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RESUMO 
 
A avaliação da decomposição em diferentes níveis 

e escalas (espacial e temporal) possibilita o 
desenvolvimento de uma visão integrada sobre a ótica 
deste importante processo ecológico. O objetivo deste 
estudo foi avaliar a influência de diferentes escalas 
espaciais e temporais na decomposição de detritos foliares 
e os efeitos da composição química, invertebrados e micro-
organismos em riachos de região tropical (Brasil). Foram 
estudados rios do Norte de Minas Gerais (Capitulo 1 e 2) e 
do planalto central em Brasília (Capitulo 3). Assim, esta 
tese é composta por 3 capítulos e os seus principais 
resultados foram: 1- “Coarse Particulate Organic 
Matter Dynamics in a Tropical Vereda System”, onde a 
produção de serapilheira em área de veredas foi baixa 
(365g m-2 ano-1 de entrada terrestre e 181 g m-2 ano-1 
vertical sobre o rio). A decomposição foliar foi elevada 
quando comparada com outros sistemas tropicais, com 
valores máximos coincidindo com o período chuvoso. O 
conteúdo de ergosterol das folhas foi elevado, mas as 
densidades de esporos na água foram baixas. Menos de 
10% dos invertebrados foram fragmentadores, sugerindo 
pouca participação desta comunidade no processo de 
decomposição. Apesar da baixa produtividade e rápida 
decomposição, a matéria orgânica acumulada no leito é 
alta. Isso pode estar relacionado com ciclos de inundação e 
a dinâmica de secas sazonais, permitindo o transporte de 
detritos foliares das áreas terrestre através da corrente da 
água. 2- “Canopy degradation effects on temporal leaf 
breakdown rates in a tropical stream”, os maiores 
valores na taxa de decomposição foram observados no 
período chuvoso, provavelmente devido às altas 
temperaturas (aumento da atividade metabólica) e chuvas 
(maior abrasão física). Encontramos maior biomassa 
microbiana (aumento de organismos fotossintéticos) e 
maiores densidades e riqueza de invertebrados (menor 
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lavagem da comunidade pela água) no período de seca. O 
fluxo de água, temperatura e precipitação foram os fatores 
que controlam a decomposição neste sistema. A 
degradação do dossel modificou o k e pode altera o 
metabolismo do ecossistema (heterotróficas para 
autotróficas), apesar da grande resistência ecológica das 
"veredas". A degradação do dossel também deixou o 
sistema mais suscetíveis a alterações sazonais. Este 
impacto ambiental modificou também as comunidades de 
micro-organismos e invertebrados, indicando que este 
processo é um útil bioindicador. 3- “The effects of spatial 
scale on breakdown of leaves in a tropical watershed” , 
onde as comunidades microbiana e de fragmentadores 
foram mais influenciadas pela escala local (ordem de rio), 
conduzindo a decomposição foliar nesta escala. Entretanto, 
as maiores influencias sobre o processo de decomposição 
foram observadas em escala regional (sub-bacia), 
mostrando que a escala de estudo altera a resposta do 
processo estudado. As maiores taxas de decomposição 
(independente da qualidade do detrito) ocorreram em 
ambientes com elevados valores de velocidade da água, 
oxigênio dissolvido e temperatura, os quais aceleram o 
metabolismo biológico. Assim, bacias com microclimas 
mais quentes e córregos com níveis mais elevados de 
nutrientes e oxigênio poderiam estar acelerando o 
metabolismo do ecossistema, independente da qualidade 
detritos. 
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ABSTRACT 
 
The evaluation of the leaf breakdown at different 

levels and scales (spatial and temporal) enables the 
development of integrated view of this important 
ecological process. The aim of this study was to evaluate 
the influence of different spatial and temporal scales in the 
evaluation and the effects of chemical composition, 
invertebrates and micro-organisms in streams of tropical 
region (Brazil). Rivers in northern of Minas Gerais State 
(Chapter 1 and 2) and the central plateau in Brasília City 
(Chapter 3) were studied. Thus, this thesis consists of three 
chapters and the main results were: 1- “Coarse 
Particulate Organic Matter Dynamics in a Tropical 
Vereda System”; Litter production in the riparian area 
was low (365g m-2 year-1 falling on the forest soil and 181 
g m-2 year-1 fallen directly into the stream). The litter 
breakdown was high when compared with other South 
American systems, with maximum values coinciding with 
the rainy season. Ergosterol content in decomposing leaves 
was high, but spore densities in the water were low. Nearly 
10% of invertebrates were shredders suggesting a low role 
in litter decomposition. Despite the low litterfall and fast 
decomposition, accumulated organic matter in the bed is 
high. This could be related to seasonal flood/dry dynamics 
allowing the transportation of terrestrial litter into the 
stream. 2- “Canopy degradation effects on temporal leaf 
breakdown rates in a tropical stream”; Higher values of 
leaf breakdown rates (k) were observed in rainy season, 
most likely due to high temperatures (increasing metabolic 
activity) and rainfall (higher physical abrasion). However, 
we found higher microbial biomass (increase of 
photosynthetic organisms) and greater densities and 
richness of invertebrates (lower washing power by water) 
in dry season. Therefore, on the large temporal sampling, 
water flow, temperature and precipitation were the factors 
controlling the k in this stream system. The canopy 
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degradation modify the k and can change the metabolism 
of the ecosystem (from heterotrophic to autotrophic), 
despite the great ecological resistance of “veredas”. The 
canopy degradation left the system higher susceptible to 
seasonal changes. This environmental impact modified 
also the communities of micro-organisms and invertebrates 
indicate that this process is useful as bioindicators. 3- 
“The effects of spatial scale on breakdown of leaves in a 
tropical watershed”; The microbial and shredder were 
most influenced at the local scale (stream order), leading to 
leaf breakdown in this scale. Moreover, differences in the 
overall k and abiotic variables were more strongly 
influenced at the regional scale (sub-basin), showing that 
the study scale alters the response of the studied variables. 
We found higher k values (independent of the detritus 
quality) at higher values of water velocity, dissolved 
oxygen and temperature, all of which accelerate biological 
metabolism in response to variations on the regional scale. 
Watersheds with warmer microclimates and streams with 
higher nutrient levels and oxygen could be accelerating the 
ecosystem metabolism, independent of the detritus quality. 
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INTRODUÇÃO GERAL  
 
A origem da limnologia moderna geralmente é 

reportada para o final do século XIX, quando o médico 
suíço François Alphonse Forel iniciou os seus estudos no 
lago Léman, publicando três volumes entre 1892 e 1904. 
Entretanto, duas figuras assumem grande relevância na 
consolidação da limnologia como uma importante área do 
conhecimento, são eles o entomólogo alemão August 
Friedrich Thienemann e o botânico sueco Einar Christian 
Leonard Naumann. Thienemann e Naumann foram os 
fundadores da Sociedade Internacional de Limnologia - 
SIL (1922) que proporcionou grande impulso à 
Limnologia, onde em seu primeiro congresso na cidade de 
Kiel (Alemanha), foi redefinida como sendo "a ciência que 
estuda os corpos d’água continentais do ponto de vista 
ecológico, independentemente do seu tamanho, origem e 
concentração de sais". Após estes eventos, as mais diversas 
vertentes ligadas à limnologia se desenvolveram e se 
consolidaram ao passar dos anos. Uma destas vertentes que 
se consolidaram ao longo dos anos foi a relacionada à 
ciclagem de nutrientes e do fluxo de energia.  

Stephen Alfred Forbes trouxe o prenuncio do 
conceito de ecossistema, com ideias sobre dinâmica de 
nutrientes e fluxo de energia na cadeia alimentar (Forbes, 
1887; Croker, 2001). Esta visão influenciou Charles Elton 
na década de 1920, que traçou importantes relações entre a 
forma de alimentação dos seres vivos, concluindo que 
estas interações tróficas ligam os organismos através da 
comunidade biológica. Tansley na década de 1930, 
preferiu discutir o sistema como uma associação de 
animais e plantas juntamente com os fatores físicos, 
denominada ecossistema. Nesta mesma época Alfred J. 
Lotka, discorreu sobre as taxas de transformação de 
energia e matéria dentro dos sistemas ecológicos através 
dos princípios termodinâmicos. Assim, todas estas 
questões culminaram em Raymond Lindeman, que foi 
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responsável por introduzir a ideia do ecossistema como um 
sistema transformador de energia, fornecendo uma notação 
formal para o fluxo energético nos diferentes níveis 
tróficos (Lindeman, 1942). A partir das ideias propostas 
por Elton (teia alimentar), Lotka (transformação de 
energia) e Tansley (ecossistema) brilhantemente agrupadas 
ao conceito de ecossistema por Lindeman, surgiu uma 
nova proposta de compreensão dos sistemas ecológicos 
(Lindeman, 1942; Ricklefs, 2003). Desta fusão de 
conceitos, novos elementos foram propostos para melhorar 
o entendimento dos sistemas ecológicos, que foram: 
cadeia alimentar, níveis tróficos e pirâmide de energia. Na 
década de 1950, por intermédio de Eugene Odum ganha 
força a ecologia ecossistêmica, fundamentada nestes novos 
conceitos, tratando principalmente do fluxo de energia e 
reciclagem de matéria em diversos ecossistemas e 
condições. 

Os enfoques dos estudos referentes ao fluxo de 
energia e ciclagem de matéria orgânica em ecossistemas 
aquáticos sofreram mudança ao longo do tempo, 
caminhando para uma visão mais abrangente dos 
ecossistemas, integrando padrões e processos em vários 
níveis de organização (Hynes 1970; Allan 1995, Cummins 
et al., 1995, Wallace et al., 1997). Uma consequência 
importante foram as primeiras pesquisas sobre 
decomposição de tecido vegetal de origem alóctone 
realizadas por Kaushik & Hynes (1971) e Petersen & 
Cummins (1974), impulsionando os estudos para outros 
processos e sistemas (Cummins 1974, Minshall 1988, 
Cummins et al. 1995). Tank et al. (2010), em um trabalho 
de revisão construiram uma linha do tempo (Figura 1), 
ilustrando as principais contribuições para a compreensão 
do processamento da matéria orgânica em ecossistemas 
lóticos a partir de Lindeman (1942).  

O avanço dos estudos limnológicos sobre o 
processamento da matéria orgânica foi importante 
principalmente para as regiões de cabeceira dos rios. 
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Normalmente estes ambientes são compostos por rios de 
primeira ordem que apresentam vegetação ciliar 
sombreando o leito do riacho, formando matas de galerias. 
Nestes ambientes a matéria orgânica alóctone proveniente 
da vegetação ripária é uma fonte de energia fundamental 
para as comunidades aquáticas, pela baixa luminosidade 
que limita a produção primária (Mosisch et al., 2001). Fica 
evidente que a decomposição de detritos vegetais é um 
processo ecológico chave para o funcionamento dos 
ecossistemas lóticos (Gessner et al., 1999), pois é por ela 
que os nutrientes são mineralizados e disponibilizados para 
os produtores primários, permitindo sua remobilização 
para a cadeia trófica (Allan, 1997; Cleveland et al., 2004). 

Gessner et al. (1999) propôs um modelo 
tradicional de decomposição de detritos vegetais que 
separa este processo em 3 fases: A lixiviação é a rápida 
perda de componentes químicos solúveis presentes no 
detrito após a imersão em água (horas). O 
condicionamento (semanas) corresponde à modificação 
da matriz do detrito por incremento da biomassa de micro-
organismos, acarretando em um enriquecimento 
nutricional e melhorando sua palatabilidade para os 
macroinvertebrados detritívoros chamados 
fragmentadores. Os fragmentadores colonizam o detrito 
(meses), e conseguem fazer uso direto do tecido foliar. 
Ocorre também a fragmentação física por abrasão 
decorrente das condições do meio, que assim como a 
fragmentação biológica, seria a redução do detrito em 
partículas menores. Entretanto, esta sequência de eventos 
ocorre simultaneamente e interagem durante toda o 
processo de decomposição dos detritos.  
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Figura 1. Linha do tempo ilustrando as principais contribuições para a 
compreensão da dinâmica de matéria orgânica, decomposição e  metabolismo 
em ecossistemas lóticos. Adaptado de Tank et al., (2010). 
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Os invertebrados aquáticos são importantes no 
processo de decomposição, principalmente os pertencentes 
ao grupo trófico funcional dos fragmentadores, que se 
alimentam diretamente do tecido foliar e são mais 
abundantes em trechos de cabeceira (Wallace et al., 1982; 
Cummins et al. 1989; Graça 2001). Porém, a relevância 
deste grupo trófico funcional tem sido questionada no 
processamento de matéria orgânica de origem vegetal nos 
ecossistemas tropicais (Dobson et al. 2002), ao menos no 
bioma Cerrado. Em rios de regiões tropicais a presença de 
fragmentadores tem se mostrado muitas vezes rara (Yule et 
al., 2009), permitindo que outros grupos tróficos 
funcionais (p.ex. raspadores) preencham este papel 
funcional (Covich, 1988, Rezende et al., 2010) e também 
conferindo aos micro-organismos decompositores maior 
importância neste processo (Gonçalves et al., 2005; 
Moretti et al., 2007).  

A colonização bacteriana em folhas tem uma 
importância relativa menor em termos de biomassa 
(Gaudes et al. 2009; Rincón & Santelloco 2009). 
Normalmente, participam ativamente da colonização nos 
estágios iniciais da decomposição e atuam sobre moléculas 
de fácil assimilação (Petersen et al., 1989; Tanaka, 1991). 
Diante desse fato, especial atenção tem sido dada ao 
estudo dos fungos avaliando seu papel na decomposição e 
no incremento nutricional do substrato (qualidade do 
detrito), devido à sua capacidade de metabolizar moléculas 
de difícil decomposição como celulose e lignina (Canhoto 
& Graça, 1996; Gessner et al., 1999; Graça, 2001). Além 
desta variação, a comunidade biótica pode ser influenciada 
pelos parâmetros abióticos locais, como: a elevação das 
concentrações de nutrientes (da água e do detrito), 
temperatura e vazão da água (Gulis & Suberkropp, 2004; 
Ardón & Pringle, 2007; Cornelissen et al. 2007). Estes 
fatores podem promover o aumento da diversidade das 
comunidades decompositoras e de suas atividades, 
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acelerando a decomposição foliar (Gulis & Petersen et al. 
1989; Suberkropp, 1998; Cornelissen et al. 2007).  

Entretanto, apesar de alguns padrões observados 
sobre a decomposição, existem incertezas principalmente 
sobre os ambientes tropicais, onde encontramos um menor 
número de estudos quando comparados aos sistemas 
temperados. Perguntas como a variação na importância dos 
fatores bióticos e abióticos ao longo de uma escala espacial 
(ponto amostral, ordem de rio e sub-bacia) e temporal 
(horas, dias, semanas, meses e anos) ainda não estão 
definidas em sistemas tropicais. Estas questões se agravam 
à medida que colocamos a influencia antrópica (ex. 
degradação ambiental, perda de serviços ambientais, 
emissão de carbono e etc.) e suas implicações para o 
funcionamento do ecossistema. Assim, nota-se que devido 
ao pouco tempo existente desde os primeiros estudos ainda 
há um longo caminho nesta área do conhecimento.  

Ao considerar o estudo da decomposição foliar em 
maiores escalas, é possível o reconhecimento de padrões 
emergentes e a identificação dos fatores que estruturam os 
ecossistemas em diferentes escalas (Wiens 1989; Tiegs et 
al. 2009). Segundo Schneider (2001), estudos que abordem 
apenas uma única escala podem estar sujeito a problemas, 
como: (i) a maioria das variáveis só podem ser medidas 
diretamente em pequenas áreas ou ao longo de períodos de 
tempo curto; (ii) relativamente poucas variáveis, podem 
ser medidas em resolução fina em grandes escalas; (iii) 
mudanças em pequenas escalas não se mantém em grandes 
escalas.  

Espacialmente, a escala pode ser percebida como 
áreas de rápido e remanso, que estão dentro dos trechos, e 
estes estão aninhados em rios extensos, que compõem uma 
bacia hidrográfica, enquanto que temporalmente, temos 
processos que ocorrem em horas, outros levam dias, meses 
ou anos (Wiens 2002; Tiegs et al. 2009). Assim, fica 
evidente uma série de unidades geomórficas e temporais 
sucessivamente menores aninhadas (Wiens 2002; Lowe et 
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al. 2006) podem apresentar diferentes padrões e estruturas 
e temporais a medida que mudamos a escala (Frissell et al. 
1986; Allan 2004). Através desta perspectiva, a avaliação 
da decomposição em diferentes níveis possibilita o 
desenvolvimento de uma visão integrada sobre a ótica 
deste importante processo ecológico (Del Arco et al. 
2012).  

