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AMERICAN MATHEMATICAL SOCIETY
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COMMUTATORS AS POWERS IN FREE PRODUCTS OF GROUPS

LEO P. COMERFORD, JR., CHARLES C. EDMUNDS, AND GERHARD ROSENBERGER

(Communicated by Ronald M. Solomon)

ABSTRACT. The ways in which a nontrivial commutator can be a proper power
in a free product of groups are identified.

It is well known that in a free group, a nontrivial commutator cannot be a
proper power. This seems to have been noted first by Schiitzenberger [2]. It
is, however, possible for a nontrivial commutator to be a proper power in a

free product. Our aim in this paper is to determine the ways in which this can
happen.

Theorem 1. Let G = x;c1G;, the free product of nontrivial free factors G;. If
V,X,YEG and V" = X~1Y-1XY =[X, Y] for some m > 2, then either

(1.1) V e W-IG;W for some W € G, i € I, and V™ is a commutator in

W-lG;W ; or
(1.2) m iseven, V = AB with A*=B*=1, and V™ = [A, B(AB)("~2/?];
or

(1.3) m is odd, V = AC~'AC with A*> = 1, and V™ = [A,
C(AC—1AC)m=D12]; or ,

(1.4) m=6, V =AB with A2=B3=1, and V¢ =[B~'ABA, B(4B)?]; or

(1.5) m=3, V=AB with A>=B>=1, and V3 =[BA~!, BAB]; or

(1.6) m=2, V = AB with A> =1 and B~' = C~'BC for some C € G,
and V2 =[C~'4, B]; or

(1.7) m=4, V2= ABC with A2=B*=C?>=1, and V*=[BA, BC].

We recall that in a free product every element of finite order lies in a conjugate
of a free factor. Thus we have the following consequence of Theorem 1.

Corollary 2. Let G = %;c;G;, where no G; has elements of even order. If
V,X,Y€G and V™ =[X, Y] for some m > 2, then either V € W1G;W
for some W € G, i e, and V™ is a commutator in W-'G;\W or m = 3,
V = AB for some A, B € G with A>=B3*=1, and V3 =[BA?, BAB].

Part (1.7) of Theorem 1 is somewhat unsatisfactory in that it describes the
form of V2 rather than that of V. Among the ways in which an element V
of a free product may have V2 = ABC with 42=B2=C?=1is V = DE
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with D? = E4 = 1, in which case V% = (D)(E?)(E~!DE). Not every solution
is of this form, as shown by G = (a, b ; a* = b* = (ab)? = 1) x (¢ ; ¢* =
1) and V = acbcabc; here V? = (acbca)(bcacb)(cabc), a product of three
elements of order two, but ¥V is not a product of two elements of finite order.
A classification of elements V' satisfying the conditions of (1.7) has eluded us.

Relative to (1.6), we record the following well-known consequence of the
Conjugacy Theorem for Free Products [1, Theorem IV.1.4].

Lemma 3. If B is an element of a free product G = %;c;G; and B-'=C-!BC
for some C € G, then either

(3.1) B€ W-IG;W forsome W € G, i €1, and thereisa C € W-'GiW
such that B~! = C~'BC or
(3.2) B=DE forsome D, E e G with D>’=E?=1.

Before proceeding with a proof of the theorem, we establish some notation
and terminology for the free product G = *;¢/G; . Our usage is that of Lyndon
and Schupp [1] unless otherwise noted. A product PQ of elements P and Q
of G is reduced if one of P, Q is trivial or if the last letter of the normal
form of P is not inverse to the first letter of the normal form of Q. The
product PQ is fully reduced if P or Q is trivial or if the last letter of the
normal form of P is from a free factor different from that of the first letter
of the normal form of Q; we sometimes denote this by writing P - Q. These
notions extend to products of more than two factors, with the understanding that
the noncancellation conditions continue to apply after trivial factors have been
deleted. Thus a product P;--- Py is fully reduced if and only if |P--- FP| =
Ef-;l |P;| , where | | denotes free product length.

