/T )2 = 2c2 + 12c4
( µ
T

)2

+ · · · (2.63)

Nowadays the evaluation of these cumulants is receiving a lot of attention from LQCD
researchers and the considerable amount of data already available can be used to check
the reliability of other non-perturbative techniques such as the OPT and the LN ap-
proximation. With this purpose, in this work we will be concerned with the evaluation
of c2. We also point out that the NJL model does not seem to produce reliable results
for higher order coe�cients when they are calculated taking the derivatives directly
from the pressure expression. In this situation it is preferable to follow the method
adopted in Ref. [57], which consists in evaluating P/T 4, at a �xed temperature and
for di�erent values of µ, then �t it (e.g., numerically) to a polynomial in µ/T .

Figure 2.7 shows the coe�cient c2 obtained with the OPT and with the LN ap-
proximation for the NJL model. We can see from the �gure that the OPT does not
behave as expected, since the value of c2 is decreasing for T > Tσ and is moving away
from the Stefan�Boltzmann limit, which takes place at su�ciently high temperatures
when the thermal �uctuations overcome the interparticle interactions and the system
behaves as a free gas whose pressure, in the continuum limit, is given by [58]
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PSB
T 4

=
8π2

45

[
1 +

21

32
Nf

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)]
. (2.64)

Then, using Eq. (2.61) we �nd the Stefan�Boltzmann limit for c2

cSB2 = 1. (2.65)

At this stage it seems puzzling that the OPT, which supposedly should produce
results more accurate than the LN approximation, seems to perform rather poorly
at high temperatures. Moreover, none of the LQCD evaluations for this coe�cient
reproduce the maximum for c2 (T ) observed in the OPT results. Nevertheless, a result
similar to ours has been obtained by Steinheimer and Schramm [59] who used the
LN approximation to investigate the NJL model in the presence of a repulsive vector
channel. In the next section we review this version of the NJL model and the LN
result for the free energy in order to shed light into the OPT results.

2.4. Repulsive vector interaction in the NJL model

In the Introduction we have emphasized the importance of a vector interaction in the
studies of compressed quark matter. Within the NJL model such a term can be of
the form −GV

(
ψ̄γµψ

)2
with GV > 0 describing repulsion which is the case here and

GV < 0 describing attraction. Then the standard NJL lagrangian density becomes

LV = ψ̄
(
i/∂ − m̂0

)
ψ +GS

[(
ψ̄ψ
)2

+
(
ψ̄iγ5τψ

)2]−GV (ψ̄γµψ)2 , (2.66)

and the e�ective potential in the LN approximation reads [2]

FLN =
σ2

4GS
− 4GVN

2
fN

2
c I

2
3 (µ̃, T )− 2NfNcI1 (µ̃, T ) , (2.67)

where I1(µ̃, T ) and I3(µ̃, T ) can be readily obtained from Eqs. (2.38) and (2.40) upon
replacing µ→ µ̃ = µ− 2GV ρ, with ρ = 2NcNfI3 , and m0 + η → m0 +σ. Fukushima
[20] has shown that the combined e�ect of µ̃ and −4GVN

2
cN

2
f I

2
3 in the above equation

is to produce a net e�ect similar to +4GVN
2
cN

2
f I

2
3 . This interesting result allows us to

better understand the type of 1/Nc contributions radiatively generated by the OPT.
An inspection of Eq. (2.37) reveals that this approximation generates a +4GSNcNfI

2
3

term which is similar to the +4GVN
2
cN

2
f I

2
3 term appearing in the LN result.

Let us pursue this investigation by analyzing the chiral transition at high densities
obtained with the OPT (at GV = 0) and the LN approximation (at GV = 0 and
GV 6= 0).
Note that, in order to obtain thermodynamical results with the LN approximation,

at GV 6= 0, one needs to solve the following set of equations

∂F
∂σ

= 0, and
∂F
∂µ̃

= 0. (2.68)

Fig. 2.8 shows the predictions for the chiral transition at low temperatures and high
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Figure 2.8.: Phase diagram in the T�µ plane for the NJL model showing the �rst
order transition lines and the critical end points. The LN with GV = 0
is denoted by the circle, the LNGV with GV = GS/(NfNc) is denoted
by the triangle and the OPT is denoted by the square.

chemical potential values where the transition is of the �rst kind. This transition line
starts at T = 0 and terminates at a second order transition point which de�nes a
critical end point (when m0 6= 0) since at supercritical temperatures a crossover takes
place as already discussed (note that in the chiral limit case, the �rst order transition
line terminates at a tricritical point and at supercritical temperatures one has second
order phase transitions). This low-T/high-µ portion of the QCD phase diagram is
very important for astrophysical applications and the fact that the transition is of
the �rst kind has non-negligible consequences concerning the structure of compact
stellar objects. For example, within this kind of phase transition one may have two
substances, with distinct densities, coexisting at the same P , T and µ. In the case of
strongly interacting matter these two substances may represent hadronic and quark
matter which could lead to the formation a hybrid star instead of a pure neutron
star. Our results show that both, the OPT and the LN approximation with GV 6= 0
(LNGV ) reduce the �rst order transition in relation to the LN case with GV = 0.
Also, for a given temperature, the coexistence chemical potential value at which the
transition occurs is shifted to higher values within the OPT and the LNGV indicating
that these two di�erent model approximations produce a similar type of physics as
one could infer by comparing their free energies.

We have already emphasized the important role played by a repulsive vector channel
in the description of compressed quark matter. As we have just shown the OPT seems
to reproduce the same e�ects without the need to explicitly introduce such a term (and
one more parameter!) at the tree level. In the OPT case the radiative corrections,
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which are 1/Nc suppressed, account for a vector type of channel as a consequence of
the Fierz identities which manifest themselves when exchange (two loop) diagrams
are considered. So far, in view of our comparisons between this method, the LN and
the LNGV , one may say that at least for temperatures not much higher than the one
which signals the chiral transition the OPT represents an improvement over the LN
(at GV = 0). So, the OPT can be seen as a powerful alternative to investigate the
low-T/high-µ part of the QCD phase diagram which is currently non-accessible to
the LQCD simulations. However, our evaluation of the important c2 cumulant has
revealed that at temperatures higher than Tc the OPT presents a problem similar to
the one detected within the LNGV approximation: the failure to attain the SB limit!
Steinheimer and Schramm, who employed the LNGV , concluded that GV should drop
to zero after Tc so that the SB limit at high T while reproducing the correct physics
at T < Tc. We will discuss this conjecture with more detail at the end of Chap. 4.
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The standard version of the NJL does not incorporate con�nement and therefore is
of limited interest if one aims to perform a realistic description of QCD. In this case,
it becomes mandatory to �nd some way of simulating con�nement within the original
model. With this purpose, in Ref. [5] the Polyakov loop has been added to the NJL
Lagrangian to produce the Polyakov-loop-extended NJL model (PNJL)

LPNJL = ψ̄
(
i /D − m̂0

)
ψ +GS

[(
ψ̄ψ
)2

+
(
ψ̄iγ5τψ

)2]− U (l, l∗, T ) , (3.1)

where the covariant derivative is given by

Dµ = ∂µ − iAµ with Aµ = δ0
µA

0, (3.2)

with the SU(N) gauge coupling constant, g, absorbed in Aµ (x) = gAµa (x)
λa
2
, where