Porém, a maior parte dos trabalhos que avaliam a 
decomposição de detrito alóctone usando a bacia 
hidrográfica como unidade de estudo ou longos períodos 
temporais foram realizadas em sistemas temperados (Tank 
et al. 2010; Del Arco et al. 2012). Assim, esta tese aborda 
aspectos relacionados decomposição de detritos foliares 
em sistemas ripários tropicais, avaliando os efeitos das 
escalas espacial e temporal em ambientes tropicais. Este 
documento foi subdividido em Introdução Geral, Áreas de 
Estudo, Capítulos 1, 2 e 3 Considerações finais, 
Perspectivas Futuras. O primeiro capítulo, intitulado 
“Coarse Particulate Organic Matter Dynamics in a 
Tropical Vereda System”, o segundo capítulo que tem 
por nome “Canopy degradation effects on temporal leaf 
breakdown rates in a tropical stream”, e o terceiro e 
ultimo capítulo, encontra-se publicado na revista PlosOne 
(doi:10.1899/08-170.1), é intitulado “The effects of 
spatial scale on breakdown of leaves in a tropical 
watershed”. 

Objetivo Geral da Tese: 

Avaliar a influência de diferentes escalas espaciais 
e temporais na decomposição de detritos foliares. Além 
disso, foram avaliados os efeitos da composição química, 
invertebrados e micro-organismos neste processo em 
riachos de região tropical (Brasil). 
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Objetivos dos Capítulos: 

Capítulo 1 

1. Avaliar a contribuição das espécies vegetais na 
entrada de matéria orgânica no aporte vertical e 
terrestre durante 12 meses em uma vereda 
preservada. 

2. Mensurar a contribuição dos tipos de matéria 
orgânica (folhas, galhos, flores e frutos,) no aporte 
vertical e terrestre durante 12 meses em uma 
vereda preservada. 

3. Estudar a taxa de decomposição foliar da mistura 
de folhas que entra pelo aporte vertical, além da 
densidade e biomassa de invertebrados, biomassa 
microbiana e esporulação de hifomicetos 
aquáticos associados a esta matéria orgânica 
vegetal alóctone durante 12 meses em um sistema 
lótico de vereda preservada. 

Capítulo 2 

4. Descrever a dinâmica temporal (um ano) das taxas 
de decomposição de folhas em uma vereda com 
dossel degradado. 

5. Caracterizar as mudanças físicas, químicas e 
biológicas do processo de decomposição foliar ao 
longo do ano em uma vereda com dossel 
degradado. 

6. Identificar possíveis indicadores ambientais da 
degradação do dossel no processo de 
decomposição foliar. 
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Capítulo 3 

7. Avaliar o efeito da variabilidade natural de 
algumas estruturas físicas do meio sobre as 
comunidades e o coeficiente de decomposição de 
Eucalyptus cloeziana F. Muell e Inga laurina Sw. 
Willd.  

8. Identificar o fator controlador em diferentes 
gradientes e escalas de estudo (ordem de rio e sub-
bacias). 
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ÁREA DE ESTUDO  
 

Os experimento que compõe esta tese ocorreram 
em zonas de vegetação riparia do Bioma Cerrado. A 
vegetação riparia é um dos principais sistemas 
responsáveis pela conservação dos processos ecológicos 
nos sistemas aquáticos dos quais estão associados (Naiman 
& Decamps 1997; Wantzen et al., 2008). Este ambiente 
que naturalmente margeia os corpos aquáticos possui 
várias funções como a filtragem do escoamento 
superficial, controle de aporte e erosão pelo bloqueio das 
chuvas pela copa das árvores, aumento da capacidade de 
armazenamento de água e o equilíbrio térmico, que 
mantêm a integridade da microbacia sobre sua influência 
(Naiman & Decamps 1997; Lima & Zakia, 2001).  

A vegetação riparia também serve como 
importante corredor longitudinal e transversal para a troca 
de material e dispersão da biota (Naiman et al., 2005), e 
portanto, é muito mais que uma faixa-tampão (Naiman & 
Decamps 1997; Wantzen et al., 2008). Este é um ecótono 
com característica peculiares em relação à composição 
florística, biodiversidade e processos ecológicos, 
exercendo grande controle no balanço energético dos 
sistemas lóticos (Naiman & Decamps 1997; Lima & Zakia, 
2001; Wantzen et al., 2008).  

A vegetação ripária pode ser subdividida em duas 
categoria, mata ciliar e mata de galeria. A mata ciliar é 
definida como a vegetação florestal que acompanha os rios 
de médio e grande porte, onde o dossel da vegetação não 
forma galerias. A mata de galeria corresponde a vegetação 
que acompanha os rios de pequeno porte e córregos, 
formando corredores fechados (galerias) sobre o curso de 
água. A altura média do estrato arbóreo varia entre 20 e 30 
metros, apresentando uma superposição das copas que 
fornecem cobertura arbórea de 70% a 95%, onde no seu 
interior a umidade relativa é alta. 
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Dentre os diferentes tipos de vegetação ripária, o 
Bioma Cerrado apresenta uma peculiaridade, que são os 
ambientes de vereda, uma importante fitofisionomia deste 
bioma estudadas nos Capítulos 1 e 2 (Figuras 2 e 3). As 
veredas são formações vegetais hidrófilas, típicas das 
matas de galeria no Cerrado, e possuem como 
características rios com leitos bem definidos no período de 
seca seco, que se transformam em áreas pantanosas 
durante o verão chuvoso, condicionada, basicamente, por 
fatores físicos, como superfícies planas ou fundos planos 
alagados, associado a um camada superficial superposta 
acima de outra impermeável (Drummond et al. 2005; 
Moreira et al., 2011).  

As veredas além de possuírem importância 
ecológica, também possuem importância socioeconômica 
para a comunidade local que explora comercialmente 
frutos e folhas do buriti (Mauritia flexuosa L.) e fazem a 
captação de água para abastecimento. M flexuosa é uma 
palmeira de folhas grandes que pode chegar a até 35 
metros, nativa das regiões Central e Norte da América do 
Sul (Moreira et al., 2011). As veredas figuram também 
entre as áreas prioritárias para conservação do Cerrado 
(refúgios fauno-florísticos), pois representam um 
“berçário” para diversas espécies de peixes de importância 
econômica para a região e constituem fontes hídricas 
(nascentes), que alimentam os cursos d’água (Drummond 
et al. 2005; Moreira et al., 2011).  

O local de estudo do Capítulo 1 e 2 (Figuras 2 e 
3) corresponde a veredas pertencentes a bacia do Rio 
Pandeiros, localizada nos Municípios de Januária, Bonito 
de Minas e Cônego Marinho, todos pertencentes ao estado 
de Minas Gerais. Estes municípios estão situados na região 
do Médio São Francisco, no lado esquerdo do Rio São 
Francisco da Microrregião de Januária e Macrorregião 
Norte de Minas. Bonito de Minas possui área de 3.911,42 
km2, altitude média de 600 metros, com uma população de 
3.902 habitantes. Cônego Marinho possui área de 1.640,20 
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km2, altitude média de 640 metros, com uma população de 
6.279 habitantes. O município de Januária possui área de 
6.670,41 km2, altitude média de 455,59 metros, com uma 
população de 64.985 habitantes. Nestes municípios 
localiza-se a Área de Proteção Ambiental do Rio Pandeiros 
(APA-Pandeiros). Esta possui uma área de 380.000 ha., 
com as tipologias florestais predominantes de Cerrado, 
Floresta Estacional Decidual e Semi-decidual e Veredas. 

O local de estudo do Capítulo 3 (Figuras 4 e 5), 
corresponde a matas de galeria da Área de Proteção 
Ambiental (APA) Gama e Cabeça do Veado, pertencente 
ao Distrito Federal. A APA Gama e Cabeça do Veado foi 
criada pelo Decreto nº 9417 de 21 de abril de 1986 pelo 
Governo do Distrito Federal, tendo como um dos 
principais objetivos a proteção das cabeceiras dos cursos 
d’água que integram a bacia do Paranoá (Figura 4). Esta 
área possui cerca de 25.000 hectares compreendendo os 
mais diversos usos (urbano, rural, preservação e 
experimentação), com destaques para as áreas: Reserva 
Ecológica do IBGE (RESEC do IBGE); Estação Ecológica 
UnB (ESEC da Universidade de Brasília); Estação 
Ecológica do Jardim Botânico de Brasília (ESEC do 
Jardim Botânico), como as maiores áreas de preservação.  

A ESEC da Universidade de Brasília é uma 
fazenda experimental e de ensino da Universidade de 
Brasília com 4.500 hectares, onde cerca de 1.200 hectares 
estão destinados à experimentos e produção agro-florestal, 
2.340 hectares para preservação e o restante da área (cerca 
de 950 ha) mantidos em bom estado de conservação. A 
Reserva Ecológica do IBGE com 1.360 hectares é uma 
unidade de conservação permanente criada pela 
presidência do IBGE, em 1975 que inclui nascentes de 
importantes cursos d'água que formam a Bacia do Paranoá. 
A Estação Ecológica do Jardim Botânico de Brasília com 
5.000 hectares tem como objetivo proteger as mais 
diversas fisionomias de Cerrado, bem como proteger as 
cabeceiras do Córrego Cabeça de Veado. 



18 
 

 
Figura 2. Pontos amostrais nas veredas utilizada no Capitulo 1 (A) e Capitulo 2 (B), localizadas na Bacia do Rio Pandeiros em relação ao 
Brasil e Estado de Minas Gerais. 
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Figura 2. Imagem dos pontos amostrais nas veredas utilizada no Capitulo 1 
(A) e Capitulo 2 (B), localizadas na Bacia do Rio Pandeiros (Fotos: Renan 
Rezende). 
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Figura 4: Pontos amostrais na drenagem da Bacia do Rio Gama e Cabeça de Veado e sua localização em relação ao Brasil e Distrito Federal. 
Os pontos amostrais estão distribuídos em 3 unidades de conservação, que são: Reserva Ecológica do IBGE (RESEC do IBGE); Estação 
Ecológica UnB (ESEC da Universidade de Brasília); Estação Ecológica do Jardim Botânico de Brasília (ESEC do Jardim Botânico) 
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Figura 5: Fotos dos pontos de coleta na Bacia do Rio Gama e Cabeça de 
Veado - DF. (Fotos: Renan Rezende). 
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ABSTRACT 
 We assessed litterfall, breakdown rate, density and 
biomass of invertebrates, and microbial biomass and 
sporulation of aquatic hyphomycetes during one year in a 
South American vereda / morichal stream. Litter 
production in the riparian area was low (365g m-2 year-1 
falling on the forest soil and 181 g m-2 year-1 fallen directly 
into the stream), but litter breakdown was high when 
compared with other South American systems (k =0.033; 
range 0.013 – 0.084) with maximum values coinciding 
with the rainy season. Ergosterol content in decomposing 
leaves was high when compared with other South 
American studies (mean 549 µg g-1; range 290 – 1,183), 
but spore densities in the water were low. Chironomids in 
the benthos accounted for ~ 70% of all invertebrates; 
nearly 10% of non Chironomidae invertebrates were 
shredders. Invertebrates were not abundant in litter bags (X 
specimens / g of litter) suggesting a low role in litter 
decomposition.  Therefore, fungi are the drivers of litter 
decomposition in the “Vereda”. Despite the low litterfall 
(productivity) and fast decomposition, organic matter 
accumulated in the stream bed (> 1 m thick of litter). This 
could be related to seasonal flood/dry dynamics allowing 
the transportation of terrestrial litter into the stream.  
 
Key words: decomposition, breakdown, litter fall, 
microbial communities, sporulation, shredders. 
 
INTRODUCTION  

Allochthonous organic matter, particularly leaf 
litter, is an important energy source for low order streams 
especially where canopy shade stream beds limiting 
primary production (Tank et al. 2010; Webster and Meyer 
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1997). Studies on the dynamics of allochthonous organic 
matter and leaf decomposition in streams are concentrated 
mainly in temperate deciduous forests (Abelho 2001; 
Webster and Meyer 1997) and, in a lesser extent in the 
tropical (but see Boulton et al. 2008; Wantzen et al. 2008). 
“Tropical stream” is a designation for water bodies running 
through very heterogeneous environments, including 
rainforests, mountains, savannas dry forests, and others 
(Boulton et al. 2008). Among those environments, 
grasslands or savanna occupy large areas of South America 
and are locally known as “Llanos”, “Pampas” and 
“Cerrados”, the later can have a larger number of trees.  

In some grasslands groundwater outcrops along 
streams promote the formation of swampy gallery forests 
locally known as “veredas” in Portuguese and 
“morichales” in several Spanish speaking countries 
(Moreira et al. 2011; San-Jose et al. 2010). The veredas are 
characterized by  Mauritia spp. palm trees (Moreira et al. 
2011) and subject to seasonal inundations pulse (see also 
the flood pulse concept by Junk et al. 1989). Veredas are 
priority areas for the Cerrado conservation because they 
are biological refuges, nursery areas for many fish with 
economic local value and source of water for local 
populations (Drummond et al. 2005; Moreira et al. 2011; 
San-Jose et al. 2010). Veredas are also threatened by 
pollution and habitat modification for food production.  

Given the high tree and shrub density of some 
veredas, it is likely that organic matter in these systems 
could be an important energy source for their streams. As 
far as we know, there is no baseline information about 
organic matter input and nutrient cycling / litter 
decomposition and therefore it is difficult to measure 
deviations from the reference conditions in these systems 
subjected to strong human pressure including agriculture, 
livestock production and wood harvesting (Boaventura 
2007; Moreira et al. 2011).  
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We made four predictions regarding the organic 
matter dynamics in a vereda. Firstly, we predicted that 
because of elevated temperatures and non-limiting water 
availability, primary production in a veredas is high, 
resulting in large production of litter. We also predicted 
seasonality in litterfall, with peaks coinciding with the dry 
season (water stress) and with the onset of rainy season (by 
mechanically leaf removal). Because “tropical” streams 
have often been referred in the literature as poor in 
shredders (Abelho 2001; Gonçalves et al. 2007; Moulton et 
al. 2010; Wantzen and Wagner 2006) and poor in aquatic 
hyphomycetes (Schoenlein-Crusius and Grandi 2003), our 
third prediction is that shredders and aquatic 
hyphomycetes will not be abundant and, consequently, 
decomposition will be slow.  

Finally, as physical abrasion is an important 
process in leaf breakdown (particularly when there is low 
microbial and shredder activity), then we predicted that 
decomposition would be faster during the rainy season. To 
address the above predictions we assessed litterfall, litter 
breakdown, density and biomass of invertebrates, and 
microbial biomass and sporulation of aquatic 
hyphomycetes of detritus during one year in a 
Southeastern Brazil vereda. 

MATERIALS AND METHODS 

Study Site 

The study was carried out in the Pandeiros River 
basin, in Brazil, a sub-arid region with 900 – 1,200 mm 
rainfall and 24 °C mean temperature (Fig. 1). Litterfall was 
measured monthly from April 2009 to March 2010 along a 
50-m-long strip in the vereda. 
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Fig. 1 Sampling site in Pandeiros River Basin in Minas Gerais, Brazil. 
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Physical and Chemical parameters of the stream 
waters 

A multianalyzer (YSI Incorporated, model 85) was 
used to measure the in situ temperature, electrical 
conductivity, pH, and dissolved oxygen. Luminosity at the 
stream surface was continuously recorded with a 
datalogger (Onset, HOBO UA-002-08). We estimated 
water current velocity with a flow meter (Global Water; 
model Sigma Sports FP101) depth and width with 
measuring tapes. Water samples were collected (sterile 
vials) placed into ice boxes and transported to the 
laboratory to measure total alkalinity (Gram method; 
Carmouze 1994), nitrate (cadmium reduction method; 
detection limit: 0.05), ammonia (Nesslerization method; 
detection limit: 0.05) and orthophosphate 
(vanadomolybdophosphoric acid method; detection limit: 
0.015; Bartram and Ballance 1996 ; Clesceri et al. 1989). 
The canopy openness was quantified using hemispherical 
photographs taken with a fisheye lens. Data of rainfall and 
air temperature were obtained from the meteorological 
station (number 83386), located 15º 26’ S, 44º22’ W, and 
473.6 m altitude of National Agency of Waters of Brazil 
available on the website hidroweb 
(http://hidroweb.ana.gov.br/).  

 
Litterfall 

The organic matter falling directly to the ground 
(terrestrial input - TI) was estimated using 6 nets (1 m2, 1-
mm mesh; 3 in each side of the stream; 10 m apart). Litter 
entering directly in the river (vertical input - VI) was 
measured using 30 buckets (0.53 m2) suspended with ropes 
2 m above the stream, transversely displayed in 5 rows, 6 
buckets each, with 10 m between adjacent rows. The 
bucket bottoms were perforated for rain water evacuation. 
At monthly intervals the litter accumulated in the buckets 
was retrieved, weighed (wet weight) in situ, and the bucket 
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with the highest (wet) leaf mass in each row was used for 
the leaf breakdown experiments (see below).  

The contents of the remaining five buckets of each 
row were oven dried to constant mass (60 ºC, 72 h); the 
resulting weight was used to estimate the moisture of the 
litter used in the leaf breakdown experiment as a correction 
factor. The dry material was separated into categories 
leaves, branches), reproductive material (flowers and 
fruits) and “miscellaneous”. Leaves were identified 
according to the Angiosperm Phylogeny Group II system 
(APGII 2003). 