Anelement P of G is cyclically reduced if |P| <1 or the first and last letters
of its normal form are not inverses and is fully cyclically reduced if |P| <1 or
the first and last letters of its normal form lie in different free factors of G.

A key ingredient in our analysis will be the characterization by Wicks of the
fully reduced forms of a commutator in a free product. The following is a
restatement of Lemma 6 of [3].

Lemma 4 (Wicks). If U € G = x;c/G; is a commutator, either U € w-lGiwW
for some W € G, i €I, and U is a commutator in W-1G,W , or some fully
cyclically reduced conjugate of U has one of the following fully reduced forms:
(4.1) X~la;Xay with X #1, a; # 1, a1, a; € G; for some i € I, and a;
conjugate to a;' in G;; or
(4.2) X~ 'a\Y 'ayXasYas with X #1, Y #1, ay, a3, a3, as € G; for some
iel, and asasaa; =1; or
(4.3) X~ 'a;Y"'b;Z 'ayXb,YasZby with ay, az, a3 € G; for some i € I
and azaza; = 1, by, by, by € G for some j €I and bsbyb; = 1, and
either not all of a;, az, a3, by, by, by are in any one free factor of G or
each of X,Y, Z is nontrivial.

As a final preliminary step, we examine the ways in which both an element
and its inverse can occur as fully reduced subwords of a proper power in a free
product.
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Lemma 5. Suppose that V is a fully cyclically reduced element of G = *;c;G;

with |V| > 2, that m > 1, and that, for some X,R,S, T € G, V™ =

X-1.R=S8-X-T. Then one of the following is true:

(5.1) |X| >|V|, X=X,-B-A and V = A-B for some A, B, X\ with

=B2=1,and SX =V"-A for some n < m; or

(5.2) 2|V| <|IXI<|V], X=X, - X2+ X3 and V = X3-X;' - X1 - X, for
some Xy, Xy, X3 with X2 =X} =1,and S=V"-X3-X;" for some
n<m;or

(5.3) | X|<|V], X=X1-X, and V =X2‘1 <X+ X, T forsome X1, Xy, T}
with X} =1, and S=V"-X;! for some n<m; or

5.4) | X|<|V], X=X1+-X> and V=X, X_l S, « X, for some X, X3, S,
with X22 =1,and S=V" Xy X[! S3 for some n < m; or

(5.5 |X|<$VI-1and V =Xx1. Vz - X - V3 for some nontrivial V,, V3
and S=V".-X"1.V, for some n<m. ‘

Proof of Lemma 5. If X is empty, clause (5.5) applies with V' = 1,13 a

fully reduced factorization of ¥ such that S = V" .V, for some n < m. We

suppose, then, that X # 1.

If |X| > |V]|, we factor V' as 4B sothat SX = V" .4 with |4] < |V].
It follows that X = X, - B+ A for some X;. But since X~!=4-1.B"! -Xl‘1
is an initial subword of V™ = (4-B)™, A~! = A and B~! = B. This is the
situation described in (5.1). We assume, henceforth, that | X| < |V].

Let n be the largest integer such that |V"*| < |S|, and let S;, V; be such that
S=V".S; and V = X~!.V;. We cannot have |S;| = |X]| or |S||+|X|=|V],
for that would violate our hypotheses on the fully reduced factorizations of V™.

Suppose that |S;| < |X| and |S;|+|X| > |V|. Then X factorsas X;-X;-X3
with X~! = Sl -X{', V=8-X:- Xz, and X; and X nonempty. Now
S = X3" Xz_ ; so V = X3‘1 -X2_1 . ¢ ~X2. But SX = V*tl. X3, which
implies that X;! = X3,and ¥V = X;'- X;' - X!+ 11, which yields X' = X; .
This is the s1tuat10n of (5.2), and we note that |V| < |S;| +|X| and |S1| <|X|
imply that |V| < 2|X].