Aµa (x) is the SU (3) gauge �eld and λa represent the Gell-Mann matrices [60].
Before presenting the Polyakov potential U (l, l∗, T ) let us now de�ne the Wilson

line which winds once through a periodic time direction [61�63]

L (x) ≡ P exp

[
i

∫ β

0

dτA4 (τ,x)

]
, (3.3)

where β = 1/T and A4 = iA0 is the temporal component of the Euclidean gauge
�eld (A4,A). In the same expression, P denotes the time ordering operator, which
indicates that the integral must be calculated ordering the time variable τ as [30]

P [A4 (τ1,x)A4 (τ2,x)] =

{
A4 (τ1,x)A4 (τ2,x) if τ1 > τ2
A4 (τ2,x)A4 (τ1,x) if τ2 > τ1

. (3.4)

The expectation value of the Polyakov loop Φ is then given by [32]

Φ ≡ 〈l (x)〉 , and Φ̄ ≡ 〈l∗ (x)〉 , (3.5)

where

l (x) ≡ 1

Nc
TrL (x) (3.6)

is the traced Polyakov loop.
Finally, the potential U (l, l∗, T ) is �xed by comparison with pure-gauge lattice

QCD [64], from which one obtains the following ansatz [62],

U (l, l∗, T )

T 4
= −1

2
b2 (T ) ll∗ + b4 (T ) ln

[
1− 6ll∗ + 4

(
l3 + l∗

3
)
− 3 (ll∗)

2
]
, (3.7)
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with

b2 (T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

, b4 (T ) = b4

(
T0

T

)3

. (3.8)

The parameters ai, bi, taken from Ref. [62] are listed in table 3.1, where T0 is the
critical temperature for decon�nement in the pure-gauge sector whose value is �xed
at 270 MeV.

a0 a1 a2 b4
3.51 -2.47 15.22 -1.75

Table 3.1.: Parameter set use for the Polyakov loop potential

3.1. Center symmetry group Z(3)

By construction, QCD is invariant under local gauge transformations of the SU(Nc)
group and, as a consequence, it is also invariant under the subgroups of SU(Nc)
such as the center group Z(Nc), that is related to con�nement. The center group,
which is composed by elements that commute with all the other elements of SU(Nc)
[31, 32, 65], has the elements

zn = 1 exp

(
2πin

Nc

)
(n = 0, 1, 2, · · · , Nc − 1) . (3.9)

In our case, Nc = 3, so that the center group is Z(3), which is composed by tree ele-
ments. Since the center group has a �nite number of elements the group of transfor-
mations cannot change continuously from point to point, thus it is a global symmetry
of the QCD Lagrangian in the pure gauge sector.
In QCD the following periodic conditions for quarks and gluons holds:

ψ (0,x) = −ψ (β,x) and Aµ (0,x) = Aµ (β,x) . (3.10)

Let us now investigate what happens to the boundary conditions under local SU(3)
transformations:

ψ (0,x)→ U (0,x)ψ (0,x) ,

ψ (β,x)→ U (β,x)ψ (β,x) , (3.11)

Aµ (0,x)→ U (0,x)Aµ (0,x)U† (0,x)− 1

ig
U (0,x) ∂µU

† (0,x) ,

Aµ (β,x)→ U (β,x)Aµ (β,x)U† (β,x)− 1

ig
U (β,x) ∂µU

† (β,x) , (3.12)
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noting that, in order to preserve the boundary conditions for quarks, the SU(3)
transformations must be periodic

U (0,x) = U (β,x) . (3.13)

However, gluons are adjoint �elds and their transformations involve the inverse of the
transformation matrix, which means that only transformation matrices that commute
with the gluon �eld will keep it unchanged. So, these elements are the elements of
the Z(3) symmetry group, meaning that

U (0,x) = zU (β,x) . (3.14)

It is important to note that the Z(3) symmetry arising from the boundary condi-
tions are not the same as the symmetry of the Lagrangian where the �elds are rotated
by the same element of Z(3) at every point. On the other hand, in the boundary
conditions, the rotations of the gluon �elds is only at τ = β. In other words, the
QCD Lagrangian density is invariant under general gauge transformations 3.12, but
the boundary condition may not be respect.
Within gauge transformations the Wilson line transforms as

L (x)→ U (β)L (x)U† (β) , (3.15)

so that transformations such as the one described by Eq. (3.14) lead to

l (x)→ zl (x) , (3.16)

owing the fact that the trace of L (x) is invariant under gauge transformations. Then,
the expectation value of the Polyakov loop (Φ) must be zero relating the Z(3) symme-
try with con�nement, where Φ = 0 represents the con�ned phase whilst the decon�ned
phase is accompanied by the spontaneous breaking of the center symmetry. In order
to visualize this we o�er Fig. 3.1 which displays the thermodynamical potential in the
pure gauge sector, where quarks are not taken into account. The �gure clearly shows
that at temperatures below the critical temperature, T0, a global minimum arises at
Φ = 0, signaling the con�ned phase. On the other hand, when the temperature is
greater than T0, the center symmetry is spontaneously broken, and now there are
three minima which correspond to a decon�ned phase, when the con�nement order
parameter acquires a �nite value (Φ 6= 0).
In the presence of dynamical quarks the Z(3) symmetry is explicitly broken and

one cannot rigorously talk of a phase transition. Nevertheless, the expectation value
of the Polyakov loop serves as an indicator of the crossover between the phase of color
con�nement (Φ→ 0) and the one where color is decon�ned (Φ→ 1).
A physical interpretation of Φ is related to the single quark free energy fq (x) by

fq = −T ln (〈l (x)〉) , (3.17)

and for a static quark anti-quark pair, it can be written as the correlation of two
Polyakov loops

fq (x− y) = −T ln
(〈
l (y)† l (x)

〉)
. (3.18)
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Figure 3.1.: E�ective potential in the pure gauge sector for two temperatures, below
and above the critical temperature T0.
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3.2. The PNJL free energy beyond the large-Nc limit

If the expectation value of the Polyakov loop is zero, that implies an in�nite free
energy for a single quark, or an in�nite pair potential in the quark anti-quark case.
This implies quark con�nement justifying that the Polyakov loop be considered the
order parameter for con�nement.