 
Leaf litter breakdown and aquatics invertebrates 

Leaf breakdown is traditionally measured by 
immersing known amounts of monospecific litter in 
streams and samples recovered at time intervals to 
determine mass loss through time, frequently fitting the 
mass loss values in an exponential regression (mass over 
time; see Bärlocher 2005). This process demands frequent 
visits to the experimental site, which is not practical if 
seasonal variation is investigated in remote areas. 
Moreover, litter used in these experiments may not reflect 
the real quality of the litter reaching streams during the 
experiments. As an alternative, the material collected in 
five of the buckets above the stream was weighed (see 
above), and placed in 30 × 30 cm litter bags, 10 mm mesh 
size and submerged in the stream until the next sampling 
period (30 days). The amount of material placed in bags 
ranged from 1 to 3 g. After one month, litter samples were 
removed and replaced by new ones. After removal, litter 
bags were placed into boxes with ice and transported to the 
laboratory. 

In the laboratory, litter remains were washed with 
distilled water over a 250-µm sieve. The retained 
invertebrates were fixed in 70% ethanol and later 
identified to the family level according to Pérez (1988); 
Merritt and Cummins (1996) and classified into five 
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functional trophic groups (Pérez 1988; Merritt and 
Cummins 1996): gathering-collectors, filtering-collectors, 
shredders, scrapers, and predators.  

Leaf discs (12-mm diameter) were removed from 
randomly selected leaves for ash-free dry mass (AFDM) 
calculations, ergosterol, ATP and sporulation (5 discs for 
each analysis; see below). The remaining litter was placed 
in aluminum trays and dried in an oven at 60°C for 72 h to 
determine the dry weight.  

 
Microbial biomass 

The biomass of the fungi associated with the 
decomposing leaf litter was assessed by ergosterol content 
according to Gessner (2005). The lipid was extracted by 
boiling the samples in KOH/methanol, and the obtained 
extract was filtered. The ergosterol was then eluted in 
isopropanol and analyzed by high-performance liquid 
chromatography (HPLC). The total biomass of the 
decomposer microorganisms (aquatic hyphomycetes and 
others) was measured by quantifying the ATP in the leaves 
as described in Abelho (2005): leaf discs were 
homogenized (Polytron, 1 min, position 30) and the 
resulting material centrifuged (Eppendorf 5430R, 20 min, 
4° C and 10,000 g), filtered (Sterile Millipore, 0.2 µm) at 
10º C and the samples were placed in a reaction vessel 
(Eppendorf, 2 ml) with the Firelight enzyme (50 µm), and 
the bioluminescence (proportional to the ATP level) was 
measured in a luminometer (Luciferin-Luciferase 
reaction). 

 
Aquatic hyphomycetes 

To assess the sporulation of the hyphomycetes in 
the decomposing litter, five discs from each litter bag were 
incubated separately in an orbital shaker (100 rpm) in 
Erlenmeyer flasks with 50 ml of filtered (Sterile Millipore 
5mwp, 0.25 mm) river water at 25 º C in the laboratory. 
After 48 h, the suspension containing the spores was fixed 



38 
 

with formaldehyde for counting and identification under 
the microscope according with Bärlocher (2005) and Gulis 
et al. (2005). In addition, to determine the richness and 
density of the hyphomycete spores in the water column, 5 
L of water were  filtered and stained with lactophenol 
cotton blue (0.1%) for later counting and identification 
under the microscope (400 X). 
 
Statistical Analysis 

Data normality was assessed with the 
Kolmogorov-Smirnov test, the homogeneity of variances 
was assessed with Levene’s test, and values were Ln (+1) 
transformed if needed. For litter fall, differences between 
the terrestrial and vertical inputs were analyzed by 
repeated-measures ANOVA (RM-ANOVA). The RM-
ANOVA can be used in nested sampling, as when repeated 
measurements are taken from the same individual (in our 
case, buckets and nets), or observational studies are 
conducted at several different spatial scales (mostly 
random effects), for more information see also the chapter 
11 of Crawley (2007). Contrasts analysis was used to 
assess differences between the categorical variables 
(Crawley 2007). Leaf litter breakdown rates (“k”) at 
monthly intervals were obtained assuming a negative 
exponential model of percent mass loss during the 30 days 
of incubation (Wt=W0e

-kt; Wt=remaining weight; 
W0=initial weight; -k=decay rate; t=time). RM-ANOVAs 
and contrasts analyses were used to test for significant 
differences between months (categorical variables) in the 
remaining mass, invertebrate and shredders abundances, 
microbial (ATP) and fungal biomass (ergosterol), 
sporulation rates and spore densities in the water. The 
association between some variables was assessed with 
Spearman’s correlation (Crawley 2007). 
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RESULTS 
 
Physical and Chemical Parameters of Stream Waters  

Precipitation during the studied period was low 
(92.2 ±25.0 mm, mean ± SE; Fig. 2) with peaks in October 
to April. The average stream flow was 0.4 (±0.1) m3/s and 
water temperature ranged from 21 to 28 ºC (mean 24.4 
±0.4 ºC). Stream water was circumneutral (pH = 7.3 ±0.1), 
with low levels of oxygen (4.4 ±0.3 mg/l), electrical 
conductivity (19.5 ±2.2 µS/cm), alkalinity (49.8 ±4.3 
mEq/l), ammonia (<0.05 mg/l), nitrate (0.1 mg/l) and 
orthophosphate (<0.015 mg/l; Table 1).  

 

 
 
Fig. 2 Litterfall in the riparian area (dark gray), and in direct inputs in the 
river (light gray) and rainfall (black triangle) and air temperature (black 
square), over time (Mean and standard error). 
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Table 1 Flow (m3.s), pH, dissolved oxygen (mg.L-1), electrical conductivity (condut., µS.cm-1), water temperature (T. water in ºC), alkalinity 
(Alkal., mEq.L-1), ammonia, nitrate and orthophosphate (OrthoP) concentrations (mg.L-1) in the stream water and total rainfall 
(Precipitation.mm), air temperature (T. air in ºC) and luminosity (lux) from April to March in the vereda. No average was calculated when 
values were below the detection limit. NA = not applied 

  April May June July August September October November December January February March Mean Std. Error 

Flow 0.37 0.35 0.19 0.15 0.15 0.15 0.25 0.25 0.42 0.88 0.98 0.59 0.39 0.08 
pH 7.7 7.1 7.1 7.6 7.2 7.1 6.7 6.7 7.6 7.9 7.2 7.6 7.3 0.1 
Oxygen 6.8 4.8 3.8 3.0 3.2 5.5 4.2 5.3 4.5 4.1 3.7 4.4 4.4 0.3 
Condut. 13.7 22.3 26.7 22.71 15.7 25.0 25.5 28.0 15.9 22.1 15.0 1.4 19.5 2.2 
T. water 25.1 21.9 25.1 24.5 24.2 22.5 22.8 24.7 25.9 25.2 26.2 25.4 24.4 0.4 
Alkal. 69.12 36.51 37.72 37.54 38.62 54.12 33.01 60.82 41.41 47.33 78.43 63.11 49.79 4.32 
Ammonia <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.12 <0.05 <0.05 <0.05 <0.05 NA 
Nitrate 0.1 0. 1 0. 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 
OrthoP. <0.015 <0.015 <0.015 <0.015 <0.015 0.016 <0.015 <0.015 0.016 <0.015 <0.015 <0.015 <0.015 NA 
Precipitation 210.9 20.5 4.6 1.5 4.0 38.8 215.5 28.8 220.3 107.7 57.0 197.0 92.2 26.7 
T. air 25.1 24.2 21.8 22.2 23.3 24.3 25.2 26.1 27.2 28.2 27.1 26.1 24.9 0.5 
Luminosity 11.6 19.6 86.1 42.3 23.6 19.6 11.7 10.0 9.0 8.0 9.0 10.0 21.7 6.7 
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Organic Matter Inputs 

Annual organic matter input (Terrestrial input-TI) 
in the riparian area was two-fold higher (365 g m-2 year-1, 
or 31 g m-2 month-1), than over the stream bed (Vertical 
input-VI; 181 g m-2 year-1, or 15 g m-2 month-1; F(1, 430) = 
34.2, p < 0.001; Fig. 2). Litterfall was seasonal - bimodal 
with two input peaks, one in March - April and a second 
(larger) in September and October (F(11, 347) = 3.2, p < 
0.001); minimum values were recorded between May and 
August. Litter inputs were correlated with rainfall (r = 
0.67, p = 0.01) i.e. maximum litterfall coincided with rainy 
events, but not with maximum air temperature (r = 0.33, p 
= 0.31).  

Overall, the major components of TI and VI were 
virtually identical and composed mainly by leaves (68% 
TI, 63% VI) followed by branches (20% TI, 15% VI), 
miscellaneous (8% TI, 15% VI) and reproductive material 
(4% TI, 7% VI; Table A1 and Fig. A1A and A1B). Among 
the plant species, an unidentified liana (Indeterminate sp. 
2) was the largest contributor to leaf litter fall (especially 
between August and October), followed Cecropia 
pachystachya Trécul (August to October), Zygia latifolia 
(L.) Fawc. and Rendle (October, December, and January) 
and a minor contribution by a second unidentified liana 
species (Indeterminate sp. 1), Croton urucurana Baill., 
Mauritia flexuosa L.f., Simarouba versicolor A.St.-Hil., 
Styrax camporum Pohl and Xylopia emarginata Mart. in 
both compartments (Fig. A2). 

 

Leaf Breakdown Rates 

Overall leaf litter lost on average 53% of its mass 
(range: 33-86%) in one month; that corresponds to a mean 
k value of 0.033 (0.013-0.084 range). Litter breakdown 
was seasonal (F(1,50) = 7.4, p = 0.02), with maximum 
values in April, September and December (rainy season; r 
= 0.44, p = 0.01) and minimum in May to August (dry 



42 
 

season; Fig. 2 and 3). Highest leaf litter breakdown rates 
were also correlated with C. urucurana (r = 0.72, p = 0.01) 
and M. flexuosa (r = 0.59, p = 0.04) were more abundant in 
the litter. 

 

 
Fig. 3 Remaining mass (black line - %) and decomposition rates (gray bars - 
k) along one year (means and standard error). 
 

Microbial Assemblages 

The mean (± SE) ATP was 456 ± 57 nmoles g-1 
AFDM, with a maximum of 1327 nmoles g-1 in February 
and a minimum of 17 nmoles g-1 in December. The 
difference was significant (F(1,50) = 49.15, p < 0.01) across 
months (Fig. 4A). The ergosterol mean (±SE) content in 
leaves was 549 ± 88 µg g-1 AFDM, with a maximum of 
1183.3 µg g-1 in August and a minimum of 289.8 µg g-1 in 
April (Fig. 4B) but no differences across months (F(1,50) = 
0.23, p = 0.64). Ergosterol and ATP concentrations were 
positively correlated throughout the year (r = 0.56, p = 
0.01). The lowest Ergosterol (r = -0. 51, p = 0.01) and ATP 
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(r = -0.34, p = 0.01) values were obtained during high 
flow. 

Sporulation rates were highly variable with no 
apparent relationship with other variables. Maximum 
sporulation rates in leaf litter reached 6.42 (spores/mg 
AFDM) in June, but zero spore production was found in 
January, February, July and December (Fig. 4C) and no 
differences were observed across months (F(1,50) = 0.01, p 
= 0.92; mean 1.48 spores/mg-1 AFDM). In the same way, 
spore richness in the water was very low (mean of 2 fungal 
species, range of 0 to 6 spores mg-1 AFDM) with no 
monthly variations (F(1,50) = 1.02, p = 0.43). The spores in 
the water included Anguillospora filiformis, Anguillospora 
longíssima, Anguillospora furtive, Lunullospora curvula, 
Lemoniera pseudofoscula, Tricelophorus acuminatus, and 
Ypsilina gramínea. 

 
Aquatic invertebrates 

The number of invertebrates colonizing leaves 
ranged from 197 (July) to 12 individuals g-1 AFDM 
(February), with an average of 84 individuals g-1 AFDM 
and no differences across months (F(1,50) < 0.7, p > 0.41; 
Fig. 4D; Fig. A3). Neither total invertebrate nor shredder 
densities were correlated with mass loss (r < -0.08, p > 
0.54). The most abundant taxon in leaves was the 
Chironomidae (Diptera), with 68% of total individuals 
(mean of 58 individuals g-1 AFDM). Nearly 10% of non 
Chironomidae invertebrates were shredders and the most 
important taxon being the Odontoceridae (Trichoptera; 
Fig. 4E; Fig. A4). 
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Fig. 4 Total microbial biomass (ATP nmoles /g AFDM; A), fungal biomass 
(ergosterol µg / g AFDM; B), fungal spores (numbers / mg AFDM; C), 
invertebrates density (ind/g, D) and percentage of shredders (E) in leaves 
after one month in stream water (means and standard error). 

DISCUSSION 

Organic Matter Dynamics 

Our first prediction that litter production would be 
high in the vereda was not supported. Our estimation of 
direct litter input to the stream of 365 g m-2 year-1, was in 
the lower range of the reported values for other tropical 
forests (113 – 1445 g.m-2 year-1; reviewed by Abelho 
2001), but close to the 288 – 336 g m-2 year-1 reported for 
other Cerrado streams (França et al. 2009; Gonçalves et al. 
2006a; Gonçalves and Callisto 2013). The real value of 
organic matter available for decomposers could be even 
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lower since the direct input into the rivers was nearly half 
of the input measured as litterfall in the riparian area, a 
tendency also observed in other studies in the Cerrado (e.g. 
França et al. 2009; Gonçalves and Callisto 2013) and in the 
Atlantic rain forest (697 in VI – 856 in TI g m-2 year-1 by 
Gonçalves et al. 2014).  

However, the material falling in the riparian area 
can potentially be accessed by aquatic decomposers. The 
veredas are subject to seasonal inundations pulse as 
described by Junk et al. (1989) for flood pulse concept in 
aquatic/terrestrial transition zone (ATTZ), and high waters 
can take litter from the stream into the banks, but the 
reverse can also be true. It is therefore not clear how the 
availability of litter inputs to the aquatic system can be 
related with flood-dry seasonal dynamics. Since during 
high waters litter in the riparian zone is submerged, we 
propose a mean value of direct and riparian zones inputs, 
which in our case would be 273 g m-2 year-1. This low litter 
productivity can be the result of Cerrado nutrient-poor 
soils (Drummond et al. 2005; Moreira et al. 2011) and the 
stress imposed by the flood and dry cycles.  

Litterfall was markedly seasonal as reported for 
other tropical systems (e.g. Abelho 2001; Wantzen et al. 
2008; Zhang et al. 2014) corroborating our second 
prediction. It was more intense at the end dry season and 
the start of the rainy season (August, September, and 
October) suggesting that two types of leaves may be 
arriving in the streams: (1) senescent leaves in the dry 
season and (2) green leaves mechanically removed by the 
rain. If this is the case, leaf litter stock may be composed 
by leaves of contrasting quality, resulting in seasonal 
differences in decomposition rates.  

Litterfall seasonality was driven mainly by the 
input of the four dominant species in the litter: Cecropia 
pachystachya and Zygia latifolia and the two lianas. This 
contrasts with less species richness and evenness when 
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compared as other tropical streams (França et al. 2009; 
Gonçalves and Callisto 2013; Gonçalves et al. 2006a). 

 

Leaf Breakdown Rates 

Litter breakdown rates in this study (k~0.033) 
were faster according to the classification of Webster and 
Benfield (1986) and the model proposed by Gonçalves et 
al. (2013; k > 0.017) for tropical systems. It was also faster 
than values reported for Cerrado streams (0.0001 – 0.015 
in Gonçalves et al. 2007; Gonçalves et al. 2012a; 
Gonçalves et al. 2006b; Moretti et al. 2007b). These results 
do not support our third prediction, although comparisons 
should be done with caution since in the literature most 
values are obtained for leaves of single species. Our study 
has used the mixture of available leaves in each season, 
which more closely represents natural conditions.  

Biologically-driven leaf breakdown could be aided 
by physical abrasion since higher rates of breakdown 
occurred in the rainy period which is when the current 
increased and physical fragmentation is expected to be 
more intense (Rueda-Delgado et al. 2006; Santos Fonseca 
et al. 2012), supporting our fourth prediction. Additionally, 
high waters may carry nutrients from the riparian zone 
(Naiman and Décamps 1997), which even at low levels, 
they could stimulate microbial activity. Indeed, 
decomposition seems to increase rapidly with nutrient 
concentration in a Michaelis–Menten type relationship 
(Ferreira et al. 2006) suggesting that at low ranges of 
decomposition, small increases in nutrients can have a very 
important stimulatory effect on decomposition (Rosa et al. 
2013; Woodward et al. 2012). It is also possible that leaves 
falling during the rainy season could be of better quality 
than the senescent leaves of the dry season, due to the 
reduction of water stress and increased nutrient availability 
(higher decomposition). These results are different to those 
found by Ferreira et al. (2014), who in their meta-analysis 
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suggests that the effect of nutrient enrichment might be 
strongest in cold oligotrophic streams that depend on low-
quality plant litter inputs. 

