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Deteção e Caracterização de Defeitos Internos por Termografia
Infravermelha Pulsada

Tese submetida ao
Programa de Pós-Graduação em Engenharia Mecânica

Universidade Federal de Santa Catarina

para a obtenção do grau de
Doutor em Engenharia Mecânica
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h Planck’s constant; J · s
convection heat transfer W/(m2 ·K)

coefficient

I radiation intensity W/(m−2 · sr−1)

i, j, k grid points -

J radiosity W/m2

Joules
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K Kelvin - temperature scale -

k thermal conductivity W/(m.K)

kb Boltzmann’s constant J/K

L length m

n simple refractive index -

serial number of discrete data -

Nu Nusselt number -

P perimeter m

loading matrix oC

Pr Prandlt number -

q heat rate W

q′′ heat flux W/m2

r radius m

rH radius of Gaussian distribution m

Ra Rayleigh number -

S thermographic signal -

s seconds -

T temperature oC or K

score matrix -

t time s

score vector

W width m

weights matrix -

w(t) truncation window m

z depth m

X predictor matrix -

x, y, z Cartesian coordinates -

Y predicted matrix, fitted response -
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Subindex

abs absorved

amb ambient

ar air

atm atmosphere

b blackbody

cam camera

comp component

cond conduction

conv convection

d defect

e energy-derived

e f f effective

exp experimental

f final, fiber

i incident

lat lateral

lock− in modulated

low lower

λ spectral-dependence

m matrix

mat material

max maximum

N total data elements

n single data element

new new

o initial

old old

omset onset

P current point
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re f reflected

rad radiation

s surface

sa sound area

sim simulated

upp upper

t transmitted

θ directional-dependence

‖ parallel

⊥ perpendicular
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Acronyms

CFRP Carbon Fiber Reinforced Polymer

CVSL Computer Vision System Laboratory

DAC Differential Absolute Contrast

DFTM Discrete Fourier Transform

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

FPA Focal Plane Array

FRP Fiber Reinforced Polymer

FVM Finite Volume Method

GFRP Glass Fiber Reinforced Polymer

IR Infrared

IRT Infrared Thermography

LT Lock-in Thermography

LV Latent Variable

LWIR Long Wavelength Infrared

MLR Multivariate Linear Regression

MRI Magnetic Resonance Imaging

MWIR Medium Wavelength Infrared

MIVIM Multipolar Infrared Vision Multipolaire

NIR Near Infrared

NDT Nondestructive Testing

NDT&E Nondestructive Testing and Evaluation

NIPALS Nonlinear Iterative Partial Least Squares

NIR Near Infrared

PCR Principal Component Regression

PCT Principal Component Thermography

PDE Partial Differential Equation

PLSR Partial Least Squares Regression

PPT Pulsed Phase Thermography
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PT Pulsed Thermography

PPT Pulsed Phase Thermography

RMSE Root Mean Square Error

SNR Signal-to-Noise Ratio

SWIR Short Wavelength Infrared

TSR Thermographic Signal Reconstruction

TNDT Thermal Nondestructive Testing

VLWIR Very Long Wavelength Infrared

VT Vibrothermography

WT Wavelet Transform
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Resumo

A termografia pulsada (TP) é uma técnica promissora para a avaliação
não-destrutiva de materiais. O protocolo de inspeção consiste na aplicação
de um pulso térmico no espécime e monitorar a resposta térmica da su-
perfı́cie via radiação infravermelha (IV). Descontinuidades internas apare-
cem na sequência térmica como ‘hot spots’ ou padrões térmicos irregu-
lares, os quais são prodruzidos por alterações na taxa interna de difusão
de calor. Apesar de ser uma das técnicas mais usadas e atrativas para
a avaliação não-destrutiva, sua aplicação apresenta grandes desafios es-
pecialmente durante a inspeção de materiais anisotrópicos. ‘Blurring’, a
perda de visibilidade devido aos efeitos da condução lateral de calor e a
não-uniformidade produzida durante a excitação térmica representam as
maiores limitações da TP. Esta tese é focada na otimização da inspeção
por TP em laminados compósitos. Para tal propósito, foi desenvolvido
um modelo termo-numérico para a análise da resposta térmica da ma-
terial devido a presença de defeitos internos. Um estudo paramétrico
foi desenvolvido com o objetivo de estudar o impacto do aquecimento
não-uniforme, da intensidade da radiação e da geometria dos defeitos
em vários parâmetros informativos da inspeção por TP. Uma análise das
três técnicas mais usadas para o tratamento de sinais termográficos foi
realizada e os seus desempenhos foram avaliados em função da relação
sinal-ruı́do no ponto de maior contraste entre região com defeito e região
sem defeito. Neste trabalho foi desenvolvida uma nova técnica de pro-
cessamento e análise de imagens térmicas. A nova técnica − baseada
no método de regressão dos mı́nimos quadrados parciais (PLSR) − de-
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compõe a sequência térmica em variáveis latentes, permitindo assim a
separação das diversas fontes de ruı́do que afetam a qualidade das ima-
gens. A partir deste método de correlação foi desenvolvido um modelo
empı́rico para a quantificação da profundidade e tamanho lateral dos de-
feitos empregando dados experimentais. Ambos os métodos - de trata-
mento de sinais e quantificação de defeitos - foram analisados e compara-
dos com técnicas tradicionais, apresentando uma melhoria substancial na
relação sinal-ruı́do e na precisão no processo de inversão de profundidade
e forma dos defeitos.

Palavras-chave: termografia pulsada; simulação térmica; materiais compósitos;
análise quantitativa; tratamento de sinais termográficos.



Abstract

Pulsed thermography (PT) is a novel and promissory technique for
the nondestructive and evaluation (NDT&E) of materials. The inspec-
tion protocol consists in pulse heating the specimen while monitoring the
resulting thermal response via infrared (IR) radiation. Subsurface discon-
tinuities appear as transient hot spots or irregular thermal patterns in the
thermogram sequence, which are produced by the alterations in the inter-
nal heat diffusion fluxes. In spite of being one of the most used and attrac-
tive methods for the NDT&E, its application still presents challenges spe-
cially when inspecting anisotropic materials. ‘Blurring’, the lost of defect
visibility due to the effects of lateral heat conduction and the non-uniform
heating produced during the application of the thermal excitation, repre-
sent the major drawbacks of PT. This thesis is focused on the optimiza-
tion of the PT inspection of laminated composites. A thermal-numerical
model is developed in order to analysis the thermal response of the ma-
terial due to the presence of subsurface defects. A parametric study was
performed aiming to study the impact of the effects of non-uniform heat-
ing, irradiation density and defects geometry on several informative vari-
ables of the PT inspection. An in-depth analysis of three of the most used
PT sinal processing techniques was carried out and their performance was
evaluated in terms of the signal-to-noise (SNR) at maximum signal con-
trast. In this work was also developed a new promissory technique for
the processing and analysis of thermographic data. The new method -
based on partial least squares regression (PLSR) - decomposes the ther-
mal sequence into latent variables, allowing to separate several sources of
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noise affecting the quality of the images. From the statistical correlation
method an empirical model was developed for the quantification of the
depth and lateral size of defects using experimental data. Both methods
- for the signal processing and for the inversion of depth and lateral size
- were analyzed and compared with traditional techniques, achieving a
substantial improvement in the signal-to-noise ratio and in the accuracy
in the prediction results of depth and lateral size of the defects.

Keywords: pulsed thermography; thermal simulation; composites mate-
rials; quantitative analysis; thermographic signal processing.
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Sobre a Termografia Infravermelha Pulsada

A termografia infravermelha, como técnica de ensaios não-destrutivos
(ENDs), é dividida em dois grupos − termografia passiva e termografia
ativa − a qual depende do uso ou não de uma excitação externa para pro-
duzir um fluxo de calor no interior do material em estudo. Atualmente ex-
istem vários tipos (óptica, mecânica e eletromagnética) e modos (pulsada,
modulada e burst) de excitação externa, cada um possuindo diferentes
rendimentos em função do tipo de material. Este trabalho está focado nas
técnicas de termografia ativa que empregam excitação óptica, especifica-
mente, a termografia pulsada (TP).

Ao contrário da outras técnicas em que a função de excitação temporal
é da ordem de vários segundos, minutos ou inclusive dias, a termografia
pulsada utiliza um pulso térmico de curta duração (∼ 10−3 s) o qual é
aplicado no material, enquanto o subsequente processo de resfriamento é
monitorado utilizando uma câmera infravermelha. A Figura 1 mostra os
princı́pios básicos da termografia pulsada. O processo de inspeção inicia
com a aplicação do pulso térmico - através da transferência de calor por
radiação - no corpo de prova (sinal de entrada ou input signal). A quan-
tidade de energia absorvida pela superfı́cie do material cria uma frente
térmica que se propaga por condução no seu interior até encontrar defeitos
internos, alterando desta forma a taxa de difusão de calor. A iteração entre
o fluxo de calor e as irregularidades internas - regiões com propriedades
termofı́sicas distintas ao do resto material - produz um comportamento
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Figure 1: Princı́pios da termografia pulsada como técnica de ensaios não-destrutivos.

irregular na curva de decaimento térmico durante o processo de resfri-
amento, observado através da câmera infravermelha (sinal de saı́da ou
output signal). A inspeção por termografia pulsada é desenvolvida em
regime transiente (em contraste com a termografia modulada a qual é im-
plementada em regime permanente) possibilitando assim a análise dos
dados obtidos de forma rápida e direta.

A TP possui várias vantagens, sendo as mais importantes sua rapidez e
facilidade, assim como sua capacidade de ser aplicada em vários tipos de
materiais. Entretanto, devido à natureza do processo de medição, os sinais
adquiridos com a câmera infravermelha estão quase sempre contaminados
com sinais de ruı́dos e artefatos das reflexões externas, variação de emis-
sividade e não-uniformidade na radiação aplicada sobre o material. Esta
última é um problema inevitável da configuração do sistema de radiação
e é provavelmente o mais prejudicial fator que afeta negativamente a ad-
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equada detecção de defeitos. Por esta razão, o processamento de sinais
termográficas representa a linha de frente para reduzir os efeitos negativos
das distintas fontes de ruı́do e especialmente, da excitação não-uniforme.

Motivações

Apesar de ser uma das técnicas mais promissoras para a avaliação
não-destrutivas de materiais, a TP apresenta limitações especialmente na
inspeção de materiais anisotrópicos. Devido à natureza fı́sica do processo
de mediação, a TP está altamente contaminada por diversas fontes de
ruı́dos, tais como reflexões do ambiente, variação da emissividade do ma-
terial e a não-uniformidade decorrente da aplicação da excitação térmica.
Adicionalmente, a perda de visibilidade dos defeitos devido aos efeitos da
difusão de calor nas laterais, constitui mais uma limitação para a detecção
de defeitos mais profundos. Este fenômeno é conhecido como ’blur-
ing” e afeta principalmente os defeitos que requerem um maior tempo
de observação para serem detectados.

O mencionado anteriormente representa só um exemplo das dificul-
dades que a TP enfrenta. A análise da técnica é complexa e envolve muitas
variáveis. Por esta razão exista a necessidade de examinar e estudar os di-
versos mecanismo que possam ajudar a diminuir os efeitos da excitação
não-uniforme e da perda de visibilidade devido à condução de calor nas
laterais. Geralmente a abordagem experimental não é a mais adequada
para realizar uma análise profunda de como as variáveis mais importantes
da TP são afetadas pelos fenômenos já mencionados. Neste contexto, a
abordagem numérica constitui uma importante ferramenta para estudar os
diferentes processos que participam durante o ensaio térmico, e concluir,
na base de conceitos fı́sicos, o caminho a seguir para melhorar a perfor-
mance desta técnica.

A maioria dos modelos matemáticos disponı́veis na literatura para a
análise teórica da TP estão baseados na solução analı́tica da equação de
condução de calor em 1D. Infelizmente, estes modelos simplificados não
reproduzem com precisão os diferentes processos que se dão durante o
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ensaio térmico. Adicionalmente, existe a necessidade de formular apro-
priadamente a anisotropia do material, sendo os modelos disponı́veis de
hoje limitados a casos em que as propriedades termofı́sicas do material
são homogêneas.

Outro ponto-chave da termografia pulsada é o processamento de sinais.
A inspeção por TP é limitada na sua forma básica à defeitos rasos. A
análise quantitativa usando imagens sem processar dificulta o processo de
recuperação da profundidade e geometria dos defeitos. Por esta razão,
o processamento de sinais termográficas é um dos assuntos que recebe
uma especialmente atenção neste trabalho. Atualmente existem diversos
algoritmos para o processamento das imagens térmicas obtidas no pro-
cesso de inspeção. As técnicas mais usadas estão baseadas na solução da
equação 1D de condução de calor: contraste absoluto diferencial (DAC),
reconstrução de sinais termográficas (TSR) e termografia de fase pul-
sada (PPT). Apesar da melhoria na qualidade das imagens obtidas após
a aplicação destas técnicas, seu escopo de aplicação esta restrito a casos
em que o processo de condução de calor é 1D.

Objetivos

O objetivo geral desta tese é otimizar a capacidade de inspeção por
termografia pulsada, para detectar e caracterizar defeitos internos em ma-
teriais compósitos, a partir da análise térmica, do processamento de sinais
e da análise quantitativa. Para atingir esta meta, os seguintes objetivos
especı́ficos são definidos:

1. Revisar os conceitos fundamentais da termografia pulsada como
técnica de END de materiais, colocando especial atenção as limitações
da técnica na inspeção de materiais anisotrópicos;

2. Desenvolver, testar e validar experimentalmente uma ferramenta
computacional com o objetivo de analisar a processo de difusão in-
terno de calor e a resposta térmica da superfı́cie devido à presença
de defeitos;
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3. Identificar através de um estudo paramétrico, as variáveis mais sen-
sitivas à excitação não-uniforme, intensidade da radiação e carac-
terı́sticas associadas aos defeitos internos;

4. Realizar uma revisão crı́tica das técnicas de processamento de ima-
gens em TP e desenvolver uma metodologia para avaliar o desem-
penho destas técnicas;

5. Desenvolver um método robusto de processamento de imagens uti-
lizando o método de regressão dos mı́nimos quadrados parciais e
avaliar o seu desempenho usando a metodologia desenvolvida no
Capı́tulo 4.

6. Desenvolver uma metodologia para a análise quantitativa de de-
feitos internos (inversão de profundidade e tamanho lateral) empre-
gando o método dos mı́nimos quadrados parciais e avaliar o desem-
penho através da comparação com técnicas empregadas hoje em dia
para tal fin.

Metodologia e Organização da Tese

Este trabalho está focado na otimização da inspeção por termografia
pulsada. A metodologia desenvolvida para tal propósito consistiu em uma
abordagem teórica e uma experimental. A abordagem teórica foi focada
no desenvolvimento de uma ferramenta numérica utilizada para simular
a inspeção de materiais compósitos por termografia pulsada. Através da
simulação numérica foi estudado e analisado primeiramente o processo
de difusão de calor decorrente da aplicação da excitação no material e
a resposta térmica da superfı́cie devido à presença de defeitos internos.
Esta análise foi particularmente importante devido a que até então, não se
tinha instrumentos laboratoriais para reproduzir um pulso térmico de alta
potência e curta duração. Uma vez os conceitos fı́sicos da TP foram com-
preendidos adequadamente, a seguinte etapa consistiu na identificação dos
parâmetros mais importantes durante o processo de resfriamento. Estes
parâmetros (máximo contraste térmico, tempo de ocorrência do contraste
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máximo e tempo de inı́cio de aparição dos defeitos) foram exaustivamente
estudados com o objetivo de determinar os mais sensitivos aos efeitos da
excitação não-uniforme.

Graças ao Acordo de Cooperação entre a Universidade Federal de
Santa Catarina e Laval Université (em Cidade de Quebec, QC, Canadá)
foi possı́vel realizar um estágio de pesquisa no Canadian Research Chair
Multipolar Infrared Vision. Durante este estágio foi desenvolvida a abor-
dagem experimental desta pesquisa além da validação da ferramenta com-
putacional. Também foi possı́vel atualizar o algoritmo numérico com
informação detalhada dos corpos de prova disponı́veis no laboratório. Du-
rante a abordagem experimental foi dada especial atenção à necessidade
do processamento de sinais termográficos com o objetivo de melhorar
a visibilidade dos defeitos bem como para a posterior etapa de análise
quantitativa. Nesta etapa foram analisadas diferentes técnicas de proces-
samento de imagens térmicas e foi desenvolvida e implementada com
êxito uma nova técnica de tratamento baseada no método de regressão
dos mı́nimos quadrados parciais.

Esta tese é dividida em seis capı́tulos principais e dos apêndices. O
Capı́tulo 2 se apresentam os conceitos fundamentais da termografia como
técnica de inspeção e avaliação não-destrutiva bem como os aspectos
teóricos mais relevantes da termografia pulsada, o sistema de inspeção
e a aquisição e análise de sinais. Neste capitulo também é feita uma
análise das maiores limitações da termografia pulsada, utilizando o en-
foque térmico.

O Capı́tulo 3 trata sobre a simulação do ensaio por TP. Primeiramente
é apresentada uma revisão bibliográfica dos modelos matemáticos utiliza-
dos atualmente para o estudo teórico da TP. Seguidamente é desenvolvido
um modelo termo-numérico e uma metodologia para a simulação com-
putacional do ensaio por TP em materiais compósitos. O modelo proposto
está baseado na equação de condução de calor para meios anisotrópicos
em 3D e regime transiente e a solução foi realizada utilizando o Método
dos Volumes Finitos. Um estudo paramétrico foi realizado com o obje-



xli

tivo de estudar os efeitos na não-uniformidade da excitação, intensidade
da irradiação e geometria dos defeitos em variáveis informativas obtidas
durante o processo de resfriamento.

O Capitulo 4 apresenta uma revisão geral de métodos de processa-
mento de sinais aplicados aos ensaios térmicos não-destrutivos além de
uma análise crı́tica dos métodos mais usados para o processamento de
imagens por TP. Neste capı́tulo foi desenvolvida uma metodologia para
estudar o rendimento das técnicas DAC, TSR e PPT (respetivamente, dif-
ferential absolute contrast, thermographic signal reconstruction e pulsed
phase thermography). A metodologia de avaliação calcula a relação sinal-
ruı́do no máximo nı́vel de contraste do sinal de vinte e cinco defeitos antes
e depois do processamento. Foram analisados imagens térmicas obtidas
experimentalmente através do ensaio por TP em corpos de prova de fibra
de vidro e fibra de carbono. As vantagens e limitações das técnicas em
questão foram também discutidas neste capı́tulo.

No Capı́tulo 5 o método de regressão dos mı́nimos quadrados parciais
(PLSR) é proposto como uma nova técnica de processamento de ima-
gens térmicas obtidas por TP. Os conceitos fundamentais e a formulação
matemática do PLSR são apresentados, bem como a metodologia para
a aplicação à inspeção não-destrutiva por TP. Dentro deste capı́tulo foi
realizada uma análise exploratória das variáveis latentes obtidas através
do processo de regressão, permitindo desta forma um estudo mais pro-
fundo da correlação entre as variáveis e amostras. O desempenho da nova
técnica de processamento de sinais foi avaliada empregando a metodolo-
gia previamente desenvolvida no Capı́tulo 4.

O Capı́tulo 6 apresenta um novo método de inversão da profundidade e
tamanho lateral dos defeitos internos. Uma revisão e análise dos métodos
usados atualmente para a quantificação de defeitos internos é apresentada.
Na sequência, os fundamentos da nova técnica de quantificação são apre-
sentados e aplicados na determinação da profundidade e tamanho lateral
através de dados experimentais e numéricos do corpo de prova de fibra de
carbono. Os valores obtidos com o novo método são comparados com
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valores calculados empregando o método proposto por Balageas et al.
(1987), o qual correlaciona a profundidade dos defeitos com o máximo
nı́vel de contraste térmico.

As conclusões, contribuições e as recomendações para trabalhos fu-
turos são apresentados no Capı́tulo 6.



Chapter 1

Introduction

1.1 Background: Infrared and Thermal Testing

Nowadays the term quality control gains more importance in an in-
creasingly competitive market, controlled by the globalization of services
and products. Additionally, safety and reliability are key-issues on con-
stant demand especially in products which involve the life of thousands
of people. These facts has brought the necessity to promote the develop-
ment of techniques and methods to guarantee the market superiority, not
only in terms of quality, but also in terms of productivity. In this scenario,
nondestructive testing and evaluation (NDT&E) techniques play an im-
portant role in the complex task of continuously improving the quality of
products and processes.

Nondestructive testing (NDT) is defined as an examination, test, or
evaluation performed on any type of test object without changing or al-
tering its physical integrity, in order to determine the absence or presence
of conditions that may have an effect on the usefulness or serviceability
of that object (Hellier, 2003). In NDT, as opposed to those methods that
subject the specimen to large amounts of stress and measure its resistance,
the determination of the presence −or not− of defects is done through
complex analysis that requires multiple stages of information processing.
NDT techniques can be classified into seven major categories (Hung et al.,
2009):

1. Visual (visual inspection using borescope);

2. Penetrating radiation (X-ray and neutron imaging);

3. Magnetic-electrical (magnetic particles, Eddy current);
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4. Mechanical vibration (ultrasonic, acoustic emission);

5. Chemica/electromechanical (chemical spot testing);

6. Infrared and thermal testing (infrared thermography); and

7. Other optical methods (interferometry, holography and shearogra-
phy).

Each category and method can be completely characterized in terms
of five principal factors: (1) energy source or medium used to probe ob-
ject (such as X-rays, ultrasonic waves and thermal radiation); (2) nature
of the signals, image and/or signature resulting from interaction with the
object (attenuation of X-rays or reflection of ultrasound, for example);
(3) means of detecting or sensing resultant signals (photoemulsion, piezo-
electric crystal or inductance coil); (4) method of indicating and/or record-
ing signals (meter deflection, oscilloscope trace or radiograph); and (5)
basis for interpreting the results (direct or indirect indication, qualitative
or quantitative and pertinent dependencies).

As a NDT technique, infrared and thermal testing (which are of the
major concern in this thesis) involve the measurement (by noncontact
means such as infrared thermometers, infrared line scanners and infrared
thermal imaging/equipment) and subsequent analysis of the emitted IR
thermal radiation - energy that emit all the bodies with T > 0 K (−273.15
oC) - to predict and evaluate the presence of anomalies within a certain
material specimen. The techniques in this category are known as thermal
nondestructive testing (TNDT) methods. The term TNDT refers inter-
nationally to the detection of subsurface defects in materials using tran-
sient or, more rarely, steady-state one- and two-side procedures (Vavilov,
1992) and includes several measurement techniques. The application of
these techniques require a fundamental knowledge of heat transfer and the
thermal behaviour of materials in order to understand the significance of
temperature changes on a test sample.

Figure 1.1 shows the TNDT techniques associated to the IR spectrum
band. Each technique is characterized by a particular thermal phenomena
and depends on the wavelength associated with the radiation emitted by
the object under study. This thesis is concerned to infrared thermography
(IRT), which is a noncontact and real-time sensing method that provides
the surface temperature through the measurement of the IR radiation emit-
ted by the material surface (Maldague, 2001).
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Figure 1.1: IR bands in the electromagnetic spectrum and sensing techniques associ-
ated to each IR region. IRT corresponds to the mapping of the surface temperature
through the measurement of IR radiation. Adapted from López et al. (2013)

The basis of IRT is the analysis of contrasts in the temperature field
which are produced by alterations in the internal heat flux. These irregular
patterns of the surface thermal maps allow the detection and characteriza-
tion of internal anomalies, such as cracks, delamination and voids. As will
be discussed in next section, IRT can be deployed using two approaches:
passive and active thermography.
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1.2 Active Infrared Thermography for the NDT&E

As a NDT technique, IRT is divided in two groups: passive and active
thermography. In passive thermography approach, no external stimula-
tion is employed to provoke a heat flux within the material. Its analysis is
based on abnormal temperature behaviors that reveal potential problems,
and a key term is temperature difference with respect to a reference or hot
spot (Maldague, 2001). Meanwhile, in active thermography approach, an
external stimulation is induced to the material in order to produce a heat
diffusion flux within the sample test. As depicted in Figure 1.2, currently
exist several methods of external stimulations used to provoke the internal
heat flux. Each method has its own particularity in terms of application
scope and the way how the information is processed and analyzed.