3.2. The PNJL free energy beyond the large-Nc limit

In order to �nd the expression for the PNJL free energy using the OPT, we will
follow exactly the procedure adopted in Sec. 2.2, but now, instead of /∂ we have
/D, and also the additional potential U

(
Φ, Φ̄, T

)
in the Lagrangian. Technically the

major di�erence is that within the PNJL model the trace over color space must be
carried out after the sums over Matsubara's frequencies have been performed. Let us
start by adapting Eq. (2.31) to the PNJL case. Setting nπ = 3, ν = 0 and α = η
yields

F = U (l, l∗, T ) +
Ncσ

2

2λ
+ 2iNf

∫
d4p

(2π)4 Trc ln
[
−p2 + (η −m0)2]

+ 4iδNf

∫
d4p

(2π)4 Trc
(η +m0) (η − σ)

−p2 + (η +m0)2

− 8δ
λNf
Nc

∫
d4p

(2π)4

d4q

(2π)4 Trc
p0

−p2 + (η +m0)2

q0

−q2 + (η +m0)2

+ 4δ
λNf
Nc

(η +m0)2

∫
d4p

(2π)4

d4q

(2π)4 Trc
1

−p2 + (η +m0)2

1

−q2 + (η +m0)2 , (3.19)

where now, p0 → iωn + µ − iA4. Denoting µ′ = µ − iA4 and introducing the usual
Matsubara's sum we get

F = U (l, l∗, T ) +
Ncσ

2

2λ
− 2Nf

β

∫
d3p

(2π)3 Trc

∞∑
n=−∞

ln
[(
ωn − iµ′

)2
+ E2

p

]
− δ 4Nf

β
(η +m0) (η − σ)

∫
d3p

(2π)3 Trc

∞∑
n=−∞

1

(ωn − iµ′)2 + E2
p

− 8δ
λNf
β2Nc

∫
d3p

(2π)3

d3p

(2π)3 Trc

∞∑
n=−∞

∞∑
m=−∞

ωn − iµ′

(ωn − iµ′)2 + E2
p

ωm − iµ′

(ωm − iµ′)2 + E2
q

− 4δ
λNf
β2Nc

(η +m0)2

∫
d3p

(2π)3

d3p

(2π)3 Trc

∞∑
n=−∞

∞∑
m=−∞

1

(ωn + iµ′)2 + E2
p

× 1

(ωm + iµ′)2 + E2
q

, (3.20)

where the notation Trc is a reminder that the traces over color space have not yet
been performed. To our knowledge this evaluation has not been performed before
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3. The Polyakov�Nambu�Jona-Lasinio Model

for the two loop contributions represented by the two last terms of Eq. (3.20). This
straightforward but lengthly exercise is presented in Appendix C. Then, upon replac-
ing λ→ 2GSNc and setting δ = 1 one obtains

F (η, σ, l, l∗, µ, T ) =U (l, l∗, T ) +
σ2

4GS
− 2NfI1 (µ, T ) + 2NfNc (η +m0) (η − σ) I2 (µ, T )

+ 4GSNfNc
[
I2
3 (µ, T ) + ∆I2

3 (µ, T )
]

− 2GSNfNc (η +m0)2 [I2
2 (µ, T ) + ∆I2

2 (µ, T )
]
, (3.21)

where

I1 (µ, T ) =

∫
d3p

(2π)3

{
NcEp + ln

[
g+
l (Ep)

]
+ ln

[
g−l (Ep)

]}
, (3.22)

I2 (µ, T ) =

∫
d3p

(2π)3

1

Ep

[
1− f+

l − f
−
l

]
, (3.23)

I3 (µ, T ) =

∫
d3p

(2π)3

[
f+
l − f

−
l

]
(3.24)

and

f+
l (Ep) =

le−β(Ep−µ) + 2l∗e−2β(Ep−µ) + e−3β(Ep−µ)

g+
l (Ep)

, (3.25)

f−l (Ep) =
l∗e−β(Ep+µ) + 2le−2β(Ep+µ) + e−3β(Ep+µ)

g−l (Ep)
, (3.26)

g+
l (Ep) = 1 + 3le−β(Ep−µ) + 3l∗e−2β(Ep−µ) + e−3β(Ep−µ), (3.27)

g−l (Ep) = 1 + 3l∗e−β(Ep+µ) + 3le−2β(Ep+µ) + e−3β(Ep+µ). (3.28)

The integrals ∆I2
2 (µ, T ) and ∆I2

3 (µ, T ) are given by

∆I2
3 (µ, T ) =

∫
d3p

(2π)3

d3q

(2π)3 ∆2
3, (3.29)

and

∆I2
2 (µ, T ) =

∫
d3p

(2π)3

d3q

(2π)3 ∆2
2, (3.30)
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where

∆2
2 =

e−β(Ep−µ)e−β(Eq−µ)

g+
l (Ep)g

+
l (Eq)

{
2
(
l2 − l∗

)
+ (ll∗ − 1)

[
e−β(Ep−µ) + e−β(Eq−µ)

]
+ 2

(
l∗

2 − l
)
e−β(Ep−µ)e−β(Eq−µ)

}
+
e−β(Ep−µ)e−β(Eq+µ)

g+
l (Ep)g

−
l (Eq)

{
2
(
l − l∗2

)
e−β(Ep−µ) + 2

(
l∗ − l2

)
e−β(Eq+µ)

+ (1− ll∗)
[
1 + e−β(Ep−µ)e−β(Eq+µ)

]}
+
e−β(Eq−µ)e−β(Ep+µ)

g+
l (Eq)g

−
l (Ep)

{
2
(
l − l∗2

)
e−β(Eq−µ) + 2

(
l∗ − l2

)
e−β(Ep+µ)

+ (1− ll∗)
[
1 + e−β(Eq−µ)e−β(Ep+µ)

]}
+
e−β(Ep+µ)e−β(Eq+µ)

g−l (Ep)g
−
l (Eq)

{
2
(
l∗

2 − l
)

+ (ll∗ − 1)
[
e−β(Ep+µ) + e−β(Eq+µ)

]
+ 2

(
l2 − l∗

)
e−β(Ep+µ)e−β(Eq+µ)

}
, (3.31)

and

∆2
3 =

e−β(Ep−µ)e−β(Eq−µ)

g+
l (Ep)g

+
l (Eq)

{
2
(
l2 − l∗

)
+ (ll∗ − 1)

[
e−β(Ep−µ) + e−β(Eq−µ)

]
+ 2

(
l∗

2 − l
)
e−β(Ep−µ)e−β(Eq−µ)

}
− e−β(Ep−µ)e−β(Eq+µ)

g+
l (Ep)g

−
l (Eq)

{
2
(
l − l∗2

)
e−β(Ep−µ) + 2

(
l∗ − l2

)
e−β(Eq+µ)

+ (1− ll∗)
[
1 + e−β(Ep−µ)e−β(Eq+µ)

]}
− e−β(Eq−µ)e−β(Ep+µ)

g+
l (Eq)g

−
l (Ep)

{
2
(
l − l∗2

)
e−β(Eq−µ) + 2

(
l∗ − l2

)
e−β(Ep+µ)

+ (1− ll∗)
[
1 + e−β(Eq−µ)e−β(Ep+µ)

]}
+
e−β(Ep+µ)e−β(Eq+µ)

g−l (Ep)g
−
l (Eq)

{
2
(
l∗

2 − l
)

+ (ll∗ − 1)
[
e−β(Ep+µ) + e−β(Eq+µ)

]
+ 2

(
l2 − l∗

)
e−β(Ep+µ)e−β(Eq+µ)

}
. (3.32)

Note that, when Φ → 1, and, Φ̄ → 1, we have ∆2
2 = 0 and ∆2

3 = 0. Furthermore,
in this case, the expressions for I1, I2 and I3 become identical to the ones used in the
standard NJL model. In other words, in the high temperature limit the PNJL model
and the NJL model are, when the decon�ned phase has been reached, equivalent.
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3. The Polyakov�Nambu�Jona-Lasinio Model

For comparison purposes it is convenient to present the PNJL free energy ontained
with the LN approximation which is given by

FLN (σ, l, l∗, µ, T ) = U (l, l∗, T ) +
σ2

4GS
− 2NfI1 (µ, T ) , (3.33)

where I1(µ, T ) is given by Eq. (3.22) (with the obvious replacement η → σ).