Litter breakdown is influenced by litter traits 
(Gonçalves et al. 2012b; Meentemeyer 1978; Rueda-
Delgado et al. 2006); it is therefore expectable that, besides 
physical abrasion and fungal activity, seasonal variation in 
litter breakdown could reflect changes in the dominance of 
species in the litter. Indeed, faster decomposition rates 
were observed when litter from Croton urucurana and 
Mauritia flexuosa were more abundant. It would be 
interesting to investigate the quality of leaves of the 
dominant species to determine whether seasonal 
differences in litter decomposition are controlled by the 
leaf quality.  

 
Biological assemblages 

Fungal biomass in decomposing litter in the 
vereda (549 ±88 µg ergosterol g-1 AFDM ±SE) was higher 
than the values reported for other South American savanna 
streams (50 – 420 µg g-1 range for Gonçalves et al. 2007; 
Gonçalves et al. 2006c), forest tropical streams (4 – 180 µg 
g-1 range for Capps et al. 2011; Foucreau et al. 2013; 
MacKenzie et al. 2013), and in the range of temperate 
streams (200 – 1200 µg g-1 range for Danger et al. 2013; 
Feio et al. 2010; Lecerf et al. 2007). This suggests that 
fungi are important decomposers in veredas in contrast 
with other South American studies. This importance was 
reinforced by the significant correlation between ergosterol 
and ATP. We also observed ATP values were high 
compared to most temperate streams systems (0.13 – 200 
nmoles g-1 range for review of Abelho 2001) and similar to 
other tropical streams (100 – 750 nmoles g-1 range for 
Abelho et al. 2005; Gonçalves et al. 2007; Gonçalves et al. 
2006c).  
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The high fungal biomass (especially in January 
and August) does not support our third prediction of low 
fungal biomass, but contrasted with the low and irregular 
sporulation rates in detritus and spore richness in the water 
with zero spores in some months. It is possible that 
sporulation rates are naturally low in these systems or we 
may be losing key undescribed spores, highlighting the 
need for further research in this system. It is also possible 
that low sporulation rates were a methodological artifact 
since intense sporulation frequently occurs in less than one 
month after the leaves fall in the water (Ferreira et al. 
2012). If this is also the case in the vereda, we missed the 
important reproductive period. The most abundant spores 
in the sporulation experiments in all periods were from cf. 
A. filiformis, cf. A. longissima, and L. curvula which are 
normally associated with warm waters (Chauvet and 
Suberkropp 1998). Low diversity of spores were also 
reported by Sridhar and Sudheep (2010) in southwest India 
and Ferreira et al. (2012; k range of 0.001 – 0.034) in 
Ecuadorian Amazon forest. 

Invertebrates are crucial to litter decomposition in 
most temperate streams (Abelho 2001; Gessner et al. 
1999), but, in many tropical streams, they are less 
important (Boyero et al. 2012; Moulton et al. 2010). In the 
vereda, we also found a yearly mean lower (84 individuals 
g-1) than the referred for other savanna streams (2 – 780 
individuals g-1 range for Gonçalves et al. 2012a; Gonçalves 
et al. 2012b; Ligeiro et al. 2010; Moretti et al. 2007b), with 
the highest values in the dry season (June and July). 
Chironomids were dominant as in many others tropical 
streams (Gonçalves et al. 2012a; Moretti et al. 2007a; 
Wantzen and Wagner 2006). The proportion of shredders 
(10%) was similar than other Cerrado streams (0 – 11% 
range for Gonçalves et al. 2007; Gonçalves et al. 2006c; 
Moretti et al. 2007b), supports our prediction, that 
shredders are not abundant and important in litter 
breakdown.  
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Conclusion: Litter Dynamics in Veredas 

Besides the low productivity of the vereda, and the 
high litter breakdown rates, organic matter accumulation is 
high in these systems. The entire riparian area and stream 
bed was composed by > 1 m think pure organic substrate. 
This can only happen if litter retention is high in relation to 
litter decomposition at the (or below) the stream bed. A 
raise in litter productivity can be expected if seasonal 
flood/dry dynamics allows terrestrial input being 
transported to the permanently wet channel. This subject 
needs further investigation. The drivers of litter 
decomposition in the “Vereda” seem to be fungi, but their 
identity and reproductive biology still needs to be 
investigated. As in many other tropical systems 
invertebrates had little importance to litter decomposition 
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APPENDICES 

Table A1 Analysis of variance (RM-ANOVA) and contrast (AC) for leaves, branches, reproductive and miscellaneous material, collected 
from the terrestrial (TI) and stream vertical (AV) inputs over one year. F values, degrees of freedom and significance P 

Material Type of input RM-ANOVA AC 
Leaves TI F(11, 59) = 10.2, p < 0.001 August, September and October  

VI F(11, 347) = 3.2, p < 0.001 September and October  
Branches  TI F(11, 59) = 0.9, p = 0.50 

VI F(11, 347) = 3.5, p < 0.001 December and January  
Reproductive Material  TI F(11, 59) = 0.7, p = 0.68 

VI F(11, 347) = 0.9, p = 0.46 
Miscellaneous Material TI F(11, 59) = 2.2, p = 0.02 April and March  
  VI F(11, 347) = 2.9, p < 0.001 January  
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Fig. A1 Organic matter inputs from the riparian zone to the forest soil 
(terrestrial input) and directly into the stream (vertical input). Means and 
standard errors. Leaves, branches, miscellaneous and reproductive material. 



59 
 

 
Fig. A2 Larger (A and C) and smaller (B and D) contributions of species of plants to the leaf litter input to the forest soil (top) and directly to 
the river (below). Mean and standard error.  
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Fig. A3 Invertebrates biomass (g/g-1; A) and richness (B) in decomposing 
leaves incubated in the stream bed for one year (means and standard error). 
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Fig. A4 Percentage of relative abundance of the functional feeding groups of the aquatic invertebrates that colonized the leaf litter over one 
year.



62 
 

 

 
 
 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

CAPÍTULO 2 
Canopy degradation effects on temporal leaf 

breakdown rates in a tropical stream. 
Submitted to Marine & Freshwater 

Research; ISSN: 1323-1650. 
 

Foto: Renan Rezende 



63 
 

Canopy degradation effects on temporal leaf 
breakdown rates in a tropical stream. 

Submitted to Marine & Freshwater Research; ISSN: 
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ABSTRACT: 
Our objectives were to describe the temporal dynamics of 
leaf breakdown rates (k) and to identify possible indicators 
(physical, chemical and biological characteristics) from a 
stream with a degraded riparian canopy. The vertical input 
of leaves was collected monthly in a natural stream and 
incubated in a stream with a degraded canopy. In each 
month, the samples were collected, and other new samples 
were incubated. The k, microbial biomass (ergosterol and 
ATP), fungal sporulation and invertebrate community 
characteristics (biomass density, richness and trophic 
functional groups) were estimated in the detritus leaves. 
Higher values of k were observed in rainy season, most 
likely due to high temperatures (increasing metabolic 
activity) and rainfall (higher physical abrasion). However, 
we found higher microbial biomass (increase of 
photosynthetic organisms) and greater densities and 
richness of invertebrates (lower washing power by water) 
in dry season. Therefore, on the large temporal sampling, 
water flow, temperature and precipitation were the factors 
controlling the k in this stream system. The canopy 
degradation modify the k and can change the metabolism 
of the ecosystem (from heterotrophic to autotrophic), 
despite the great ecological resistance of “veredas”. The 
canopy degradation left the system higher susceptible to 
seasonal changes. This environmental impact modified 
also the communities of micro-organisms and invertebrates 
indicate that this process is useful as bioindicators. 
 
Keywords: Precipitation Effects; Veredas; decomposition 
community. 
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INTRODUCTION 
Energy flow and organic-matter cycling in aquatic 

environments are fundamental for the maintenance of the 
system’s metabolism and, therefore, for the structuring of 
the local communities (Fisher and Likens 1972; Tank et al. 
2010), especially in shaded patches, where the primary 
production is limited by the low-light conditions (Gessner 
et al. 1999; Graça 2001). The quantity, quality, processing 
and retention of allochthonous organic matter in streams 
are associated mostly with climatic factors, being strongly 
directed by seasonal and physiological changes in the 
vegetation (plant phenology; Gonçalves et al. 2006a; Li 
and Dudgeon 2011). Decomposition is a key process in the 
remobilization of this organic detritus into the trophic 
chain because decomposition makes available the nutrients 
and energy retained in the dead organic matter (Abelho 
2001; Petersen and Cummins 1974). According to Gessner 
et al. (1999), decomposition is biologically driven by the 
microorganism (fungi and bacteria) and invertebrate 
(mostly the shredders) communities in a sequence of 
events named leaching, conditioning and fragmentation. 
However, we have no found information about this process 
in “veredas” systems that are common in the Brazilian 
Savannah. 

The “veredas” are hydrophilous vegetation 
formations typical of the gallery forests in the Cerrado 
biome and are characterized by rivers with well-defined 
river beds during the dry season that transform into 
wetland areas during the rainy season (Moreira et al. 
2011). The “veredas” are conditioned essentially by 
physical factors, such as flat surfaces or inundated bottoms 
associated with a surface layer above a second, 
impermeable layer (Drummond et al. 2005). In addition to 
their ecological importance, “veredas” are 
socioeconomically important for the local communities, 
which sell the fruits and leaves of the Buriti palm 
(Mauritia flexuosa L.) and also use the systems for water 
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supply. The “veredas” are among the priority areas for the 
conservation of the Cerrado (faunal and floral refuges) 
because they act as nursery areas for many fish species 
(e.g., Hoplias malabaricus and Lophiosilurus alexandri) of 
economic importance in the region and serve as water 
sources (springs) that feed the watercourses (Drummond et 
al. 2005; Moreira et al. 2011). Modifications of the 
structure and composition of vegetation by commercial 
exploitation (a standard regional practice; Rezende et al. 
2012) may alter the organic matter cycling, which may 
lead to variations in the energy flow and threaten the 
availability of all these environmental services and, 
consequently, the system’s function. 

Riparian vegetation provides services such as 
filtering the surface runoff, controlling the precipitation 
input and soil erosion through tree canopies that block the 
rain, increasing the water-storage capacity and maintaining 
the heat balance, thus maintaining the system integrity 
(Lima and Zakia 2001; Moreira et al. 2011). Clearcutting 
to stream edges changes streambed morphology, alters the 
physical and chemical characteristics of the water, 
increases sunlight exposure (affecting temperature and 
biological activity) and decreases vegetation litter 
(quantity and quality) inputs (Lecerf and Richardson 
2010). Therefore, riparian vegetation can protect stream 
ecosystems against catastrophic events (natural and/or 
anthropic) that are under the control of terrestrial 
ecosystems (Lecerf and Richardson 2010). This buffering 
includes protection against abrupt temporal/annual changes 
in water flux and, consequently, in ecological processes 
(e.g., leaf breakdown) and ecosystem functioning due to 
seasonal dynamics (Benda et al. 2004; Silva-Junior and 
Moulton 2011). This relation shows that ecological 
processes, such as leaf breakdown, can be used to detect 
environmental changes due to anthropic impacts (Pascoal 
et al. 2001). 
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The use of leaf breakdown to detect anthropogenic 
environmental changes was developed mainly in the last 
decade (Gessner and Chauvet 2002; Tank et al. 2010). 
However, few studies have been conducted in tropical 
streams (Silva-Junior and Moulton 2011; Silva-Junior et al. 
2014). The data available in the literature concerning the 
effects of anthropic impacts (e.g., pollution) on leaf 
breakdown are contradictory (Pascoal et al. 2001). Leaf 
breakdown is faster with higher nutrient levels, but when 
this enrichment is accompanied by another pollutant, we 
can observe a negative effect and slower breakdown 
(Gessner and Chauvet 2002; Pascoal et al. 2001; Silva-
Junior and Moulton 2011). The possible losses of 
environmental functions and services due to the 
degradation of ecological processes in tropical regions are 
among the 100 fundamental ecological questions to 
answer, according to Sutherland et al. (2013).  

If environmental and temporal/annual changes 
(due to anthropic and/or natural factors) occurring in 
riparian systems modify the leaf breakdown rates, our 
hypothesis is that: i) greater canopy openness will increase 
the leaf breakdown rates in the rainy season due to higher 
physical fragmentation (by rain) and microbial activity 
(due to higher temperatures); and ii) canopy degradation 
increases the range of variation in the leaf breakdown 
process throughout the year due to the loss of the 
protective function of the canopy. Our objectives were: i) 
to describe the temporal dynamics (over one year) of leaf 
breakdown rates in a degraded “veredas” canopy (based on 
changes in autotrophic metabolism due to the low 
contribution of allochthonous organic matter); ii) to 
characterize the physical, chemical and biological changes 
in the leaf breakdown process throughout the year; and iii) 
to identify possible environmental indicators of riparian 
degradation in the leaf breakdown process. We address the 
following questions: i) What are the peaks and most 
important variables (abiotic and/or biotic) for leaf 
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breakdown rates throughout the year? ii) How does canopy 
degradation affect stream functioning and the leaf 
breakdown process? The research forms part of a larger 
study of “veredas” and an evaluation of streams in the 
Pandeiros Basin, Minas Gerais/Brazil. 

MATERIALS AND METHODS 

Study Site 

The study was conducted in the Pandeiros River 
basin, located in Minas Gerais State, southeastern Brazil. 
This basin has the forest types of Cerrado, deciduous 
seasonal forest, semi-deciduous forest and “vereda” within 
a sub-arid climate. The average rainfall varies from 900 to 
1,200 mm, with temperatures between 21°C and 24°C. The 
“vereda” used in this study was impacted by the removal 
of native vegetation, plant-extraction activities (M. 
flexuosa) and water withdrawal for human consumption 
(Fig. 1). The leaf detritus (vertical input) was collected 
monthly by bucket in a preserved “vereda” and 
transplanted to incubate in a “vereda” with an impacted 
canopy. The riparian zone of the preserved “vereda” 
contained plant individuals belonging to the following 
groups: Indeterminate sp. 1 (Liana group), Indeterminate 
sp. 2 (Liana group), Cecropia pachystachya Trécul, Croton 
urucurana Baill., Mauritia flexuosa L.f., Simarouba 
versicolor A.St.-Hil., Styrax camporum Pohl, Xylopia 
emarginata Mart. and Zygia latifolia (L.) Fawc. and 
Rendle. The collected material was used to identify plant 
families according to the Angiosperm Phylogeny Group II 
system (APGII 2003). 
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Fig. 1. Sampling site in the Pandeiros River Basin and its location with regard to Minas Gerais State in Brazil. 
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Procedure 
The electrical conductivity, pH and dissolved 

oxygen levels were measured in situ using a multianalyzer 
(YSI Incorporated, model 85). The luminosity and water 
temperature at the stream surface were continuously 
recorded with a datalogger (Onset, HOBO UA-002-08). 
The total alkalinity was determined by the Gran method 
according to Carmouze (1994), and in the water, the N 
(nitrate and ammonia; detection limit: 0.05) and P 
(orthophosphate; detection limit: 0.015) concentrations 
were analyzed according to Clesceri et al. (1989). The 
rainfall and air temperature were obtained from a 
meteorological station (number 83386), located at 15º 26’ 
S, 44º22’ W and 473.6 m altitude, of the National Agency 
of Waters of Brazil (available on the website hidroweb; 
http://hidroweb.ana.gov.br/), and the canopy openness was 
quantified using hemispherical photographs. 

The experiment used litter bags (10 mm open 
mesh, 30 x 30 cm), with a sample (± 3 g of leaves) 
incubation period of 30 days. After this period, the samples 
were removed, and new samples were incubated, 
containing the detritus from the direct input into the stream 
of the preserved “vereda” during the previous 30 days. The 
samples were incubated at a depth of 0.2 to 0.5 m in 
contact with the sediment. After removal, the litter bags 
were placed into plastic bags inside of boxes with ice and 
transported to the laboratory. The remaining leaf litter used 
in this study was used to estimate the initial dry weight 
(after being dried at 60 ºC for 72 h). In the laboratory, the 
leaves were washed with distilled water over a 180-µm 
sieve. The retained material was fixed (70% ethanol), and 
the invertebrates were later identified to the family level 
according to (Pérez 1988) and (Cummins et al. 2005). The 
taxonomic richness and density were calculated for 
invertebrates based on the community survey. The 
invertebrates were classified into five functional trophic 
groups (Pérez 1988; Cummins et al. 2005): gathering-
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collectors (G-C), filtering-collectors (F-C), shredders (Sh), 
scrapers (Sc) and predators (P).  