Figure 1.2: Current state of the art of excitation methods in active thermography for
the NDT&E of materials.
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In general terms, the excitation methods in active IRT can be cate-
gorized into four major groups: mechanical, electromagnetic, microwave
and optical excitation. From these methods, mechanical and optical exci-
tation stand as the most traditional excitation sources for IRT due to their
simplicity and scope of applications. In mechanical stimulation a trans-
ducer is used to inject mechanical vibrations in the form of ultrasound
waves to the specimen. Due to the direct conversion from mechanical to
thermal energy, heat is released by friction precisely at locations where
defects as cracks and delaminations are located (Maldague, 2001). There
are basically two configurations using mechanical excitation: lock-in vi-
brothermography (or amplitude modulated VT) and burst vibrothermog-
raphy (Ibarra-Castanedo et al., 2007b).

On the other hand, in optical excitation methods thermal energy is
delivered to the specimen − via radiation heat transfer − by means of
optical devices, such as photographic flashes (for pulsed heat stimulation)
and halogen lamps (for periodic heating) (Ibarra-Castanedo et al., 2009).
Once the thermal energy is absorbed by the material surface, a thermal
front propagates trough the specimen by heat diffusion until it reaches
discontinuities− regions having different thermal properties than the sur-
roundings − affecting the heat flux rate and producing abnormal thermal
patterns on the surface which are monitored via IR radiation. Within this
category, pulsed thermography (PT) is one of the most attractive tech-
nique for the NDT&E of materials. One reason for this is the quickness
of the inspection in which a short thermal stimulation pulse lasting from
a few milliseconds for high-conductivity materials to a few seconds for
low-conductivity specimen is used (Maldague, 2001). The application of
this technique to inspect composites materials represents the core of this
thesis.

Besides PT, lock-in thermography (LT) is also one of the techniques
belonging to the group that uses thermal excitation. In this method the
specimen is submitted to a periodical excitation while monitoring the re-
sulting temperature field. The lock-in refers to the necessity to monitor
the exact time dependence between the resulting temperature signal and
the reference input signal (the modulated heating). Contrary to PT, LT is
deployed in steady-state regime and its principal attraction is the analy-
sis in the frequency domain and plase delay images (or phasegrams). It
has been reported that phasegrams are less affected by reflections from
the environment, emissivity variations and non-uniform heating (Ibarra-
Castanedo et al., 2009; Maldague and Marinetti, 2002).
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1.3 Motivations

In spite of being one of the most promissory techniques for the NDT&E
of materials, the inspection by pulsed thermography still presents great
challenges specially when inspecting highly-anisotropic specimens such
as composite materials. Due to the physical nature of the measurement
process, PT is highly sensitive to external reflections, emissivity varia-
tions and also non-uniform heating caused during the application of the
external excitation. Non-uniform heating is probably the major drawback
of the PT inspection and it is an unavoidable problem in the configuration
of the irradiation sources. Moreover, the lost of defect visibility due to
the effects of lateral heat diffusion constitutes a restriction in the depth
probing capabilities of PT (Balageas, 2011). This phenomenon is known
as blurring and is associated to longer observation times (affecting deeper
defects), when takes place the transition from a wider (1D-like) to a nar-
rower heat diffusion process (3D-like).

The mentioned above represents just an example of the difficulties
that PT has to deal with. The analysis is complex and involve several
variables. There is therefore the necessity to examine and study the dif-
ferent mechanisms that could help to overcome the harmful effects of non-
uniform heating and blurring. Mostly, the experimental approach is not
the most suitable to perform an in-depth study of how important variables
in PT (such as thermal contrast and onset time) are affected by the phe-
nomenons already mentioned. In this context, numerical approach repre-
sents a means to address the most important processes and variables that
take place during the PT inspection and to conclude in terms of physical-
based concepts, the path to increase the performance of this promissory
technique.

Most of the mathematical models currently available in the literature
for the theoretical analysis of the PT inspection are based on the analytical
solution of the 1D (Chatterjee et al., 2011; Lau et al., 1991; Mayr et al.,
2011) and 2D (Omar and Zhou, 2008) heat conduction equation. Unfor-
tunately, these are simplified models that do not reproduce with accuracy
the different physical processes involved during the thermal inspection.
Moreover, there is a lack of information in regard to the mathematical
formulation of the material anisotropy, limiting the analysis to cases when
the thermophysical properties of the material are homogeneous.
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Another key-issue in PT is the signal processing. The inspection by
PT is in its basic form, generally limited to qualitative applications on
large, near-surface defects. Performing quantitative analysis using raw
data is a difficult - if not impossible - task. For this reason signal pro-
cessing is one of topics that has received more attention and has been
investigated extensively over the years. Currently exits several techniques
applied to processing PT data with a wide range of reported effectiveness.
The most used and traditional techniques are derived from the 1D solu-
tion of the heat conduction equation: differential absolute contrast (Pilla
et al., 2002), thermographic signal reconstruction (Shepard, 2001) and
pulsed phase thermography (Maldague and Marinetti, 2002). In spite of
the improvement in the image quality with these techniques, their span of
applicability is restricted to the cases where the heat conduction regime is
1D.

1.4 Research Objectives

The main objective of this thesis is stated as follows: to optimize the
capabilities of the pulsed thermography inspection, to detect and charac-
terize subsurface defects in laminated composites.

In order to achieve this goal, the author has defined the following spe-
cific objectives:

1. Review the fundamental concepts of pulsed thermography for the
NDT&E of materials, with particular emphasis on the limitations
when inspecting anisotropic specimens (Chapter 2);

2. Develop, test and validate experimentally a computational tool aim-
ing to analyse the heat diffusion process and the surface thermal
response due to the presence of internal defects (Chapter 3);

3. Perform a parametric study aiming to identify the most sensitive
variables to non-uniform heating, radiation intensity and character-
istics associated to the subsurface defects (Chapter 3, section 3.5.1);

4. Provide a critical review of the most used processing methods for
PT data and to develop a methodology to study the performance of
these techniques (Chapter 4, sections 4.2 to 4.3);

5. Develop a robust processing method for PT data using partial least
squares regression (PLSR) and evaluate its performance using the
methodology proposed in Chapter 4 (Chapter 5);
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6. Propose and test a methodology for the quantitative analysis of sub-
surface defects (inversion of depth and lateral size) using PLSR and
evaluate its performance over traditional methods currently avail-
able (Chapter 6).

1.5 Methodology and Thesis Organization

This works focuses on the optimization of the PT inspection. The
methodology carried out to perform this task consisted on two approaches:
theoretical and experimental approaches. The theoretical approach was
concerned to the development of the numerical model, which was used to
simulate the PT inspection on laminated composites. Through numerical
simulation, it was first studied the heat diffusion process resulting from
the thermal excitation of the material and then analyzed the response of
the surface thermal pattern due to the presence of internal defects. This
analysis was particulary important since until then, there were not avail-
able experimental instruments to reproduce a high-power short thermal
pulse. Once the physical concepts of the PT inspection were understood,
the next stage was to identify the most important parameters that arise
from the cooling process regime followed the thermal excitation. These
parameters were exhaustively studied in order to determine the most sen-
sitive to the harmful effects of non-uniform heating.

Thanks to a cooperation agreement between Universidade Federal de
Santa Catarina and Laval University (in Quebec City, Canada) it was
possible to perform a research internship at the Canadian Research Chair
Multipolar Infrared Vision. The experimental approach was carried out
during this research internship and also it was validated the computa-
tional tool. Moreover, it was updated the algorithm with more detailed
information concerning to the specimens. Special attention was paid to
the necessity of processing the PT raw data in order to enhance defect
visibility and also for further analysis (such as defect characterization).
During this stage, the different processing methods were analysed and
applied to experimental data. The application of a statistical regression
technique (PLSR) as a signal processing method was also considered and
successfully implemented.

This memory is divided into six main chapters and two appendixes.
Chapter 2 is concerned to the fundamentals concepts of pulsed thermog-
raphy as a nondestructive testing and evaluation technique. In this chapter
are addressed theoretical aspects of the technique as well as the exper-
imental setup and the acquisition and analysis of the data. This chapter



1.5 Methodology and Thesis Organization 9

also presents the inspection system used during the experimental approach
of this thesis and put into discussion the major drawbacks of the PT in-
spection.

Chapter 3 is concerned to the simulation of the PT inspection. First
is presented a bibliography review concerning to the state-of-art of math-
ematical models applied to the study of the PT inspection. Then is de-
veloped a thermal-numerical model and a methodology for the computa-
tional simulation of the PT inspection on laminated composites. The pro-
posed model is based on the 3D heat conduction equation for anisotropic
medium and the solution was carried out using the finite volume method
(FVM). A parametric study was performed aiming to study the effects of
non-uniform heating, irradiation density and defects geometry on several
informative variables of the PT inspection.

Chapter 4 provides a review of the current methods for data process-
ing in thermal nondestructive testing and an in-depth analysis of three
of the most attractive processing techniques for PT data. The theoretical
aspects of each technique are revised as well as their application to PT
data. This chapter also presents a methodology to study the performance
of each technique. The methodology computes the signal-to-noise ratio at
maximum signal contrast of twenty-five signals (one for each defect) be-
fore and after the application of the processing techniques to the PT raw
data. The advantages and limitations of each technique are also discussed
in this chapter.

In Chapter 5 the regression method partial least squares is proposed as
a new technique for the processing of PT data. The fundamentals concepts
and mathematical formulation of PLSR are first reviewed and then, the
application to PT is presented. Special attention is given to the analysis
of the latent variables of the reconstructed sequence. This analysis will
provide insights for the enhancement of the detection capabilities of PT.
The performance of the new processing method is evaluated in terms of
SNR at maximum signal contrast, using the same methodology developed
in Chapter 4.

Chapter 6 presents a new method for retrieving depth and lateral sizes
of defects. A review and analysis of the current methods to character-
ize subsurface defects is presented and then are exposed the fundamen-
tal concepts of the new technique for quantitative analysis. Interestingly,
this new method results from the integration of numerical and experimen-
tal results and also, represents an extension of PLSR to the analysis of
PT data. In order to evaluate the performance of the proposed inversion
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method, quantitative results obtained from the new method are compared
when to the obtained with one of the most traditional procedures in pulsed
thermography.

The conclusions, contributions and recommendations for future works
are presented in Chapter 7.



Chapter 2

Fundamentals and Application of Pulsed
Thermography

This chapter attempts to address the most relevant concepts concerned
to pulsed thermography as a NDT&E technique. The discussion begins
with the basic theory behind the pulsed thermography inspection followed
by the experimental setup, the acquisition and analysis of the thermo-
graphic signals obtained during the inspection process. Special emphasis
will be placed on the drawbacks of this technique, such as non-uniform
heating and lateral heat diffusion. Furthermore, this chapter will also
present the experimental system and relevant information concerning to
the specimens used during the development of the research.

2.1 Fundamentals of Pulsed Thermography

The application of infrared thermography has received vast and grow-
ing attention for diagnostics and monitoring in the last few decades. This
is mainly due to the fact that commercial infrared or thermal cameras,
the main instrument for performing infrared thermography are continu-
ously improving in both, sensibility and in spatial resolution, and they are
getting faster and relatively less expensive. In similar manner, the compu-
tational resources required for control, data acquisition, storage and pro-
cessing are continuously updated, providing thus more computing power
to perform complex processing tasks. These factors have revolutionized
the NDT inspection methods, furnishing more reliable results and widen-
ing the application scope of these techniques. As a matter of fact, pulsed
thermography is one of these technique that has emerged from the contin-
uous improving of both - IR cameras and computational resources.
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PT is based on the application − via radiation heat transfer − of a
short and high power thermal pulse (∼ 10−3 s) to the specimen surface.
This energy is then absorbed by the material surface and converted into
heat, triggering the creation of a thermal front which propagates through
diffusion within the material. The interaction of heat diffusion between
regions having different thermal properties will produce dissimilar be-
haviors of the temperature decay during the cooling process, which can
be observed with an infrared camera. This approach is characterized in
transient regime − contrary to lock-in thermography in which its deploy-
ment is carried out in steady-state condition − providing thereby a fast
and straightforward acquisition. Moreover, the brief heating (generally a
few degree above the initial component temperature) prevents damage to
the component.

Figure 2.1 shows the necessary steps that should be performed for the
proper implementation of PT as a nondestructive testing and evaluation
technique. A pre-analysis stage is conceived to assess characteristics as-
sociated to the material under study. Consideration concerned to the shape
and thermophysical properties of the material, ambient conditions and in-
strumentations should be accounted. Computational simulation represents
a valuable tool to perform an in-depth analysis of the expected material re-
sponse due to the applied thermal excitation. Once the pre-analysis stage
is concluded, the next step consists on the system excitation, which is
applied in order to generate a thermal contrast on the surface thermal pat-
tern. In general terms several experiment must be conducted in order to
produce a strong (and reliable) enough signal which leads to the detection
of internal defects.

Signal processing is a necessary step in order to enhance defect visi-
bility. Through the application of different methods to the obtained ther-
mal sequence it is possible to eliminate most of the background noise
produced by non-uniform heating and external artifacts (from external re-
flections and emissivity variations). Furthermore, the ‘de-noising’ of the
temporal signals constitutes an important achievement when processing
the thermographic signals. It is important to mention that signal process-
ing also improve the depth proving capabilities of the inspection. Defects
with a reduced thermal contrast (often the deeper defects) are the most
sensitive to spatial noise.
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Figure 2.1: Process chain in NDT&E by pulsed thermography.



14 Fundamentals and Application of Pulsed Thermography

Once the defects has been detected, the next step is the characteriza-
tion of the internal anomalies. This step is necessary since it will provide
the basis for the actions (or decisions) to be taken: rejection or repara-
tion (replacement or other). The depth and shape of the defects are often
the variables to be assessed. However, other parameters such as thermal
resistance (Krapez et al., 1991) or thermophysical properties (Rodriguez
and Nicolau, 2012) can be identified.

2.1.1 Advantages and disadvantages of PT

All NDT techniques - depending on their applications - present ad-
vantages and limitations. In the case of PT, some of the advantages are
its fast inspection rate; contactless, no coupling is need as in the case of
conventional ultrasound and vibrothermography, both methods require a
coupling media between the transducer and the specimen. It is also impor-
tant to mention that in induction thermography (IT) the coils have to be
relatively close to the inspected surface. Security of personal is another
important advantage of PT since there is no harmful radiation involved as
in the case of X-ray radiography; and the imaging capabilities, in which
the results are relatively easy to interpret since they are (often) obtained in
image or video formats (Ibarra-Castanedo et al., 2007b; Maldague, 2001);

On the other hand, one of the main disadvantages of PT compared
to other NDT techniques is the cost associated to the IR equipments (IR
camera and thermal stimulation units). In this context, the inspection by
PT is relatively more expensive than others NDT techniques, such as vi-
sual inspection and ultrasound. Furthermore, the detection capabilities of
PT are limited to defects resulting in a measurable change of the thermal
properties from the inspected surface. Another comparison can be made
in regards to the acquisition and analysis of pulsed and lock-in thermog-
raphy (both techniques using optical stimulation). PT is fast - only a few
seconds are required to perform the acquisition and analysis. However,
the processing stage is more complex specially when compared to LT
(which is straightforward). As will be further reviewed, signal processing
in PT is a fundamental stage in order to enhance image quality. With-
out this stage, the detection capabilities of PT is limited to near-surface
defects because the thermal signals are highly contaminated by several
sources of noise, such as non-uniform heating, emissivity variations and
environmental reflections among others.
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2.2 Application and Experimental Pulsed Thermography

2.2.1 Modes and configurations in PT

The inspection by PT can be deployed using several configurations
and modes. As depicted in Figure 2.2, there are three basic configurations
for heating and testing the specimen: point-, line- and surface-heating.
Point testing is heating with a laser or a focused light beam. Its advantages
are uniform and repeatable heating. However, this configuration needs to
move the test heat to fully inspect a surface, hence slowing down the test
process.

Line testing involves heating by lamps, heated wire or scanning laser.
Advantages include fast testing rate (up to 1 m2.s−1 is reported) and good
uniformity thanks to the lateral motion. A drawback is that only part of
the history curve is available because of the lateral motion of the speci-
men and the fixed distance between thermal stimulation and temperature
signal pickup. To conclude, surface inspection uses heating by lamps
or flash lamps. Advantages include the complete analysis of the phe-
nomenon because the whole temperature history is recorded. A drawback
is the anisotropy of heating by lamps and flashes.

Point and line heating methods are favorable only when defect detec-
tion is limited to cases where the defect depth is known and constant: for
example, in bonded assemblies where the defects are located between lay-
ers of known thickness, presumably at the bonding interface (Maldague,
2001).

Line-heatingPoint-heating Surface-heating

Figure 2.2: Configurations for PT inspection [Adapted from Maldague and Ibarra-
Castanedo (2013, chap. 10)]



16 Fundamentals and Application of Pulsed Thermography

Pulsed thermography can also be deployed using two modes or ob-
servation methods: transmission and reflection mode. In the transmission
mode the heat flux is applied by radiation over the surface of the mate-
rial, so the infrared radiation received by the IR camera is a function of
the amount of heat that is transferred by conduction from one side of the
material to another. As is illustrated in Figure 2.3, the heating source and
the detector (or IR camera) are located one on each side of the component
to inspect.

In the reflection mode the heat front produced by the thermal stimu-
lation propagates through the material until it reaches zones with differ-
ent thermal properties (or defective zones), ‘reflecting’ back part of the
thermal energy applied. Generally, the reflection approach is used for de-
tection of discontinuities located close to the heated surface whereas the
transmission approach allows detection of discontinuities close to the rear
surface because of the spreading effect of the thermal front. Moreover if
the rear surface is not accessible, the transmission approach is not possi-
ble.

TRANSMISSION

REFLECTION

1. specimen 

2. IR camera 

3. Heating

 source

3. Heating

 source

Figure 2.3: Modes or observation methods in pulsed thermography inspection.
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2.2.2 Experimental Approach

In this research, the application of the pulsed thermography inspec-
tion is carried out using the surface-heating configuration and reflection
mode. As depicted in Figure 2.4, the inspection system consists on the
use of two photographic flash lamps (Balcar FX60, each giving 6.4 kJ for
15 ms, 2 ms at full width half maximum) to produce a high-power short
pulse used to stimulate the specimen surface. Once the pulse is delivered
to the specimen surface, the acquisition of thermal images is carried out
straightaway using an FPA infrared camera (Santa Barbara FPA SBF125,
3 to 5 µm, with a 320×256 pixel array).

PC/Analysis
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Control unit
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H

IR Camera
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(composite material)
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z
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Figure 2.4: Experimental configuration of the pulsed thermography system.
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As already shown in Figure 2.4, a synchronization unit is necessary
in order to accurately control the time between the launching of the ther-
mal pulse and the recording with the IR camera. Moreover, two power
amplifiers (one for each flash lamp) are required to increase the power
of the irradiation. The laboratorial instruments (available at the Canadian
Research Chair MiViM) used for the PT inspection are illustrated in Fig-
ure 2.5.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.5: Experimental system for the PT inspection: (a) front view, (b) rear view,
(c) photographic flash lamps, (d) IR camera, (e) power amplifiers, and (f) plate speci-
men.
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In this thesis is investigated the PT inspection on two academic spec-
imens (Carbon Fiber Reinforced Polymer CFRP006 and Glass Fiber Re-
inforced Polymer GFRP006). Both specimens consist of a 10-plies fiber
reinforced polymer with 25 Teflon square insertions located at different
depths and having different lateral sizes. The thickness of the Teflon in-
serts is 0.1 mm. The configuration of both specimens is depicted in Fig-
ure 2.6.
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Figure 2.6: Composite plates specifications.
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In order to enhance the emissivity to a values near to 1, the specimens
were painted with a black paint prior to the PT inspection. This procedure
also contributes to dimmish the emissivity variations on the surface and
to eliminated reflections from the environment.

2.2.3 Data acquisition and analysis

As discussed earlier, the analysis of subsurface defects in PT is con-
cerned to the imposed cooling process followed the thermal excitation.
Once the material is stimulated, an IR camera records the surface temper-
ature decay, then the thermal images acquired are stored as a 3D matrix
(see Figure 2.7a ). The spatial x− and y− coordinates correspond to the
pixel numbers in the I and J directions, respectively, whilst the z− co-
ordinate represents time. In order to exploit all the resources of the IR
camera (and to avoid loss of information), a fixed acquisition frequency
fs = 157 Hz (∆t = 1/ fs = 0.00637 s per image) was used, which is the
maximum full-frame rate achieved for a 320× 256 pixel array. Further-
more, a total of N = 1000 frames (maximum storage capacity of the IR
camera) were collected during the cooling regime, being the acquisition
window w(t) = 6.37 s. All the results showed in further chapters are
based on these acquisition parameters.

The analysis of the PT sequence is shown in Figure 2.7b. The tem-
perature decay curves for the defective and sound areas behave similarly
at the beginning of the cooling process. Once the thermal front reaches
the internal defect, the accumulation of heat produced by the defective
region originates an increase in temperature over the defective area on
the surface. This ‘breaking point’ between Td and Tsa (respectively, the
temperature evolution curves of defective and sound area) represents the
onset time, tonset (see Figure 2.7b), initiating the temporal detection win-
dow (the period during which the defect is visible). As time elapses, the
visibility of the defects (Cmax) decreases until tblind , the time at which the
defect vanishes from the thermal images. All of these parameters (onset
time, moment of maximum thermal contrast and blind time) are depen-
dent on the thermal properties of the material and geometry (depth and
lateral sizes) of the defects.
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Figure 2.7: Acquisition and analysis of IR thermal images obtained during the PT
inspection. (a) Acquisition of the 3D temperature matrix obtained during the PT in-
spection; and (b) analysis of temperature evolution curves considering αde f < αsa,
being α the thermal diffusivity.

2.2.4 Thermal contrast

Thermal contrast (C) is the variable used to characterize the level of
visibility (in the thermogram) of the defects. Moreover, it is the variable
traditionally used to describe defect features; in fact, most of the quanti-
tative methods used nowadays for inversion of depth and lateral size are
based on the computation of the maximum values of C (or Cmax) (Balageas
et al., 1987; Krapez et al., 1991).

The basic form of thermal contrast is the absolute thermal contrast,
which is defined by the following expression (Maldague, 2001):

Ca(t) = Td(t)−Tsa(t) (2.1)

with Td(t) and Tsa(t) defined as the temperature as function of time t
for defective and non-defective regions. Eq. (2.1) is the simplest way to
quantify the signal strength of the defects. There are other formulations
intended to estimate the detection level of the defects while reducing the
impact of optical artifacts and non-uniform heating, for instance the run-
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ning contrast defined by the Eq. (2.2) (Grinzato et al., 1995):

Cr(t) =
Ca(t)
Tsa(t)

(2.2)

with parameters defined as before. Eq. (2.2) considers that defective
and non-defect points are located in the area with the same absorptivity-
emissivity. As summarized by Maldague (2001), there are other formu-
lations for thermal contrast (i.e. normalized contrast, running contrast);
however, the application of those expressions are restricted to specific
cases. All the results and discussions presented in this thesis will be based
upon Equations (2.1) and (2.2).

2.3 Major Drawbacks in Pulsed Thermography

It was mentioned in previous sections some of the main limitations of
pulsed thermography. Some of them are consequence of the nature of the
IR measurement, while others are produced by the experimental setup and
the thermal process within the specimen. In this section will be discussed
the major limitations of the PT inspection.

2.3.1 Optical reflections

The IR camera converts the radiative energy received at the detectors
Jcam into a signal proportional to the radiant energy emitted by the object
under study (for instance, the specimen), which according to the Planck’s
Law, depends on the object temperature To (see Appendix A for the fun-
damental concepts of thermal radiation). The total radiant power incident
on the detector Jcam can be written as a function of several sources of
energy:

Jcam = τatm εo Io(To)︸ ︷︷ ︸
specimen

+τatm (1− εo) Iamb(Tamb)︸ ︷︷ ︸
amb

+(1− τatm) Iatm(Tatm)︸ ︷︷ ︸
atm

(2.3)

In Eq. (2.3), εo is the emissivity of the specimen; τatm is the spectral
transmission window of the atmosphere and; To, Tamb and Tatm are respec-
tively the temperatures of the specimen, ambient and atmosphere. It can
be noted in Eq. 2.3 that along with the IR radiation emitted by the speci-
men (Io), Jcam is composed by contributions from the ambient (Iamb) and
the atmosphere (Iatm).
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It can be deducted from Eq. (2.3) that the inspection by PT is limited
to low reflectivity materials (or high absorptivity). Furthermore, ambient
conditions can impose limitations when measuring at low temperatures
(just below the equilibrium temperature of the specimen). The ambient
term Iamb also considers the reflection from the surrounding; thus, any
body that emits IR radiation will reflect this energy on the specimen sur-
face, producing what is known as ‘reflection artifacts’; i.e., localized hot
spots in the thermal images that can leads to false-positive or misinterpre-
tation.