In order to obtain thermodynamical quantities from the OPT free energy one must
then solve the following set of coupled equations.

∂F
∂η

= 0,
∂F
∂σ

= 0,
∂F
∂

= 0,
∂F
∂∗

= 0. (3.34)

Then, the OPT pressure for the PNJL case is simply

P = −F
(
η̄, σ̄,Φ, Φ̄, µ, T

)
. (3.35)

Except for the PMS equation (�rst relation in Eqs. (3.34)) the same sort of manipu-
lation is also needed when the LN approximation is used.

3.3. Numerical results at �nite temperature and zero chemical
potential

Let us now compare the OPT, the LN and the LQCD results at µ = 0 when Φ = Φ̄
[28] yielding a simpler set of coupled equations.

The PNJL model has two order parameters and the system su�ers two transitions;
one from a non-chirally symmetric phase to an approximately chiral phase and another
from a con�ned to a decon�ned phase. In principle these two di�erent transitions
could occur at di�erent critical temperatures but LQCD simulations show that in fact
they coincide at µ = 0. As can be seen in Fig. 3.2, the predicted critical temperature
for decon�nement (TΦ) is almost the same for OPT and for the LN approximation
(∆TΦ ' 1 MeV), while the critical temperature for the chiral transition (Tσ) presents
a bigger di�erence (∆Tσ ' 5 MeV). Furthermore, the predicted critical temperature
for the chiral transition is larger than the critical temperature for decon�nement in
both approximations.

Table 3.2.: Critical temperatures for the chiral (Tσ) and the decon�nement (TΦ) tran-
sitions obtained with the OPT and with the LN approximation at µ = 0.

Tσ [MeV] TΦ [MeV]

OPT 217 213
LN 222 214
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Figure 3.2.: Thermal susceptibilities, −dσ̄/dT and dΦ/dT , as functions of the tem-
perature obtained with the OPT and with the LN approximation.

Table 3.2 shows the critical temperatures for the chiral and the decon�nement
transitions calculated with the OPT and the LN approximation and Fig. 3.3 dis-
plays the e�ective mass as a function of T/Tσ. We can note that the PNJL model
presents a sharper transition than the NJL model highlighting the con�nement e�ect
of the Polyakov loop. The e�ective mass remains almost constant until it reaches the
pseudocritical temperature, Tσ, and then falls rapidly to the current mass value, m0,
while in the NJL model the transition is more gradual. This means that the crossover
region is sharper within the PNJL than within the standard version.

The decon�nement order parameter, Φ, evaluated with both approximations does
not present a noticeable di�erence at µ = 0 as can be seen in Fig. 3.4. This is not an
unexpected result since the additional 1/Nc contributions furnished by the OPT are
not much relevant at vanishing densities. In order to see that, let us consider other
quantities such as the pressure which is displayed in Fig. 3.5. Again, it is clear how
the Polyakov loop in�uences the transition by allowing the pressure to remain low
until the pseudocritical temperature is reached. After that, the increase of P with T
is much more dramatic within the PNJL version of the model. Then, the Polyakov
loop simulates very well the e�ect of gluons, which are not present in the NJL type
models.

Figure 3.6 shows the trace anomaly (or interacting measure) (Eq. (2.53)) as a
function of T/Tσ obtained with the PNJL model and with the standard version.
Once again one may observe how the Polyakov loop in�uences the thermal behavior,
especially near the transition point. Note that the di�erence between the OPT and
the LN is accentuated in the presence of the Φ �eld.
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Figure 3.3.: The e�ective mass,M , as a function of T/Tσ, at µ = 0, obtained with the
OPT and with the LN approximation for the PNJL and the NJL models.
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3.3. Numerical results at �nite temperature and zero chemical potential
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3.3.1. Evaluation of the second cumulant

Let us now compare the coe�cient c2 with the LQCD results given in Ref. [66], where
the simulations were carried out on a 4×163 lattice with a two-�avor clover-improved
Wilson action, with mρ = 700 MeV and mπ = 505 MeV (which is much higher than
the actual physical value, mπ = 135 MeV). Then, in order to compare our results
with this LQCD simulation we need to tune the current quark mass, m0, using, as

phenomenological inputs, fπ ' 92.4 MeV, −
〈
ψ̄ψ
〉1/3 ' 242 MeV and mπ ' 500 MeV,

setting m0 = 72.3 MeV as the OPT value. For the LN approximation we take the
parameter values adopted in Ref. [67] except for the current mass and T0 that is
kept at 270 MeV (as in the OPT case). The new parameters and the corresponding
pseudocritical temperatures are listed in table 3.3. Note that for these elevated quark
current masses the pseudocritical temperatures Tσ and TΦ nearly coincide.

Table 3.3.: Parameter sets for the OPT and for the LN approximation whenmπ ' 500
MeV

Λ [MeV] m0 [MeV] GSΛ2 Tσ [MeV] TΦ [MeV]

OPT 590 72.3 1.91 221 220
LN 631.5 72 2.19 225 224

Figure 3.7 shows c2 as a function of T/Tσ obtained with the OPT and with the LN
approximation (at GV = 0 and GV = GS/(NfNc)) compared with LQCD data. It
is evident that the inclusion of con�nement was necessary in order to make the NJL
model predictions more realistic. The OPT result is in excellent agreement with the
LQCD data for T/Tσ < 1.2. However, at higher T , the OPT continues to deviate
from the Stefan�Boltzmann limit as well as from LQCD data. Incidentally, this kind
of behavior in the PNJL model augmented with a vector repulsive interaction has
been reported by Steinheimer and Schramm [59, 68] within the LN framework as
we have already remarked. These authors discuss the possible value of the vector
repulsive coupling constant, GV , as well as the behavior of it at T > Tσ suggesting
that GV must be turned o� for T > Tσ so that one should expect a strong vector
repulsion in the hadronic phase and a near-zero repulsion in the decon�ned phase.
On the other hand, the OPT �nite Nc corrections generate a vector repulsive type of
term without the additional coupling GV . Then, one cannot use the same argument
to explain the observed discrepancy. This hints that the problem could be related
to fact that these e�ective models do not include asymptotic freedom, which is an
important QCD feature. Within this fundamental theory the strong coupling runs
with T decreasing as higher temperatures are considered while within the NJL models
the coupling is constant. This important topic will be properly addressed in the next
chapter where the entangled version of the PNJL will be considered in detail. Before
doing that let us examine the case of �nite temperatures and densities.
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Figure 3.7.: Taylor expansion coe�cient, c2, at µ = 0 as a function of T/Tσ, obtained
with the OPT and with the LN approximation with GV = 0 and GV =
GS/(NfNc) for the PNJL model. The LQCD data were taken from Ref.
[66].