Afterward, discs (12 mm in diameter) were 
removed from randomly selected leaves to analyze the ash-
free dry mass (AFDM), the microbial biomass measured 
based on ergosterol and ATP concentrations and the 
aquatic hyphomycete sporulation (5 discs for each 
analysis). The total biomass of the decomposer 
microorganisms was determined by quantifying the ATP in 
the litter fall according to Abelho (2005; using the 
luciferin-luciferase reaction). The fungal biomass was 
assessed by quantifying ergosterol concentrations 
according to Gessner (2005; using a lipid exclusive to 
fungal membranes). Aquatic hyphomycete sporulation was 
assessed using discs from each litter bag according to 
Bärlocher (2005) and Gulis et al. (2005) based on posterior 
counting and identification under the microscope (400 X). 
The remaining litter fall was placed in trays and dried in an 
oven at 60°C for 72 h to determine the dry weight. The 
initial AFDM was obtained after incinerating the discs 
(550 º C for 4 h) and subtracting the proportion of the 
remaining material, which corresponded to the inorganic 
fraction, from the respective sample.  
 
Statistical Analysis 

The leaf breakdown rates (k) at the sampling 
points in the sampling months were obtained assuming a 
linear model (log transformed) of the percentage of mass 
lost during the 30 days of incubation (Wt = W0e

-kt; Wt = 
remaining weight; W0 = initial weight; -k = decay rate; t = 
time). Data normality was assessed with the Kolmogorov-
Smirnov test, the homogeneity of variance was assessed 
with Levene’s test, and the data were log transformed 
when needed (Zar 1996). A repeated-measures ANOVA 
(RM-ANOVA) and contrast analysis were used to test for 
significant differences among months (categorical 
variables) in the remaining mass, invertebrate community 
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(richness, density and abundance of functional trophic 
groups) and biomass of microorganisms (levels of 
ergosterol, ATP and density of spores in the detritus-
dependent variables). The association between some 
variables was assessed with Spearman’s correlation 
analysis (ρ) considering p < 0.05 (Zar 1996). We also 
compared invertebrate community structure among the 
studied months with a permutational multivariate analysis 
of variance (PerMANOVA) based on the species and 
functional trophic groups using the Bray-Curtis distance 
matrix and a permutation test (10000) with pseudo-F and 
discriminating months through a Bonferroni-corrected 
pairwise comparison (using the Adonis function of the 
vegan package in R; Oksanen et al. 2008).  

RESULTS 

 Physical and chemical parameters of the stream waters 
The mean discharge of the stream was 0.18 ± 0.02 

m3, with peaks in November and December. The water 
temperature was 25.9 ± 0.47 ºC, and the air temperature 
was 24.9 ± 0.57 ºC, with higher values in November, 
December and January. Precipitation during the studied 
period was 92.2 ± 25.0 mm, with peaks in October to 
April. The stream waters were basic (8.2 ± 0.12; with 
peaks in January and February), with high levels of oxygen 
(6.5 ±0.30 mg L-1 and 80.6% saturation; with peaks in 
July), electrical conductivity (51.0 ± 7.17 µS cm-1; with 
peaks in April and May) and alkalinity (60.3 ± 4.73 µEq L-

1; with peaks in January). The ammonia (0.06 ± 0.003 
mg.L-1), nitrate (0.1 ± 0.001 mg.L-1) and orthophosphate 
(0.02 ± 0.0001 mg.L-1) concentrations were fairly constant 
throughout the year. The canopy openness of the riparian 
vegetation was elevated in the “vereda,” with average 
values of 48.5% (Table 1). 
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Table 1. Water flow (m3), pH, dissolved oxygen (mg.l-1 and saturation %), electrical conductivity (uS cm-1), water temperature (T.water, ºC), 
alkalinity (MicroEq L-1) and ammonia, nitrate and orthophosphate concentrations (mg.l-1) in the water as well as the total precipitation (mm), 
air temperature (T.air. in ºC) and luminosity from January to December. 
 
  Flow pH Ox (mg) Ox (%) Conduct. T.water Alkal. Ammonia Nitrate Orthop. Precipitation T.air Luminosity 

April 0.16 8.40 7.12 86.60 75.10 25.60 75.41 <0.05 0.09 0.02 69.40 25.00 11.66 
May 0.15 7.17 7.60 90.01 73.60 24.20 42.71 0.09 0.10 0.02 11.60 24.00 19.56 
June 0.14 7.75 6.88 82.66 64.94 24.32 52.72 0.07 0.10 0.02 4.60 21.96 86.11 
July 0.10 8.11 7.84 93.60 72.80 24.70 52.72 <0.05 0.10 0.02 0.00 22.21 42.33 
August 0.12 8.42 7.05 82.50 70.10 23.80 41.03 <0.05 0.10 0.02 2.00 23.34 23.60 
September 0.12 8.15 6.18 75.30 3.40 26.10 84.54 0.06 0.09 0.02 35.60 24.36 19.56 
October 0.10 8.20 4.70 70.20 20.00 28.00 54.45 <0.05 0.10 0.02 68.40 25.29 11.66 
November 0.31 8.30 6.95 88.40 35.30 27.00 53.36 <0.05 0.10 0.02 16.00 26.00 10.00 
December 0.30 8.11 6.42 82.30 42.30 26.00 51.23 <0.05 0.10 0.02 41.80 27.00 9.00 
January 0.16 8.51 5.23 66.80 67.20 28.90 90.02 0.07 0.10 0.02 29.70 28.00 8.00 
February 0.27 8.65 5.12 68.50 35.70 26.50 65.59 0.06 0.09 0.02 28.50 27.00 9.00 
Mean 0.18 8.16 6.46 80.62 50.95 25.92 60.34 0.06 0.10 0.02 27.96 24.92 22.77 
Std. Error 0.02 0.12 0.30 2.64 7.17 0.47 4.73 0.0038 0.0013 0.0001 7.08 0.57 6.72 
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Leaf breakdown rates 
The mean litter breakdown rate (k) was 0.037 (0.014 to 

0.095 range), corresponding to an overall leaf litter loss of ~59% 
(33 to 93% range) of the original mass in one month. The 
percentages of mass loss significantly differed among the studied 
months (ANOVA, F10, 36 = 6.75, p < 0.01), with higher values in 
November and December (contrast analysis; p < 0.05) and lower 
values in May to July (Fig. 2). The litter mass loss was positively 
correlated with rainfall (r = 0.44, p = 0.01) and the air and water 
temperatures (r = 0.31, p = 0.02 and r = 0.47, p = 0.01, 
respectively). 

 

 
Fig. 2. Mean values and standard errors of the remaining mass (black line - %) and 
decomposition rates (gray bars - k) over the studied months (April to February). 

 

Biological communities 

The mean (± SE) value of ATP content in the leaves was 
475 ± 43 nmoles.g-1 AFDM, with significant differences among 
the months (RM-ANOVA, F10, 36 = 33.06, p < 0.01), with a 
maximum of 1021 nmoles.g-1 AFDM (June) and a minimum of 
34 nmoles.g-1 AFDM (October). The ergosterol mean (± SE) was 
624 ± 52 µg.g-1 AFDM, with significant differences among 
months (RM-ANOVA, F(10, 36 ) = 5.33, p < 0.01), with peaks of 
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967 and 1058 µg.g-1 AFDM (in July and February, respectively) 
and a lowest value of 239 µg.g-1 AFDM (October). The 
ergosterol and ATP concentrations (Fig. 3) were positively 
correlated throughout the year (r = 0.43, p < 0.01), but only the 
ATP values were related to the litter breakdown (r = -0.43, p < 
0.01).  

 

 
 
Fig. 3. Mean values and standard errors of fungal biomass (continuous line - 
ergosterol µg g-1 AFDM), total microbial community activity (gray bars - nmoles 
ATP g-1 AFDM) and abundance of fungal spores (dotted line - spores.mg AFDM-1) 
over the studied months (April to February). 

 
The maximum sporulation rate (± SE) was 18 ± 1 

spores.mg-1 AFDM (May and June), but zero spore production 
was detected in January, April, September, October and 
December (Fig. 3). Sporulation rates were highly variable (RM-
ANOVA, F(10, 36 ) = 2.29, p = 0.03) and presented a negative 
relationship with temperature (r = -0.33, p = 0.02). A qualitative 
survey in the water column contained spores of the species 
Anguillospora filiformis, Anguillospora longíssima, 
Lunullospora curvula and Fontanospora eccentrica.  

The most abundant taxon of invertebrates (± SE) 
associated with the litter breakdown was Chironomidae 
(Diptera), with 80% of the total individuals (mean of 293 ± 33 
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individuals.g-1 AFDM). The mean (± SE) density of invertebrates 
ranged from 49 ± 43 individuals.g-1 AFDM (September) to 590 ± 
150 individuals.g-1 AFDM (July), and there were significant 
differences among months (Fig. 4; RM-ANOVA, F(10, 36 ) = 5.21, 
p < 0.01). The richness (± SE) of invertebrates ranged from 4 
±0.4 (January) to 10 ± 0.5 (May) taxa and significantly differed 
among months (Fig. 4; RM-ANOVA, F(10, 36 ) = 4.58, p < 0.01). 
Shredders represented only 9% of non-Chironomidae 
invertebrates, with the highest values (RM-ANOVA, F(10, 36) = 
3.41, p < 0.01) in January (13%), April (13%) and August (12%) 
and lower values in September (3%) when the main taxa was 
Odontoceridae (Trichoptera). The invertebrate densities (r = 0.15, 
p = 0.29) and shredder (r = -0.11, p = 0.44) abundances were not 
correlated with mass loss. However, the invertebrate and 
shredder densities were positively correlated with dissolved 
oxygen (r = 0.54, p < 0.01 and r = 0.35, p = 0.02, respectively) 
and negatively correlated with temperature (r = -0.45, p < 0.01 
and r = -0.36, p = 0.01, respectively). The composition of 
functional trophic groups (PerMANOVA, F = 2.43, p < 0.01; Fig. 
5) and taxa (PerMANOVA, F = 2.92, p < 0.01; Table 2) of the 
invertebrate community varied over the months studied (pairwise 
comparison; p < 0.05), mainly between the months of dry (June 
and July) and rain (November, December and January).  
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Fig. 4. Mean values and standard errors of the density (ind/g; continuous line) and 
richness (dotted line) of the invertebrates that colonized the leaf litter over the studied 
months (April to February). 

 

 
Fig. 5. Relative abundance of the considered functional feeding groups of the aquatic 
invertebrates that colonized the leaf litter over the studied months (April to February). 
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Table 2. Means and standard error (s.e.) of the densities of invertebrates colonizing (ind. g-1) leaves during breakdown in the months 
studied. Functional feeding groups (FFG): P, predators; Ga-Co, gathering-collectors; Fil-Co, filtering-collectors; Shr, shredders; Scr, 
scrapers; * not classified. 
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DISCUSSION 

Canopy degradation effects  
The canopy degradation in our study site can allow 

higher sediment entrainment (Gardiner et al. 2009) and promote 
a greater frequency and intensity of climatic disturbances 
(Dudgeon et al. 2006; Naiman and Décamps 1997; Vannote et al. 
1980), and a consequence could be a decreasing flow of the 
water. This may explain the lower flow of the present studied 
stream, due to decrease of water-storage capacity and 
maintaining the system integrity by riparian vegetation (Lima 
and Zakia 2001). The loss of the hydrological functions by 
riparian vegetation, may be responsible for the water contained 
higher values of pH, alkalinity, dissolved oxygen, nutrients and 
conductivity other stream in the Pandeiros basin (Rezende et al. 
2012). This may indicate that environmental change caused by 
canopy degradation due to plant-based extractivism may affect 
the ecosystem, compromising some ecological services. 

Compared with a stream system with an intact canopy 
(±9% canopy openness), we can expect a change in the 
metabolism of canopy degradation system, increasing their 
source of autotrophic resource for the higher incidence of light 
(Vannote et al. 1980). The canopy degradation to allow more 
light incidence can also lead to an increase in temperature of the 
water. This can be an important factor explaining the higher leaf 
breakdown rates (k= -0.037), mainly in December (rainy season). 
Therefore, with the loss of the services by riparian vegetation as 
controlling the precipitation input (Lima and Zakia 2001; 
Moreira et al. 2011), we found higher water velocity (mechanical 
fragmentation and leaching), dissolved oxygen and temperatures, 
which accelerate biological metabolism (Gulis and Suberkropp 
2003; Medeiros et al. 2009), explaining the high rates of 
decomposition. 

This pattern indicates that canopy degradation modify 
the ecological process studied and can change the metabolism of 
the ecosystem (from heterotrophic to autotrophic), despite the 
great ecological resistance of “veredas” (Benda et al. 2004). This 
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environmental impact also modified the communities of fungi 
and invertebrates, confirming our second hypothesis and 
indicating that the leaf breakdown process was useful as a 
bioindicator. The leaf breakdown rates were a useful indicator of 
impacts, such as the organic pollution of urbanization areas 
(Pascoal et al. 2001) and the gradient of extensive agricultural 
changes in the land use of the landscape (Hagen et al. 2006). Our 
study indicated that the macroinvertebrate community (with 
higher density and richness under stochastic disturbance; Benda 
et al. 2004) and total microbial community (with more 
photosynthetic organisms after canopy degradation; Jugnia et al. 
2000) could be biological predictors. The increase in the density 
of biological communities during the leaf breakdown process by 
stochastic disturbance was also observed in other studies (Hagen 
et al. 2006; Sponseller and Benfield 2001) and indicates that this 
variable can be a useful indicator. Therefore, as also observed by 
Schwarz and Schwoerbel (1997), our data regarding the leaf 
breakdown were dependent on the chemical and physical 
properties of the leaves, the abundance of the decomposing 
community and the climatic pattern. 

However the partial removal of vegetation for plant-
based extractivism can be considered a slight impact, most likely 
because plant removal is a structural modification and does not 
represent a source of pollution (e.g., the input of chemicals as 
pesticides). The practices of agriculture-forestry, such as plant 
extractivism, cause smaller environmental changes than 
extensive agriculture and urbanization (Daniel et al. 2002; 
Gardiner et al. 2009; Sponseller and Benfield 2001). Areas of 
extensive agriculture (Utz et al. 2009) and urbanization (Paul and 
Meyer 2001) have greater influence on biological communities, 
even when these land uses are present in small sizes and 
proportions on the landscape. Thus, the negative effects of 
extensive agriculture and urbanization are disproportionate 
compared to other land uses (Johnson et al. 2012).  

 
 
Leaf breakdown process 
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The leaf breakdown rates (k) in all the months (mean of -
0.037) were described as fast (k > -0.017) except for April 
(intermediate values of -0.004 > k < -0.017) according to the 
model proposed by Gonçalves et al. (2013). These k values are 
superior to those observed in other Cerrado streams (-0.0001 to -
0.015 in Gonçalves et al. 2007; Gonçalves et al. 2012a; Moretti 
et al. 2007) but were in the lower range reported for tropical 
areas (-0.026 to -0.077) by Abelho (2001). We believe that the 
high temperatures recorded throughout the entire year (with a 
minimum of 21°C) had positive effects on the leaf breakdown 
rates  (Suberkropp and Chauvet 1995; Gonçalves et al. 2012b). 
The largest k was observed in the rainy season, evidencing a 
seasonal dynamic, and explains the positive correlation with 
temperature and rainfall, confirming our first hypothesis. There 
might also be synergistic interactions between higher physical 
abrasion (due to the higher rainfall and water flow; Santos 
Fonseca et al. 2012), oxygen concentrations (which increases the 
activity of aquatic fungi; Medeiros et al. 2009) and electrical 
conductivity (which indicates higher nutrient inputs; Chestnut 
and McDowell 2000) accelerating the leaf breakdown rates. This 
result indicates that litter decomposition could be influenced by 
temporal changes in abiotic conditions and, consequently, by 
changes in the biological activity in this ecosystem. 

The fungal biomass (ergosterol) was greater than in 
other Cerrado streams (50 to 420 µg.g-1 range for Gonçalves et 
al. 2007; Gonçalves et al. 2006c), and the total microbial 
community activity (ATP) was at the upper limit compared to 
tropical streams (100 to 750 nmoles.g-1 range for Abelho 2001; 
Abelho et al. 2005; Gonçalves et al. 2007; Gonçalves et al. 
2006c). We found greater microbial biomass in periods of low 
water flow due to a decrease of rain (i.e., in the dry season) that 
was likely related to a decrease of lower physical abrasion and 
lower biofilm loss (Santos Fonseca et al. 2012). Another aspect is 
that in the dry season, the low cloud formation enables a 
luminosity increase and stimulates photosynthetic organisms, 
represented by ATP concentration (Vannote et al. 1980), that use 
the detritus only as a substrate, increasing the biofilm mass. 
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Higher photosynthetic production (greater autotrophic resource; 
Jugnia et al. 2000) was associated with lower metabolisms of 
organisms due to the temperature decrease in dry season (Sridhar 
and Sudheep 2010). This change might decrease the use of 
heterotrophic resources and explains the lower breakdown 
despite the higher microbial biomass. Higher temperatures can 
have a negative effect on fungal diversity, selecting only species 
with the ability to develop in warmer settings (Chauvet and 
Suberkropp 1998), as observed in the fungal community of the 
studied stream. These patterns explain the hyphomycetes’ 
tendency to sporulate more in the dry season and the negative 
correlation of sporulation with temperature (Mathuriau and 
Chauvet 2002; Gonçalves et al. 2007). Therefore, our results 
show that the increase of luminosity (corresponding to fewer 
clouds) and lower temperatures in dry season can lead to a higher 
use of the autotrophic resource and a decrease of microbial 
activity, thus slowing the leaf breakdown rates. 