2.3.2 Non-uniform heating

Non-uniform heating is one of the major - if not the most - source
of uncertainty in pulsed thermography. Even when a flat surface is in-
spected, several factors as heating source locations (related to the IR radi-
ation sources), equipment aging, external heating or cooling sources (both
related to ambient conditions), uneven optical properties of the surface,
etc., will produce irregular patterns of heating. These irregular patterns
often superimpose on the contrasts produced by internal defects, conse-
quently resulting in the reduction of spatial resolution (affecting smaller
defects) and the limit of detection (affecting deeper defects). Moreover,
given that defect detection principle is based on temperature differences,
non-uniform heating may produce confusion, specially for defect quan-
tification.

To illustrate the negative effects of non-uniform heating, Figures 2.8
shows two thermograms for the CFRP006 specimen at different times
(0.0191 s and 0.3185 s). The thermograms correspond to the 3rd and
50th images of the complete thermal sequence. It can be observed the
presence of a completely irregular pattern at t = 0.0191 s; this image
does not reveal the presence of the any internal irregularity. Addition-
ally, the temperature disparities between different regions reach 16oC. At
t = 0.3185 s (when at least defects located at 0.8 mm should be de-
tected) only defects located at 0.2 and 0.4 mm are visible. In spite that
non-uniform heating is less significant, the image still preserves an irreg-
ular pattern of temperature especially at the edges of the specimen where
the deepest defects - and the more challenging - are located.
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t = 0.0191 s t = 0.3185 s

z = 0.2 mm

z = 0.4 mm

Figure 2.8: Impact of non-uniform heating. Thermograms at different times corre-
sponding to the PT inspection on the CFRP006 specimen.

2.3.3 Lateral heat diffusion

Lateral heat diffusion is an unavoidable problem in the PT inspec-
tion. It is inherent to the heat diffusion process that takes place within
the specimen and is dominated basically by the thermal properties of the
material and characteristics associated to the defects (depth and lateral
size). Blurring is the signal degradation and represents the major negative
effect affecting mostly the deepest defects. It comes out when the heat
conduction in the lateral direction becomes predominant in the diffusion
process.

Considering the 3D heat diffusion problem in anisotropic media, the
Fourier number for each directions (x, y and z) can be written as follows:

x−di f f ussion→ Foxx =
αxxt
D2 (2.4a)

y−di f f ussion→ Foyy =
αyyt
D2 (2.4b)

z−di f f ussion→ Fozz =
αzzt
z2 (2.4c)

In Equations (2.4), αxx, αyy and αzz are respectively the thermal dif-
fusivity in the x−, y− and z−directions. Furthermore, D and z are the
defect lateral size and depth and t is the variable time. The degradation
of signal (or thermal contrast) takes place when the heat diffusion in the
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x− and y− directions becomes predominant (Foxx, Foyy >> Fozz). By
analysing each of the terms of Equations (2.4), it can observed that deeper
defects (or those with smaller aspect ratio D/z) are more likely to suffer
signal degradation. Furthermore, the thermal diffusivity plays an impor-
tant role in this case, since in both specimens (CFRP006 and GFRP006)
αyy, αyy >> αzz.

The mentioned above is illustrated in Figure 2.9, where is shown two
distinct regimes of heat conduction (z1 >> D1 and z2 << D2). On the
bottom of Figure 2.9 is also shown an example of the level of signal degra-
dation for defects with different aspect ratio. It can be observed that the
defect with the largest aspect ratio D/z = 15/0.2 clearly preserves the
square shape of the Teflonr delamination. In this case is predominant
the conduction in the z−direction (at least at t = 0.190 s). On the other
hand, for the defect with D/z = 7/0.6 the heat conduction in the lateral
direction produces lost of visibility because of the narrower thermal front.

Fozz >> Foxx Fozz << Foxx

D = 15 mm, z = 0.2 mm D = 7 mm, z = 0.6 mm

D1

D2

z1
z2

Material surface

Figure 2.9: Illustration of two different regimes of heat conduction as a function of
the aspect ratio of the defects, resulting in the presence of blurring.
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2.4 Summary

Pulsed thermography is an attractive NDT&E technique that allows
the non-contact inspection of materials. Based on the analysis of irregu-
lar thermal patterns, PT requires the application of a thermal excitation in
order to provoke an internal heat flux. Due to the difference between ther-
mophysical properties of non-defective and defective regions, variations
in the internal heat flux produce irregular patterns on the surface thermal
map.

PT is fast and easy to deploy. Compared to lock-in thermography -
which analysis is straightforward - PT requires an additional processing
stage in order to overcome the harmful effects of several sources of noises
such as non-uniform heating, blurring and external reflections.

Non-uniform heating is one of the major source of uncertainty in pulsed
thermography. It is an inherent problem of the configuration of the irradi-
ation sources and it is also associated to uneven optical properties of the
surface. In the other hand, lateral heat diffusion is an unavoidable prob-
lem in the PT inspection and is associated to the heat diffusion process
that takes place within the specimen. Its major consequence is the blur-
ring, which is the signal degradation that arises when the heat diffusion in
the lateral direction becomes predominant in the diffusion process.

Most of the constraints present in the PT inspection can compensated
thanks to the implementation of several signal processing algorithms. As
will be further discussed, signal processing constitutes the core of the
investigations to enhance image quality in PT.



Chapter 3

Modeling and Numerical Simulation

The objective of this Chapter is to propose and test a thermal-numerical
model and to develop a methodology for the simulation of a pulsed ther-
mography inspection on carbon laminated composites. Through the nu-
merical approach proposed in this Chapter, it is investigated the physics
of the heat transfer process that take place during the pulsed thermogra-
phy inspection. Furthermore, it is analyzed the response of the surface
thermal pattern due to the presence of internal discontinuities in order to
conclude in terms of physically-based parameters, the efficiency and ap-
plicability of the pulsed thermography inspection technique. The analysis
of the results is focused on parameters commonly used to describe the
thermal behaviour of defective zones, such as the thermal contrast and
onset time.

3.1 Motivations

The use of numerical techniques for the solution of complex prob-
lems in engineering and physics is nowadays a reality thanks to the dra-
matic advance of computers with high speed and large storage capacity.
As a function of this evolution which increases exponentially, a new ap-
proach − along with new professionals − to study complex problems has
emerged as a prediction method: the computational simulation.

Nowadays numerical simulation plays an important role in the anal-
ysis of TNDTs techniques as a mean to understand the involved phe-
nomenology and to study the applicability of a given TNDT method in
cases where the experimental approach is almost impossible to perform.
In this regards, the effort directed toward investigations on the compu-
tational simulation of pulsed thermography inspection has increased in
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recent years [Susa et al. (2007) provides a brief summary of various sim-
plifications of the method to describe the heat transfer phenomenon during
inspection by PT], encouraged mainly by the widening of the application
sphere of PT to include more complex and challenging situations . This
has allowed the application of PT in situations in which, until recently,
inspection was not possible.

Most of the models available in the literature for the simulation of
TNDT problems are based on simplified equations obtained from the so-
lution of the 1D heat conduction equation, considering that the thermal
pulse has the same temporal shape as the Dirac delta function (Almond
and Patel, 1996; Lau et al., 1991). Although most of the works use this
formulation to describe the thermal behaviour of the material in PT in-
spection, those simplified models only apply when the heat conduction
regime is 1D, which in general terms is only valid for small temporal win-
dows and shallower defects. In the other hand, the extension to 2D models
has been also investigated, as reported by Krapez et al. (1991) and Vavilov
et al. (1993). Both works used the 2D heat conduction equation in cylin-
drical coordinates to model the PT inspection problem, allowing thus to
perform a more detailed analysis which included the geometry of the de-
fects. The use of computational softwares, such as Comsol, ThermoCal-
3D and ThermoHeat-3D Pro, has also been investigated as a reliable tool
for the study of complex TNDT situations, including 3D problems and the
inspection of 30 types of anisotropic materials [see for instance, Avdelidis
and Almond (2004); Weiser et al. (2010) and Vavilov (2012)].

In spite of the advance in the simulation of TNDT problems, yet there
are several pending variables (e.g., non-uniform heating, irradiation power,
location and geometry of the defects) that have not been studied in details
and that might affect the thermal response of the material during the PT
inspection. Furthermore, given that most inversion methods of subsur-
face defects are based on thermal parameters (such as thermal contrast
and onset time), the precision of the quantitative analysis may also be af-
fected. For these reasons, it has been included in this research a thermal-
numerical approach in order to carry out an in-depth analysis of the ther-
mal response of the material when varying several parameters associated
to both, the defects and the thermal excitation. This analysis will allow
to obtain more detailed information concerning to the dependence of the
maximum thermal contrast, its time of occurrence and onset time of de-
fects, as function of the intensity and surface irradiation function, and;
thickness, depth and lateral size of the defects.
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3.2 Thermal Modeling

Figure 3.1 shows the description of the inspection by pulsed thermog-
raphy and the physical domain under study. The specimen under inves-
tigation (with geometry W x L x H) is a composite material possessing
internal delamination defects. Each defect is located at different depths
and has different lateral sizes (for complete details of the specimen, see
Appendix 4.1). At the beginning of the PT inspection (t = to), the spec-
imen is in thermal equilibrium with the environment; at time t = t1 an
external stimulation is applied to the surface, causing the propagation of
a thermal front through the material by diffusion. The resulting thermal
response of the specimen to this stimulation is monitored via infrared ther-
mal emission.

W

L

H

IR Camera

Flash-lamps

Specimen 

(composite 

material)

y

z

x

Figure 3.1: Proposed thermal model for the PT inspection and physical domain under
study.
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Figure 3.2: Cross-section view of the specimen with the heat flow paths participating
during the PT inspection.

The participating heat fluxes considered in the thermal model are de-
picted in Figure 3.2. The external excitation is applied by radiation heat
transfer. Part of the incident energy is absorbed and the rest is reflected
by the material surface. Due to the sudden increase in temperature caused
by the thermal excitation, a thermal front is created and this propagates
through the rest of the material by heat conduction. Heat transfer by con-
vection and radiation also take places between the material surfaces and
the environment. Internal discontinuities are resistive defects: regions of
the material with different thermal properties which affect the heat flux
rate.

In order to derive a mathematical model to describe the physical pro-
cess of the PT inspection, the following simplifying assumptions are con-
sidered:

1. The inspection is carried out in transient regime;
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2. The heat transfer within the material occurs in 3D with Cartesian
coordinates;

3. The applied heat flux (thermal pulse) is unidirectional in the z-
direction;

4. The material is opaque;

5. The penetration of radiation within the material is neglected;

6. No chemical reaction occurs as a consequence of the heat irradia-
tion;

7. The thermophysical properties of the medium remain constant dur-
ing the inspection and are independent of temperature;

8. The composite is macroscopically homogenous;

9. The fibers are homogeneously distributed within the matrix;

10. The thermal resistance between the fiber and matrix phases is neg-
ligible;

11. The fibers and matrix are homogeneous and isotropic; and

12. The fibers are equal and uniform in shape and size.

Based on assumptions 1 to 7, the governing equation that describes
the heat transfer in an anisotropic media is:

(ρcp)e f f
∂T
∂ t

=
∂

∂x

(
kxx

∂T
∂x

)
+

∂

∂y

(
kyy

∂T
∂y

)
+

∂

∂ z

(
kzz

∂T
∂ z

)
(3.1)

The initial condition is given by:

T (x,y,z,to) = Tamb (3.2)

Boundary conditions, including heat transfer by radiation and convec-
tion between all the specimen surfaces and the environment, are defined
by the following expression:

n · (k∇T ) = hconv(Tamb−T )+σε(T 4
amb−T 4) (3.3)

In Equations (3.1) to (3.3), ρ and cp are, respectively, the effective
density and specific heat of the medium; T represents the temperature of
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the material along coordinates x, y and z; and Tamb is the ambient tem-
perature considering that the air and the external environment are at the
same temperature. The surface emissivity is represented by ε and σ is
the Stefan-Boltzmann constant. The convection heat transfer is given by
hconv and t represents the variable time. In addition, kxx, kyy and kzz are the
thermal conductivities for the x, y and z coordinates, respectively.

The methodology adopted in this research to calculate the thermo-
physical properties in Eq. (3.1) is discussed in the next section.

3.2.1 Thermal properties for heterogeneous media

One of the most important concerns when modeling heat transfer in
composite materials is finding an appropriate formulation to determine the
thermophysical properties of the medium. When sufficient information
related to the material is available, it is possible to develop a strategy and
obtain a mathematical formulation to describe the thermal properties.

As depicted in Figure 3.3, the composite material under study con-
sists of a 10-ply panel of carbon fiber-reinforced polymer laminates, with
0.2 mm thickness each. Each ply is modeled as a porous material, the
matrix being represented by epoxy-resin and the pores by the fibers (see
top of Figure 3.3).

Taking into consideration assumptions 8 to 12, for a two-component
system and based on the rule-of-mixtures the effective heat capacity of
the composite medium can be estimated from the weighted average of the
specific properties of each phase based on the volume fractions:

(ρcp)e f f = φ f (ρcp) f +(1−φ f )(ρcp)m (3.4)

In Eq. (3.4), φ f denotes the volume fraction of the fiber and is given
by:

φ f =
Vf

VT
=

Vf

Vf +Vm
(3.5)

The subscripts in Equations (3.4) and (3.5) denote, respectively, the
fiber and epoxy-resin. As in the case of the heat capacity, a common
approach to determining the thermal conductivity of a heterogeneous ma-
terial consists of combining structural models using empirical weighting
(Pan and Hocheng, 1996). The basic model for thermal conductivity is the
series-parallel model, which calculates the effective thermal conductivity
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Figure 3.3: Schematic representation of the composite medium and its constituent.
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based on the volume fraction and thermal conductivity of each compo-
nent. This model is valid only when both quantities are precisely known
and conduction is the only mechanism of heat transfer (Wang et al., 2006).

In the series-parallel model the fiber and matrix are modeled as ther-
mal resistors, or a mixture of series and parallel structures whose values
are inversely proportional to the thermal conductivity. The expressions
for the equivalent thermal conductivity in the longitudinal and transverse
direction to the x− y plane are:

k‖ = k f φ f + km(1−φ f ) (3.6a)

k⊥ =
k f km

kmφ f +(1−φ f )k f
(3.6b)

In Equations (3.5) and (3.6), k f and km represent the thermal con-
ductivities of the fiber and matrix, respectively. In this research, a more
detailed model for the longitudinal thermal conductivity is proposed and
tested; this model is a modified equation that takes into consideration the
geometrical disposition of the fiber and matrix. For circular filaments, the
Behrens-theoretical model for transverse thermal conductivity is given by:

k⊥ = km

[
k f (1+φ f )+ km(1−φ f )

k f (1−φ f )+ km(1+φ f )

]
(3.7)

Once the parallel and transversal thermal conductivities (k‖ and k⊥)
have been obtained, the global conductivities of each ply (kx, ky and kz)
are straightforwardly calculated through the following expressions:

kxx = (k‖ cosθ)+(k⊥ sinθ) [in− plane] (3.8a)

kyy = (k‖ sinθ)+(k⊥ cosθ) [in− plane] (3.8b)

kzz = k⊥ [out−o f − plane] (3.8c)

where θ is the fiber orientation angle with respect to the global x− axis.
So far, the discussion has been focused exclusively on the determina-
tion of the global thermal conductivities of a single laminated composite.
Since in this case the configuration of the panels under study is comprised
of more than one ply (see Figure 3.3), the global thermal conductivities
of the specimen can be obtained using, once again, an electrical analogy.
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Considering that the applied heat flux (thermal excitation) is perpendicu-
lar to the x−y plane, it is possible to model the plies as thermal resistances
which are in series and parallel to the heat flow direction. The resulting
global conductivity components are expressed as:

kxx =

N

∑
i=1

(kxxδ )i

N

∑
i=1

δi

[in− plane] (3.9a)

kyy =

N

∑
i=1

(kyyδ )i

N

∑
i=1

δi

[in− plane] (3.9b)

kzz =

N

∑
i=1

δi

N

∑
i=1

(
δi

kzz

)
i

[out−o f − plane] (3.9c)

Equations (3.9) represents the global thermal conductivities that are
used to obtain the solution of the conduction heat equation for anisotropic
materials. In Equations (3.9), δ and N represent the thickness of each
ply and the total number of single laminates comprising the composite
structure. Furthermore, the summations appearing in these equations are
carried out using the thermal conductivity for a single-laminated compos-
ite [Equations (3.8)].

3.2.2 Irradiation power density function

Several authors have concluded that one of the most undesirable fac-
tors affecting the detection of defects in pulsed thermography is non-
uniform heating (Ibarra-Castanedo and Maldague, 2004; Ibarra-Castanedo
et al., 2009). For this reason, in order to perform a detailed study on the
impact of non-uniform heating on the detection of defects through com-
putational simulation, in this research the spatial distribution of the irradi-
ation on the surface was modeled using a Gaussian distribution function.
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Since it was considered that the specimen is opaque and there is no
penetration of radiation into the material (see assumptions 4 and 5), and
considering a Gaussian power density distribution function, the portion
of the energy absorbed when a thermal pulse is applied over the material
surface is given by the following expression:

q(x,y) =
Irad

δ (t)
· (1−ρ) · 8

πd2 exp

−(2
√

2
d

)2

· (x2 + y2)

 (3.10)

where Irad is the radiant heat, ρ the surface reflectivity, δ (t) the duration
of the thermal pulse and d the diameter of the power density distribution.
Figure 3.4 shows the power density function obtained using Eq. (3.10),
observing that most of the applied energy is concentrated in the middle of
the test sample.

Figure 3.4: Irradiation power distribution function
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3.2.3 Natural convection heat transfer coefficients

The last term to be derived is the natural convection heat transfer co-
efficient that appears in Eq. (3.3) which needs to be computed in order to
account for the amount of thermal energy transferred to the external en-
vironment by the sample surfaces. The approach that will be used in this
study considers an independent convection coefficient as a function of
the position of each surface, as proposed Rodriguez and Nicolau (2012).
Thus, for the lateral surfaces of the sample (four surfaces in the vertical
position), the convection coefficient hlat is given by Eq. (3.11):

hlat =
k
H

NuH (3.11)

being NuH the Nusselt number based on H, which is computed via the
following expression (Bergman et al., 2011):

NuH = 0,68+
Ra1/4

H

[1+(0,492/Pr)9/16]4/9 (3.12)

In Eq. (3.12), RaH is the Rayleigh number based on H, defined by:

RaH =
gβ (Ts−Tar)H3

αν
, (3.13)

where Ts and Tar represent the temperature of the sample surface and
the air, respectively. In this model, the air and the ambient are consid-
ered to be at the same temperature. The Prandtl number is given by the
Eq. (3.14).

Pr =
ν

α
(3.14)

In Eqs. (3.11) - (3.14), k represents the thermal conductivity of the
air; α and ν are, respectively, the thermal and momentum diffusivities;
β is the thermal expansion coefficient. The convection coefficient for the
upper surface of the sample is defined by (Bergman et al., 2011):

hupp = 0,15
k

As/P
Ra1/3

L (3.15)
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Finally, the convection coefficient for the lower surface is calculated
by the following expression (Bergman et al., 2011):

hlow = 0,27
k

As/P
Ra1/4

L (3.16)

In Eqs. (3.15) - (3.16), As/P is the characteristic length defined as the
relation between the area and the perimeter of the surface under consid-
eration. Once all the variables present in the governing equations have
been defined, the next step is the solution of the heat conduction equa-
tion [Eq. (3.1)], using the initial and boundary conditions [Equations (3.2)
and (3.3)] over the domain represented by H x L x W . In this regard, the
solution approach used is described in the next section.

3.3 Numerical Formulation

The solution of the governing equations was carried out employing the
Finite Volume Method (FVM), which was successfully used to investigate
different parameters during a thermal non-destructive test carried out by
infrared thermography [see, for instance, Rodriguez and Nicolau (2012)
and Lopez et al. (2012)]. This method consists of the integration of space
and time, over an elemental volume, the energy equation in the conserva-
tive form, which is equivalent to performing energy balances over all the
elemental volumes (Maliska, 2004). Thus, the conservation of energy is
guaranteed on each elemental volume, this being one of the most notable
advantages of the FVM.

Figure 3.5 shows an energy balance over a generic elemental volume
with dimensions dx x dy x dz, which was the methodology used to obtain
all of the local equations of temperature. The quantities qx, qy, and qz
represent the incoming and outgoing heat fluxes to the control volume,
considering any of the three heat transfer process: conduction, convection
and radiation.



3.3 Numerical Formulation 39

dx

dy

dz

qz│z+dz 

qz│z

qx│x qx│x+dx

qy│y+dy

qy│y

k/ρcp

k/ρcp

k/ρcp

k/ρcp

x

y

z

Figure 3.5: Energy balance for an elemental volume for a cell-center mesh.

As depicted in Figure 3.6, the domain under study was divided into
twenty-seven (27) types of elemental volumes, according to the position
and the heat transferred to the external environment and its neighbor-
hoods. The energy balances provide the local temperature equation at
the center of the volume (cell-center mesh), while the material thermal
properties (thermal conductivity and specific heat) remain stored at the
interface of the control volume.

Integrating Eq. (3.1) in space and time over the control volume shown
in Figure 3.5:∫ t+∆t

t

∫
Ω

ρcp
∂T
∂ t

=
∫ t+∆t

t

∫
Ω

∇.(k∇T ) (3.17)
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Figure 3.6: Discretization of the domain into twenty-seven (27) types of volumes,
according to the position and the heat transferred to external environment and their
neighborhoods.

the discrete energy balance for the internal volumes is obtained,

ρcp∆x∆y∆z
∆t

(
T t+1

P −T t
P
)

=
k

∆x

(
T t

W −T t
P
)

∆y∆z

+
k

∆x

(
T t

P−T t
E
)

∆y∆z

+
k

∆y

(
T t

N−T t
P
)

∆x∆z

+
k

∆y

(
T t

P−T t
S)

)
∆x∆z (3.18)

+
k

∆z

(
T t

B−T t
P
)

∆x∆y

+
k

∆z

(
T t

P−T t
F
)

∆x∆y
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The first term in Eq. (3.18) corresponds to the transient (or thermal in-
ertia) term, followed by the incoming and outgoing conduction heat fluxes
in each of the spatial coordinates. Due to the diffusive nature of the inter-
nal heat conduction process within the sample test, the derivatives present
in the energy equation were approximated using the central difference
scheme. It should also be noted that the implicit formulation is used as
the temporal interpolation function. Thus, the convergence of the iterative
process will not suffer the consequences of limitations in the time step ∆t.

Similarly, integrating Eq. (3.3) over space and time,∫ t+∆t

t

∫
Ω

n.(k∇T ) =
∫ t+∆t

t

∫
Ω

hconv(Tamb−T )+∫ t+∆t

t

∫
Ω

σε(T 4
amb−T 4) (3.19)

gives the discrete energy balance for the external surfaces of the sample,
which is obtained as follows:

k
∆x/2

(TW −TP)∆x∆z = hconv (Tamb−TP)∆x∆z+

εσ
(
T 4

amb−T 4
P
)

∆x∆z (3.20)

It is important to mention that the numerical formulation used in this
work uses entire volumes at the boundaries of the domain, thereby elim-
inating difficulties in the application of the boundary conditions, such as
non-uniformities of the volumes (which in the case of three-dimensional
problems results in greater difficulties in the computational structure) and
the increment of the linear system when using fictitious volumes.

The last step in the numerical approach is the treatment of the resistive
defects, since the thermal conductivities present in the Equations (3.18)
and (3.20) only refer to the case when their values remain constant over
the whole domain. This issue is discussed in the next section.
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3.3.1 Model for internal defects: the interface conductivity

It was mentioned during the description of the formulation of the ther-
mal model that internal defects are regions or discontinuities with differ-
ent thermal properties in relation to their surroundings. Since in Eq. (3.1),
kxx, kyy and kzz do not take into consideration the variation of the ther-
mal conductivity in the x-, y- and z-directions respectively, an appropriate
prescription is necessary for evaluating the thermal conductivity at the
interface of the elemental volume.