3.4. Results for hot and dense quark matter

At �nite chemical potential the �elds Φ and Φ̄ are no longer equal, and it may be in-
structive to examine their behavior. In Fig. 3.8 the expectation value of the Polyakov
loop, Φ, and its conjugate, Φ̄, are presented as functions of the chemical potential at
constant temperature and as functions of temperature at constant chemical potential
within the OPT and the LN frameworks. For a given temperature value, the �elds
Φ and Φ̄ grow with µ, and this growth is more pronounced when higher temperature
values are considered. The di�erence between the OPT and the LN approximation
is accentuated at high chemical potential values as expected. On the other hand, at
a �xed µ values, we note that Φ and Φ̄ start to grow at a lower temperature when
µ is higher. Another important aspect is that in the constant T case, the di�erence
between Φ and Φ̄ is larger for higher µ values within the LN approximation, while
the di�erence decreases within the OPT. Also, in the constant µ case, both approxi-
mations predict that the di�erence between Φ and Φ̄ is higher in the con�ned phase.
In this case, the OPT results show that the di�erence between Φ and Φ̄ is smaller
than in the LN approximation as Fig. 3.9 shows.

Finally, Figs. 3.10 and 3.11 show the quark number density (ρ) and the quark
number susceptibility (χq) respectively as functions of T/Tσ for di�erent chemical
potential values. The OPT results for ρ show a better agreement in the temperature
range considered. Note also that the LN results worsen as higher values of µ are con-
sidered which hints to the importance of a repulsive vector channel in the evaluation
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Figure 3.8.: Examples of the Polyakov loop expectation values Φ, and its conjugate Φ̄,
obtained with the OPT and the LN approximation. In the top panels, Φ
and Φ̄ are plotted as functions of µ/Tc at constant temperature values. In
the bottom panels, Φ and Φ̄ are plotted as functions of T/TΦ at constant
chemical potential values.

of the quark number density. The situation gets reversed as far as the predictions for
χq are concerned and the LN approximation performs better while the OPT results
for T > 1.2Tσ seem wrong even from a qualitative point of view. As in the evaluation
of c2, which is in fact related to χq at µ = 0, the OPT predictions present a maximum
at about T/Tσ ' 1.2 which is absent in the LQCD results. In the next chapter we
will discuss how this situation may be eventually reversed by taking the coupling to
be temperature dependent.
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Figure 3.10.: Normalized quark number density as a function of T/Tσ for di�erent val-
ues of µ as predicted by the OPT (left panel) and the LN approximation
(right panel). The lattice data were taken from Ref. [66].
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Figure 3.11.: Quark number susceptibility as a function of T/Tσ for di�erent values
of µ in the PNJL model as predicted by the OPT (left panel) and the
LN approximation (right panel). The LQCD results were obtained in
Ref. [66].
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4. The entangled Polyakov�Nambu�Jona-Lasinio

Model

In chapter 3, the lack of con�nement in the NJL model was improved through the
implementation of the Polyakov loop. However, another important aspect of QCD,
that is not taken into account in the PNJL model, is related to the asymptotic freedom
phenomenon. This is a unique characteristic of non-Abelian theories, such as QCD, in
which the coupling constant decreases as the energy rises. However, in the e�ective
QCD models considered so far the couplings, GS and GV , were taken at constant
values. Nevertheless, in order to mimic asymptotic freedom, they should decrease as
energy scales, such as the temperature, rise. A way of implementing this behavior
was advanced in Ref. [69], where GS is taken to be an e�ective vertex, GS (Φ),
which depends on Φ. This new coupling is called the entanglement vertex, and the
interactions are referred to as the entanglement interactions while the PNJL model
plus the entanglement vertex is known as entangled PNJL (EPNJL) model.
A possible ansatz for GS (Φ), and for GV (Φ), is given by [69, 70]

GS (Φ) = GS
[
1− α1ΦΦ̄− α2

(
Φ3 + Φ̄3)] , (4.1)

GV (Φ) = GV
[
1− α1ΦΦ̄− α2

(
Φ3 + Φ̄3)] , (4.2)

which preserves chiral symmetry, C symmetry, and extended Z(3) symmetry.
The order parameter σ̄ is now a function of Φ and Φ̄, and therefore must also be

derived with respect to Φ and Φ̄ in the gap equation.
The parameters α1 and α2, together with T0, are �xed in order to reproduce the

LQCD data which, at µ = 0, show a coincidence between the pseudocritical temper-
atures TΦ and Tσ [71].
Except for the replacements GS → GS(Φ) and GV → GV (Φ) the OPT and the LN

equations for the PNJL and for the EPNJL models are identical.

4.1. Taylor expansion coe�cients

Before evaluating any physical quantities one has to �x the extra parameters α1 and
α2. Here, following Ref [69] we adopt the values α1 = α2 = 0.2, which are commonly
used in LN evaluations. Note that, if one wants to be rigorous, the parameters α1

and α2 should also be �xed within OPT so as to reproduce LQCD data at vanishing
density. We leave this exercise, which will have a more quantitative impact, for
a future work. For now, it will be su�cient to investigate if the EPNJL thermal
couplings will solve the OPT and the LNGV problem from a qualitative point of
view. We found that for the OPT the chiral pseudocritical temperature, Tσ, and the
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Figure 4.1.: Thermal susceptibilities, −dσ̄/dT and dΦ/dT , as functions of the tem-
perature obtained with the OPT and with the LN approximation within
the EPNJL model.

pseudocritical temperature for decon�nement, TΦ, coincide, as can be seen in Fig.
4.1 so that from now on, both transition temperatures will be denoted Tc. It is also
important to note that, for the OPT, the crossover region reduces drastically with
the inclusion of entanglement.

Figure 4.2 shows the coe�cient c2 obtained with the OPT and with the LN approx-
imation (at GV (Φ) = 0 and at GV (Φ) = GS (Φ) /(NfNc)) for the EPNJL model. For
the LNGV approximation we reproduce the behavior reported in a recent work by
Sugano et al. [70]. From a quantitative point of view, it seems that the results for the
EPNJL model obtained with the OPT at T ≤ 1.2Tc are not so good as those obtained
in the PNJL case. However, we are interested in investigating if the c2 maximum,
which appears in the high-T domain (T > 1.2Tc), may be at least attenuated by
the EPNJL coupling constant which decreases with the temperature. Although the
problem is not completely solved one can see, in Fig. 4.2, that the maximum is less
pronounced with respect to that seen in the PNJL model. This can also be seen in
Figs. 4.3, where the OPT quark number density and the quark number susceptibility
are plotted as functions of T/Tc. Therefore, the inclusion of the entanglement give us
valuable clues of how the vector repulsive term problem may be solved in the OPT
and also in the LN case when GV 6= 0.