Next suppose that || < |X| and |Si| + |X| < |V|. Then X factors as
X, - X, with Sy = X;! and V =S,-X-T; forsome T;,s0 V =X;'-X;-
X, Ty = X;' - X7'- V1. It follows that X' = X;, and we are in situation
(5.3).

Now suppose that |S;| > |X| and |S;|+|X| > |V|. We factor X as X;- X,
with ¥ = 8- X; and factor S; as X~!.S;. Then V = X;!-X['. 83X
and, since S-X = V"1. X,, X;! = X,; this is (5.4).

Finally, suppose that |S;| > |X| and |Si|+ |X| < |V]|. In this case, S;
factors as X~ ! -V, for some V5 and V = S; - X - V; for some V3. Then
V=X"1.V;.X.V;, where necessarily ¥, and V3 are nonempty, and (5.5)
applies. O

Proof of Theorem 1. Each of the forms specified for ¥ (or, in (1.7), V?) in
the conclusion of Theorem 1 is preserved if V is replaced by a conjugate of
itself, so we lose no generality in assuming that V is fully cyclically reduced.
If V € G; for some i € I, then Lemma 4 tells us that (1.1) holds. We suppose,
then, that |V|>2.
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By Lemma 4, some fully cyclically reduced conjugate of ¥ has the form
specified in (4.1), (4.2), or (4.3). After again replacing V' by a fully cyclically
reduced conjugate and relabeling in (4.2) and (4.3) if necessary, we may assume
that V'™ has form (4.1), or form (4.2) with |X| > |Y|, or form (4.3) with
|X| > Y] and |X]| > |Z].

Let P =a; and Q = a, in form (4.1), P = a;Y " 'a; and Q = a3Yay =
asYar'a;'a;! in form (4.2), and P = a;Y~'5;Z 'a, and Q = b,Ya3Zb; =
byYa;'a;'Zb;'bs! in form (4.3). In each instance, V™ = X~!.P. X .Q and
Q is conjugate to P~! in G. Further, |P|=|Q| =1 in (4.1), |P| < |X| +2
and |Q| < |X|+2 in (4.2), and |P| < 2|X| + 3 and |Q| < 2|X| + 3 in (4.3).
We proceed by cases according to which clause of the conclusion of Lemma 5
is satisfied, with R=PXQ, S=X"1P,and T=0Q.

Case (5.1). Suppose that X = X;-B-A4 and V =A-B forsome X;, A, B
with 42 = B2 =1, that X;!PX; = (4B)*4 for some k, 0 <k <m -3, and
that Q = B(4B)"%-3.

If m is even, (1.2) is satisfied, while if m is odd, Q conjugate to P!
implies that B is conjugate to 4 and (1.3) holds.

Case (5.2). Suppose that X = X;-X,+- X3 and V = X3- X, '+ X; - X, for
some X, X,, X3 with X? = X} =1, that P = o X3X; ' (X1 X, X3 X5 ) for
some k, 0<k<m-3,and Q= Xz_leXz(X3X2_1X1X2)m_k_3 .

As in the previous case, (1.2) applies if m is even, and if m is odd, Q
conjugate to P~! implies that X3 is conjugate to X; and (1.3) obtains.

Case (5.3). Suppose that |X| < |V]|, X=X;-X; and V =X;'- X - X+ T}
for some X;, X,, T; with X12 =1, and that P = XleXz_l(XleTle_l)k for
some k, 0<k<m-2,and Q= Ti(X;' X1 X, T;)"*-2.

We first notice that since |P| < 2|X|+3 <2|V|+1 and |Q| <2|X|+3 <
2|V|+ 1, we have m < 6. Now Q is conjugate to P~!, so P and Q must
have fully cyclically reduced conjugates of the same length. It is not hard to see
that this implies that either k =m —k —2 or T2 = 1. If T2 =1, we find
as in previous cases that (1.2) applies if m is even and that (1.3) applies if m
is odd. We suppose, then, that le # 1 and k = m — k — 2. The possibilities
to consider are that m =2 and k=0, m=4 and k=1, and m =6 and
k=2.