We found higher average densities of aquatic 
invertebrate community than in other Cerrado streams (2 to 780 
ind/g range for Gonçalves et al. 2012a; Gonçalves et al. 2006b; 
Moretti et al. 2007). The higher densities and richness, especially 
in dry season, can be explained by the negative correlation with 
temperature (cool water could increase the oxygen dilution) and 
indirectly indicates lower rainfall (with a lower washing power 
by water; Santos Fonseca et al. 2012). The invertebrate 
community was dominated by Chironomidae, as observed in 
other tropical streams (Boyero et al. 2012; Moulton et al. 2010; 
Silva-Junior and Moulton 2011). The lower abundance of 
shredders may explain the low importance of this community in 
the leaf breakdown, as observed in other tropical streams (0 to 
11% range for Gonçalves et al. 2006c; Gonçalves et al. 2007; 
Moretti et al. 2007). Odontoceridae was the most important 
shredder, but members of this group have also been classified as 
scrapers and as opportunistic scavengers feeding on animal and 
plant detritus (Pérez 1988; Cummins et al. 2005). The alternate 
feeding strategies of this group would help explain the low 
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participation and importance of the invertebrate community in 
the leaf breakdown process. 
 
Conclusion 

In general, the data indicate that the partial removal of 
native vegetation due to plant-based extractivism affect the 
functioning of this ecosystem. The leaf breakdown rates were 
fast throughout all the studied years, and the more openness left 
the system higher susceptible to seasonal changes (Dudgeon et 
al. 2006; Naiman and Décamps 1997; Vannote et al. 1980). 
Canopy degradation might increase the frequency and intensity 
of disturbances (Benda et al. 2004) due to the loss of the capacity 
of riparian vegetation to stabilize ecological processes (Naiman 
and Décamps 1997). The high biological and physical-chemical 
variation and the lower water flow are also initial indications that 
the water-supply services might be impaired in the long term. 
This finding is important information for "veredas" conservation 
and shows that despite the apparent process maintenance, the 
dynamics of such systems are being changed due to canopy 
degradation by plant-based extractivism. 

There was a clear seasonal variation in leaf decay, 
suggesting that the temporal resolution chosen for a leaf 
breakdown study may affect the detection of decay patterns. 
Rainy season had a higher leaf breakdown rate due to higher 
water flow, temperature and precipitation (Santos Fonseca et al. 
2012; Sridhar and Sudheep 2010). In the rainy season, higher 
leaf breakdown was observed despite the lower biomass of 
decomposers due to lower dissolved oxygen, alkalinity and 
electrical conductivity (Pérez 1988; Cummins et al. 2005). The 
aquatic invertebrates (mainly shredders) and total 
microorganisms showed no overall influence on the leaf 
breakdown. These results for a temporal macro-scale (month and 
year) are similar to the results for a spatial macro-scale proposed 
by Wiens (1989). On a micro-scale (hours and days), the 
phenomenon can induce an increase in the heterogeneity of the 
detected signal, but the macro-scale is affected by climatic 
factors (Schwarz and Schwoerbel 1997; Wiens 1989). Thus, 
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these results indicated that on a temporal macro-scale (months 
and the average annual), the water flow, temperature and 
precipitation are the factors that control the leaf breakdown rates. 
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The effects of spatial scale on breakdown of leaves in a 
tropical watershed 

Published: May 08, 2014; PLoS ONE 9(5): e97072. DOI: 
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ABSTRACT   
The objective was to assess the effects of natural variation in the 
physical structure of the environment on biological communities 
and on the processing of Eucalyptus cloeziana and Inga laurina 
and to identify the controlling factors at different scales along 
stream order gradients. The study area consisted of 14 sampling 
sites distributed within a tropical watershed (1st, 2nd, 3rd and 4th 
order streams replicated in 4 sub-basins). Our samples consisted 
of 3 g of leaves of E. cloeziana (high-quality) and I. laurina 
(low-quality) placed in 252 bags with 10mm mesh (measured by 
the chemical composition of the detritus). Four samples of each 
leaf type were collected periodically (three times) over a period 
of 75-125 days and washed on a sieve to separate the 
invertebrates. A series of leaf disks were cut to determine ash-
free dry mass, polyphenol, lignin, cellulose, total microbial 
biomass and fungal biomass, and the remaining material was 
oven-dried to determine the dry weight. We performed analyses 
within and between spatial scales (regional and local) to assess 
which watershed scale was the more import determinant of the 
leaf breakdown rate (k). The microbial and shredder were most 
influenced at the local scale (stream order). Shredders were 
influenced by microorganisms, with stronger interactions 
between them than were found to drive the k at the local scale. 
Moreover, differences in the overall k and abiotic variables were 
more strongly influenced at the regional scale (sub-basin), 
showing that the study scale alters the response of the studied 
variables. We found higher k values at higher values of water 
velocity, dissolved oxygen and temperature, all of which 
accelerate biological metabolism in response to variations on the 
regional scale. Watersheds with warmer microclimates and 
streams with higher nutrient levels and oxygen could be 
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accelerating the ecosystem metabolism, independent of the 
detritus quality. 
 
Keywords: Decomposition; sub-basin; stream order; 
microorganisms; shredders; detritus quality; abiotic variables. 

INTRODUCTION 

The characteristics of lotic ecosystems show natural 
patterns along an upstream-downstream gradient due to 
variations in geomorphology and topography in the watershed 
(Fabre and Chauvet 1998; Vannote et al. 1980). Natural changes 
along this gradient (upstream to downstream) include an increase 
in the dimensions of the stream (width), changes (increases or 
decreases) in the velocity of the water, and openings in the 
riparian canopy that allow greater light penetration (Benda et al. 
2004; Statzner and Higler 1985). Greater luminosity increases 
the temperature and accelerates photosynthetic production and 
autotrophic metabolism (Statzner and Higler 1985). Along this 
gradient, therefore, the relative abundance of micro-organisms 
increases but that of invertebrates decreases (primarily shredders 
of organic matter), decreases from the headwaters to the 
downstream sections (Vannote et al. 1980). These natural 
changes also modify the energy input and cycling of organic 
matter in space and time (Larned et al. 2010; Vannote et al. 
1980). Senescent leaves are an important source of nutrients and 
food resources in heterotrophic metabolic environments, 
primarily in headwaters and small streams (Gessner et al. 1999; 
Graça et al. 2001). However, this material is mineralized and 
available for use by primary producers and other trophic levels 
after its decomposition. As a result, leaf breakdown is a key 
process in lotic ecosystems (Gessner et al. 1999; Mathuriau and 
Chauvet 2002). Leaf breakdown can be influenced by many 
factors, such as physical and chemical variables (associated with 
water and detritus) and the activities of communities of 
decomposers (micro-organisms and aquatic invertebrates) 
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(Abelho 2001; Gessner et al. 1999; Gonçalves et al. 2013; Graça 
et al. 2001; Mathuriau and Chauvet 2002; Moulton et al. 2010; 
Suberkropp and Chauvet 1995; Wantzen and Wagner 2006). 

The study of leaf breakdown at the scale of a watershed 
allows us to observe emerging patterns and identify certain 
factors that structure the ecosystems at different scales (Tiegs et 
al. 2009; Wiens 1989). It is evident that a series of successively 
smaller and nested geomorphologic units can have various 
patterns and structures depending on the scale that is being 
analyzed (Lowe et al. 2006; Wiens 1989). These patterns and 
structures can be observed in riffles and pools within continuous 
stretches, which are nested within large rivers that make up a 
watershed (Schneider 2001; Tiegs et al. 2009; Wiens 2002). 
Studies that address only one scale are subject to problems 
because certain variables are measured directly in small areas or 
across short time intervals, whereas few can be measured at fine 
resolution over large areas (Schneider 2001; Wiens 2002). In 
addition, changes at smaller scales are not maintained at larger 
scales (Wiens 1989). Therefore, the issue is that unless patterns 
are consistent at all scales, the findings at one scale cannot be 
extrapolated to yield accurate predictions at other scales. 
Accordingly, tests at multiple scales are needed for confident 
extrapolation. From this perspective, the evaluation of leaf 
breakdown at different scales enables the development of an 
integrated vision of the landscape during this important 
ecological process (Allen and Starr 1982; Del Arco et al. 2012). 

  The streams in a watershed can be considered within a 
hierarchical framework that presents organized view of spatial 
and temporal variations among and within stream systems along 
the “riverscapes” (Allan 2004; Frissell et al. 1986; Royer and 
Minshall 2003). Therefore, several studies have examined leaf 
processing at large spatial scales across biomes (Irons et al. 1994; 
Minshall et al. 1983), latitudinal gradients (Irons et al. 1994),  
and altitudinal gradients (Fabre and Chauvet 1998) and 
influences of land use (Hagen et al. 2006; Sponseller and 
Benfield 2001). Moreover, several recurrent topics emerge from 
considerations of several spatial scales. These topics include the 
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relative importance of fungi and invertebrates (Hieber and 
Gessner 2002), the use of bioindicators (Del Arco et al. 2012) 
and the hierarchical nature of lotic ecosystems (Tiegs et al. 
2009). Studies assessing allochthonous leaf breakdown at a 
watershed scale are rare worldwide, but they have been 
performed in temperate systems (Del Arco et al. 2012; Royer and 
Minshall 2003; Tiegs et al. 2009; Young and Collier 2009) . 

In tropical streams, individual riffles or short stream 
reaches continue to be the most frequent sites for studies of leaf 
processing based on the traditional conceptual model (Cummins 
1974; Petersen and Cummins 1974). Several factors are known 
to cause variation in the rates of processing within and among 
tropical stream reaches (Bianchini_Jr. 1999; Gonçalves et al. 
2013). These factors include the effects of species mixing 
(Bruder et al. 2013; Moretti et al. 2007), litter quality (Gonçalves 
et al. 2007; Gonçalves et al. 2012b), micro-organism 
communities (Medeiros et al. 2009; Wright and Covich 2005), 
invertebrate communities (Gonçalves et al. 2012a; Li et al. 2009; 
Ligeiro et al. 2010), detritivores and shredders (Boyero et al. 
2012; Wantzen and Wagner 2006) and seasonal effects (Larned 
2000; Mathuriau and Chauvet 2002; Rueda-Delgado et al. 2006). 
However, systematic assessments of variability in allochthonous 
leaf breakdown rates across multiple spatial scales using the 
watershed as the sampling unit have not been performed in 
tropical stream systems. This study could help to answer 
important questions, such as “how does spatial structure 
influence ecosystem function and how do we integrate within 
and between spatial scales to assess function”, suggested by 
Sutherland et al. (Sutherland et al. 2013) as one of 100 
fundamental ecological questions. 

Based on the premise that leaf breakdown is the result of 
the activity of decomposer organisms and the physical and 
chemical processes occurring in the stream water, which vary 
along the scale investigated in the study scale (Abelho 2001; 
Gessner et al. 1999; Gonçalves et al. 2013), the following 
hypotheses were tested in this study: (i) natural differences in the 
physical nature of the stream (increasing canopy opening, water 
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velocity, temperature and nutrient concentrations) accelerate 
biological metabolism and leaf breakdown from upstream to 
downstream; (ii) shredders decrease and micro-organisms 
increase in importance from upstream to downstream; and (iii) 
differences in the overall k values will be more clearly 
understandable (strongly explained) at an increased spatial scale. 
The objective of the study was to assess the natural effects of 
variation in the physical environment on biological communities 
and the leaf breakdown rates of Eucalyptus cloeziana F. Muell 
and Inga laurina Sw. Willd and to identify the controlling factors 
at different scales along the stream order gradient. 

METHODS 

The Study System 
The study area consisted of 14 sampling sites distributed 

along the Gama-Cabeça do Veado watershed, a part of the 
Federal District in west central Brazil, comprising 1st, 2nd, 3rd and 
4th order streams replicated in 4 sub-basins (Figure 1). The area 
includes important waterways that form the Paraná basin, a part 
of the Cerrado biome (Brazilian Savannah). The climate is 
tropical and has distinct rainy-hot (October to April) and cold-
dry seasons (May to September). The mean annual temperature 
is 20°C, and the altitude varies between 1025 and 1150 m above 
sea level. The study area included three conservation units 
protecting the entire watershed and all sampling sites studied 
(Ecological Station of the University of Brasília, Ecological 
Reserve of IBGE and Ecological Station of the Botanical 
Gardens of Brasília). The study was approved by Ministry of 
Environment of Brazil through the System of Information and 
Authorization on Biodiversity (SISBIO) for activities with 
scientific purpose (code: 39629-1), and also was approved by the 
Scientific and Technical Council of the Ecological Station of the 
University of Brasília (code: 05-12), IBGE Ecological Reserve 
(code: 54 PC - PAD 1) and Botanical Gardens of Brasília (code: 
13/2011). 
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Figure 1. Sampling sites. Geographic location of the sampling sites consisting of streams of the 1st, 2nd, 3rd and 4th orders replicated in 4 
sub-basins in the Gama-Cabeça de Veado watershed, Federal District (Brazil). 



97 
 

Procedures 
The experiment was conducted from June through 

October 2011 (the dry season), a period of zero rainfall, resulting 
in a high level of homogeneity in the physical and chemical 
features of the environment. Based on their chemical 
composition, we selected leaves from two species for use as 
detritus. The leaves of an exotic species (Eucalyptus cloeziana F. 
Muell) were used to represent high-quality detritus. The planting 
of Eucalyptus monocultures in place of the native vegetation has 
potential repercussions for stream basins. The area in which the 
study was conducted does not contain Eucalyptus plantations. 
However, the substitution of this monoculture for native 
vegetation has occurred in neighboring basins, where this 
monoculture has expanded, as it has throughout Brazil, e.g., to 
supply charcoal for steelmaking and pulp for papermaking 
(Gonçalves et al. 2012b). The low-quality detritus from a native 
species (abundant in riparian vegetation; Inga laurina Sw. Willd) 
was also used in the study, as this species best represents the 
plants of the Cerrado. 

The leave The two types of leaves were chemically 
characterized by the mean values of total polyphenols (22.80 ± 
2.5; 18.29 ± 1.8 mg/g-1), total tannic acids (0.003 ± 0.0002; 0.002 
± 0.0004 mg/g-1), lignin (42.61 ± 0.7; 45.94 ± 0.5%), cellulose 
(24.69 ± 1.5; 37.39 ± 1.2%), hardness (0.17 ± 0.1; 0.6 ± 0.3 
cm/g-1), nitrogen (13.16 ± 1.3; 16.41 ± 1.0 g/kg-1) and 
phosphorus (0.46 ± 0.05; 0.53 ± 0.07 g/kg-1) in E. cloeziana and 
I. laurina, respectively. The breakdown rates for these two leaf 
types (collected in nets 1 m2 in area placed 1.5 m from the 
ground) were measured individually by the loss of weight of 3 g 
(± 0.1 g dry weight) of leaves, correcting for the initial humidity 
and transport loss (Graça et al. 2005), incubated in litter bags (15 
x 15 cm, 10 mm mesh size).  

In total, 252 litter bags were placed at a depth of 0.3 m 
in pool areas at the 14 sampling sites in 1st, 2nd, 3rd and 4th order 
streams (Strahler 1952) in the 4 sub-basins (Gama – SB1, 
Capetinga – SB2, Taquaras – SB3 and Cabeça de Veado – SB4 
sub-basins). The removal of the E. cloeziana and I. laurina 
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leaves occurred initially after 10 days of incubation, which 
corresponds to the expected time required for leaching and 
initiating microbial colonization (Graça et al. 2005). After this 
sampling, the principal leaf breakdown rate (k) was used to 
estimate the next sampling time for each detritus type (at 
approximately 75% of the remaining mass), which was 
determined to be 40 days for E. cloeziana and 85 days for I. 
laurina. This stage of decomposition occurs when microbial 
activity is high and the invertebrate community is already 
established. Subsequently, the k value was used a second time to 
perform corrections and acquire new values to obtain 
approximately 50% of the remaining mass for each detritus type. 
This sampling time was determined to be 75 days for E. 
cloeziana and 125 days for I. laurina. After this period, the 
community established during the ecological process of 
degradative succession is affected by the reduction in the 
available detritus (additional information about k, see also 
Chapter 6 of (Graça et al. 2005)).  