At this point it is useful to recall that, in their independent work using the LN
approximation with GV 6= 0, Schramm and Steinheimer [59, 68] and also Sugano
et al. have faced a similar problem in the evaluation of c2 and have proposed two
di�erent solutions to solve it. Schramm and Steinheimer have suggested that GV
should vanish for T > Tc while Sugano et al. suggest that if one takes GV = GS/3
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Figure 4.3.: Quark number density, ρ/T 3 (left panel), and quark number susceptibil-
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2 (right panel), as functions of T/Tc (Tc = 203) MeV for di�erent
values of µ obtained with the OPT in the EPNJL model. LQCD data
from Ref. [66].

at T = 0 and then uses GV (Φ) and GS(Φ) a reasonable agreement with the lattice
results (within eventual error bars) may be achieved for the range Tc < T < 1.8Tc. On
the other hand, the OPT results suggest that one should pay attention to the thermal
behavior of the scalar�pseudoscalar coupling, GS , which indeed must decrease with T
for T > Tc. For temperatures lower that 1.1Tc this approximation furnishes excellent
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4. The entangled Polyakov�Nambu�Jona-Lasinio Model

numerical results but clearly the running of GS with T is rather important to describe
the susceptibilities in the high-T regime. In order to do that one must �nd a suitable
parametrization forG(Φ), or alternatively, evaluate higher corrections to the couplings
which may turn out to be a cumbersome exercise. A more pragmatic approach would
be to describe GS(T ) by means of some QCD inspired ansatz and we are currently
investigating all these possibilities.
The main outcome of our investigation is that the two loop OPT corrections, which

mimic a repulsive vector channel, produce results equivalent to the LNGV approxi-
mation without the need for an extra parameter.
At temperatures close, or lower than Tc, the OPT results seem to be in better

agreement with LQCD than those produced by the traditional approximation (at
GV = 0). On the other hand, the OPT (as well as the LNGV ) high-T results indicate
that these e�ective models should be able to mimic asymptotic freedom so that the
SB limit is observed.
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5. Conclusions

The aim of this work was to improve an alternative non-perturbative analytical
method, known as OPT, in order to investigate phase transitions in strongly in-
teracting matter. One motivation is that LQCD is not yet able to probe the regime
of highly compressed matter while the traditional LN approximation (or MFA) is
notorious for failing in several situations. For example: it violates Landau's theorem
for phase transitions in one space dimensions, it is unable to predict the shift on Tc
due to the presence of interactions in Bose Einstein condensates and also misses the
location of the tricritical point which arises in the phase diagram of planar fermonic
systems. In these three situations the OPT, with its �nite Nc corrections, has out
staged the MFA producing results which are more in line with the lattice data or rig-
orous phase transition theorems. As far as QCD is concerned this method has been
successful in describing chiral symmetry but it had never been used in models which
also display con�nement. To perform such an application was one of our major goals.
Another important remark is that, so far, this method has been used to mainly draw
the boundaries of QCD like phase diagrams as well as to evaluate thermodynamical
quantities without contrasting the results with available LQCD data, as we have done
in this thesis.

We have started our investigation by reviewing, in the framework of the standard
NJL model, how the OPT dynamically generates a vector repulsive type of term,
which turns out to be similar to that appearing in the LN approximation withGV 6= 0.
This term contributes to the pressure at non-vanishing densities only. In contrast,
it contributes to the the second cumulant, c2, due to the non-vanishing derivatives
of the vector repulsive term with respect to µ. We have then shown that, as a
consequence, the Stefan-Boltzmann limit is not observed. We have also discussed
how this vector channel may be explicitly introduced at the classical (tree) level in
the original Lagrangian density. Remarking that, this procedure comes with a caveat:
the introduction of an extra coupling parameter, GV . On the other hand, this type
of term is naturally generated, via quantum corrections, within the OPT formalism
and appears as being proportional to GS/Nc.

Having identi�ed the problem we have moved to our original piece of work show-
ing how the application of the OPT to the PNJL model brings technical subtleties
associated with the evaluation of the traces in color space. To our knowledge this
evaluation, for two loop diagrams, has not been done before. We were then able
to write down the OPT free energy for the PNJL model including 1/Nc suppressed
terms. As in the NJL model, we found that, at zero densities, the OPT and the LN
approximation did not show signi�cant di�erences for the thermodynamical quanti-
ties analyzed. However, the OPT showed a notorious di�erence in the interaction
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5. Conclusions

measure with respect to that obtained with the LN approximation (Fig. 3.6) for the
PNJL model. At the same time, the cumulant c2, obtained with the OPT, is in excel-
lent agreement with the LQCD data for T < 1.1Tc. At high-T the failure to observe
the Stefan-Boltzmann limit showed up in the OPT results which displayed a similar
behavior to that observed within the LN approximation when GV 6= 0. We have
also observed that, at �nite densities, the di�erence between the order parameters Φ
and Φ̄ is in general lower within the OPT than within the LN approximation. Then,
in order to improve the OPT behavior at high-T we have considered an entangled
type of interaction to analyze the e�ects produced in the vector term when the NJL
coupling constant decreases with the temperature, as in the QCD case. As expected,
the entanglement improved the results calculated with the OPT at T > Tc in the
EPNJL model. Although a deeper study of the entanglement interaction is needed
to produce a more adequate parameter set for the OPT, its inclusion proved the need
of enforcing asymptotic freedom within e�ective models. Another important result
is that the crossover region, for both transitions in the EPNJL model was reduced
dramatically in the OPT case. This allows us to conclude that, the entanglement
interaction a�ects the pseudocritical temperature as well as the crossover region.
It is important to note that the LN results remained stable at high temperatures

for the EPNJL model when GV = 0.
A deeper study of the entanglement interaction for the OPT and the exploration

of other possible forms to introduce asymptotic freedom in the PNJL model are
some of the most immediate extensions of the present work. Finally, the inclusion of
strangeness within the OPT is necessary in order to apply the method to problems
related to compact stellar objects.
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A. Notation

A.1. Relativistic notation

In this dissertation we have adopted the natural unit system used in modern particle
physics, where c = ~ = k = 1, where c is the speed of light, ~ is the Planck's constant
and k represents the Boltzmann constant. Then,

[mass] = [energy] = [time]−1 = [length]−1 (A.1)

In Minkowski space the contravariant position four-vector is denoted by

xµ =
(
x0, x1, x2, x3) = (t, x, y, z) = (t,x) , (A.2)

and its covariant form is

xµ = (x0, x1, x2, x3) = (t,−x,−y,−z) = (t,−x) . (A.3)

We employ the following metric

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (A.4)

so that Eq. A.3 may be written as

xµ = gµνx
ν . (A.5)

The scalar product of two four-vectors, a.b, is de�ned as

a.b = aµb
µ = gµνa

νbµ, (A.6)

and is invariant under Lorentz transformations. For this reason, it is called a Lorentz
scalar.