Considering the grid represented in Figure 3.7, Patankar (1980) pro-
posed the following expression for calculating the value for the thermal
conductivity at the e (east) interface:

ke =
2kPkE

kP + kE
(3.21)

Δx Δx

TP TETW kw/ρcp ke/ρcp

Figure 3.7: Representative model for resistive defects, as proposed by Patankar
(1980).

The approximation given by Eq. (3.21) can be easily obtained for the
rest of the interfaces (w, n, s, b, and f ) using the thermal resistance method
and this is of particular interest since, as in the FVM, it evaluates the
thermal conductivity at the interface of the elemental volume.
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3.3.2 Solution and convergence

In order to calculate the temperature field within the bulk of the ma-
terial and at its surface, it is necessary to solve the set of energy balance
equations developed in the last section. Because of the implicit formula-
tion used as a temporal interpolation function, this set of discrete equa-
tions was solved using the Gauss-Seidel iterative method. This iterative
method requires successive iterations within the same time level, until a
convergence criteria is reached. In this study the following criterion was
adopted:

RMSE(Tsim)∼ σ(Texp) (3.22)

As in Eq. (3.22), the iterative process is stopped when the root mean
square error of the surface mean temperature RMSE(Tsim) is of the same
order as the standard deviation of the experiment σ(Texp). Both quantities
are respectively computed using the following expressions:

RMSE(Tsim) =

√√√√ n
∑

i=1
(Tsim,i−Tsim,i−1)2

n
(3.23)

and,

σ(Texp) =

√√√√√ N
∑

i=1
(Texp,i− T̄exp)2

N−1
(3.24)

In Equations (3.23) and (3.24), n and N are, respectively, the total
number of iterations and experimental measurements. Figure 3.8 shows
the evolution of the RMSE as a function of the number of iterations. The
number of iterations required to satisfy Eq. (3.22) was twelve. On the
other hand, Figure 3.9 shows the evolution of the surface mean tempera-
ture over time considering different numbers of iterations (1, 5 and 12),
showing an unrealistic solution with higher-order oscillations when the
solution is carried out with only one iteration.

A computational program called PulsedT hermographyr was devel-
oped to compute and analyze the thermal response of the material when
an optical/thermal excitation is applied to the sample surface. The pro-
gram was developed using the MatLabr platform (MathWorks, 2010)



44 Modeling and Numerical Simulation

2 4 6 8 1 0 1 2
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8
RM

SE

N u m b e r  o f  I t e r a t i o n s

R M S E

Figure 3.8: Root mean square errors as function of Gauss-Seidel iteration numbers.

0 . 0 1 0 . 1 1
2 0

3 0

4 0

5 0
1 2  i t e r a t i o n s

5  i t e r a t i o n s

1  i t e r a t i o n

Te
mp

era
tur

e [
o C]

L o g  ( T i m e )  [ s ]
Figure 3.9: Surface mean temperature evolution curves for different Gauss-Seidel it-
erations numbers.



3.4 Experimental Validation 45

and it provides the temperature field over time and the thermal map of the
surface of the material, in a similar way as in a real NDT carried out by
infrared thermography. In this way, several parameters can be studied, in-
cluding the characteristics related to the thermal excitation (intensity and
non-uniform heating) and internal defects. The simulation parameters and
thermophysical properties of the inspected material are presented in Ta-
ble 3.1. All the numerical results reported below were obtained using the
same mesh and time step, assuring the consistency of the results.

3.4 Experimental Validation

Although information on a physical process is often obtained through
actual measurements, theoretical calculation is considered a reliable pre-
diction method and a means to obtain valuable information in a straight-
forward, fast and low-cost way. However, since theoretical prediction
is carried out using a mathematical model rather than a physical model
(Patankar, 1980), an experimental validation has been included in order
to validate the mathematical model and the hypothesis upon which the
governing equations are based.

The experimental validation was performed using qualitative and quan-
titative approaches. The qualitative verification consisted of carrying out
a pulsed thermography inspection of the carbon fiber-reinforced polymer
specimen (described in Appendix 4.1) and comparing the temperature de-
cay curves of different defective zones with that obtained through numer-
ical simulation. A total of five experiments were carried out in order to
calculate the standard deviation for the measurements. Details concerning
to the experimental approach are found in Section 2.2.3.

The thermal decay curves for the defective and non-defective regions,
obtained either by numerical simulation or experimental tests, were com-
puted using the following expressions:

Td(t) =
nx

∑
i=1

ny

∑
j=1

T (i, j)d

nx ·ny
(3.25a)

Tsa(t) =
nx

∑
i=1

ny

∑
j=1

T (i, j)sa

nx ·ny
(3.25b)
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Table 3.1: Simulation parameters and thermophysical properties used in the numerical
simulation.

Symbol Simulation Parameter Value

nx × ny × nz number of elements 202 × 202 × 42

dx × dy × dz dimension of volumes 1.5 × 1.5 × 5E−2

∆t time sept 6.37E−3 s

To initial temperature 22.5 oC

Tamb ambient temperature 22.5 oC

Tair air temperature 22.5 oC

H × L × W sample dimension 300 mm × 300 mm × 2 mm

δ ply thickness 0.2 mm

δ t pulse duration 15E−3 s

Irad radiant heat 12.8 J, 25.6 J

hlat convection heat transfer coefficient (lateral) 30 W/(m2 ·K)

hupp convection heat transfer coefficient (upper) 5 W/(m2 ·K)

hlower convection heat transfer coefficient (lower) 5 W/(m2 ·K)

Symbol Thermophysical Properties Value

φ f volume fraction 0.69

ρ f density (fiber) 1790 kg/m3

cp f specific heat (fiber) 710 J/(kg.K)

k f thermal conductivity (fiber) 50 W/(m.K)

ρm density (matrix) 1265 kg/m3

cpm specific heat (matrix) 1716

km thermal conductivity (matrix) 0.232 kg/m3

ρt density (Teflon) 2200 kg/m3

cpt specific heat (Teflon) 1050 J/(kg.K)

kt thermal conductivity (Teflon) 0.25 kg/m3

ε emissivity 0.97

ρ reflectivity 0.02
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In Equations (3.25), Td and Tsa correspond to the temperature signals
of the defective and non-defective regions. Td is computed as the mean
value over the entire defective region. Similarly, Tsa is computed as the
mean value within the surroundings of the defective area. The area over
which Tsa is calculated is twice the lateral size of the defective region.
Further discussions and analysis are based upon Equations (3.25). Fig-
ure 3.10 shows a comparison between the theoretical and experimental
decay curves (which refer to the cooling process resulting from the ap-
plied thermal stimulation) for defects with different aspect ratios, D/z.
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Figure 3.10: Comparison between experimental and simulated thermal decays of de-
fective areas were obtained using the Transversal and Behrens-Theoretical models for
thermal conductivity. Results correspond to defects with aspect ratio D/z = 7/0.2,
7/0.4, 15/0.2 and 15/0.4.
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Theoretical curves were obtained using the models for transversal ther-
mal conductivities described in Section 3.2.1: the series-parallel and the
Behrens-theoretical models. Sub-plots in logarithm scale have been in-
clude in order to observe the beginning of the cooling process in greater
detail.

As depicted in Figure 3.10, both numerical solutions− obtained using
the series−parallel and the Behrens−theoretical models for transversal
thermal conductivity − show a slight difference in relation to the exper-
imental decay curves, especially at the beginning of the cooling process.
This difference between numerical and experimental results is, in most
cases, attributable to the fact that the initial thermograms are often con-
taminated by saturation, i.e., the reading is outside the calibration scale
and no accurate measurement can be computed. Although the difference
between the numerical and experimental curves begins to decrease from
the second thermogram, for defects with aspect ratios D/z of 7/2 and 7/4
this difference is greater (see Figure 3.10 on top). This difference in be-
havior is due to the fact that the real distribution of energy deviates slightly
from that considered in the model (Gaussian distribution function), caus-
ing divergence especially in the case of the defects located at the center of
the specimen.

The quantitative verification of the numerical model is based on the
correlation coefficient between the experimental and simulated tempera-
ture decay curves. The correlation is a measure of the relationship (or
linear dependence) between two difference variables. Thus, a correlation
coefficient of 1 denotes a total positive correlation between the two vari-
ables, whilst a correlation of 0 means no correlation (Montgomery and
Runger, 2003). The correlation coefficient is calculated using the follow-
ing expression:

CX1X2 =
σX1X2

σX1σX1

(3.26)

In Eq. (3.26), CX1X2 is the correlation coefficient between variables X1
and X2; σX1X2 is the covariance and σX1 and σX2 are the variances of
X1 and X2, respectively.
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The correlation coefficients were calculated for the temperature de-
cays of all 25 defects, considering both models for thermal conductiv-
ity: series-parallel and Behrens-theoretical models. Results are depicted
in Figure 3.11. It can noted that the temperature curves obtained with
the Behrens-theoretical model showed better correlation coefficients than
when using the series-parallel model. The averages of the correlation co-
efficients obtained from the Behrens-theoretical and series-parallel mod-
els are respectively, 0.966 and 0.957.

According to the results obtained from the qualitative and quantitative
validation, the decay curves using the Behrens-theoretical model show
better agreement with the experimental curves than the obtained with the
series-parallel model. This is because the Behrens-theoretical model con-
siders more structural characteristics of the fibers (shape, distribution and
sizes) than the series-parallel model. For this reason, all of the results
shown in the subsequent sections are based on the numerical-solution us-
ing the Behrens-theoretical model.
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3.5 Numerical Results

3.5.1 Thermal analysis of subsurface defects

The results and analysis presented in this section are based on the
thermal behaviour during the cooling regime process of defective and
non-defective zones, resulting from the thermal excitation of the speci-
men under study. Figure 3.12 (top) shows the thermal evolution curves
for defects with D/z = 7/0.4 and 7/0.6. Similarly, the evolution curve
of a reference sound area has been included. These results were obtained
through numerical simulation considering a uniform distribution of irra-
diation.
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Figure 3.12: Normalized temperature decay (on top) and thermal contrast curves (on
the bottom) for defects with D/z = 7/0.4 and 7/0.6. Both results obtained by numer-
ical simulation and considering a uniform distribution of irradiation.
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Once the high-power short pulse is delivered to the material surface,
the temperature of the specimen increases rapidly until it reaches the max-
imum value Tmax, from which the cooling process begins. As can be ob-
served in Figure 3.12 (top), the defects are detected when dissimilar or
abnormal behavior of the decay curves for defective zones appears during
the cooling process. The time at which the thermal decay of a defective
region begins to present a dissimilar behavior compared to a reference
zone is referred to as tonset (onset time). This determines the moment at
which the defect can be first detected in the thermogram sequence and, as
will be further discussed, it is exclusively dependent on the depth of the
defects.

Figure 3.12 (bottom) shows the evolution of the thermal contrast, which
is defined as the temperature difference between defective and non-defective
(sound) regions. It can be observe from the thermal contrast plots the two
breaking points that characterized the thermal regime of the defects: the
onset time tonset and time of occurrence of the maximum level of thermal
contrast (tmax). The thermal contrast defects with depths z = 0.4, 0.6, 0.8
and 1.0 mm, are plotted in Figures 3.13, 3.14, 3.15 and 3.16, respectively.
It can be noted that deeper defects take longer to be detected (later onset
time) independently of their lateral size. These results are in agreement to
the following order of magnitude,

t ∼ z2

α
(3.27)

which states that the observation time is directly proportional to the square
of the depth and inversely proportional to the thermal diffusivity of the
material. It can also be observed that for defects with the same lateral
size, the deeper the defect the lower the maximum level of thermal con-
trast (Cmax) and the longer its time of occurrence (tmax) will be. Maximum
values for Cmax were obtained for defects located at a depth of 0.4 mm,
followed by a depth of 0.6 mm. The intensity of the thermal contrast for
defects located at depths of 0.8 and 1.0 mm is very low and these de-
fects are unlikely to be detected clearly without the use of data processing
techniques or IR devices of high performance.

From the thermal contrast plots shown in Figures 3.13 to 3.16, the Cmax
and tmax values of each curve were computed and plotted as a function
of depth. This analysis allows more detailed information to be obtained
concerning the relationship between the maximum thermal contrast, its
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Figure 3.13: Thermal contrast evolution curves for defects depth z = 0.4 mm.
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Figure 3.14: Thermal contrast evolution curves for defects depth z = 0.6 mm.
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Figure 3.15: Thermal contrast evolution curves for defects depth z = 0.8 mm.
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Figure 3.16: Thermal contrast evolution curves for defects depth z = 1.0 mm.
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associated time of occurrence and the depth and lateral size of the defects.
The results are shown in Figure 3.17.

Figure 3.17 (top) shows the maximum thermal contrast as a function
of depth, considering defects with lateral sizes of 15, 10, 7, 5 and 3 mm. It
is important to note that for defects with 0.2 mm of depth, the influence of
the lateral size can be neglected and the relationship given by Eq. (3.27)
is still valid. As the lateral size of the defect increases, the presence of
lateral heat diffusion becomes more important in the thermal process and
a 3D problem takes place.

0 . 1

1

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 1

1

log
(C

ma
x) [

o C]

 D  =  1 5  m m
 D  =  1 0  m m
 D  =  7  m m
 D  =  5  m m
 D  =  3  m m

log
(t Cm

ax
) [s

]

D e p t h  [ m m ]
Figure 3.17: Maximum thermal contrast Cmax and time of its occurrence as function
of defect depth.
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With regard to the time of occurrence of the maximum thermal con-
trast, Figure 3.17 (bottom) shows a similar pattern for defects located at
0.2 mm. Although the effect of the lateral size on tmax is weaker than in
the case of thermal contrast, there is a relationship between the time of oc-
currence of the maximum thermal contrast and the lateral size and depth
of the defects.

The relationship between defect depth and onset time is evident, as
can be seen in Figure 3.18. The curve shows a strong correlation between
the two variables and thus the influence of the lateral size of the defects
on tonset can be neglected. It is important to mention that the relation
observed only applied to depths of 0.2 to 1.0 mm. Greater depths, or dif-
ferent thermal properties of the material, can lead to a different behavior.
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Figure 3.18: Onset time tonset as function of defect depth.
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3.5.2 Impact of non-uniform heating

Non-uniform heating is probably the most undesirable condition and it
is an unavoidable problem in the configuration of the irradiation sources.
Other factors that contribute to the non-uniformity are natural convection
(especially over longer periods) and the optical properties of the surface.

In order to investigate the influence of non-uniform heating on the de-
tection of defects and on the parameters previously discussed, a numerical
simulation using a Gaussian distribution function was carried out and the
results compared with those obtained when an ideal uniform distribution
is applied to the surface. Figure 3.19 shows a comparison between two
sets of thermograms obtained at different times and considering uniform
and non-uniform irradiation distributions.

It is evident that the visibility of defects is greater when an ideal heat
distribution is applied compared with non-uniform heating of the surface
of the material. At 0.0064 s after the beginning of the cooling process
(see Figure 3.19a) the temperature span of the thermogram using uniform
heating is approximately 1 oC. On the other hand, when non-uniform
heating is applied the span increases to approximately 1 oC. For longer
periods, the temperature span with non-uniform heating continues to be
greater than when an ideal heat distribution is applied, which affects the
sensitivity of the PT technique in terms of the detection of deeper and
smaller defects. For instance, it can be observed that all defects − even
those with the smallest aspect ratios − are visible at 0.770 s when the
heat is ideally distributed (see Figure 3.19c left column); however, when
the heat is applied with a Gaussian distribution, the smaller and deeper
defects (D/z = 3/0.8 and 3/1.0) are almost undetectable.

The quantitative analysis of the defects is also strongly affected by
non−uniform heating. Since most of the techniques used to quantify the
depth and shape of defects are based on the computation of the thermal
contrast (this topic will be further discussed in Chapter 6), a considerable
contribution to the uncertainty in the quantification process is due to the
non-uniform excitation. Figures 3.20 and 3.21 show respectively, a com-
parison between the Cmax (maximum thermal contrast) and tmax (time of
occurrence of the maximum thermal contrast) values computed from the
thermal sequences obtained by numerical simulation, considering uniform
and non-uniform heating.
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(a)

(b)

(c)

Figure 3.19: Comparison of simulated thermograms obtained considering uniform
(left column) and Gaussian (right column) irradiation distribution functions. Thermal
images correspond to (a) 0.00637, (b) 0.0127 and (c) 0.2547 s.
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and Gaussian distribution functions of irradiation.
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In general terms, it can be observed that as the depth increases, the
difference between the values computed with uniform and non-uniform
heating becomes greater. The maximum thermal contrast of defects with
z = 0.2 mm, are the most affected due to that they are located in the center
of the specimen, where most of the energy is concentrated. Another im-
portant deviation between thermal contrast values obtained with Gaussian
and uniform distribution can be seem in defects with z = 0.4 mm (see
Figures 3.20 and 3.21). In this regard, defects with the largest lateral sizes
(D = 15, 10 and 7 mm) are the most sensitive to non-uniform heating,
which can lead to uncertainties when quantitative analysis is performed.

3.5.3 Impact of defect thickness

The results presented up to this point consider defects with a thick-
ness δ value of 0.1 mm. In order to study the influence of this variable on
the defect detectability level, a numerical simulation was conducted con-
sidering δ = 0.2 mm and a non-uniform distribution of the irradiation.
Figure 3.22 shows two simulated thermograms obtained at 0.0064 s (top)
and 0.191 s (bottom) after the beginning of the cooling process. To the
left of each thermogram there is a comparison of the temperature profiles
along the dotted line, considering δ = 0.1 mm and δ = 0.2 mm. It can be
observed that the increase in the defect thickness produced an overall rise
in the temperature field of the material surface. This behavior is interest-
ing since the rise in temperature is not restricted to the defective regions.
The influence of the defect thickness is more evident at later times.

It can also be observed in Figure 3.22b that the temperature profiles
along the dotted line show that at 0.191 s the defects with a thickness
of 0.2 mm provide greater thermal contrast than those with a thickness
of 0.1 mm. The mentioned above can be seen in greater details in Fig-
ure 3.23, where is shown a comparison between the thermal contrast
curves of defects with δ = 0.1 mm and 0.2 mm, and considering aspect
ratios of 5/0.1 and 5/0.4. As expected, higher thermal contrast values
were obtained when the defect thickness was 0.2 mm. However, tmax and
tonset values remained constant when the defect thickness was increased,
even though the value for the maximum thermal contrast showed a propor-
tional increase. Figure 3.24 shows a comparison between the Cmax values
obtained in the two cases, showing that they are strongly correlated. In
other words, Cmax is proportional to defect thickness.
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Figure 3.22: Simulated thermal profiles along x−directions (considering defect thick-
ness δ = 0.1 and 0.2 mm and a non-uniform distribution of the irradiation) and ther-
mograms obtained at (a) 0.0064 s and (b) 0.191 s..
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3.5.4 Impact of irradiation power density

The amount of energy delivered to the material surface during the ap-
plication of the thermal excitation can lead to significant modifications in
the detectability of defects. Figure 3.22 shows the influence of the irra-
diation power density on the thermal contrast which, as previously men-
tioned, is the variable used to estimate the detectability level of defects.

As shown in Figure 3.25, an increase in the radiant heat from 12.8
to 25.6 kJ produced an increase in the peak value for the thermal contrast
Cmax for all defects. The defects with depth z = 0.2 mm and 0.4 mm were
the most sensitive to the increase of the radiant heat, with their Cmax values
increasing by approximately 100 %. As long as the depth of defects in-
creases, the difference between Cmax values obtained with different radiant
energy becomes smaller. However, it is important to mention that a con-
siderable increase of Cmax is achieved in defects with depth z = 0.2 mm
when the radiant energy was increased.

It is also worth mentioning that the time of occurrence of the max-
imum contrast of the defect, tmax, remained unaffected by the increase
in the irradiation power. This is a very important factor since it means
that the detection of the defects using the PT inspection technique can be
enhanced without affecting the time at which the defects are more visible.
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Figure 3.25: Comparison of Cmax values considering radiant heat of Irad = 12.8 kJ
and 25.6 kJ. Values of Cmax were obtained considering a Gaussian distribution func-
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Figure 3.26 shows the thermal contrast evolution curves for defects
with aspect ratio D/z = 10/0.2, 10/0.4, 10/0.6, 10/0.8 and 10/1.0,
considering a radiant heat of 25.6 kJ. Along with the thermal contrast
plots are the moment at which the maximum thermal contrast takes place
(marked with ×) when the radiant heat is 12.8 kJ. It can be seem that
the time of occurrence of the maximum thermal contrast remains invari-
able when the amount of radiant heat is altered. Those results are only
applicable when the distribution of surface irradiation remains the same.
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Figure 3.26: Thermal contrast curves for defects with lateral size D = 10 mm, consid-
ering I = 25.6 kJ. ‘×′ are the points of maximum thermal contrast for I = 12.8 kJ.
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3.6 Summary

Numerical simulation constitutes one of the main approach used to
analyse the applicability of a given TNDT technique as well as to un-
derstand the involved phenomenology in cases where the experimental
approach is almost impossible to perform. In regard to PT, most of the
mathematical models used to explain the heat transfer that arises from the
thermal excitation are based on simplified equations obtained from the
solution of the 1D heat conduction equation, considering that the thermal
pulse has the same temporal shape as the Dirac delta function. However,
these simplified models only apply when the heat conduction regime is
1D, which in general terms is only valid for small temporal windows and
shallower defects. For this reason, it has been developed in this survey a
methodology to model and simulate the pulsed thermography inspection
in anisotropic media.

The proposed model considers the heat conduction in 3D and transient
regime. Furthermore, in the model are considered the thermal loses be-
tween the sample surface and the environment as well as the thermophys-
ical properties of the laminated composite. In this sense, two different
models have been tested: the Behrens-theoretical and the series-parallel
model. The solution of the thermal model was carried out through the
Finite Volume Method and the simulated results were validated with ex-
perimental data.

A parametric study was conducted and the analysis was based on the
response of the informative parameters obtained during the cooling pro-
cess regime: the onset time, maximum thermal contrast and its time of oc-
currence of all the 25 defects in the CFRP specimen. Several parameters
were studied, such as the geometry of the defects and the the associated
to the external thermal excitation.
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Chapter 4

Thermographic Signal Processing

This Chapter provides an in-depth analysis and a critical review of
three of the most used processing methods for pulsed thermography data:
thermographic signal reconstruction (TSR), differential absolute contrast
(DAC) and pulsed phase thermography (PPT). A methodology to study
the performance of the the processing techniques is developed. The eval-
uation of the techniques is based on the signal-to-noise ratio at maxi-
mum signal contrast of thermographic signals of 25 defects with different
aspect ratios on two academic specimens made up of glass and carbon
fibers. The discussion and analysis − which are presented in terms of
the application, advantages and limitations of each technique − will pro-
vide the basis for the development of a more robust method of processing
pulsed thermography data.

4.1 Background

The inspection by pulsed thermography still presents great challenges,
specially when inspecting highly-anisotropic materials such as the inves-
tigated in this Thesis. At larger times, blurring− the effects of lateral heat
diffusion − becomes more predominant thus causing lost in defect visi-
bility. Additionally, due to the nature of the measurement process, the sig-
nals acquired with the infrared camera are often contaminated with arti-
facts from external reflections, emissivity variations and also non-uniform
heating caused during the application of the external excitation. This later
is probably the most harmful and it is an unavoidable problem in the con-
figuration of the heating sources, affecting in particular the detection of
smaller and/or deeper defects (see for instance section 3.5.2). Due to these
problems, PT, in its basic form, is generally limited to qualitative applica-
tions on large and near-surface defects.
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Most of the problems that arise from blurring and non-uniform heating
can be eliminated through the implementation of processing techniques to
the temperature signatures obtained with the IR camera. In general terms,
most of the techniques consist in a transformation of the temporal data
to a different domain with the purpose of simplifying data analysis and
obtain a new variable to deal with. This new variable may improve the
defect detection, especially to those that are more sensitive to the effects
of lateral heat diffusion and non-uniform heating.

Thermographic signal processing is a topic that has been subject of
investigation by several researchers (Hidalgo-Gato et al., 2013; Ibarra-
Castanedo et al., 2009). Currently exits a wide spectrum of algorithms
for the processing of thermographic images, most of them being applied
to pulsed thermography inspection. Figure 4.1 shows a compendium of
the principal methods currently available, standing out two streams of al-
gorithms: single image and image sequence techniques. Single image
techniques aim to perform − at once − spatial processing of single ther-
mograms collected during the acquisition. These methods are generally
based on mathematical and statistical operations such as mean substrac-
tion, filtering, histograms and variance analysis. On the other hand, image
sequence techniques are intended to processing the data on space and time
and require complex computations of a sequence or stack of images that
describes the temporal evolution of the thermal response. Although these
methods are generally time-consuming and requires large computational
resources, they can provide quantitative information of the subsurface dis-
continuities.