The sampling times were calculated by dividing the 
initial weight (W0) by the estimated value of k. This calculation 
yields the time for the total course of leaf processing (TLP, 
days). From the equation W0 / k = TLP, we can calculate how 
many days will be required to reach a desired percentage of the 
initial weight (Wt). The first sample was collected after 10 days 
of incubation for both species, so that TLP for 10 days / 0.25 = 
day on which Wt = 75%. The next sample was collected after 40 
days for E. cloeziana and after 75 days for I. laurina, so that TLP 
40/75 days / 0.5 = day by which Wt = 50%. The above procedure 
was performed for each sample site (based on the mean value) 
and type of detritus. However, it was not possible to determine 
the final value for I. laurina because the dry season ended after 
120 days, before 50% of the mass had been lost. Measurements 
after the end of the dry season would not have been meaningful 
because variations in rainfall and associated variations in other 
physical and chemical conditions would have influenced the 
results.  
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On removal from the streams, the litter bags were placed 
individually into insulated plastic bags and transported in thermal 
containers (± 4°C) to the laboratory. Temperature, electrical 
conductivity, pH, dissolved oxygen and water turbidity were 
obtained in situ with a multi-analyzer measured each time leaf 
bags were removed. The depth and average speed of the right, 
left and central portions of the watercourse were measured with a 
flow-meter, and the instantaneous discharge of water was then 
calculated. We collected 1 L of water to determine the nitrate 
(Golterman et al. 1978), ammonia (Koroleff 1976) and 
orthophosphate (Strickland and Parsons 1960) concentrations. 
The canopy openings were quantified using hemispherical 
photographs taken with a digital camera equipped with a fish-eye 
lens. These photographs were later analyzed using Gap Light 
Analyzer software (2.0). The leaves were washed with tap water 
in a 120 µm mesh sieve. The invertebrates retained on the sieve 
were preserved in 70% alcohol for later identification and 
counting (Pérez 1988; Merritt and Cummins 1996). The numbers 
of taxa and individuals were calculated for the aquatic 
invertebrate community, and biomass was obtained by 
desiccation at 60°C for 72 h. The invertebrates were classified 
into five feeding categories (Pérez 1988; Cummins et al. 2005; 
Merritt and Cummins 1996): gathering-collectors (G-C), 
filtering-collectors (F-C), shredders (Sh), scrapers (Sc) and 
predators (P).  

Five leaves from each sample were randomly collected, 
and three disks (1.2 cm diameter) were extracted from each leaf, 
resulting in three five-disk sets. One set was used to determine 
the remaining ash-free dry mass (AFDM; calculated after 
incineration in a muffle furnace at 550°C for 4 h), and the other 
sets were used to assess the ergosterol and ATP concentrations. 
The remaining material was oven-dried at 60°C for 72 h to 
determine its dry weight. The leaf breakdown rates (k) were 
calculated using the negative exponential model of percent mass 
lost over time (Wt =W0e

-kt; Wt = remaining weight; W0 = initial 
weight; -k = decay rate; t = time). After the leaves had been dried 
and weighed, they were pulverized for further analysis of the 
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total polyphenol and tannic acid concentration (Bärlocher and 
Graça 2005), lignin and cellulose contents (Gessner 2005b) and 
the resistance of leaves to rupture (hardness of intact leaves 
(Graça et al. 2005)). Values for total nitrogen were obtained 
using a CHN basic analyzer (Carlo Erba 1500 for WI; Thermo 
Electron Corp. Milan, Italy), and values for total phosphorus 
were obtained using the ascorbic acid method after acid 
digestion. The total micro-organism biomass was measured by 
quantifying ATP (Abelho 2005). The biomass of aquatic 
Hyphomycetes was evaluated by quantifying ergosterol, a lipid 
exclusive to fungal membranes in this community (Gessner 
2005a).  
 
Data Analysis 

An analysis of variance (function lm, package stats for R 
version 2.12.1; (Crawley 2007)) was used to analyze the physical 
and chemical parameters of the water (temperature, electrical 
conductivity, pH, dissolved oxygen, turbidity, nitrites, nitrates, 
orthophosphates and mean velocity) and the structure of stream 
stretches (instantaneous discharge of the stream and canopy 
openings in riparian vegetation) as dependent variables, using 
two categorical factors, namely, sub-basins and stream order . 
Stream order was also used as a co-variate (continuous variable). 
We also used the leaf mass remaining, invertebrate communities 
(number of taxa, density and biomass), the relative abundance of 
functional trophic groups of invertebrates (gathering-collectors, 
filtering-collectors, shredders, scrapers and predators) and 
microbial biomass (ATP and ergosterol) as dependent variables 
against the same two categorical factors. Stream order was also 
used as a co-variate (continuous variable). This procedure was 
performed similarly for both types of detritus. All models used a 
Gaussian distribution (link = log; test = F). We used an analysis 
of contrasts to discriminate among categorical variables. The 
normality of the data was tested using a Kolmogorov-Smirnov 
test, the homogeneity of variance was determined with a Levene 
test, and the data were transformed whenever necessary with the 
Naperian logarithm (ln) to obtain the best fit (Crawley 2007).  
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RESULTS 

Abiotic Variables 
The values of instantaneous discharge, electrical 

conductivity and nitrates were the highest in the 3rd and 4th order 
streams. In contrast, the 1st order streams had the highest values 
for temperature, canopy opening and nitrite concentrations in the 
water, and the water velocity was the lowest. Dissolved oxygen, 
pH, turbidity and orthophosphates did not differ among the 
stream orders (analysis of contrasts, p < 0.05; Table S1, Table 1, 
Figure 2). In sub-basin 2 (SB2), we observed high electrical 
conductivity, high nitrite and nitrate concentrations and low 
water temperatures. The values for canopy opening and water 
velocity were highest in sub-basins 1 (SB1) and 4 (SB4), 
respectively. Dissolved oxygen and orthophosphates were 
highest in sub-basin 3 (SB3). Instantaneous discharge, pH and 
turbidity did not differ among the sub-basins (analysis of 
contrasts, p < 0.05; Table S1, Figure 2). We observed that the 
higher percentages of sums of squares and variance in 
instantaneous discharge and water velocity could be explained by 
differences in the stream order. However, dissolved oxygen, 
electrical conductivity, temperature, pH, turbidity, canopy 
opening, nitrates, nitrites and orthophosphates exhibited a high 
level of variance among the sub-basins (Table 1). 
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Figure 2. Abiotic variables. Mean values and standard errors for dissolved oxygen 
(A), water velocity (B), water temperature (C) and canopy opening (D) for the stream 
orders and among sub-basins. 

 
Leaf Breakdown Rates 

The leaf breakdown rates (k) were the highest in the 2nd 
order streams, with values of -0.0083 and -0.0022 for E. 
cloeziana and I. laurina, respectively, followed by the 3rd order 
stream sections, with values of -0.0071 and -0.0022. We also 
observed higher k values in 1st order streams (-0.0053 and -
0.0015) than in 4th order streams (-0.0051 and -0.0018) for E. 
cloeziana and I. laurina, respectively. However, the remaining 
mass did not differ among stream orders for either of the detritus 
types (Figure S2, Table 2, Figure 3A and 4A). The highest k 
values were observed in SB4 (-0.0105 and -0.0030), followed by 
SB3 (-0.0088 and -0.0022 for E. cloeziana and I. laurina, 
respectively). For E. cloeziana, the values were -0.0062 and -
0.0049, whereas I. laurina exhibited values of -0.0018 and -
0.0016 (for SB1 and SB2, respectively). The remaining mass 
showed the lowest values in SB4 and SB3 among the sub-basins 
studied. The variance in the remaining mass was higher (by sums 
of squares) and also explained the variations in the sub-basins 
(Figure S2, Table 2, Figure 3A and 4A). 
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Figure 3. Leaf breakdown process in E. cloeziana. Mean values and standard errors for the remaining mass (A), shredder abundance (B), 
total microbial biomass (ATP; C) and fungal hyphomycetal biomass (Ergosterol; D) for the stream orders and sub-basins for E. cloeziana. 
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Figure 4. Leaf breakdown process in I. laurina. Mean values and standard errors for the remaining mass (A), shredder abundance (B), 
total microbial biomass (ATP; C) and fungal hyphomycetal biomass (Ergosterol; D) for the stream orders and sub-basins for I. laurina. 
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Table 2. Degrees of freedom (DF), residuals, sums of squares (%), F test and analyses of variance and contrasts (AC) for the remaining 
mass, density, richness and biomass of invertebrates, functional trophic groups of invertebrates (predators, shredders, gatherer-collectors, 
filtering-collectors and scrapers), ATP and ergosterol in sub-basins and along the stream orders in the Gama-Cabeça de Veado Basin for E. 
cloeziana and I. laurina. 
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Biotic Community 
The density of invertebrates was higher in 4th order 

streams for both detritus types (means of 27 and 21 ind/g for E. 
cloeziana and I. laurina, respectively). Differences for I. laurina 
were observed among sub-basins, with high values in SB3 (mean 
24 ind/g) and SB4 (mean 26 ind/g). The number of taxa was 
significantly different among the stream orders and sub-basins, 
with the highest values in SB3 (mean of 7 and 6 taxa for E. 
cloeziana and I. laurina, respectively) and SB4 (mean of 6 taxa 
for E. cloeziana and I. laurina), primarily in 3rd order streams for 
both detritus types (mean of 7 and 6 taxa for E. cloeziana and I. 
laurina, respectively). However, the biomass (total mean 0.003 
and 0.002 ind/g for E. cloeziana and I. laurina, respectively) did 
not differ among the stream orders or sub-basins for either of the 
detritus types. The high variances in density, richness and 
biomass (in terms of the percentage of the sums of squares) were 
explained by differences in the sub-basins for both detritus types, 
except for the density of invertebrates in I. laurina (Figure S3 
and S4, Table 2). 

The functional trophic groups differed significantly 
among stream orders only for the filtering-collectors, with the 
highest values in the 3rd order streams (mean 20% for E. 
cloeziana and I. laurina) and the lowest in the 1st order streams 
(mean of 10% for E. cloeziana and I. laurina) for both detritus 
types. The relative abundance of predators was higher in SB3 
(mean 24 and 25% for E. cloeziana and I. laurina, respectively) 
and SB4 (mean of 32 and 34% for E. cloeziana and I. laurina, 
respectively), whereas the values for shredders were higher in 
SB3 (mean of 27 and 25% for E. cloeziana and I. laurina, 
respectively) for both detritus types. However, SB1 exhibited 
high abundances of gathering-collectors (mean of 41 and 50% 
for E. cloeziana and I. laurina, respectively) and scrapers (mean 
of 18 and 16% for E. cloeziana and I. laurina, respectively) but a 
low abundance of filtering-collectors (mean of 6 and 8% for E. 
cloeziana and I. laurina, respectively) for both detritus types. 
The high variance in the relative abundance for all functional 
trophic groups (by the sums of squares) was also explained by 
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changes in sub-basins for both detritus types (Figure S3 and S4, 
Table 2, Figure 3B and 4B).  

The ATP values differed only among sub-basins for both 
detritus types, with the highest values in SB3 (mean of 2155.8 
nmoles/g AFDM) for E. cloeziana (total mean 991.8 nmoles/g 
AFDM) and in SB3 (mean 633.3 nmoles/g AFDM) and SB4 
(mean 2023.9 nmoles/g AFDM) for I. laurina (total mean 847.8 
nmoles/g AFDM) (Table 2; Fig. 2C and 3C). There were no 
differences in the ergosterol concentrations among the 
hydrological stream orders and sub-basins for E. cloeziana (total 
mean 541.2 ug/g). However, we found higher ergosterol 
concentrations for I. laurina (total mean 382.9 ug/g) in SB3 
(mean 392.6 ug/g) and SB4 (mean 464.1 ug/g), although they did 
not differ among the hydrological stream orders. The variances 
in ATP and ergosterol concentrations were also explained by 
changes in sub-basins for both detritus types, except for 
ergosterol in E. cloeziana, which showed a high level of 
variation with stream order (Figure S3 and S4, Table 2, Figure 
3D and 4D). 
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Table 1. Degrees of freedom (DF), residuals, sums of squares (%), F tests and 
analyses of variance and contrasts (AC) for dissolved oxygen, electrical conductivity, 
water temperature, pH, turbidity, water velocity, canopy openness and nitrites, 
nitrates and orthophosphates in sub-basins and along the stream orders in the Gama-
Cabeça de Veado Basin.  
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DISCUSSION 

Scale Analysis 
The instantaneous discharge, water velocity, turbidity 

and nitrogen series (nitrate and nitrite) were more influenced by 
changes in stream order (high heterogeneity), with higher values 
downstream (increasing from 1st to 4th order), as expected 
according to Vannote et al. (Vannote et al. 1980), except that 
nitrites exhibited the inverse pattern. The finding of relatively 
few influences at local scales can be explained by the large 
discontinuities inherent in smaller geomorphological units 
(habitat patches create discontinuities in space) that increase the 
potential influence from the local characteristics of the 
environment (Benda et al. 2004; Larned et al. 2010; Wiens 1989; 
Wiens 2002). Flow changes, for example, create hydrological 
discontinuities along stream corridors and isolate habitats. 
However, the other abiotic variables were influenced by changes 
in sub-basins (high homogeneity) that correspond to regional 
scales (Allen and Starr 1982; Frissell et al. 1986). These factors 
worked at the watershed level and may increase its fragility in 
the face of intense climatic changes because the climate is the 
primary controlling factor at large scales (Allan 2004). The 
basins are influenced by environmental factors that 
systematically change across longitudinal 
(upstream/downstream), vertical (sediment/water) and lateral 
(terrestrial/aquatic) gradients, forming different spatial and 
temporal patterns at regional and local scales (Larned et al. 2010; 
Schneider 2001; Wiens 2002). 

As expected, the high-quality detritus (E. cloeziana) 
showed more rapid leaf breakdown rates (k) than the low-quality 
(I. laurina) detritus, indicating that the rate could be driven by 
micro-scale processes (Wiens 1989). These findings represent 
important evidence that the riparian vegetation could be 
responsible for determining the ecosystem characteristics 
(Cummins 1974; Naiman and Décamps 1997; Petersen and 
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Cummins 1974), as also proposed by Gonçalves et al. 
(Gonçalves et al. 2012b) for tropical systems, highlighting the 
need to study this vegetation. For example, if riparian vegetation 
is composed of plant species that have a higher stoichiometric 
ratio (higher quality), we expect more rapid response for organic 
matter cycling (higher decomposition). This direct relationship 
between terrestrial and aquatic ecosystems demonstrates that any 
modification in a riparian ecosystem would affect the function, 
primarily in areas composed of palatable plants (high quality and 
decomposition), corroborating the work of Frauendorf et al. 
(Frauendorf et al. 2013). Thus, lower quality vegetation (slower 
decomposition) will be less sensitive to other factors, and this 
may explain the resistance of the Brazilian savanna in 
comparison with other Brazilian tropical systems (Carvalho et al. 
2009). Moreover, the leaf breakdown at the macro-scale was 
more influenced by the regional scale (sub-basin) than by the 
local scale (stream order) (Wiens 1989), confirming our 
hypothesis. This result indicates that the patterns observed in 
studies covering a given time period (timely studies), common in 
tropical literature (for more see also (Bianchini_Jr. 1999; 
Gonçalves et al. 2013)), cannot be generalized from local to 
regional scales (Bae et al. 2011; Schneider 2001; Young and 
Collier 2009) or to whole watersheds (Lowe et al. 2006; Tiegs et 
al. 2009; Wiens 1989; Wiens 2002). In addition, this finding may 
indicate fragility in the upstream basins due to the slower leaf 
breakdown rates. However, the upstream area is a source of 
nutrients and organisms for the downstream basins (Vannote et 
al. 1980). The upstream basins can give support productivity and 
may be responsible for extending the depuration capability of the 
system (as represented by the microbial pools) and maintaining 
functionality downstream (Frauendorf et al. 2013). Therefore, we 
believe that the association between detritus quality (important at 
the micro-scale) and the environmental features of the watershed 
(important at the macro-scale) is responsible for shaping organic 
matter cycling in the watershed and should be further 
investigated in future studies. 
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Previous studies indicating that the microbial 
community is the principal decomposer (Cummins 1974; 
Gessner et al. 1999; Gonçalves et al. 2012b), are confirmed by 
our results, as we found that the high-quality leaf species was 
also more susceptible to leaching and microbial action, whereas 
the low-quality leaf species was influenced primarily by fungal 
colonization. Both leaf samples were consumed by shredders, but 
a higher abundance of shredders was observed in the E. 
cloeziana detritus. We also found a higher loss of mass due to the 
high water velocity (mechanical fragmentation and leaching), 
dissolved oxygen and temperatures, which accelerate biological 
metabolism (Gulis and Suberkropp 2003; Medeiros et al. 2009). 
The detritus quality is important only for defining the local rates 
and their pathways for leaf breakdown (Ardon and Pringle 2008; 
Gessner et al. 1999; Gonçalves et al. 2012b). However, the 
detritus quality has little influence on the general pattern along 
the “riverscape” and at any specific scale (Tiegs et al. 2009). 
Therefore, based on an analysis of the samples after a certain 
percentage of mass has been lost (25, 75 and 50%) and not 
simply at predefined time points (e.g., 7, 15, 30 days), it is 
possible to show a clear colonization effect independent of 
quality. To be sure, detritus quality is a highly important 
determinant of the abundance of shredders and explains the 
importance of shredders for both detritus types (Gonçalves et al. 
2012a). We cannot study the variations associated with spatial 
scale in terms only of the local context because there are many 
factors in the ecological levels (community and ecosystem) that 
are responsible for variability found in the large scale (Wiens 
2002; Young and Collier 2009). However, the local approach has 
been used in all previous tropical studies of leaf breakdown 
(Abelho 2001; Gonçalves et al. 2013).  
 