A.2. Dirac Matrices

The Dirac matrices are de�ned by the following anticommutation relation

{γµ, γν} = 2gµν . (A.7)
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A. Notation

These mathematical objects can be represented in the standard representation by
4× 4 matrices as

γ0 =

(
12 02

02 −12

)
, γi =

(
02 τi
−τi −02

)
; i = 1, 2, 3. (A.8)

where 12 is the identity matrix 2× 2 while τi are the Pauli matrices given by

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
and τ3 =

(
1 0
0 −1

)
. (A.9)

The Pauli matrices satisfy the SU(2) algebra

[τi, τj ] = 2iεijkτk, (A.10)

where ε is the Levi-Civita antisymetric symbol.
The traceless product, γ5, is given by

γ5 = iγ0γ1γ2γ3 =

(
0 12

12 0

)
(A.11)

and satis�es {
γ5, γµ

}
= 0. (A.12)
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B. Matsubara Sums

In this appendix we perform the sum over the Matsubara's frequencies, ωn, for a
system of massive fermions (m 6= 0) with a particle-antiparticle asymmetry (µ 6= 0).
With this aim let us de�ne a basic function which appears when one evaluates the
pressure of a relativistic gas of free fermions. Namely,

S =

∞∑
n=−∞

ln
[
(ωn − iµ)2 + E2

p

]
, (B.1)

where E2
p = p2 +m2 is the dispersion with respect to which S can derived to yield

dS

dEp
=

∞∑
n=−∞

2Ep

(ωn − iµ)2 + E2
p

. (B.2)

Remembering that ωn = 2πn
β

+ π
β
, let us call ω0 = π

β
where β = 1/T and iµ = z0, so

that

dS

dEp
=

∞∑
n=−∞

1

Ep + iωn − iz0
+

∞∑
n=−∞

1

Ep − iωn + iz0

=

∞∑
n=−∞

1

Ep + iω0n+ iπ
β
− iz0

+

∞∑
n=−∞

1

Ep − iω0 − iπ
β

+ iz0

=
1

ω0

[
∞∑

n=−∞

1
Ep

ω0
− iz0

ω0
+ iπ

βω0
+ in

+
∞∑

n=−∞

1
Ep

ω0
+ iz0

ω0
− iπ

βω0
− in

]
. (B.3)

Using the identities

∞∑
n=−∞

1

y + in
= π cothπy and

∞∑
n=−∞

1

y − in = π cothπy, (B.4)

we then obtain

dS

dEp
=

π

ω0

{
coth

[
π

ω0

(
Ep − iz0 +

iπ

β

)]
+ coth

[
π

ω0

(
Ep + iz0 −

iπ

β

)]}
. (B.5)

Now introducing x1 = π
ω0

(
Ep − iz0 + iπ

β

)
and x2 = π

ω0

(
Ep + iz0 − iπ

β

)
, such that

dS

d (πEp/ω0)
= cothx1 + cothx2

=
ex1 + e−x1

ex1 − e−x1 +
ex2 + e−x2

ex2 − e−x2 . (B.6)
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Noting that

d
(
ex1 − e−x1

)
d (πEp/ω0)

= ex1 + e−x1 and
d
(
ex2 − e−x2

)
d (πEp/ω0)

= ex2 + e−x2 , (B.7)

we �nally get

dS =

∫
d
(
ex1 − e−x1

)
ex1 − e−x1 +

∫
d
(
ex2 − e−x2

)
ex2 − e−x2 , (B.8)

and

S = ln
[
ex1 − e−x1

]
+ ln

[
ex2 − e−x2

]
. (B.9)

Replacing x1, z0 and ω0 yields

ln
[
ex1 − e−x1

]
= ln

[
eβ/2(Ep+µ)eiπ/2 − e−β/2(Ep+µ)e−iπ/2

]
= ln

[(
eβ/2(Ep+µ) + e−β/2(Ep+µ)

)
i sinπ/2

]
= ln

[(
eβ/2(Ep+µ) + e−β/2(Ep+µ)

)]
− ln i. (B.10)

Doing the same for ln
[
ex2 − e−x2

]
we �nd S to be

S = ln
[
eβ/2(Ep+µ) + e−β/2(Ep+µ)

]
+ ln

[
eβ/2(Ep−µ) + e−β/2(Ep−µ)

]
= ln

[
1 + e−β(Ep+µ)

]
+
β

2
(Ep + µ) + ln

[
1 + e−β(Ep−µ)

]
+
β

2
(Ep − µ) .

Then, our starting function can be written as

S = βEp + ln
[
1 + e−β(Ep+µ)

]
+ ln

[
1 + e−β(Ep−µ)

]
. (B.11)

Having this equation, which represents a zero point 1PI Green's function at the one
loop level, one may easily obtain any n-point Green's function simply by deriving
Eq. (B.11) with respect to the mass or the chemical potential. Then, since Eq.
(B.11) represents our integral I1 one sees that I2 and I3 may be readily obtained by
I2 ∼ ∂I1/∂m and I3 ∼ ∂I1/∂µ as emphasized in the text.

To do that with more rigor, we remark that in Eq. (2.36)

∞∑
n=−∞

ln
[
(ωn − iµ)2 + E2

p

]
= S

= βEp + ln
[
1 + e−β(Ep+µ)

]
+ ln

[
1 + e−β(Ep−µ)

]
,

(B.12)
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which is related to I1. Then,

∞∑
n=−∞

1

(ωn − iµ)2 + E2
p

=
1

2Ep

∂S

∂Ep

=
β

2Ep

[
1− 1

eβ(Ep+µ) + 1
− 1

eβ(Ep−µ) + 1

]
, (B.13)

is related to I2 while

∞∑
n=−∞

ωn − iµ
(ωn − iµ)2 + E2

p

=
i

2

∂S

∂µ

=
iβ

2

[
1

eβ(Ep−µ) + 1
− 1

eβ(Ep+µ) + 1

]
, (B.14)

is related to I3.
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C. Color-trace over two loop contributions

In this Appendix we show how to calculate the color traces that appear in Eq. (3.20).
Taking the results from Appendix B let us denote

Sii =

∞∑
n=−∞

ln
[(
ωn − iµ′

)2
+ E2

p

]
= βEp + ln

[
1 + e−β(Ep−µ′)

]
+ ln

[
1 + e−β(Ep+µ′)

]
, (C.1)

so that S is a diagonal matrix.
Replacing µ′ = µ− iAii and exp(iAii) = Lii we get

Sii = βEp + ln
[
1 + Liie

−β(Ep−µ)
]

+ ln
[
1 + L∗iie

−β(Ep+µ)
]
, (C.2)

where Aii is the i-th component of the diagonal matrix A4 and Lii is the i-th com-
ponent of the matrix L, which can be written in the diagonal form

L =

 eiθ1 0 0

0 eiθ2 0

0 0 e−i(θ1+θ2)

 . (C.3)

Using the identity Trc ln = ln det we get the the trace of the third term of Eq.
(3.20) which represents a one loop contribution

TrcS =NcβEp + ln
[
g+
l (Ep)

]
+ ln

[
g−l (Ep)

]
, (C.4)

where

g+
l (Ep) = 1 + 3le−β(Ep−µ) + 3l∗e−2β(Ep−µ) + e−3β(Ep−µ), (C.5)

g−l (Ep) = 1 + 3l∗e−β(Ep+µ) + 3le−2β(Ep+µ) + e−3β(Ep+µ). (C.6)

The next one loop term is

∞∑
n=−∞

1

(ωn − iµ′)2 + E2
p

=
1

2Ep

∂Sii
∂Ep

. (C.7)