As depicted in Figure 4.1, there are four categories of processing
methods within the group of images sequence techniques: thermal con-
trast, space transformation, heat conduction and statistical multivariate
-based techniques. The simplest processing − and analysis − methods
of PT data are the thermal contrast-based techniques, which rely on the
comparison of a defective and non-defective region. There are available
in the literature several formulations of thermal contrast, each one with
particular definitions and applications (see section 2.2.4).

Space transformation-based techniques enable the representation of
temporal signals into a combination of sinusoidal waves or wavelets. The
Discrete Fourier Transform (DFT) constitutes the basis of pulsed phase
thermography (PPT), enabling to go back and forth using the duality
principle between the frequency and time domains. The idea behind the
Fourier Transform is that it is possible to reconstruct any 1D function
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at a particular space (e.g. temperature evolution in time) as a summa-
tion of sinusoidal terms of increasing frequency. In addition to the DFT,
other transformations are possible such as the Discrete Wavelet Trans-
form (DWT). The wavelet transform (WT) was intended as an alternative
transformation algorithm to better represent transient functions. Instead
of using waves (e.g. the sinusoids) as in the FT, the WT uses wavelets (i.e.
waves of limited duration) as its basis functions. The use of wavelets al-
lows processing the information at different scales (or resolutions) by de-
composing the signal into stretched and scaled replicas of a base wavelet,
which allows a better approximation of sharp functions (Ibarra-Castanedo
et al., 2006).

Heat conduction-based techniques constitute the core of the process-
ing methods applied to pulsed thermography data. As its name implies,
these methods are based on the solution of the 1D heat conduction equa-
tion. In spite of being physically-base methods, they are restricted to situ-
ation in which the thermal regime of the heat conduction is 1D. However,
the improvement of defect visibility is considerable greater especially in
defects with larger aspect ratio D/z. Finally, statistical multivariate-based
techniques represent a new trend of processing and analysis of thermo-
graphic images. These techniques are based on statistical concepts to
transform the PT data into a new subspace called of latent variables. Two
techniques are based upon this concept: principal component thermog-
raphy (PCT) and the new-introduced partial least squares thermography
(PLST).

From the presented scenario of processing methods, this survey anal-
yses the performance of three of the most attractive methods for PT data:
differential absolute contrast (DAC), thermographic signal reconstruction
(TSR) and pulsed phase thermography (PPT). These techniques has been
widely reported as the most suitable processing methods for pulsed ther-
mography data (Ibarra-Castanedo et al., 2009; Oswald-Tranta and Shep-
ard, 2013). The mathematical concepts of the techniques are briefly re-
vised, followed by the implementation on a set of thermographic images
collected during a PT inspection on two laminated composites made up of
glass and carbon fibers (specifications of plates CFRP006 and GFRP006
are in Appendix ). The SNR at maximum signal contrast is the quantity
adopted to evaluate the performance of each technique. The discussion
begins with techniques whose analysis is performed in the time-domain:
DAC and TSR.
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4.2 Time-domain Processing Techniques

4.2.1 Differential absolute contrast, DAC

DAC (Pilla et al., 2002) is a classical processing technique whose main
goal is to eliminate the downside of selecting a sound area when perform-
ing classical thermal contrast computations (see section 2.2.4). Based on
the solution of the 1D heat diffusion equation, DAC estimates the temper-
ature of a sound area (Tsa) at time t ′, which is computed locally assuming
that on the first few images all points behave as a sound area. Thus, the
thermographic data obtained from a PT experiment can be approximated
to the 1D solution of heat equation through following expression (Pilla
et al., 2002):

∆TDAC = Td(t)−
√

t ′

t
·T (t ′) (4.1)

The first step in the implementation of the DAC method is to define t ′

as a given time value between the instant when the thermal excitation is
applied, and the precise moment when the first defective spot appears on
the thermogram. Figure 4.2 shows the methodology implemented to find
a proper t ′ through the use of IrView (Klein et al., 2008) − a graphical
user interface developed to this aim − considering a defect with aspect
ratio D/z = 10/0.2. Figure 4.2 also shows the estimated thermogram
used as a reference. It can be observed from this thermogram that the
frames following the flash excitation are often contaminated with satura-
tion and effects associated to the non-uniform excitation. This last may
affect the performance of DAC. Furthermore, it is important to emphasize
that Eq. (4.1) is a good approximation at earlier times; as time elapses,
Eq. (4.1) will diverge from the semi-infinite case. The last mentioned is
exemplified in Figure 4.3, where are shown two thermograms obtained
after being processed with DAC, at two different times.

It can be noted from Figure 4.3 that, as time elapses, the effectiveness
of the technique is affected as a consequence of the divergence between
actual measurement and the solution provided by Eq. (4.1). The diver-
gence from the semi-infinite model affects primary deeper defects. De-
spite this, DAC provides an improvement on defect visibility and reduc-
tion of artifacts caused by non-uniform heating, specially at the beginning
of the cooling process (see the temperature profiles along the dotted lines).
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Figure 4.3: Processing results with DAC of the CFRP specimen inspected by pulsed
thermography, at (a) t = 0.0254 s and (b) t = 1.91 s.
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4.2.2 Thermographic signal reconstruction, TSR

TSR (Shepard, 2001; Shepard et al., 2002) is an attractive processing
method specially conceived to be used in PT data. This technique brings
important improvements and advantages over PT raw data, the most sig-
nificant being the simplicity and accuracy of quantitative measurement,
increase of temporal and spatial resolution, reduction of high frequency
noise and the ability to produce time derivative images. The basis of TSR
is the use of a low order polynomial function to reconstruct − or to fit −
the temperature evolution cooling profiles obtained from an inspection by
PT. Assuming that the temperature decay of a defect-free region behave
in a similar manner as the solution of the 1D heat diffusion equation, the
temperature evolution of a non-defective area can be written in logarith-
mic form as:

ln(T −To) = ln(
Q
e
)− 1

2
ln(πt) (4.2)

In Eq. (4.2), T0 is the initial temperature whereas T is the variable
temperature; Q is the applied heat energy as external stimulation, e is the
thermal effusivity of the material [defined as e = (kρcp)

1/2] and t is the
time. From Eq. (4.2) it is possible to model the temperature evolution of
a free-defect region as a fixed and straight line with slope = −0.5 . This
linear and fixed-slope behavior is independent of the thermal properties
and the applied heat flux [see second term of Eq. (4.2)]. Obviously, de-
fective regions will diverge from linearity. The regression proposed by
Shepard (2001) consisted on the use of an m-degree polynomial function
to approximate the logarithmic time dependence of thermographic data.
This polynomial function can be written as:

ln(T −To) = ao +a1 ln(t)+a2[ln(t)]2 + ...+am[ln(t)]m (4.3)

As can be observed in Eq. (4.3), one of the main steps in the regression
process in TSR is the selection of the appropriate number of coefficients
m to fit the thermographic data. For isotropic materials, a good correspon-
dence between acquired data and fitted values can be achieved setting m
to 4 or 5. Nevertheless, when working with anisotropic materials such as
those considered in this work (carbon fiber reinforced polymers) the num-
ber of coefficients should be carefully selected in order to avoid higher
residuals between fitted and experimental data.
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As already mentioned, one of the main contributions of TSR is the
ability to produce time derivative-images without additional noise contri-
bution. First and second time derivative-images are obtained using the
following expressions:

d
dt

ln(∆T ) =
N

∑
n=1

nan ln(t)n−1 (4.4a)

d2

dt2 ln(∆T ) =
N

∑
n=2

(n−1)nan ln(t)n−2 (4.4b)

being ∆T = T −To. The main achievement of the time derivative-images
is the apparent reduction of blurring (lost of contrast due to lateral heat
diffusion), which is a consequence of the fact that the derivative-images
provide earlier indications of both, the onset time and time of occurrence
of the maximum contrast, than normal contrast images of the same tar-
get (Shepard, 2007). As is shown in Figure 4.4, with synthetic tempera-
ture data the defect becomes visible approximately in the 5th thermogram.
However, using the first and second time derivative-images the onset of
the defect is reduced to the 4th and 3th frames, respectively.
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Figure 4.4: Contrast curves of synthetic thermal data, 1st and 2nd time derivative-
images, for a defect with D/z = 10/0.2 in the CFRP specimen.
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4.3 Processing and Analysis in the Frequency Domain

4.3.1 Pulsed phase thermography, PPT

PPT is a processing technique introduced by Maldague and Marinetti
(2002). The basis of this technique is the superposition principle, which
states that a time-domain response T (t) can be decomposed into a frequency-
domain response using Fourier expansion:

T (x,t) = ∑a(ωn)T (z,ωn,t) (4.5)

In Eq. (4.5), T (z,ωn,t) is a plane thermal wave of angular frequency
ωn propagating in the z−direction and a(ωn) is a measure of the strength
of this component in the frequency concerned. Physically, the diffusion of
heat from the surface into the material can be understood in terms of the
propagation of these thermal waves into the solid away from the surface.
The different frequency components will suffer different amounts of at-
tenuation, increasing or decreasing the penetration of each of the thermal
waves (Almond and Patel, 1996). It is because of this duality between the
transient and harmonic problem that PPT is considered as the link between
Pulsed and Lock-in Thermography (Ibarra-Castanedo et al., 2007b).

In PPT the data is transformed from the time domain to the frequency
domain using the one-dimensional discrete Fourier transform (DDT):

Fn = ∆t
N−1

∑
k=0

(k∆t)exp−
j2πk

N = Ren + Imn (4.6)

where j is the imaginary number, n designates the frequency increment
(n = 0,1,...,N), ∆t is the sampling frequency interval, and Re and Im
are the real and imaginary parts of the transform, respectively. Although
from Eq. (4.6) is possible to obtain amplitude A and phase φ , fast Fourier
transform algorithms are available in commercial in packages such as
Matlabr.

PPT offers interesting features specially when working with phase
data. The phase maps, or phasegrams, enable measuring the difference
between the sinusoidal oscillations of two or more thermal waves. As
explained by the harmonic heat transfer theory, the phase difference (or
phase lag) can be associated to the location of internal barriers − or de-
fectives zones at the interior of the material − that produces internal re-
flections of thermal waves between the interface of the defect and the
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surface of the specimen. Thus, along with a considerable improvement
in the reduction of environmental reflections, emissivity variations and
non-uniform heating, phase data enables quantitative analysis of defects
(Ibarra-Castanedo and Maldague, 2005; Maldague and Ibarra-Castanedo,
2004).

In spite of the advantages in terms of reduction of non-uniform arti-
facts and external reflections, PPT is affected by harmonic oscillations.
Figure 4.5 shows the phase profiles for defective and sound areas and the
corresponding phase contrast, considering a defect located at 2 mm depth
in the carbon fiber reinforced polymer specimen. It can be noted at higher
frequencies PPT is highly affected by higher-order oscillations. These
side effects of PPT affect mostly shallower defects (associated to high
frequencies) rather than deeper defects (related to low frequencies).
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Figure 4.5: Phase profiles (for defective and sound area) and phase contrast of a defect
with D/z = 10/0.2 in the CFRP specimen.

As already explained, all three techniques possess advantages and lim-
itations which depend mainly on parameters related to the subsurface de-
fects. Next section is dedicated to describe the methodology adopted to
compute the signal-to-noise ratio.
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4.4 Quantification of Signal-to-Noise Ratio at Maximum Sig-
nal Contrast

This section section discusses the characterization of the signal-to-
noise ratio (SNR) at maximum signal contrast. A method of distinguish-
ing discontinuities and sound areas is first presented, followed by the
methodology implemented to analyze the performance of the signal pro-
cessing techniques based on the SNR at maximum signal contrast.

4.4.1 Methodology of selection of defective and sound areas

The variable contrast has been established as a standard variable to
determine how strong or how weak is the signal of a defect, or in other
words, its visibility. The variable contrast is defined as:

C =4S(t) = |Sd(t)−Ssa(t)| (4.7)

where Sd(t) and Ssa(t) are respectively the temporal signals of defective
and non-defective regions. These signals may be temperature, phase or
intensity of 1st and 2nd derivative images at a particular frame. In simi-
lar manner as in section 3.4, signals from defective and sane regions are
computed using the following expressions:

Sd(t) =
nx

∑
i=1

ny

∑
j=1

S(i, j)d

nx ·ny
(4.8a)

Ssa(t) =
nx

∑
i=1

ny

∑
j=1

S(i, j)sa

nx ·ny
(4.8b)

Figure 4.6 shows the defective and sane regions over which Sd(t) and
Ssa(t) are computed. The area over which Ssa(t) is calculated is twice
the lateral size of the defective region. This methodology of selection of
defective and sound areas was implemented in order to avoid the require-
ment to establish a reference region as a sound area, which in most cases
the computation of 4S(t) will differ as a function of the localization of
the non-defective region, mainly because of the effects of non-uniform
heating [see for instance Ibarra-Castanedo et al. (2007a)].
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Figure 4.6: Selection of defective (red squares) and non-defective (blue squares) re-
gions for different lateral sizes of defects.

4.4.2 Signal-to-noise ratio

The quantity adopted to characterize the performance of the signal
processing techniques is the signal-to-noise ratio (SNR). The quantifica-
tion of the SNR will allow to analyze the relationship between the desired
signal strength and the level of background noise at the maximum sig-
nal contrast. From this quantification it is also possible to determine the
advantages and limitations of each processing technique based on the in-
spection parameters, thermal properties of the material and aspect ratio of
defects. SNR is calculated using the following expression (Grinzato et al.,
1995; Ibarra-Castanedo et al., 2009):

SNR =
C2

σ2 (4.9)

In Eq. (4.9), C2 and σ2 are respectively the amplitude of the signal and
background noise. Signal amplitude is calculated using Equations (4.8),
while the background noise is determined from the variance over the en-
tire sound area. The variance is calculated using the following expression:
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Ssa(t) =

n

∑
i=1

(Si− S̄)2

n−1
(4.10)

In Eq. (4.10), S̄ is the mean value of the signal and n is the total
numbers of pixels that comprise the sound area. Eq. (4.9) can also be
expressed in logarithmic decibels. In decibels, the SNR is defined as
(Huynh-Thu and Ghanbari, 2008):

SNR = 10 · log10

(
C
σ

)2

= 20 · log10

(
C
σ

)
(4.11)

It is important to note that each calculation using Equations (4.9)
to (4.11) is performed on every frame. Since it is of interest to quan-
tify the maximum SNR possible, both the amplitude of the signal and the
background noise are calculated at the maximum value of the contrast.
In terms of Cmax, the equation to compute the SNR at maximum signal
contrast and in decibels is expressed as:

SNRCmax = 20 · log10 Cmax−20 · log10 σCmax (4.12)

As already discussed in Chapter 3, the selection of Cmax is inherent
to a particular defect. Thermal properties of the specimen, as well as the
aspect ratio of the defects and the method used as a processing technique
will determine the time of occurrence of Cmax.

In next section is described in details the methodology adopted to cal-
culate the SNR.

4.4.3 Methodology

Figure 4.7 shows the methodology adopted in this work to analyze
the performance of the signal processing techniques based on the SNR at
maximum signal contrast. This methodology is conceived as a standard
method to be use in all the three techniques subject to discussion in this
thesis.

The experimental data consisted on a set of IR thermal images ob-
tained through the inspection by PT of the carbon and glass fiber rein-
forced polymers (CFRP006 and GFRP006 specimens) using the system
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Figure 4.7: Methodology adopted to calculate the SNR at maximum signal contrast.

introduced in Chapter 2. Both specimens were inspected using a fixed ac-
quisition frequency ( fs) of 157 Hz, which is the maximum full-frame rate
achieved (320x256 pixel array). Furthermore, a total of N = 1000 frames
− maximum storage capacity of the IR camera − were collected in each
inspection. Once the inspection is carried out, the complete thermal se-
quences of both experiments were processed using TSR, PPT and DAC. It
is important to point out that no signal treatment was applied (reduction of
truncation window, increase or reduction of sampling parameters) to the
raw data in any of the techniques. However, since the only basis used to
select the acquisition parameters was the use of the maximum frequency
allowed by the IR camera, SNR results may vary using other acquisition
parameters.



4.5 Comparative Results and Analysis 83

The next step after the application of the processing techniques is the
computation of the maximum signal contrast. This is a crucial step and
is accomplished using Equations (4.7) to (4.8). Along with Cmax, tmax
(time of occurrence of Cmax) is computed as well, which is necessary also
to calculate the noise over the sound area. As already mentioned, Cmax
and tmax are inherent to some characteristics associated with the defects
(depth and lateral size), thermal properties of the specimens and also the
processing technique. Finally, the last stage of the methodology is the
analysis of the performance of the signal processing techniques based on
the computation of the SNR [Eq. (4.12)].

In the next section are presented the results and analysis of the com-
puted values of SNR at maximum signal contrast.

4.5 Comparative Results and Analysis

The results to be presented herein are divided in two sections, each
corresponding to the analysis of the data processing techniques in the
specimens CFRP006 and GFRP006. The discussion begins with results
obtained in the carbon fiber reinforced polymer composite.

4.5.1 Carbon fiber reinforces polymer composite

Figure 4.8 shows a comparison of processed images at different times
and frequencies obtained after the implementation of DAC, 1st and 2nd

TSR derivatives, and PPT, to the PT thermal sequence. The first, second
and third row of the Figure 4.8 correspond to the first, fifth and fiftieth
frame of the new processed sequences.

It can be observed that the first frames of the new processed sequences
show no information about the localization of the defects, except for PPT
[column (d)]. Since the strongest detection mechanism in the frequency
domain is at lower frequency components, PPT enables to detects the
deeper defects in the first frame of the sequence (which correspond to
the lowest frequency f = 0.156 Hz), whilst the shallowest defects (lo-
cated at z = 0.2 mm) are visible from the 5th frame of the PPT-phase
sequence ( f = 0.785 Hz).

It is also important to note from the processed results showed in Fig-
ure 4.8 that DAC and TSR require more time to detect the defects− com-
pared to PPT, which the detection occurs during the first frames of the
processed sequence. This is obvious since both techniques are based on
the heat conduction equation [see for instance Eq. (3.27)].
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t = 0.0318 s f = 0.785 Hz

t = 0.00637 s f = 0.156 Hz

t = 0.318 s f = 7.85 Hz

Figure 4.8: Comparison of processing results in the CFRP006 specimen: (a) DAC, (b)
TSR, 1st derivative, (c) TSR, 2nd derivative, and (d) PPT, phase. Processing results
correspond to the 1st , 5th and 50th frame of the PT thermal sequence.

In spite of the above mentioned, DAC and TSR (1st and 2nd derivative
images) shorten the onset time of the defects compared to raw data, al-
lowing thus a considerable reduction of noise due to lateral heat diffusion
[see Figures 4.8a, b and c].
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In Figure 4.9 are showed the results of SNRCmax for raw data and after
applying the signal processing techniques on the thermographic sequence
obtained in the PT inspection. Furthermore, the average of the SNR at
maximum signal contrast of each technique are plotted (in dashed line) in
order to estimate an overall performance. This value however should be
examined with caution, since it reflects the techniques performance under
the experiment conditions and not a global assessment of the goodness of
the techniques.
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Figure 4.9: Comparison of SNR at Cmax results for raw data and after processing the
thermogram sequence obtained in the CFRP006 PT inspection.

As a first observation from these graphs, it can be concluded that no
signal processing would be required for defects having an aspect ratio
above 25, since the SNR obtained from raw thermograms is comparable
(and sometimes higher) than the processed results. The real usefulness
of processing data becomes more evident for defects having the smallest
aspects ratios.
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In spite that most of the defects have SNRs greater than 20 decibels
(considered to be the detection threshold), an appreciable enhancement
of the SNRs at maximum signal contrast were achieved with the treat-
ment of the thermal images using each of the techniques, especially for
those defects with aspect ratio below 10 (more challenging defects to be
detected). For defects with aspect ratio below 25, 1st and 2nd derivative
(TSR) and phase images (PPT) provide important improvements on the
signal-to-noise ratio. DAC can provide improvement when the aspect ra-
tio is greater than 37. As long as the aspect ratio becomes lower than 37,
the performance of DAC is seriously affected. It can be also observed in
the plots showed in Figure 4.9 that the SNR of defects with aspect ratio
of 3, 7 and 10 in raw data is zero. This is due to the fact that, in the case
of defects with D/z = 3 and 7, there was not enough contrast to detect
them, and, in the case of the defect with D/z = 10, the noise level was
higher than the signal amplitude.

Figure 4.10 shows the images obtained at Cmax as function of depth
and thermographic signal processing technique, considering only defects
with 5 mm of lateral size. The main objective of these images is to validate
the methodology adopted to evaluate the performance of the processing
techniques. The image sequence presented in Figure 4.10 agrees with
the SNR results, which determine that for the CFRP006 specimen, the
best results are achieved with TSR 1st derivative and PPT phase-images.
Moreover, the rectangular shape of the defects is still preserved for the
defects located at 0.2, 0.4 and 1.0 mm depth.

Conversely to TSR 1st derivative and PPT, the signal strength of DAC
and TSR 2nd derivative is highly affected as the depth increases. Even
considering the great SNRs obtained with DAC in defects with higher
aspect ratios (shallower defects), results show a drastically decrease of
SNRs as the values of D/z become lower. As discussed earlier, DAC is
a suitable method only for shallower defects, which according to the 1D
heat conduction equation is equivalent to shorter observation times.
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Figure 4.10: Images obtained at Cmax as function of depths and thermographic signal
processing techniques. All images correspond to the defects with 5 mm of lateral size
of the CFRP006 specimen.

4.5.2 Glass fiber reinforces polymer composite

In Figure 4.11 is showed a set of processed images with DAC, 1st and
2nd TSR derivative and PPT, considering the same times and frequencies
as in the CFRP006 specimen. It can be observed that in general terms
the inspection of the GFRP006 presents more challenges than in the case
of the carbon fiber reinforced polymer composite. The defects require
more time to be detected and their signal strength (or contrast) is weak.
The effects of lateral heat diffusion are stronger and the convection heat
transfer plays an important role in signal degradation. As expected, the
first frames of the processed sequences (first row of Figure 4.11) do not
reveal the presence of the subsurface defects, except for PPT.
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Figure 4.11: Comparison of processing results in the GFRP006 specimen: (a) DAC,
(b) TSR, 1st derivative, (c) TSR, 2nd derivative, and (d) PPT, phase. Processing results
correspond to the 1st , 5th and 50th frame of the PT thermal sequence.

The defects located at 0.8 and 1.0 mm are barely detected at t = 0.318 s
with TSR 1st and 2nd derivative images (see Figures 4.11a, b and c). Once
again, DAC provides good results only in shallower defects (or larger val-
ues of D/z). It can be observed in Figure 4.11a that the defects located at
z = 0.8 and 1.0 mm are not detected after the implementation of DAC.
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Results of signal-to-noise ratio at maximum signal contrast are de-
picted in Figure 4.12. SNRs of raw data are also plotted, along with the
average of the SNR results of each technique (dashed line) in order to
estimate an overall performance. As in the case of the fiber carbon spec-
imen, defects with SNR below 20 decibels are undetectable. In the other
hand, defects with SNR beyond the detection threshold are considered de-
tectable. Interestingly, seven (7) defects are below the detection threshold
without processing data (in the case of the carbon fiber specimen, only
four defects were below 20 decibels); this represents the great challenge
in inspecting materials made up of glass fiber reinforced polymers.
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Figure 4.12: Comparison of SNR at Cmax results for raw data and after processing the
thermogram sequence obtained in the GFRP006 PT inspection.

It can also be observed from the plots showed in Figure 4.12 an appre-
ciable improvement in the SNRs (compared to raw data) after processing
the thermal sequence, even in defects with aspect ratio of 3 (more chal-
lenging defects). Those results showed that PPT phase images and TSR
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1st derivative images presented globally the highest values, followed by
DAC. TSR 2nd images showed little effectiveness in improving the quality
of the signals. It should be mentioned that the acquisition parameters of
the PT inspection play an important role on the effectiveness of the pro-
cessing technique, and in this particular case, these were not the most ap-
propriate parameters (more specifically, the sampling frequency) to prop-
erly implement the TSR 2nd . Similar to the raw data of the CFRP006
inspection, the SNR of several defects (D/z = 3, 3.75, 7 and 10) is zero.
A poor signal or thermal contrast associated to a high noise contamination
over the sound area contributed to this behavior.