Leaf Breakdown Rates 

In agreement with the proposal of Gonçalves et al. 
(Gonçalves et al. 2013) for tropical systems, the k values of E. 
cloeziana were classified as intermediate (-0.0173 > k > -
0.0041), and those of I. laurina were classified as slow (k < -
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0.0041) for all sampling sites, indicating a strong influence of 
detritus quality. The high leaching due to the high solubility of 
polyphenols and tannins (secondary compounds) in E. cloeziana 
can accelerate the decay rate (Ardon and Pringle 2008; Ardon et 
al. 2006). Therefore, the rapid leaching of these secondary 
compounds, which has an inhibitory effect on detritivores, as 
well as the lower hardness of E. cloeziana, did not limit biotic 
colonization due to the low residence time in this type of detritus 
(Ardon and Pringle 2008; Gonçalves et al. 2012b). Additionally, 
Eucalyptus sp. (an exotic species) is rapidly colonized and 
decomposed in the Brazilian savannah. It is possible that this 
pattern is due to the high quality of Eucalyptus relative to native 
species (Gonçalves et al. 2012a; Gonçalves et al. 2012b; 
Oliveira-Filho and Ratter 1994).  

In contrast, we found lower breakdown rates for I. 
laurina which were most likely a consequence of a high content 
of structural compounds (lignin and cellulose) and relative 
hardness (cuticle thickness), hindering the release of other 
chemical compounds (e.g., polyphenols, nitrogen and 
phosphorus (Ardon et al. 2006; Gonçalves et al. 2012b; Oliveira-
Filho and Ratter 1994)). Therefore, the chemical characteristics 
of detritus determine the speed of processing (primarily at local 
scales), showing that leaf breakdown rates increase with quality 
and palatability (Gessner et al. 1999; Gonçalves et al. 2012a; 
Gonçalves et al. 2012b; Graça et al. 2001). Detritus quality is of 
lower importance when if it is observed at different scales. In the 
study area, we observed that the regional scale is decisive for 
driving the general pattern of this important ecological process 
along the “riverscapes” (Allan 2004; Frissell et al. 1986). 
 
Abiotic and Biotic Variables in Leaf Breakdown 

The natural environmental changes that occur across 
stream orders (Benda et al. 2004) were not sufficient to modify 
the remaining mass, and the local scale could not affect the 
decomposer communities (shredders and microorganisms) for 
either of the detritus types. Decomposer communities are the 
driving factors for leaf breakdown, and their absence leads to 
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similar breakdown patterns along the stream order gradient 
(Gessner et al. 1999). This finding might indicate that ecological 
functioning in headwater streams (1st to 3rd order) was similar 
within the same sub-basin (Vannote et al. 1980) . However, this 
process might change over a large spatial gradient, as represented 
by the sub-basin scale (Allan 2004). Nevertheless, increases in 
richness and the density of invertebrates and a decrease in the 
abundance of filtering-collectors for both detritus types were 
observed across this large spatial gradient. These results 
demonstrate that these variables had no effect on leaf breakdown 
(Cummins et al. 2005; Merritt and Cummins 1996).  

The values of the remaining mass for both detritus types 
were lower in SB4 and SB3 (high decomposition) than in the 
other sub-basins. It is probable that the reason for this difference 
was the higher temperatures, dissolved oxygen concentrations 
and water velocities resulting from the microclimate of the 
geographic location (within a valley). Therefore, the higher 
temperatures (Gulis and Suberkropp 2003) and oxygen 
concentrations (Medeiros et al. 2009) observed in SB4 and SB3 
may elevate the metabolic activity of the decomposer community 
(Suberkropp and Chauvet 1995), especially microorganisms. The 
higher metabolic activity of the decomposer community, 
associated with high water velocity (mechanical fragmentation 
and leaching), which increased the degree of physical abrasion 
(Santos Fonseca et al. 2012), accelerated the leaf breakdown 
rates. In SB4 and SB3, higher density and richness of 
invertebrates and higher shredder abundance, with the greatest 
densities in E. cloeziana, were also observed. The shredders 
directly utilize leaf tissues for feeding, and increasing biological 
fragmentation (Boyero et al. 2012; Graça et al. 2001) can also 
accelerate the leaf breakdown rates (Sponseller and Benfield 
2001). Certain shredders in these locations (genus Phylloicus) 
can build their capsules from leaf tissue, and this use of leaf 
material also contributes to fragmentation (Cummins et al. 2005; 
Merritt and Cummins 1996).  

The relative abundance of shredders was influenced by 
variation, primarily among the sub-basins. A greater relative 
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abundance of shredders in comparison with other tropical 
systems was observed in SB3 for both detritus types (Boyero et 
al. 2012; Gonçalves et al. 2012a; Wantzen and Wagner 2006). A 
low relative abundance of shredders was found in the other sub-
basins. This result is consistent with the findings of previous 
studies in the Cerrado (Gonçalves et al. 2007; Gonçalves et al. 
2012a; Gonçalves et al. 2013). The importance of shredders for 
leaf breakdown is unclear in the tropics due to their low 
abundance or absence in these streams (Boyero et al. 2012; 
Gonçalves et al. 2012a; Wantzen and Wagner 2006), but studies 
have shown little effect in tropical streams (Moretti et al. 2007; 
Moulton et al. 2010). From a global perspective, the strong 
effects observed in the current study were most likely due to the 
preference of shredders (primarily Trichoptera and Plecoptera) 
for high altitudes (due to the lower temperatures) in tropical 
regions (Boyero et al. 2012). The preference of this group for E. 
cloeziana indicates that detritus quality is also important 
(Wantzen and Wagner 2006) and that the composition of the 
vegetation influences the functioning of aquatic systems. 
Therefore, higher altitudes (low temperature (Boyero et al. 
2012)), high dissolved oxygen, the composition of the flora 
(ideally including E. cloeziana (Wantzen and Wagner 2006)) and 
moderate values of nutrient concentrations in the water (Bae et 
al. 2011) favor a high abundance of shredders. The 
predominance in the Cerrado of leaves that are low in nutrients 
(Oliveira-Filho and Ratter 1994), is associated with hydric and 
thermic stress and could be responsible for the absence or low 
abundance of shredders found in most tropical streams (Boyero 
et al. 2012; Wantzen and Wagner 2006).  

The high-quality detritus (E. cloeziana) was shown to be 
most influenced by the total microbial community and the low-
quality detritus (I. laurina) by the fungal community in SB4 and 
SB3 (high decomposition). E. cloeziana has elevated amounts of 
labile compounds, facilitating the activity of bacteria (rapid life 
cycles) that use compounds derived from the leaching of the 
leaves of labile detritus as their preferred resource (Weyers and 
Suberkropp 1996). These bacteria could be important during leaf 
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breakdown and not only, as observed by several authors, at the 
early stages of the process (Gessner et al. 1999; Gonçalves et al. 
2012b; Gonçalves et al. 2013). However, this pattern is rarely 
observed in tropical streams. In lower-quality detritus (I. 
laurina), we observed an interaction between the biomass of the 
two microbial communities, highlighting fungi as the principal 
component (Gulis and Suberkropp 2003). Due to its high 
capacity to metabolize refractory molecules (e.g., cellulose and 
lignin) and to decompose them, the fungal community is the 
primary decomposer in tropical streams, and this principle 
explains the great significance of fungi in I. laurina 
decomposition (Gessner et al. 1999; Gonçalves et al. 2012b; 
Weyers and Suberkropp 1996). Fungal action can increase the 
palatability of detritus, as well as its nutritional quality, for other 
decomposers, and the high biomass of fungi might be another 
factor responsible for the higher abundance of shredders in these 
sub-basins (Gonçalves et al. 2012b; Graça et al. 2001).  

In general, we conclude that variations in scale 
contribute to the variation in the leaf breakdown rate, 
highlighting the importance of similar studies of this type that 
determine effects at different scales. The variability of the 
physical structure of streams (primarily temperature, dissolved 
oxygen and nutrients) accelerates leaf breakdown from upstream 
to downstream, but this process was only demonstrated at the 
sub-basin scale in the location studied, partially corroborating the 
initial hypothesis. The replacement of shredder invertebrates by 
microorganisms was observed but was contrary to the prediction 
of our hypothesis. Shredders were favored by microorganisms 
(primarily in E. cloeziana), with stronger interactions between 
them than those previously found to drive leaf breakdown rates. 
Based on our interest in the influence of spatial structure on 
ecosystem functions, we observed that watersheds with warmer 
microclimates and streams with higher nutrient levels and 
oxygen in the water could be accelerating the metabolism of the 
ecosystem in the watershed, with increased negative effects 
downstream. For the management of tropical watersheds, we 
noted that the upstream areas are more fragile and sensitive to 
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environmental impacts but show greater importance in the 
cycling of nutrients. We performed analyses within and between 
spatial scales to assess the relative importance of various 
watershed scales in determining the local breakdown rate for 
leaves. Local characteristics are responsible for the 
diversification of this process across the “riverscape”, and high 
heterogeneity underscores the difficulty of making predictions 
based on local studies. 
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APPENDICES 

Table S1. Average values and the standard deviation of outflow, dissolved oxygen in the water (mg l-1), electrical conductivity (µS-cm2), 
water temperature (Temp. °C), pH, turbidity (NTU), water velocity (m-s), nitrite, nitrate, orthophosphate (mg l-1) and the percentage of 
canopy openness (%) in sub-basin and stream order along the Gama-Cabeça de Veado Basin. 
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Figure S2. Percentages of remaining mass along of the day in E. cloeziana (A and C) and I. laurina (B and D), between stream order (A e B) 
and sub-basin (C and D). 
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Figure S3. Average values and standard error of density (A and B), richness 
(C and D), biomass (E and F) of aquatic invertebrates, total microbial 
biomass (ATP; G and H) and fungal hyphomicetos biomass (I and J) along of 
the days in E. cloeziana, among stream order (A, C, E, G and I) and sub-
basin (B, D, F, H and J). 
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Figure S4. Average values and standard error of density (A and B), richness 
(C and D), biomass (E and F) of aquatic invertebrates, total microbial 
biomass (ATP; G and H) and fungal hyphomicetos biomass (I and J) along of 
the days in I. laurina, among stream order (A, C, E, G and I) and sub-basin 
(B, D, F, H and J). 
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CONCLUSÕES FINAIS 
 

A temperatura e a biomassa de micro-organismos 
(principalmente fungos, que apresentou espécies adaptadas 
a locais de maior temperatura) foram os fatores mais 
importantes para a decomposição em sistemas ripários 
tropicais/Cerrado, em ambas as escalas avaliadas (espacial 
e temporal). Isso pode ser um passo importante para 
produzir modelos matemáticos capazes de prever as taxas 
de decomposição a partir de características ambientais 
simples. 

A variação temporal modifica a resposta da 
decomposição foliar em sistemas lóticos, com menores 
taxas na seca e maiores no início das chuvas. Assim, como 
a maioria dos trabalhos realizados em região 
tropical/Cerrado ocorreram na seca, tornando as tentativas 
de traçar padrões gerais pouco realistas e subestimadas. A 
variação temporal permite maiores picos de entrada de 
matéria orgânica (setembro e outubro) no final do período 
da seca. Entretanto, observou-se a existência de um  “time 
lag” com o pico de decomposição (dezembro), indicando a 
possibilidade de prever ambos os picos através do regime 
climático (temperatura e pluviosidade). Outro aspecto é 
que temporalmente os sistemas ripários estudados 
apresentaram uma maior instabilidade no processo de 
decomposição e parâmetros físicos e químicos da água nos 
meses de transição, entre os períodos de seca e chuva. No 
período de seca foi observado maiores densidade e riqueza 
de invertebrados, biomassa de micro-organismo. 
Entretanto, no período chuvoso foi observado maiores 
taxas de decomposição, possivelmente em função das 
elevadas temperaturas, que pode acelerar o metabolismo 
das comunidades decompositoras. 

Sobre o funcionamento de veredas, verificamos 
que  apesar de apresentar um solo muito orgânico, este 
sistema apresenta baixa produtividade, possivelmente, em 
função de elevada capacidade de retenção de matéria 
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orgânica associado a baixa capacidade de transporte destas 
áreas. Outro aspecto é que em função dos pulsos de 
inundação (seca e chuva), o rápido acumulo e 
empilhamento de matéria orgânica, pode gerar um 
ambiente com baixa concentração de oxigênio, e assim 
desacelerar a decomposição nestas camadas mais 
profundas, comparadas as superficiais (alta decomposição 
no extrato mais superficial da serapilheira). Isso pode 
explicar o solo rico em humos nos extratos mais profundos 
do solo das veredas. 

O impacto sobre a remoção parcial do dossel da 
vegetação nativa (extrativismo vegetal) afetou parâmetros 
bióticos (invertebrados e micro-organismos) e abióticos 
(parâmetros físicos e químicos da água) associados a 
decomposição indicando que este processo é útil na 
avaliação de impactos ambientais. Estudos mostram que a 
vegetação nativa pode funcionar como uma zona de 
proteção, mantendo constante o micro clima em áreas 
riparias (menor variação na luminosidade, temperatura e 
umidade), e sua remoção interrompe essa proteção natural 
deixando o sistema mais suscetíveis as mudanças sazonais. 
Este fato pode explicar o aumentando a frequência e 
intensidade das mudanças ambientais com retirada da 
vegetação nativa, consequentemente, elevando a amplitude 
sobre os parâmetros bióticos e abióticos observados no 
nosso estudo.  

Quando avaliado as diferentes escalas, se 
observou maior explicação da variância das taxas de 
decomposição foliar, variáveis bióticas e abióticas 
relacionadas a este processo pela escala regional, 
independente do tipo de detrito. A variabilidade da 
estrutura física nos sistemas lóticos (principalmente 
temperatura, oxigênio e nutrientes dissolvidos) podem 
atuar diretamente acelerando o metabolismo das 
comunidades decompositoras e, consequentemente a 
decomposição. Assim, os resultados obtidos a partir de um 
ponto amostral não permitem generalizações para toda a 
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bacia. Para estudos de ordem hidrológica a nível de bacia 
hidrográfica é necessário réplicas de rios em diferentes 
sub-bacias de mesma ordem, em função do gradiente 
crescente na taxa de decomposição de montante para 
jusante na bacia hidrográfica. Isso pode ser explicado pelo 
aumento da temperatura e biomassa de micro-organismos e 
abundancia de invertebrados fragmentadores ao longo 
deste gradiente.  
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PESPECTIVAS FUTURAS 
Os seguintes tópicos são recomendados para 

serem avaliados em experimentos futuros: 
1. Buscar padrões de produtividade dos ecossistemas 

aquáticos e zonas ripárias tropicais e verificar 
como os gradientes (longitudinais e latitudinais) 
de produtividade podem influenciar a 
decomposição foliar em sistemas lóticos tropicais.  

2. Estimar as taxas de retenção e transporte de 
matéria orgânica ao longo da dinâmica sazonal em 
ambientes tropicais e sua influencia sobre a 
decomposição. 

3. Avaliar como outras formas de impacto ou 
alteração ambiental modificam o processo de 
decomposição foliar em sistemas lóticos tropicais. 

4. Produzir mecanismos de valoração do processo de 
decomposição, considerando os serviços e 
prejuízos em função de atividade antrópica.  

5. Investir na decomposição como uma ferramenta 
de biomonitoramento, ajudando a determinar 
fatores e mecanismos responsáveis pela resistência 
dos ecossistemas aquáticos às perturbações 
externas.  

6. Ampliar estudos que abordem como a estrutura 
espacial dos ecossistemas aquáticos tropicais pode 
influenciar os processos ecológicos, como a 
decomposição foliar. 

7. Verificar a importância dos fatores ambientais e / 
ou espaciais sobre a biodiversidade (alfa e beta) da 
comunidade decompositora e, consequentemente, 
como esta variação pode alterar as taxas de 
decomposição foliar em sistemas lóticos. 

8. Entender o padrão de distribuição dos 
fragmentadores em sistemas tropicais e explicar 
sua baixa participação na decomposição quando 
comparado a sistemas temperados. 
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9. Produzir modelos matemáticos a partir da 
distribuição de características simples, como por 
exemplo, composição da vegetação ripária, 
temperatura e precipitação que sejam capazes de 
prever taxas de decomposição. 