Therefore,

Trc

∞∑
n=−∞

1

(ωn − iµ′)2 + E2
p

=
1

2Ep

∂TrcS

∂Ep

=
Ncβ

2Ep

[
1− f+

l − f
−
l

]
, (C.8)
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C. Color-trace over two loop contributions

where the Fermi distributions are given by

f+
l (Ep) =

le−β(Ep−µ) + 2l∗e−2β(Ep−µ) + e−3β(Ep−µ)

g+
l (Ep)

, (C.9)

and

f−l (Ep) =
l∗e−β(Ep+µ) + 2le−2β(Ep+µ) + e−3β(Ep+µ)

g−l (Ep)
. (C.10)

The evaluation of the two loop contributions is more cumbersome as we show next.
With the results of appendix B we can write the �fth term of Eq. (3.20) as

∞∑
n=−∞

ωn − iµ′

(ωn − iµ′)2 + E2
p

∞∑
m=−∞

ωm − iµ′

(ωm − iµ′)2 + E2
q

=
i

2

∂Sii (Ep)

∂µ′
i

2

∂Sii (Eq)

∂µ′
, (C.11)

and

∂Sii (q)

∂µ′
∂Sii (p)

∂µ′
=β2

[
e−β(Ep−µ′)

1 + e−β(Ep−µ′)
− e−β(Ep+µ′)

1 + e−β(Ep+µ′)

]

×

[
e−β(Eq−µ′)

1 + e−β(Eq−µ′)
− e−β(Eq+µ′)

1 + e−β(Eq+µ′)

]

= β2

[
Liie

−β(Ep−µ)

1 + Liie
−β(Ep−µ)

− L∗iie
−β(Ep+µ)

1 + L∗iie
−β(Ep+µ)

]

×

[
Liie

−β(Eq−µ)

1 + Liie
−β(Eq−µ)

− L∗iie
−β(Eq+µ)

1 + L∗iie
−β(Eq+µ)

]

∂Sii (q)

∂µ′
∂Sii (p)

∂µ′
= β2

 L2
iie
−β(Ep−µ)e−β(Eq−µ)[

1 + Liie
−β(Ep−µ)

] [
1 + Liie

−β(Eq−µ)
]

− e−β(Ep−µ)e−β(Eq+µ)[
1 + Liie

−β(Ep−µ)
] [

1 + L∗iie
−β(Eq+µ)

]
− e−β(Eq−µ)e−β(Ep+µ)[

1 + Liie
−β(Eq−µ)

] [
1 + L∗iie

−β(Ep+µ)
]

+
L∗2iie

−β(Ep+µ)e−β(Eq+µ)[
1 + L∗iie

−β(Ep+µ)
] [

1 + L∗iie
−β(Eq+µ)

]
 . (C.12)
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After a straightforward but tediously long calculation of each of the four terms ap-
pearing in Eq. (C.12) we obtain

Trc

∞∑
n=−∞

ωn − iµ′

(ωn − iµ′)2 + E2
p

∞∑
m=−∞

ωm − iµ′

(ωm − iµ′)2 + E2
q

= −Ncβ
2

4

{[
f+
l (Ep)− f−l (Ep)

] [
f+
l (Eq)− f−l (Eq)

]
+ ∆2

3

}
, (C.13)

where

∆2
3 =

e−β(Ep−µ)e−β(Eq−µ)

g+
l (Ep)g

+
l (Eq)

{
2
(
l2 − l∗

)
+ (ll∗ − 1)

[
e−β(Ep−µ) + e−β(Eq−µ)

]
+ 2

(
l∗

2 − l
)
e−β(Ep−µ)e−β(Eq−µ)

}
− e−β(Ep−µ)e−β(Eq+µ)

g+
l (Ep)g

−
l (Eq)

{
2
(
l − l∗2

)
e−β(Ep−µ) + 2

(
l∗ − l2

)
e−β(Eq+µ)

+ (1− ll∗)
[
1 + e−β(Ep−µ)e−β(Eq+µ)

]}
− e−β(Eq−µ)e−β(Ep+µ)

g+
l (Eq)g

−
l (Ep)

{
2
(
l − l∗2

)
e−β(Eq−µ) + 2

(
l∗ − l2

)
e−β(Ep+µ)

+ (1− ll∗)
[
1 + e−β(Eq−µ)e−β(Ep+µ)

]}
+
e−β(Ep+µ)e−β(Eq+µ)

g−l (Ep)g
−
l (Eq)

{
2
(
l∗

2 − l
)

+ (ll∗ − 1)
[
e−β(Ep+µ) + e−β(Eq+µ)

]
+ 2

(
l2 − l∗

)
e−β(Ep+µ)e−β(Eq+µ)

}
. (C.14)

Finally, for the last term of Eq. (3.20) we have

∞∑
n=−∞

1

(ωn − iµ′)2 + E2
p

∞∑
m=−∞

1

(ωm − iµ′)2 + E2
q

=
1

2Ep

∂Sii (Ep)

∂Ep

1

2Eq

∂Sii (Eq)

∂Eq
.

(C.15)
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C. Color-trace over two loop contributions

Then,

∂Sii (Ep)

∂Ep

∂Sii (Eq)

∂Eq
=β2

[
1− e−β(Ep−µ′)

1 + e−β(Ep−µ′)
− e−β(Ep+µ′)

1 + e−β(Ep+µ′)

]

×

[
1− e−β(Eq−µ′)

1 + e−β(Eq−µ′)
− e−β(Eq+µ′)

1 + e−β(Eq+µ′)

]

= β2

[
1− Liie

−β(Ep−µ)

1 + Liie
−β(Ep−µ)

− L∗iie
−β(Ep+µ)

1 + L∗iie
−β(Ep+µ)

]

×

[
1− Liie

−β(Eq−µ)

1 + Liie
−β(Eq−µ)

− L∗iie
−β(Eq+µ)

1 + L∗iie
−β(Eq+µ)

]
. (C.16)

Finally, the remaining trace gives

Trc

∞∑
n=−∞

1

(ωn − iµ′)2 + E2
p

∞∑
m=−∞

1

(ωm − iµ′)2 + E2
q

=
Ncβ

2

4EpEq

{[
1− f+

l (Ep)− f−l (Ep)
] [

1− f+
l (Eq)− f−l (Eq)

]
+ ∆2

2

}
, (C.17)

where

∆2
2 =

e−β(Ep−µ)e−β(Eq−µ)

g+
l (Ep)g

+
l (Eq)

{
2
(
l2 − l∗

)
+ (ll∗ − 1)

[
e−β(Ep−µ) + e−β(Eq−µ)

]
+ 2

(
l∗

2 − l
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e−β(Ep−µ)e−β(Eq−µ)

}
+
e−β(Ep−µ)e−β(Eq+µ)

g+
l (Ep)g

−
l (Eq)

{
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(
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(
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)
e−β(Eq+µ)

+ (1− ll∗)
[
1 + e−β(Ep−µ)e−β(Eq+µ)

]}
+
e−β(Eq−µ)e−β(Ep+µ)
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−
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(
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)
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]
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(
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}
. (C.18)
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