The validation of the methodology applied to study the performance
of the processing techniques is showed in Figure 4.13, where a set of
images at Cmax are shown as a function of depth and processing technique,
considering defects having 5 mm of lateral size. Figure 4.13 confirms that
PPT phase and TSR 1st derivative images are shown to provide the best
results in terms of noise reduction (and consequently, visibility) followed
by DAC.
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Figure 4.13: Images obtained at Cmax as function of depths and thermographic signal
processing techniques. All images correspond to the defects with 5 mm of lateral size
of the GFRP006 specimen.
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4.6 Summary

Thermographic signal processing is one of the major concerns in pulsed
thermography. It has been widely studied that most of the difficulties that
arises from the application of the thermal excitation as well as the noise
caused by blurring can be solved with the application of processing algo-
rithms to the thermographic data obtained in the PT inspection.

In this thesis are analyzed the performance of three of the most at-
tractive methods for PT data: differential absolute contrast (DAC), ther-
mographic signal reconstruction (TSR) and pulsed phase thermography
(PPT). DAC and TSR are both derived from the solution of the 1D equa-
tion of heat conduction while PPT is based on the Discrete Fourier Trans-
formation to translate analysis of the data from the time domain to the
frequency domain.

A methodology to study the performance of the three techniques has
been developed. This methodology is based on the signal-to-noise ratio
(SNR) at the maximum signal contrast of each defect. To this aim, thermal
data obtained from the PT inspection on two laminated composites (car-
bon and glass fiber reinforced composites) are processed with the tech-
niques under discussion and the SNR of all the 25 defects are computed.
The results showed that DAC is suitble only for shallower defects (and
small observation times) while TSR 1st derivative and PPT-phase images
provide better SNR values for deeper defects. It was also shown that while
TSR and DAC suffer the potential consequences of undersampling, PPT
does not (since its more valuable information is at lower frequencies).



Chapter 5

Multivariate Imaging by Partial Least Squa-
res Regression

This Chapter introduces and tests a statistical correlation method for
the optimization of the pulsed thermography inspection. The method is
based on partial least squares regression (PLSR), which decomposes the
thermographic PT data sequence obtained during the cooling regime into
a set of latent variables. Each latent variable are orthogonal to each other
and are characterized by its variance; through a carefully analysis it is
possible to associate them to different phenomena that take places during
the cooling regime of the PT inspection. The regression method is applied
on experimental PT data from carbon and glass fiber reinforced polymer
specimens. The performance of the regression technique is evaluated in
terms of signal-to-noise ratio at maximum signal contrasts. A comparison
with the techniques previously discussed is performed in order to analyse
the advantages and limitations of the new processing method of PT data.

5.1 Overview of Partial Least-Squares Regression

As already discussed, thermographic signal processing represents the
front-line to overcome most of the constraints produced by non-uniform
heating. Despite the great improvement in the quality of the images ob-
tained with Fourier law-based signal processing techniques (for instance,
DAC, TSR and PPT), their applications are subjected to certain criteria,
which include: defect depth, thermophysical properties of the material
and duration of the transient regime. These concerns motivated the re-
view of an alternative method that could allow the reconstruction of the
thermographic signatures while maintaining physical consistency. The
new method proposed in this Thesis is discussed next.
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5.1.1 PLS background

Partial Least Squares is a method for constructing predictive models
which was developed in the 1960’s by Herman Wold as an econometric
technique. In spite that some of the most avid proponents of PLS are
chemical engineers (including Wold’s son Svante), this technique have
been accepted and successfully applied to controlling industrial process
(Mujica et al., 2008) - where a large process can easily have hundreds
of controllable variables and dozens of outputs - analysis of hyperspec-
tral images, magnetic resonance imaging (MRI) (Grahn et al., 1989) and
most recently, neuroimaging (Krishnan et al., 2011). The author recom-
mend references Martens (2001) and Wold (2001) where is presented a
chronological overview of the evolution of PLS since its emerging from
Herman Wold’s work.

The basic concept of PLS and its difference with classical linear re-
gression methods is depicted in Figure 5.1. While most regression meth-
ods rely on the use of all x-values independently of its content in order to
form a new linear combination of variables, PLS finds a few linear com-
binations (components or factors) of the original x-values and uses only
these linear combination in the regression equation (Naes et al., 1996;
Wold et al., 1984). In this way, irrelevant and unstable information is
discarded and only the most relevant part of the x-variation is used for
regression. The collinearity problem is solved and more stable regres-
sion equations are obtained. Furthermore, since all variables all projected
down to only a few linear combinations, simple plotting techniques can
be used for analysis.

As a regression method, PLSR seeks to model a dependent variable Y
(predicted) in terms of an independent variable X (predictor). To this aim,
PLS combines interesting features of two techniques: principal compo-
nent regression (PCR) and multivariate linear regression (MLR). While in
PCR factors that capture the greatest amount of variance in the predictor
(X) variables are found, in MLR the aim is to find a single factor that best
correlates predictor (X) with predicted (Y ) variables. In PLS, the factors,
or new variables, are chosen to simultaneously satisfy three conditions: i)
that they are highly correlated with the dependent (or Y ) variables, as in
MLR; ii) that they model as much of the variance among the independent
(or X) variables as possible, as in PCR; and iii) that they are uncorrelated
with each other. The first condition is clearly necessary in order for a
good regression to be obtained. It is this first condition that distinguishes
PLS from PCR. The second condition is based on the premise that the
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Figure 5.1: Conceptual illustration of PLS and its comparison with classical linear
regression methods. In classical linear regression all variables are selected to form a
linear combination as in (a), while in PLS all x-variables are transformed into linear
combinations of PLS factors in order to form a new dataset as in (b).

signal-to-noise ratio is highest for the components with the greatest vari-
ance. The third condition minimizes the redundancy of information and
hence minimizes the number of variables needed (Glen et al., 1989). In
the next section the mathematical formulation upon which PLSR is based
is described.

5.1.2 Mathematical formulation of PLSR

PLS regression is based on the basic latent component decomposition
of the predictor X(n x N) and predicted Y (n x M) matrices into a combi-
nation of loadings, scores and residuals. Mathematically, the PLS model
is expressed as:

X = T PT +E (5.1a)

Y =UQT +F (5.1b)

In Equations (5.1), T (n x a) is known as the scores matrix and its
elements are denoted by ta (a= 1,2,...,A). The scores can be considered as
a small set of underlying or latent variables responsible for the systematic
variations in X . The matrices P(N x a) and Q(M x a) are called loadings
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(or coefficients) matrices and they describe how the variables in T relate
to the original data matrices X and Y (Naes et al., 1996). Finally, the
matrices E(n x N) and F(n x M) are called residuals matrices and they
represent the noise or irrelevant variability in X and Y , respectively.

As it will be further discussed, the X-scores (T ) are predictors of Y and
also model X , i.e., both Y and X are assumed to be, at least partly, modeled
by the same latent variables. The scores are orthogonal and are estimated
as linear combinations of the original variables xk with the coefficients,
called weights, wka (a = 1,2,...,A). Thus, the scores matrix T is expressed
by:

T = XW (5.2)

Once the scores matrix T is obtained, the loadings matrices P and
Q are estimated through the regression of X and Y onto T . Next, the
residual matrices are found by subtracting the estimated versions of T PT

and UQT from X and Y , respectively. Finally, the regression coefficients
for the model are obtained.

It is important to note that in PLS the weight column vectors are or-
thogonal to each other, while the loadings vectors (P and Q) and Y-scores
are not. The columns of the PLS scores matrix T are also orthogonal to
each other (Sjostrom and Eriksson, 2001). This PLS method in its classi-
cal form is based on the nonlinear iterative partial least squares (NIPALS)
algorithm. However, there are alternative methods of obtaining the pa-
rameters of Equations (5.1) by using other forms of PLS (see Rosipal and
Kramer, 2005).

Next, the NIPALS algorithm is discussed.

5.1.3 The NIPALS algorithm

NIPALS algorithm carries out the decomposition of both, X and Y ,
through the computation of scores, weights, loadings and inner-coefficients
sequentially. For univariate Y (Y = y), the bilinear decomposition is given
by:

X = t1 p′1 + t2 p′2 + ...+ tk p′k +F (5.3a)
y = u1q′1 +u2q′2 + ...+ukq′k +E (5.3b)
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The algorithm calculates each of the variables as follows (Eigenvector,
2006):

• Imput: (Xo←− X ;Yo←− Y )

• Step 1. u1 = y

• Step 2. w1 =
XT u1

‖ XT u1 ‖

• Step 3. t1 = Xw1

• Step 4. q1 =
Y T t1
‖ Y T t1 ‖

• Step 5. u1 = Y q1

• Convergence is then checked by comparing t1 in (3) with the value
from the previous iteration.

• Step 6. p1 =
XT t1
‖ tT

1 t1 ‖

• Step 7. p1new =
XT t1
‖ tT t1 ‖

• Step 8. t1new = t1old ‖ p1old ‖

• Step 9. w1new = w1old ‖ p1old ‖

• Find the regression coefficient for the inner relation.

• Step 10. b1 =
uT

1
‖tT

1 t1‖

• After calculating the scores and loadings of the first latent variable,
X and y-blocks residuals are calculated.

• Step 11. E1 = X− t1 pT
1

• Step 12. F1 = y−b1t1qT
1

• Step 13. Repeat the entire procedure replacing X and y with their
residuals.

The application of the PLSR as a reconstruction method of PT data is
discussed next.
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5.2 Application of PLSR to PT Inspection

The application of partial least squares regression to the pulsed ther-
mography data arises from the necessity of ‘reconstruct’ the thermal data
obtained during the inspection into a new sequence of images less con-
taminated by noise while maintaining physical coherency. With PLSR it
is possible to link time and temperature data, in a similar manner as TSR
(or the linking of frequency and phase-lag in PPT), allowing the extrac-
tion of the most important variations while discarding the unnecessary
information present in the original thermal sequence. This application is
achieved by decomposing the raw thermal data into multiple PLS com-
ponents (or latent variables), each component being orthogonal to each
other. Since each of the PLS components is characterized by its variance,
it is possible to identify through a carefully analysis of the LVs different
phenomena affecting the overall thermal regime. In the next sections, the
methodology applied in this work to reconstruct a new thermal sequence
using PLSR is discussed in detail.

5.2.1 Data structure and modeling

The thermal images obtained during the PT inspection are typically
arranged in a 3D matrix, whose x− and y−axis are represented, respec-
tively, by i and j pixels, while the z−axis corresponds to the k frame
number. Nx and Ny correspond to the total numbers of pixels in the x−
and y− directions while NT is the total number of frames (see Figure 5.2
on the left).

In order to perform the decomposition of the thermal data sequence
into PLS components, it is firstly necessary to transform the 3D thermal
data into a 2D raster-like matrix, as shown in Figure 5.2. This process is
known as unfolding. The unfolded X matrix (corresponding to the ther-
mal sequence) has dimensions NT x Nx ·Ny and physically represents NT
observations (or samples) of Nx ·Ny variables (or measurements). On the
other hand, the dimension of the predicted matrix Y (defined by the ob-
servation time during which the thermal images were captured) is NT x 1.

Prior to the PLS decomposition, in order to allow an easy interpreta-
tion and numerical stability, it is recommended that the values for each
variable are in the mean-centered form. Centering is performed to make
the data compatible with the structural model. The temperature average
for each row (or frame) is calculated and then subtracted from each cor-
responding variable.
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Figure 5.2: Schematic representation of the transformation of the 3D thermal data into
a 2D raster-like matrix.

The experimental PT data used as X and Y inputs in the PLS model,
consists of two sets of thermal images obtained from the PT inspection of
specimens CFRP006 and GFRP006. The 3D sequence (269 x 252 x 500)
is mean-centered and converted into a 2D raster-like matrix X (both with
dimension 500 x 67788). The predicted Y matrix is a column-vector
(500 x 1) composed of a time series. The application of PLSR, using
Equations (5.1), to each of the pulsed thermography sequences is repre-
sented graphically in Figure 5.3.

Matrix X and the column-vector Y are decomposed into a set of scores,
loadings and errors matrices. The X and Y scores matrices both have di-
mensions NT x a, being a the number of PLS components of the regression
model; similarly, the dimensions of the X and Y loadings matrices are also
dependent on the number of PLS components. The residuals matrices E
and F represent the error between the original data X and Y , and the fit-
ted data obtained through the multiplication of the scores and loadings
matrices.
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Figure 5.3: Graphical representation of the application of Equations (5.1) to the pulsed
thermography thermal sequence.

5.2.2 Model dimensionality

The model dimensionality refers to the number of PLS components
used to construct the new empirical model. Although it is possible to cal-
culate as many PLS components as the rank of the X block matrix, in
general, not all of them are used. The main reason for this is that the mea-
sured data is never noise-free and some of the smaller components only
describe noise. For this reason it is necessary to select the number of PLS
components based on an appropriate criteria in order to avoid over-fitting
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and also leave out small components that carry problems of collinearity.
One of the quantitative variables most commonly used to select the

numbers of components is the RMSE (root mean square error), which is
expressed by:

RMSE =

√√√√ n
∑

i=1
(xi− xi,re f )2

n
(5.4)

where n is the number of samples, xi,re f is the reference value and xi is
the predicted value. From Eq. (5.4) it is possible to estimate the num-
ber of components that best fits the X data. Lower RMSE values do not
necessarily mean that the selected number of components was the most
appropriate for the regression model. In some cases, the RMSE tends to
decrease as the number of components is increased. However, as men-
tioned earlier, increasing smaller components will introduce noise oscil-
lations into the regressed data. The use of Eq. (5.4) to predict the number
of latent variables should be carried out in conjunction with the analysis
of the percentage of variance explained by each component.

Figure 5.4 shows the estimated RMSE and the percentage variance
explained in X of the thermal PT data obtained from the inspection on
the CFRP006 and GFRP006 specimens (Figures 5.4a and b respectively).
Although the minimum RMSE in both cases is reached with 10 compo-
nents, only 6 components are sufficient to describe all of the variance in
the predictor matrix X . Increasing to more than 6 PLS components will
introduce higher-order oscillations into the new data sequence. Further
analysis and discussions are based on PLS models using 6 components.

5.2.3 Descriptive analysis of PLS latent variables

Previous studies [see for instance Rajic (2002) and Marinetti et al.
(2004)] on the application of multivariate statistical regression to IR ther-
mal sequences have shown that through an analysis of the factors of the
multivariate model it is possible to extract useful information that can be
used for the optimization of the PT inspection. Thus, the predictor load-
ing matrix P (see Figure 5.3) was converted into a 3D matrix, composed
of Nx x Ny x Ncomp elements (Nx and Ny are the total numbers of pixels
in the x− and y−directions, respectively, whereas Ncomp is the number of
components of the PLS regression model). The six predictor loadings of
the PT data in the CFRP006 specimen are shown in Figure 5.5.
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Figure 5.4: Estimated MSPE and percent variance explained in X for thermal PT data
obtained in: (a) CFRP006 and (b) GFRP006 specimens.
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Figure 5.5: PLS loadings obtained after the implementation of PLSR to the experi-
mental pulsed thermography data on the CFRP006 specimen.

It can be noted from Figure 5.5 that the 1st PLS loading conserves
a Gaussian-shape distribution, with higher values for the coefficients at
the center of the images. This behavior indicates that the effect of non-
uniform heating is retained in the 1st PLS component. The 2nd PLS load-
ing shows that defects located at 0.2 mm can be clearly detected; similarly,
most of the defects with z = 0.4 mm can be detected in the same loading
but with less contrast. Deeper defects can be observed in the 3rd , 4th and
5th PLS loadings, which is due to the fact that the variation in the temper-
ature during the cooling process becomes lower as the depth increases (in
agreement with heat conduction theory). As depicted in Figure 5.6, each
PLS component is characterized by its variance. Thus, the 1st PLS com-
ponent retains the highest variations, followed by the 2nd component and
so on. Along with the histograms of each loadings, the standard deviation
of a fitted Gaussian distribution function has been included.
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(a)  1st PLS Loading (b)  2nd PLS Loading

(c)  3rd PLS Loading (d)  4th PLS Loading

(e)  5th PLS Loading (f)  6th PLS Loading
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Figure 5.6: Histograms and fitted Gaussian distribution function to the PLS loadings
obtained after application of PLSR to the PT data of the CFRP006 specimen.



5.2 Application of PLSR to PT Inspection 105

As expected, the highest standard deviation corresponds to the 1st PLS
loading (see Figure 5.6a), which confirms that most of the variation is due
to the non-uniform heating applied during the thermal excitation. The
standard deviation drops dramatically from the 1st to the 2nd PLS loading
(from 9.059 to 1.201). Furthermore, it is important to note that deeper
defects are related to loadings with lower standard variation (3rd , 4th and
6th), which is a consequence of the thermal phenomena that take place
during the cooling process: as the defect depth increases the variation in
the temperature compared to a reference sound area becomes lower. Con-
sequently, the lowest variations in the temperature are retained in the last
PLS components, as shown in Figures 5.5 and 5.6. Finally, it can also be
observed in these figures that the 6th PLS loading is highly contaminated
by noise, characterized by a low variance (see for instance Figure 5.6d).

A more detailed analysis of the PLS latent variables can be carried
out when looking at each score T and its corresponding loading, P, of the
predictor matrix X . The outer product of the score and the corresponding
loading vectors allow to analyze the variation of each latent variable over
time. Graphically, this operation is illustrated in Figure 5.7. The result is
given by a set of the Ncomp matrix, which after unfolding has dimensions
Nx x Ny x NT .

variance

T1

P1

T2

P2

T4

P4

T5

P5

T6

P6

X1 X2 X3 X5 X6

T3

P3

X4

Figure 5.7: Outer product of scores T and the corresponding loadings vector P of the
predictor matrix X .
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Physically, each matrix describes the systematic variation of each la-
tent variable over time. Thus, it is possible to determine the moment at
which each physical effect - described by its variance - is more predom-
inant during the cooling process of the pulsed thermography inspection.
Figure 5.8 shows the evolution of the 1st , 2nd , 3rd and 6th PLS latent vari-
ables over time, considering defects with aspect ratios D/z = 10/0.2,
10/0.4 and 10/0.6. The evolution of a reference sound area has been in-
cluded in order to compare its behaviour with defective areas.
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Figure 5.8: Evolution of (a) 1st , (b) 2nd , (c) 3rd and (d) 6th PLS latent variables over
time.

It can be observed from Figure 5.8a that all three defects present the
same behavior in the 1st PLS latent variable. In other words, the variabil-
ity of the temperature of the defects is almost the same. Furthermore, the
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strongest variation occurs at the beginning of the cooling process, when
the effects of the non-uniform heating are more predominant. However,
there is no evidence that the 1st PLS component retains information con-
cerning to the thermal diffusion process or the location of the defects.

In contrast to the 1st component, where all three defects present the
same behavior, the 2nd PLS latent variable shows a strong correlation be-
tween the variability of temperature (maximum value for the latent vari-
able) and defect depth (see Figure 5.8b). The deeper the defects the lower
the maximum value of the PLS latent variable will be. This behavior is in
agreement with the results reported by Rajic (2002) using principal com-
ponent thermography, in the sense that the 2nd component (or factor in
PCT) is associated with the thermal diffusion that arises from the appli-
cation of the pulsed thermal excitation. Moreover, it can be noted in Fig-
ure 5.8c that an oscillatory behaviour begins to rise in the 3rd component
(along with the 4th and 5th) dominated by non-linearities, whereas the 6th

(Figure 5.8d) is related to higher-order oscillations or random noise.

5.2.4 Loadings and scores plots

Loadings and scores plots can provide valuable information concern-
ing to the experiment and the behaviour of the different phenomena af-
fecting the inspection process. For this reason, this section extents the
analysis of the PLSR to the loadings and scores plots in order to obtain
insight of the relationship between samples, variables and PLS compo-
nents.

Figure 5.9 shows the loadings (a) and scores (b) plots of the CFRP006
thermal data regressed with PLSR. The relationship between variables
(or temperature measurements) is described in the loadings plot. Vari-
ables that are close together are said to be correlated. As is shown in
Figure 5.9a, most of the variables are correlated to each other. However,
there are some data points which are uncorrelated (those far away from
the main group); they may form small groups called clusters. Two cluster
(in color ellipses) has been identified in the thermal image and interest-
ingly, they correspond to defective areas with z = 0.2 mm and where the
irradiation intensity was highest.

The relation between samples (sample refers to each time at which
the IR camera made the acquisition) can be examined in the scores plot
showed in Figure 5.9b. The first sample loads most in both - the first and
second PLS component - followed by the second sample (or frame). Since
both samples are far away from the rest, they are said to be uncorrelated.
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Figure 5.9: Loadings (a) and scores (b) plots in the CFRO006 thermal data.
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The analysis of the loadings and scores plots suggest that there are
some variables (temperature measurements) and samples (frames) that
should be left out from the empirical model. Since those outliers are not
correlated to the rest of the data, quantitative analysis may be affected by
the use of them. Furthermore, the scores plot suggests that the moments
at which the thermal effects are stronger (2dn PLS component) correspond
from 0.0254 to 0.490 s (see Figure 5.9b). Samples further to 0.490 s (or
frame 77) are not important to the model under study.

Based on the analysis presented herein, the next section is dedicated
to the optimization of the pulsed thermography inspection using partial
least squares regression as a signal processing method.

5.3 Experimental Optimization of PT Inspection

5.3.1 Enhanced Detection by PLSR

Once the thermal sequence has been decomposed into a set of latent
variables, each one characterized by its variability, it is possible to cre-
ate a new set of thermal images which are less contaminated by noise
and with less redundant signals. Figure 5.10 shows a set of six images
corresponding to different times after the application of PLSR to the PT
thermal sequence of the CFRP006 specimen. It can be shown that almost
92 % of the defects can be detected with the new synthetic sequence. Al-
though at longer times (i.e., at 1.16 and 1.75 s) the background noise is
reduced; non-uniform heating is still present at the beginning of the IR
sequence. The most important finding is that the new sequence preserves
the physical coherency of the heat transfer process: shallower defects can
be observed at the beginning of the cooling process while deeper defects
require a longer observation time to be detected and show less thermal
contrast. This latter factor is extremely important and useful for the quan-
titative analysis of defects.

Based on the analysis of the PLS latent variables (see section 5.2.3),
the 1st PLS component, which retains the highest variance produced by
non-uniform heating, is suppressed from the synthetic data. In other
words, non-uniform heating effects are discarded from the original ther-
mal data. The results of this operation are shown in Figure 5.11. In order
to compare and analyze the effects of this operation, the same times as
those reported in Figure 5.10 are considered.
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Figure 5.10: Synthetic thermal sequence obtained after the application of the PLS
model to raw temperature images of the CFRP006 specimen.

It can be noted from Figure 5.11 that after the suppression of the 1st

PLS component for the synthetic data, a considerable enhancement in the
visibility of the defects is achieved. From the first frame of the thermal
sequence (at 0.0064s) the defects located at 0.2 mm are already visible
in the enhanced thermal sequence. At 0.0446 seconds (second frame),
defects located at 0.4 and 0.6 mm depth are visible, even those with the
smallest lateral size (D = 3mm). Moreover, it is important to note that
the Gaussian distribution of temperature produced by the non-uniform ex-
citation was eliminated from the new sequence, allowing defects located
close to the edges of the specimen to be easily detected. At 0.9936 s al-
most 96 % of the defects are clearly visible, which represents a significant
improvement in the ability of PLSR to detect defects at earlier times when
compared with 32 % of detection when the non-uniform effect is present
in the data sequence.
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Figure 5.11: Enhanced thermal sequence after suppression of the non-uniform heating
effects in the PT data of the CFRP006 specimen.

The same operation performed in the CFRP006 thermal data has been
carried out to the obtained in the PT inspection of the GFRP006 specimen.
A PLS model with 6 components was built and the 1st PLS component
was suppressed from the synthetic data. The result of this operation is
depicted Figure 5.12. With the enhanced thermal sequence is possible to
detect up to 56 % of the defects (an increase of 8 % compared to raw data).
Defects located at z = 0.2, 0.4 and 0.6 mm are clearly visible 0.9936 s
and at 1.75 s most of the defects located at z = 0.8 mm can be detected.

The suppression of non-uniform heating provided a considerable re-
duction of background noise specially in the CFRP006 thermal data. How-
ever, even with the reduction of spatial noise obtained in the enhanced
sequence of the GFRP006 specimen, the signal strength (or contrast) of
the defects is still affected by the lateral heat diffusion, this as product of
the longer times of observation.
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Figure 5.12: Enhanced thermal sequence after suppression of the non-uniform heating
effects in the PT data of the GFRP006 specimen.

A more detailed analysis of the signal-to-noise ratio is discussed next.

5.3.2 Signal-to-noise ratio analysis

The performance of the method proposed in this Chapter is evaluated
in terms of the signal-to-noise ratio (SNR) at maximum signal contrast.
The same methodology discussed in Chapter 4 is used in this section.
Three different sequences are analyzed on both specimens (CFRP006 and
GFRP006): the raw thermal sequences obtained during the PT inspec-
tions; the synthetic data sequences processed with PLSR; and a data se-
quence processed with the 1st PLS component suppressed.

Figure 5.13 shows the results for the SNR at maximum signal con-
trast of the carbon (a) and glass (b) fibers specimens, both computed for
unprocessed PT thermal data (raw), the thermal sequence processed us-
ing PLSR with 6 components (PLS, 6 components) and the processed
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enhanced sequence obtained after the suppression of the 1st PLS compo-
nent (PLS, non-uniform heating suppressed). As in previous analysis, the
SNR results are based on the aspect ratio, D/z, of the defects. For the
CFRP006 specimen (Figure 5.13a), it can be noted that a considerable
improvement in the SNR values is obtained after processing the PT raw
data with partial least squares regression. With the PLSR an increase in
the SNR was obtained for 88 % (22/25) of the defects. Only defects with
D/z = 15/0.2, 7/0.2 and 3/0.8 exhibit SNR values below that obtained
with the raw data. Since the defects with 0.2 mm depth are located in the
middle of the specimen (where more thermal energy is concentrated dur-
ing the thermal excitation), a decrease in their SNR values was expected
due to a reduction in the signal strength. However, their values continue
to be above the detection threshold, considered to be of 20 db.

The performance of the SNR results improves even more when the
suppression of the 1st PLS component is applied; an increase in the SNR
values for 96 % of the defects is achieved when non-uniform heating is re-
moved from the synthetic PT sequence. Even the defects with the lowest
aspect ratio (for instance D/z = 3/1 and 3/5) exhibit an increase in their
SNR values. The increase in the SNR values when the suppression of the
1st PLS component is performed (where the effects of non-uniform heat-
ing are retained) is associated with a reduction in the background noise
in the new thermal sequence. Moreover, the shortening of the onset time
(time at which the defects are first detectable in the thermal sequence)
plays an important role in the increase in the signal strength; as already
discussed, the effects of lateral heat diffusion (a phenomenon known as
blurring) are more predominant at later times.

Concerning to the GFRP006 specimen, results showed that after pro-
cessing the PT raw data with PLSR an increase in the SNR for 56 %
(14/25) of the defects was achieved. Moreover, when the 1st PLS com-
ponent is suppressed from the synthetic PT sequence, an increase in the
SNR was obtained for 64 % (16/25) of the defects. In spite of the SNR
improvement exhibited in 64 % (16/25) of the defects, the most challeng-
ing defects (D/z = 3/1, 5/1 and 7/1) continue to be undetectable. As
discussed in section 5.3.1, the themophysical properties of the glass fiber
played a key role in the thermal process of the PT inspection, increasing
the effects of signal degradation due to blurring.
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Figure 5.13: Signal-to-noise ratio results in the CFRO006 (a) and CFRO006 (b) after
implementation of PLSR.



5.4 Summary 115

5.4 Summary

It was shown in previous chapters the necessity of thermographic sig-
nal processing in order to overcome most of the constraints produced by
non-uniform heating. Despite the great improvement in the quality of
the images obtained with Fourier law-based signal processing techniques,
their applications are subjected to certain criteria, which include: defect
depth, thermophysical properties of the material and duration of the tran-
sient regime. For this reason it was prompted the revision of an alterna-
tive method that could allow the processing of thermographic data even
in cases in which the thermal behaviour of defective areas were not 1D.

The proposed method to ‘reconstruct’ the thermal data obtained during
the inspection is based on partial least squares regression (PLSR), which
decomposes the thermographic PT data sequence into a set of latent vari-
ables or components. Each latent variable are orthogonal to each other
and are characterized by its variance. Thus, it is possible to identify the
different phenomena and sources of noise that affect the cooling regime
of the PT inspection.

The regression method was tested on experimental PT data from car-
bon and glass fiber reinforced polymer specimens and its performance
was evaluated in terms of signal-to-noise ratio at maximum signal con-
trasts, using the methodology developed in the last chapter. Through the
implementation of the new technique, were achieved an important im-
provement of the SNR values. In the case of the CFRP006 PT data, a gain
the SNR values was obtained in 96 % of the defects. As for the GFRP006
data, it was achieved an increment of the SNR in 64 % of the defects when
non-uniform heating was suppressed from the synthetic sequence.
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Chapter 6

Quantitative Analysis

The main objective of this Chapter is to develop and test a new method
for the inversion of depth and lateral size of defects. The proposed method
is based on the statistical correlation between the lateral size and depth
with informative parameters obtained during the cooling process (maxi-
mum thermal contrast, time of occurrence of the maximum thermal con-
trast and onset time) followed the pulsed thermal excitation. The correla-
tion between the two block of data (dependent variables and predictors)
is carried out using partial least squares regression. A calibration model
- or learning phase - is built using results obtained through numerical
simulation. The prediction of the dependent block (consisting of the depth
and lateral size of 25 defects) is performed using experimental PT data
obtained during the inspection of the CFRP006 specimen. The precision
of the results are assessed and the capabilities and limitations of the new
inversion approach over traditional methods are also analyzed.

6.1 Review of Quantitative Pulsed Thermography

Quantitative analysis represents the final step of the nondestructive
testing and evaluation chain. Once the defects has been identified, it is of
interest to characterize them quantitatively in order to judge their severity.
Defect depth and lateral size are the most commonly parameters studied;
however, other parameters such as the thermal properties of the defects
are often assessed.

In general terms, the characterization of the defects is performed from
the measured temporal and spatial thermal response obtained during the
inspection by PT. Several studies have proposed interesting inversion pro-
cedures [i.e., statistical method (Vallerand and Maldague, 2000), neural
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networks (Maldague and Couturier, 1997) or wavelet transform (Galmiche
and Maldague, 2000)]. However, none of these approaches were able to
provide a practical quantitative approach mainly due to the complex cal-
ibration steps and lengthy computations (Castanedo, 2005). The most
suitable quantitative methods − in terms of applicability and easiness −
are derived from the thermal contrast (time based IR data) and phase data.

The inversion of defect depth using thermal contrast is based on the
fact that the most important information concerning to the presence and
characteristics of the subsurface defects is contained in the cooling pro-
cess following the pulsed thermal excitation of the material. This issue
was studied and analysed in Chapters 3 and 4, where it was showed
through numerical and experimental results the relationship between the
thermal contrast, its time of occurrence and the onset time with the depth
of defects. In Figure 6.1 (top) is shown a representation of the temper-
ature and thermal contrast profile curves for defective and non-defective
regions and the informative parameters used in the quantification of depth
using IR temporal data. The inversion process relies on the computation
of Cmax and tmax obtained from the thermal contrast curve. The follow-
ing expression to retrieve defect depth was proposed by Balageas et al.
(1987):

z = A
√

tmax(Cmax)
n (6.1)

with parameters A and n obtained from the calibration process. It is impor-
tant to mention that the calibration process should consider only defects
having the same lateral size. This is because the maximum thermal con-
trast and its time of occurrence are function of both, the depth and lateral
size of the defects (see Figure 3.17 in section 3.5.1). This last mentioned
constitutes a constraint in the practical applicability of Eq. (6.1) to de-
termine the defect depth, since it is necessary to know or at least has an
estimation of the lateral size before performing the regression of A and n
onto Eq. (6.1).

As already mentioned, phase data also provides valuable means for re-
trieving defect depth. Ibarra-Castanedo and Maldague (2004) proposed an
inversion technique based on the correlation of depth with its correspond-
ing blind frequency, fblind , i.e. the frequency at which the phase contrast
reaches to zero (∆φ = φd −φsa = 0). Figure 6.1 (bottom) shows a repre-
sentation of the phase delay and phase contrast profiles obtained after the
implementation of PPT [see Eq. (4.6)] to the IR thermal sequence. De-
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Figure 6.1: Representation of temperature (top) and phase-delay (bottom) profiles for
defective and non-defective regions, along with their corresponding thermal and phase
contrast curves.



120 Quantitative Analysis

fects are visible from zero to a given frequency, i.e. the blind frequency.
In similar manner as in Lock-in Thermography, the defect depth and its
blind frequency are correlated to each other through the thermal diffusion
wave equation:

z =C1 ·µ =C1

√
α

π · fblind
(6.2)

where C1 is an empirical correlation constant, fblind is the blind frequency
(already introduced) and µ is the thermal wave diffusion equation. As in
the thermal contrast method, the correlation constant is obtained from a
calibration process and depends among other factors, on the thermophys-
ical properties of the material.

It is well known that the use of phase data to retrieve defect has deeper
probing capabilities than IR thermal data (Maldague, 2001). Furthermore,
since phasegrams are less sensitive to reflections from the environment
and non-uniform heating, the inversion using the blind frequency concept
often provides better accuracy than when using Eq. (6.1). Nevertheless,
previous results showed that phase data is highly affected with higher-
order oscillations (see for instance Figure 4.5) affecting thus the calcula-
tion of fblind . For this reason, the correct application of Eq. (6.2) − and
consequently the accuracy of the inversion results− requires an additional
step to adequately establish the temporal parameters (i.e. truncation win-
dow and sampling frequency) that will produce the appropriate frequency
response. A carefully study of the acquisition of each temporal signals
should be performed and re-adjusted individually, so the best frequency
profiles are obtained (Castanedo, 2005).

As already discussed in this section, establishing a correlation be-
tween informative parameters (for instance, thermal contrast and blind
frequency) and characteristics associated to the subsurface defects is a
challenging task. Depth inversion techniques based on physical models
are often restricted to particular situations and require additional cali-
bration steps, arising difficulties when the implementation of these tech-
niques is carried out in uncontrolled environments (outside the labora-
tory). All these concerns prompted to review of an alternative inversion
method that could allow to statistically correlate the most representative
parameters obtained during the cooling process regime with characteris-
tics associated to the subsurface defects, such as depth and lateral size.
This new method is discussed next.
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6.2 Multivariate-based Method for Inversion of Defect Depth
and Lateral Size

Before introducing the concepts of the proposed inversion method, it
is important to recall some results obtained in Chapter 3. When consider-
ing uniform distribution of irradiation, simulation results showed that the
values of the maximum thermal contrast (Cmax) and its time of occurrence
(tmax) are influenced by the depth and lateral size of the defects (see Fig-
ure 3.17). The influence is more evident as the value of the defect depth
increases. Furthermore, it was also shown that the onset time (tonset) de-
pends solely on the defect depth (see Figure 3.18); both variables (z and
tonset) are highly correlated.

From the above results it is evident that the difficulties in establishing
a relationship between the informative parameters (or variables) obtained
during the cooling process (tmax, Cmax and tonset) with the depth and lat-
eral size of the defects resulting from the nonlinearities present in the heat
diffusion problem. In addition to this, multicollinearity between the vari-
ables represent a constraint when typical regression techniques are imple-
mented (such as multiple linear regression - MLR). Interestingly, partial
least squares regression represents an alternative and a valuable tool to
analyze noisy and strongly correlated data (unlike MLR) and also simul-
taneously model several response variables, such as the considered in this
Thesis.

In Chapter 5 the application of partial least squares regression was
introduced and tested as a signal processing technique of thermographic
data obtained during the PT inspection. This section extend the applica-
tion of this regression technique in the quantitative analysis of subsurface
defects, through the statistical correlation between the variables Cmax, tmax
and tonset with defect depth and lateral size. To this aim, a training set con-
sisting of simulated data is used first. In this way only the most represen-
tative information is used to build the model and also it will allow to study
the noise effects on the performance of the regression technique. Then,
the prediction of the dependent variables (z and D) is carried out using
experimental data obtained during the PT inspection of the CFRP006.

Next section explains the formulation and data structure of the training
data used in the calibration model.
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6.2.1 Data structure and methodology

The goal of PLS regression is to predict Y (response or dependent
variables) from X (predictors or independent variables) and to describe
their common structure. Both matrices have the following structure:

Y(25×2) =



z1,1 D1,2

z2,1 D2,2
...

...
...

...

z25,1 D25,2


(6.3)

X(25×3) =



tmax 1,1 Cmax 1,2 tonset 1,3

tmax 2,1 Cmax 2,2 tonset 2,3
...

...
...

...
...

...

tmax 25,1 Cmax 25,2 tonset 25,3


The response matrix Y has dimensions 25× 2, each column repre-

senting the depth and lateral size of 25 defects. In the other hand, the
predictor matrix X has dimension 25×3 and each column corresponds to
the computed values of thermal contrast, time of occurrence of Cmax and
the onset time of the 25 defects in the CFRP006 specimen. The values
of z, D, Cmax, tmax and tonset used in the calibration model are reported in
Table 6.2.1.

The prediction of matrix Y by the independent block X is carried out
by first decomposing X into latent variables (or PLS components). This
process was already discussed in Chapter 5 (see section 5.1 for details
concerning to the mathematical formulation and the iterative procedure of
PLS). From the decomposition of the independent block, a set of loadings
p, scores t, weights w and coefficients b are obtained and used to build up
the fitted response Ŷ. This stage is known as the calibration or training
process. The fitted response is given by :

Ŷ = XB = T T T Q = T QT (6.4)
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Table 6.1: Depth and lateral sizes of the defects and computed values of maximum
thermal contrast, its time of occurrence and onset time obtained from numerical sim-
ulation results.

Index z [mm] D [mm] tmax [s] Cmax[
◦C] tonset [s]

1 0.2 15 0.0446 3.0164 0.0064

2 0.2 10 0.0446 3.0174 0.0064

3 0.2 7 0.0446 2.9649 0.0064

4 0.2 5 0.0446 2.8131 0.0064

5 0.2 3 0.0382 2.6213 0.0064

6 0.4 15 0.2866 0.7853 0.0382

7 0.4 10 0.2611 0.8030 0.0382

8 0.4 7 0.2420 0.7824 0.0382

9 0.4 5 0.2102 0.6910 0.0382

10 0.4 3 0.1847 0.5953 0.0382

11 0.4 15 0.5541 0.4150 0.1083

12 0.6 10 0.5096 0.4075 0.1083

13 0.6 7 0.4650 0.3788 0.1083

14 0.6 5 0.4076 0.3039 0.1083

15 0.6 3 0.3567 0.2398 0.1083

16 0.8 15 0.8408 0.2429 0.2930

17 0.8 10 0.8025 0.2113 0.2930

18 0.8 7 0.7516 0.1751 0.2930

19 0.8 5 0.6624 0.1195 0.2930

20 0.8 3 0.6051 0.0794 0.2930

21 1.0 15 1.0318 0.1943 0.4713

22 1.0 10 1.0064 0.1588 0.4713

23 1.0 7 0.9554 0.1238 0.4713

24 1.0 5 0.8662 0.0771 0.4713

25 1.0 3 0.7962 0.0468 0.4713
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In the other hand, the prediction of the matrix (Ŷp) from a new obser-
vation set of predictors (X̂) is obtained via the formula:

Ŷp = X̂B (6.5)

The new observation set of predictors (X̂) corresponds to the values
of maximum thermal contrast, time of occurrence of Cmax and onset time
obtained from the experimental PT inspection. It is important to point
out that the regression coefficients matrix B is computed from the scores
obtained in the calibration process, using the original X matrix (see the
NIPALS algorithm discussed in section 5.1.3).

The methodology developed for the implementation of PLSR as a in-
version method is depicted Figure 6.2. As already mentioned, the cali-
bration model is built up using the results obtained through the numerical
simulation of the PT inspection on the CRP006 specimen. From the cool-
ing process, the informative parameters are computed and then matrix X
and Y are built and arranged in the same form as shown in Eq. (6.3).

The next step is the decomposition of X into latent variables (which
are also relevant for Y) through the application of the PLSR. As men-
tioned in Chapter 5, the PLS regression searches for a set of components
that performs a simultaneous decomposition of X and Y with the con-
straint that these components explain as much as possible of the covari-
ance between X and Y. This condition is precisely the main advantages
of PLSR over other regression methods, such as MLR and PCR (Abdi,
2003). Before performing the bilinear decomposition it is important to
select the number of PLS components needed to obtain the best general-
ization for the prediction of the new observation. This is the model di-
mensionality and as in Chapter 5, the variable adopted to test the quality
of the model is the root mean square error [Eq. (5.4)], which is a measure
of the difference between the original X and the new matrix obtained after
the deflation of X into latent variables. Figures 6.3 shows the estimated
RMSE along with cumulative variance explained in X , both as a function
of the number of PLS components. It is important to note that in spite
approximately 94 % of the variance is captured in the 1st PLS component,
the RMSE still remains high. From this results, the optimum number of
PLS components using to build the model was set to 3.

The result of the bilinear decomposition of X and Y is a set of load-
ings, scores, weights and coefficients. The coefficients matrix B is then
used to obtain the fitted response [Eq. (6.4)] and also to predict Ŷ [Eq. (6.5)]
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Experimental PT 

Inspection

Numerical 

simulation

Computation of 

Cmax, tmax, tonset

Learning 

Phase

X = TP’ + E

Y = UQ’ + F

analysis

Raw data is processed 

using a 9th degree 

polynomial fitting

TSR- Processing 

Cross-validation, 

scores and loadings plots, 

fitted response

Prediction

Ŷp = XB

B = U/T’T

Computation of 

Cmax, tmax, tonset

Figure 6.2: Methodology implemented for the prediction of defect depth and lateral
size using partial least squares regression.
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Figure 6.3: Root mean square predicted error and cumulative variance in X as function
of the number of PLS components.

from a new observation matrix X̂. However, as is shown in Figure 6.2, an
extra stage of processing the PT data has been included before performing
the regression of Ŷp from the experimental data X̂. The processing of the
raw data was necessary due to the noise affecting the IR signals especially
in deeper defects. Without performing this processing stage, the accu-
racy of the computation of the informative parameters would be seriously
affected. Thermographic Signal Reconstruction [as proposed by Shep-
ard et al. (2002) and Ibarra-Castanedo et al. (2009)] was applied to the
raw thermal data using a 9th degree polynomial fitting. Such high degree
polynomial proves effective for signal de-noising with reduced ‘ringing’
effects (López et al., 2014).

Once the experimental PT data has been processed, Cmax, tmax and tonset
can be computed more accurately and the matrix X̂ is assembled. The fi-
nal step is the prediction of Ŷp (consisting of the 25 values of depth and
lateral size of the defects present in the CFRP006 specimen) using the
regression coefficients obtained in the learning phase.

Next section is dedicated to discuss the calibration results as well as
the exploratory analysis of the PLS latent variables.
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6.2.2 Exploratory analysis and fitted response

In previous sections was shown that through the analysis of the scores
and loadings important insights concerning to the relationship between
samples, variables and PLS components can be retrieved [see for instance
section 5.2.3]. Figure 6.4 shows the loadings (a) and scores plots (b) of
the PLS model. As discussed earlier, the relationship between variables
can be analysed from the loadings plot, whilst the relationship between
samples can be obtained from the scores plot. As depicted in Figure 6.4a,
tonset is the most unique variable in this data set. The distance between
tonset and its nearest neighbor is further than that tonset and any other vari-
able in the plot. Moreover, it is important to note that Cmax and tmax are
close to each other, which is an indication that both variables are some-
how correlated. Those variables load most significantly into the first PLS
component (are furthest from zero in the left-right direction on the plot)
and also they load with opposite sign, which indicate that they are anti-
correlated (it makes sense since deeper defects require more time to be
detected with a reduced thermal contrast).

Concerning to the scores plots, it can be observed from Figure 6.4b
that some samples form small groups called clusters, which are similar
to each other. Defects located at 0.2 mm are the most unique samples
and they load the most to the 2nd PLS component. These results confirm
previous analysis (see Figure 5.9) in the sense that the defects located
at 0.2 mm are not correlated to the rest of the data. It can be also ob-
served from Figure 6.4b that as long as the depth increases, the correla-
tion between samples having the same depth becomes lower. This can be
explained as a consequence of the lateral heat diffusion, which becomes
more predominant as the depth increases.

Figures 6.5 and 6.6 show respectively the fitted response of depth and
lateral size after performing the PLS regression. Both - the fitted depth
and lateral size - are plotted against their actual values. The fitted response
can be considered as the ability of the PLS latent variables to reconstruct
the original dependent block. It is possible to observe from Figure 6.5 that
in general terms, PLSR can precisely estimated the depth of all defects.
However, the largest difference between actual and estimated values cor-
respond to the defects located at 0.2 mm, which interestingly, correspond
to the most unique samples (the most uncorrelated to the rest of the data).
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(a)  PLS Loadings plot

(b)  PLS Scores plot
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Figure 6.4: Loadings (a) and scores (b) plots of the PLS model.
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(a)  Fitted response for D = 15 mm (b)  Fitted response for D = 10 mm

(c)  Fitted response for D = 7 mm
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Figure 6.5: Fitted response of defect depths obtained after performing PLSR.
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Figure 6.6: Fitted response of defect lateral sizes obtained after performing PLSR.
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As per the lateral size, Figure 6.6 shows also a good agreement be-
tween actual and fitted values of D. Once again, the highest difference
between actual and estimated values of lateral size correspond to the de-
fects located at 0.2 mm.

The accuracy of the fitted response of both quantities - D and z - is
evaluated in terms of the percentage error, calculated using the following
expression:

PercentageError =
Vactual−Vf itted

Vactual
(6.6)

The computed values of the percentage error for the depths and lat-
eral sizes are depicted Figures 6.7 and 6.8, respectively. Concerning to
the fitted depth, the maximum errors correspond to the defects located
at 0.2 and 0.4 mm. As already explained, the fact that the defects with
z = 0.2 mm are not similar to the rest, can lead to obtain coefficients that
do not necessary better explain the systematic variation of these samples.
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Figure 6.7: Percentage error of the fitted depth obtained with PLS regression.
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It is also important to observe that the errors for defects with lateral
size D = 3 mm are higher than the obtained with the other values of
D. This can explained as a consequence of the size of the region (or
number of pixels) that was selected as a sound area, which may not be
the most representative sample. As is well known, an inadequate sample
can produce higher values of standard deviation, affecting this way the
computation of the temperature [see Equations (3.25)].

As is showed in Figure 6.8, despite that the percentage errors for the
fitted lateral sizes are higher than the obtained with the depths, PLS re-
gression can still estimate D precisely for almost all the defects. The
highest errors correspond to the defects with D = 3 mm, which as al-
ready explained, the size of the region of the sound area could not have
been the most appropriate. The rest of the fitted values of lateral size has
percentage errors below 15 %.
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Figure 6.8: Percentage error of the fitted lateral size obtained with PLS regression.
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6.3 Comparative Analysis

Looking back at the methodology shown in Figure 6.2, the next and
final step is the prediction of the depth and lateral size of the defects from
a new observation. As already explained, this new observation matrix X̂
consists of the computed values of Cmax, tmax and tonset obtained from the
experimental PT inspection on the CFRP006 specimen. In this stage the
calibration model is tested and evaluated using real data, which in spite of
being processed with TSR, it is still contaminated with different sources
of noise. The prediction results and the performance of PLSR as a in-
version technique are evaluated using two different methods: through the
comparison of the predicted depth using the method of maximum thermal
contrast proposed by Balageas et al. (1987) (see section 6.1), and through
the computation of the root mean squared error of prediction (RMSEP).

In order to produce a fair comparison, the computation of depth using
Eq. (6.1) was performed using the same processed data used in PLSR.
The maximum thermal contrast and its time of occurrence of all 25 de-
fects were first computed and then, for each lateral size, it was plotted
log[zd/(tmax)1/2] as a function of log[Cmax]. The two coefficients of
Eq. (6.1) (n and A) were determined through a linear regression.

Table 6.2 shows the regression coefficients obtained during the learn-
ing phase of PLSR. Matrix B has dimension 3×2, each row representing
the regression coefficient of the original predictor. Important insights can
be obtained from Table 6.2: the onset time is the most representative vari-
able for describing the defect depth (which is in agreement to previous
results), whilst the time of occurrence of the maximum thermal contrast
is the responsible variable for the prediction of the lateral size of defects.

Table 6.2: PLS regression coefficients used for the prediction of depth and lateral size
of defects.

z D

tmax 0.1932 40.8808

Cmax -0.0787 4.1392

tonset 0.9018 -1.6508
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At this stage it is important to note the reduction achieved with PLSR
in the number of coefficients required to predict both variables (z and D).
With the method proposed by Balageas et al. (1987), the dimension of
the regression coefficient matrix is 25×2, while with PLSR the matrix is
reduced to 3×2.

Figure 6.9 shows the depth inversion results using PLSR and Eq. (6.1).
Both results are plotted against the actual depth and as a function of the
lateral size of the defects. Considering the defects with D = 15mm, PLSR
shows better performance than with the obtained using Eq. (6.1); only the
prediction of the defect with z = 0.2 mm showed better results using the
method proposed by Balageas et al. (1987). As long as the lateral size
of the defects increases, the performance of PLSR over the Cmax method
increases. In only 24 % (6/25) of the cases, the prediction errors with the
Cmax method were lower than the obtained with PLSR.

The overall performance of PLSR and its ability to predict the defect
depth using data contaminated with noise are confirmed with the results
showed in Figure 6.9. In spite that the most important prediction errors
were found in the defects located at z = 0.2 mm, the results obtained with
PLSR showed better accuracy when compared to one of the most tradi-
tional method using in quantitative analysis of pulsed thermography. In
this regards it is important to remember that the onset time is the most im-
portant variable to predict the defect depth (see the regression coefficients
showed in Table 6.2) and also it is the most sensible and difficult to obtain
specially in shallowest defects, due to the saturation effects present in the
first frames of the acquisition. It is because of this difficulties that the
most accurate prediction results were achieved with the deeper defects.

The prediction results of the lateral size of defects are depicted Fig-
ure 6.10. As in previous cases, the predicted values are plotted against the
actual. Results showed that the most important errors between predicted
and actual values are in the defects with z = 0.2 mm; this error was ex-
pected and already discussed in earlier sections. However, as long as the
depth increases, the accuracy of the prediction becomes better. As shown
in Figure 6.10c, predictions results for defects with z = 0.6 mm are quite
accurate, even in the defect with the smallest lateral size (D = 3 mm).
However, it can be observed a large error when considering the defect
with aspect ratio D/z = 3/1.0. This error can be explained as a conse-
quence of the poor signal of temperature which can lead to produce errors
when computing the thermal contrast.
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(a)  D = 15 mm
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Figure 6.9: Comparison between predicted values of depth computed with the Cmax
method and PLSR.



136 Quantitative Analysis

10.83 11.15

7.99

6.43

4.50

15 10 7 5 3
0

3

6

9

12

15

18

P
re

d
ic

te
d

 L
a

te
ra

l 
S

iz
e

 [
m

m
]

Actual Lateral Size [mm]

 Predicted D for z = 0.2 mm

15.11

11.13

7.85

4.31
3.57

15 10 7 5 3
0

3

6

9

12

15

18

P
re

d
ic

te
d

 L
a

te
ra

l 
S

iz
e

 [
m

m
]

Actual Lateral Size [mm]

 Predicted D for z = 0.4 mm(a)  Predicted lateral size for z = 0.2 mm

14.45

10.67

7.13

4.51
3.43

15 10 7 5 3
0

3

6

9

12

15

18

P
re

d
ic

te
d

 L
a

te
ra

l 
S

iz
e

 [
m

m
]

Actual Lateral Size [mm]

 Predicted D for z = 0.6 mm

13.51

11.25

8.69

4.33
3.77

15 10 7 5 3
0

3

6

9

12

15

18

P
re

d
ic

te
d

 L
a

te
ra

l 
S

iz
e

 [
m

m
]

Actual Lateral Size [mm]

 Predicted D for z = 0.8 mm

14.19

11.49

7.12

4.81

1.12

15 10 7 5 3
0

3

6

9

12

15

18

P
re

d
ic

te
d

 L
a

te
ra

l 
S

iz
e

 [
m

m
]

Actual Lateral Size [mm]

 Predicted D for z = 1.0 mm

(b)  Predicted lateral size for z = 0.4 mm

(c)  Predicted lateral size for z = 0.6 mm (d)  Predicted lateral size for z = 0.8 mm

(e)  Predicted lateral size for z = 1.0 mm

Figure 6.10: Predicted values of lateral size of defects using PLSR.
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Table 6.3 shows a comparison of the RMSE (root mean square error)
of the fitted response and predicted values of depth [obtained with PLSR
and using Eq. (6.1)] and lateral size. It can be observed that the RMSEP
for the fitted response of lateral size is higher than the obtained with depth.
Since those values are obtained in the absent of experimental noise, it can
be concluded that the predictor variables were more effective in predicting
the depth (in this case, tonset) than the lateral size of the defects. This issue
could represent a beginning in research concerning to other informative
parameters that could represent better the lateral size of the defects.

In the other hand, the prediction of depth using PLSR showed to be
more effective (in terms of applicability and accuracy) in predicting depth
compared to the results obtained via the Cmax method (0.0602 vs. 0.3274).
In spite that the RMSP of the lateral size was higher than the obtained with
the depth, PLSR proved to be an effective and a straightforward method
for retrieving D in a very anisotropic specimen.

Table 6.3: Root mean square error for prediction of depth and lateral size. All values
given in mm.

Fitted Predicted

zPLS DPLS zPLS zCmax DPLS

RMSEP 0.0228 1.0160 0.0602 0.3274 1.2975
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6.4 Summary

Quantitative analysis is the final step of the nondestructive testing and
evaluation chain. Once the defects has been identified, it is of interest to
characterize them quantitatively in order to judge their severity. Defect
depth and lateral size are the most commonly parameters studied; how-
ever, other parameters such as the thermal properties of the defects are
often assessed.

Most of the techniques currently used to characterize defect depth and
geometry are based on the analysis of the measured temporal and spatial
thermal response obtained during the inspection by PT. The most suitable
quantitative methods are derived from the thermal contrast (time based IR
data) and phase data. However, these methods present limitations. In the
case of the method based on the computation of the maximum thermal
contrast, its applicability is limited by the observation time. In the other
hand, the inversion of depth using phase data requires complex analysis
of the temporal signals in order to reproduce an appropriate response in
the frequency domain.

This chapter presented a new inversion method for retrieving depth
and lateral of size of defects. The method is based on the correlation be-
tween related parameters of the defects (the dependent block) with the
informative parameters obtained during the cooling process of the PT in-
spection (the independent block). Results obtained from numerical simu-
lation were used to built up a calibration model. Using partial least squa-
res regression, the independent block of data (consisting on the 25 values
of thermal contrast, its time of occurrence and the onset time) was decom-
posed into latent variables, from which regression coefficients were ob-
tained and the prediction of depth and lateral size was performed straight-
forward from a new predictor matrix. The results were compared with
traditional methods in order to evaluate its performance. The accuracy of
the prediction of depth obtained with the new method was higher than the
obtained with the cmax method.



Chapter 7

Conclusions, Main Contributions and Fu-
ture Works

Below are presented the conclusions, main contributions of this thesis
and recommendations for future works concerning to infrared thermogra-
phy (IRT) as a nondestructive testing and evaluation (NDT&E) technique:

7.1 Conclusions

Chapter 2
This chapter reviews the fundamentals concepts of pulsed thermography
as a NDT&E technique. The different steps necessary to implement this
technique were also discussed. Furthermore, it was presented the inspec-
tion system used during the development of this thesis and also it was
discussed relevant information concerning to the acquisition and analysis
of the thermographic data.

Non-uniform heating and blurring (produced by the lateral heat diffu-
sion) are the most harmful effects that PT has to deal with. Non-uniform
heating is caused by several factors, such as different properties on the
material surfaces and the uneven heating applied during the thermal ex-
citation. In the other hand, blurring is a problem caused when the heat
diffusion process in the lateral directions becomes predominant. Most
of the defects will suffer from blurring but deeper defects or those with
smaller aspect ratio are the most sensitive. Both - non-uniform heating
and blurring - are unavoidable, at least until today. Different techniques
has been developed in order to overcome those problems. Most of them
transform the thermal data into another domain or space less sensitive to
the typical problems arising in the PT inspection.
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Chapter 3
In this chapter was described a step−by−step methodology for the de-
velopment of a thermal-numerical model for the simulation of a pulsed
thermography inspection on carbon fiber laminated composites. The nu-
merical simulation tool − which was theoretically and experimentally
validated − provided means for the understanding of the heat diffusion
interaction with internal defects and the response of the surface thermal
pattern. A parametric study was conducted and the analysis was based on
the response of the onset time (tonset), maximum thermal contrast (Cmax)
and its time of occurrence (tC max), when varying parameters related to the
geometry of the defects and the external thermal excitation.

The numerical study revealed that non-uniform heating, the irradiation
power density and parameters associated with the defect geometry (lateral
size and thickness) strongly affect the maximum thermal contrast. On the
other hand, the onset time and the time of occurrence of the maximum
thermal contrast are not affected by non-uniform heating, the irradiation
power or the defect thickness. These results presented herein suggest that
the most appropriate quantitative variables that should be considered to
determine the defect depths are the onset time and time of occurrence of
the maximum thermal contrast. This issue was covered in Chapter 6.

Chapter 4
In this chapter the basic principles of three of the most attractive signal
processing techniques have been discussed in details as well as their im-
plementation in PT inspection data of carbon and glass fiber reinforced
polymers. Along with experimental and heat transfer concepts, a method-
ology to study the application and performance of the techniques on two
different specimens has been developed. For the case of the CFRP006
specimen, results showed that - even in detectable defects - it is possible to
obtain an improvement on defects visibility especially with pulsed phase
thermography (PPT) phase images and 1st derivative images. In spite that
differential absolute contrast (DAC) provides good signal-to-noise ratio
(SNR) for defects with aspect ratio greater than 37, its performance is af-
fected as D/z becomes smaller. This can be due to the deviation from the
1D thermal behavior which affects deeper defects.

The results in glass fiber reinforced polymers showed that 1st deriva-
tive and PPT phase images provide in overall the highest SNR at maxi-
mum signal contrast, followed by DAC and 2nd derivative images. DAC
produced SNR values comparable to PPT and thermographic signal re-
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construction (TSR) 1st derivatives in the case of defects with larger aspect
ratio.

The study performed in this chapter allows to conclude that in spite
that most of the defects can be detected with raw data, the application
of a signal processing technique to the pulsed thermography thermal se-
quences provides an important improvement of signal quality. This signal
improvement can prevent to wrongly interpret an artifact as an internal de-
fect (or vice versa), along with a better precision when quantitative analy-
sis is performed. Moreover, it can be concluded that the SNR at maximum
signal contrast - and consequently, the performance of each technique - is
a function of several factors, being the most important: thermal properties
of the specimen, aspect ratio of the defects and especially, the acquisition
parameters of the inspection. While thermographic signal reconstruction
(TSR) and DAC suffer the potential consequences of undersampling, PPT
does not (since its more valuable information is at lower frequencies).

Chapter 5
In this chapter a new method of processing thermographic signals has
been proposed and tested on experimental PT data of carbon and glass
fiber-reinforced polymer. The technique, which is based on partial least
squares regression, produces a new set of thermal images constructed
from the decomposition of the original data into latent variables. Through
an in-depth analysis of the latent variables, it was possible to identify
and separate the components associated to non-uniform heating. Thus, a
new sequence of images was created without the harmful effects of non-
uniform heating and with a considerable reduction of background noise.

The analysis of the latent variables (or components) was extended to
the loadings and scores plots from which it was possible to identify several
measurements and samples that are not correlated to each other. The re-
sults obtained from this analysis was extremely useful in the quantitative
analysis of subsurface defects (see for instance Chapter 6). The perfor-
mance of the method proposed herein was analyzed using the signal-to-
noise ratio. In the case of the CFRP006 PT data, results showed a gain
in the SNR values after processing the images with partial least squa-
res (PLSR) in the case of 88 % of the defects. After suppression of the
non-uniform heating, the increase in the SNR values was even greater
(96 % of the defects). As for the GFRP006 data, it was achieved an in-
crement of the SNR in % 56 of the defects and 64 % when non-uniform
heating was suppressed from the synthetic sequence. In spite that the per-
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formance of the new processing technique was not good enough when
processing GFRP006 thermal data, it provides several advantage over tra-
ditional techniques. The most important is the applicability to situations
in which the thermal behaviour of defects do not follow the 1D solution
of the heat conduction equation. Furthermore, PLSR does not suffers the
consequences of under− or over-sampling (conversely to TSR and PPT,
respectively).

Chapter 6
In this chapter was developed a new inversion method for retrieving depth
and lateral of size of defects. The technique is based on the statistical cor-
relation between related parameters of the defects (the dependent block)
with the informative parameters obtained during the cooling process of the
PT inspection (the predictor or independent block). A learning or calibra-
tion model was built up using numerical simulation results. Using partial
least squares regression, the independent block of data (consisting on the
25 values of thermal contrast, its time of occurrence and the onset time)
was decomposed into latent variables, from which regression coefficients
were obtained and the prediction of depth and lateral size was performed
straightforward from a new predictor matrix.

Results showed that onset time is the most important parameter to
retrieve the defect depth, whilst the time of occurrence of the maximum
thermal contrast represent the most important for the prediction of the
lateral size of defects. It was also shown that the new method proved
to be effective - in terms of applicability and accuracy - to predict both
variables on experimental data. Moreover, the results obtained with the
new method showed better performance - evaluated in terms of the root
mean square error - than when performing the quantitative analysis using
the method proposed by Balageas et al. (1987).

7.2 Main contributions

A computational tool for the simulation of the pulsed thermography
inspection on anisotropic materials:
The computational tool meets the most important elements to be taken
into consideration when is performed the pulsed thermography inspec-
tion. This computational resources is flexible and can be adapted to other
types of materials (such as homogeneous materials), structures (multi-
layered components) and stimulation methods (for instance, lock-in and
long-pulse thermography). In addition to be used for the analysis of the
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different heat transfer mechanisms, this tool can be used for the technical
training.
A methodology to assess the performance of signal processing meth-
ods on pulsed thermography data:
The methodology developed allows to conclude - based on quantitative
information - the most suitable processing technique given the stimula-
tion method, thermophysical properties of the material and acquisition
parameters. Since the SNR is evaluated in the maximum signal contrast,
it is possible to determine the maximum level of visibility achieved with
different processing algorithms.

A new robust signal processing technique for the analysis of thermo-
graphic data:
This new processing method is one the core of this research work. The
new technique is robust and flexible, which means that it can be applied to
other signals types besides the short-temporal signal obtained in PT. An-
other important advantage over traditional techniques is its applicability
to cases when the heat diffusion is not 1D, conversely to DAC, TSR and
PPT. The ability to separate the effects of non-uniform heating represents
its major achievement.

A new quantitative method to retrieve depth and lateral size of de-
fects:
This new method allows to correlate the three most important parameters
obtained during the cooling process - onset time, maximum thermal con-
trast and its time of occurrence - to the lateral size and depth of the defects.
As in previous cases, this technique addresses the major concern of tradi-
tional techniques for the quantitative analysis of defects: their restriction
to cases when the heat diffusion process is 1D. Thus, this technique can
be applied to deeper defects and longer observation times.

7.3 Recommendations for Future Works

Study the applicability of pulsed thermography to inspect non-planar
surfaces:
So far the application of IRT for NDT&E of materials haven been focused
on the inspection of planar surfaces. However, there are several situations
in which the surface to be assessed is non-planar. For this particular case
the inspection by PT present various limitations: the heat emission (was
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well as heat absorption) is at its maximum when the normal surface is
parallel to the direction of the flow of energy. This variation in the heat
transfer problem may lead to reduce the intensity of the signals, produc-
ing thus incorrect subsurface defect detection.

Study the applicability of partial least squares regression to other in-
frared thermography techniques, such as lock-in, vibro- and induc-
tion thermography:
The research on PLSR as a signal processing technique was exclusively
focussed on the regression and analysis of temporal signatures (i.e., ther-
mal decay curve). However, other stimulation modes require to make
the acquisition in steady-state regime (such as LT and modulated VT).
It is well known that in the cases of LT and VT, the signals are highly
contaminated by higher order oscillation, making more difficult the inter-
pretation process. PLSR can be employed as a means to reconstruct the
thermographic signatures and produce smoothed signals.

Include other parameters in the multivariate model − such as ther-
mophysical properties of the material and full-wide half maximum
(FWHM) − in order to enhance the accuracy of PLSR as a quantita-
tive technique:
In this research were only used three parameters (maximum thermal con-
trast, its time of occurrence and the onset time) for the inversion of depth
and lateral size of the defects. However, one of the main attraction of
PLSR is its ability to deal with a large number of independent variables.
This feature can be used in order to improve the accuracy of the prediction
results and include in the prediction model other parameters, such as the
thermophysical properties of the material and the internal defects.
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Appendix A

Fundamentals of Thermal Radiation

A.1 The nature of thermal radiation

The propagation of thermal radiation (as well as in visible light, ul-
traviolet and so on) can be described from two different points of view:
as waves −more specifically as electromagnetic waves with specific fre-
quency and energy− or consisting of massless energy parcels called pho-
tons (as predicted by quantum-mechanics). Neither point of view is able
to describe completely all radiative phenomena that have been observed.
It is, therefore, customary to use both concepts interchangeable. In gen-
eral terms, radiative properties of liquid and solids (surfaces) are more
easily predicted using electromagnetic wave theory, while radiative prop-
erties of gases are more conveniently obtained from quantum mechanics.
However, as will be showed below, both concepts are linked each other.

All electromagnetic waves, or photons, are known to propagate through
any medium at a high velocity. Since light is a part of the electromagnetic
wave spectrum, this velocity is known as the speed of light, c. The speed
of light depends on the medium through which it travels, and may be re-
lated to the speed of light in vacuum, co, by the formula:

c =
co

n
(A.1)

where n is known as the refractive index of the medium (the speed of light
in vacuum is also related to the vacuum permittivity εo and the vacuum
permeability µo by c = 1/

√
εoµo). By definition, the refractive index of

vacuum is n ≡ 1. For most gases the refractive index is very close to
unity, for example, air at room temperature has n = 1.00029 over the vis-
ible spectrum. Therefore, light propagates through gases nearly as fast
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as through vacuum. Electromagnetic waves travel considerably slower
through dielectrics (electric nonconductors), which have refractive indices
between approximately 1.4 and 4, and they hardly penetrate at all into
electrical conductors (metals) (Modest, 2003). Each wave may be identi-
fied by its frequency, ν (measured in cycles/s = s−1 = Hz); wavelength, λ

(measured in µm = 10−6 m or nm = 10−9 m); wavenumber, η (measured
in cm−1) or its angular frequency, ω (measured in radian/s = s−1). All
four quantities are related one to another by the following equation:

ν =
ω

2π
=

c
λ

= cη (A.2)

Each wave or photon carries with it an amount of energy, e, determined
from quantum mechanics as:

e = hν =
hc
λ

(A.3)

where h is the Planck’s constant. The physical quantities present in Equa-
tions (A.1)-(A.3) are listed in Table A.4.

The frequency of light does not change when light penetrates from
one medium to another since the energy of photon must be conserved. On
the other hand, wavelength and wavenumber do, depending on the values
of the refractive index of two media. Sometimes electromagnetic waves
are characterized in terms of the energy that photon carries, hν , using unit
electron volt (1 eV = 1.6022 x 10−19 J). Thus, light with a photon energy
(or frequency) of a eV has a wavelength (in vacuum) of,

λ =
hco

hν
v
(6.626×10−34Js)(2.998×108m/s)

a(1.6022×10−19J)
=

a(1.240)
1

µm (A.4)

Since electromagnetic waves of vastly different wavelengths carry vastly
different amount of energy, their behavior is often quit different. Depend-
ing on their behavior or occurrence, electromagnetic waves have been
grouped into a number of different categories (classified according to the
photon energy, frequency and wavelength) as shown in Figure A.1. The
wavelength region of interest here is the thermal radiation band, which
comprises the long-wave portion of the ultraviolet, the visible region from
approximately 0.4 to 0.74 µm, and the infrared region from beyond the
red end of the visible spectrum to approximately 1000 µm .
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Figure A.1: Electromagnetic spectrum including the different infrared spectral bands.
(Adapted from Ibarra-Castanedo et al., 2007b.)

The infrared spectrum can be further subdivided into five parts: near
infrared (NIR) from 0.74 to 1 µm; short wavelength infrared (SWIR) from
1 to 3 µm; medium wavelength infrared (MWIR) from 3 to 5 µm; long
wavelength infrared (LWIR) from 8 to 14 µm; and very long wavelength
infrared (VLWIR) from 14 to 1000 µm. However, for infrared imaging,
only two spectral ranges are typically defined: midwave region from 3 to
5 µm; and long-wave region from around 8 to 14 µm. Commercial cam-
eras are available for these two ranges. The restrictions of these wave-
length follows from considerations of the amount of thermal radiation to
be expected, from the physics of the detector and from the transmission
properties of the atmosphere.
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A.2 Plank’s Law

In thermography, the most important process is the so-called thermal
radiation. The term thermal radiation implies that every body at a tem-
perature T > 0 K (−273.15 oC) emits infrared thermal radiation. The in-
tensity of this radiation depends on wavelength λ and the body’s temper-
ature, phenomenon that il well-described by the Plank’s law. It describes
the spectral intensity of a perfect emitter (blackbody) as a function of the
wavelength for a given temperature,

Iλ ,b(λ ,T ) =
2hc2

o

λ 5[exp(hco/λkbT )−1]
(A.5)

Since the blackbody is a diffuse emitter, its emissive power is given
by:

Eλ ,b(λ ,T ) = πIλ ,b(λ ,T ) =
C1

λ 5[exp(C2/λT )−1]
(A.6)

being C1 and C2 the first and second radiation constants (see Table A.4 at
the end of this section). Equation (A.6) is plotted for different tempera-
tures in Figure A.2. Important features should be noted from this figures:
the emitted radiation varies continuously with wavelength; at any wave-
length the magnitude of the emitted radiation increases with increasing
temperature and; the spectral region in which the radiation is concentrated
depends on temperature, with comparatively more radiation appearing at
shorter wavelengths as the temperature increases.

A.3 Stefan-Boltzmann Law

Integrating the emissive power [Eq. (A.6)] over all wavelengths, is
obtained the total emissive power of blackbody Eb:

Eb(T ) =
∫

∞

0
Ee,λ (T )dλ =

2k4
bπ5

15c2
oh3 T 4 = σT 4 (A.7)

where σ is the Stefan-Boltzmann constant. Thus, the total radiant flux
emitted by a blackbody per unit surface element increases with the fourth
power of temperature, which is known as the Stefan-Boltzmann law.
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Figure A.2: Spectral energy-derived emissive power of a blackbody for different tem-
peratures range.

A.4 Wien’s Displacement Law

It can be noted from Figure A.2 that the blackbody spectral distribu-
tion has a maximum and that the corresponding wavelength λmax depends
on temperature. The nature of this dependence may be obtained by differ-
entiating Eq. (A.6) with respect to λ and setting the result equal to zero,
resulting in:

λmaxT = C3 (A.8)

being C3 the third radiation constant (see Table A.4).
Equation (A.8) is known as the Wein displacement law. According to

this result, the maximum spectral emissive power is displaced to shorter
wavelengths with increasing temperature. With increasing temperature,
shorter wavelengths become more prominent, until eventually significant
emission occurs over the entire spectrum.
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Table A.1: Radiation constants and values of physical quantities of interest. (Adapted
from DeWitt and Nutter, 1988; Siegel and Howell, 2002).

Quantity Symbol Value Units

Speed of light in vacuum co 2.99792458 × 108 m/s

Permeability of vacuum µo 4 π × 10−7

= 12.566370614 × 10−7 N/A2

Permittivity of vacuum εo 8.854187817 × 10−12 F /m

Planck constant h 6.626076 × 10−34 J·s

Boltzmann constant kb 1.380658 × 10−23 J/K

Stefan-Boltzmann constant σ 5.67051 × 10−8 W /(m2·K4)

Constant in Planck’s spectral energy C1 1.1910439 × 10−16 W ·m2

distribution, C1 = 2hc2
o

Constant in Planck’s spectral energy C2 1.438769 × 104 µm·K
distribution, C2 = hco/K

Constant in Wien’s displacement law C3 2897.7 µm·K
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