If m=2 and k=0, T, is conjugate to 77! and (1.6) holds.

If m=4and k=1, 0= T1X2_1X1X2T1 and P =X2T1X2_1X1X2T1X2_1 ,a
conjugate of Q. Now T? # 1,s0 Q isnot in a conjugate of a free factor of G,
but since Q is conjugate to P~!, Q is conjugate to Q~!. By Lemma 3, then,
Q = DE for some D, E with D> = E2 = 1. But then V? = X; ' X\ X,DE,
and (1.7) applies.

Suppose, then, that m = 6 and k = 2. We must have |X| = |V|—-1 and
|P| =]Q| = 2|V|+1, so X, is empty and 7; has length one. Let us write
X, =C'.aq.C with C € G and a € G; for some i € I and a?> =1
and T} = b € G; for some j € I with b? # 1. We then have P = Q =
b.C'.q-C-b-C'.a-C:b,s0 b2-C1.q-C-b-C-'.a-C is a fully
cyclically reduced conjugate of P which, like P, is conjugate to its inverse.
There must then be a factorization C; - C, of C such that one of the following
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holds:

M CrlaCiGb~ 1y ClaC G 2G5!
=b>C;'CaC b C I CT aCi Gy,

@ Cb~IC I CraC Cb72C5 Tt aCy
=b2C;'ClaC b Cy I CTaCi Gy,

3 CilaC G2 CAC aC b ICy!

=b>C;'CaC b CICT aCl G,

Gb™2CyICaC b 7ICT I CaCy

4
@ =b2C;'CaC b CICT aCy G

If (1) is true, a length comparison on the fully reduced products on the two
sides shows that

Cl_laC1C2b_1C2_l = bZCZ_ICI_IaC1C2
and
CilaCiGb~2Cy! = bC;'CrtaCC,.

The left sides of these two equations begin with the same normal form letter, so
looking at the right sides we get b = b, a contradiction. Similarly, (2) yields
Gb7ICICT aCy = B2CI CTaC Gy

and
GCb~2CyICrtaCy = bCICT aC G,
from which we get the contradiction b? = b if C, is nonempty or the equation
b~! = b? if C, is empty. This last possibility corresponds to (1.4). If (3) holds,
we get
Cl‘laClCzb‘2C2‘1 = b2C2‘1C1‘1aC1C2
and
CrlaCiCb~ Iy = bCC ' aCy G
As in (1), we derive the contradiction b2 = b. Finally, if (4) is true,
GCb~2C7ICraCy = B3G5 CaC G
and
Gb7ICCraCy = bC CT aCy G,

This yields the contradictions b~! = b if C, is empty and b2 = b if C, is
nonempty.

Case (5.4). Suppose that |[X| < |V|, X =X;-X; and V =X, oXl‘1 AR, €
for some X, X,, S, with X} = 1, that P = $(X1 XX, !S2)* for some k,
0<k<m—2,and Q=X "'SX;(Xo X[ S X, )" *=2 .
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Replacing V' by its fully cyclically reduced conjugate X; XX 1S, and chang-
ing notation reduces this to Case (5.3).

Case (5.5). Suppose that |X| < i|V|-1, V =X"1.15.X.V; for some
Va, Va3, that P = W5(XV3X~1V3)k for some k, 0 < k < m — 1, and that
Q = V3(X~' X Vy)m-k-1,

Since |P| < 2|X|+3 < |[V|+ 1 and |Q| < 2|X|+ 3 < V| + 1, we have
m < 3. We first consider the case that m =2. If k =0, Q = KX 1HhX1;
conjugate to P~! = ¥;~! implies that V> = 1 and V5 is conjugate to ¥, !;
(1.6) applies. If k = 1, P = V3XV3X~'V4 is conjugate to Q~! = V7!, so
V=1, V; is conjugate to ¥;~', and again (1.6) applies.

Now suppose that m = 3. In this event, we must have |X|=1|V|-1 and
|P|=1Q|=|V]|+1,s0 |V3] =|V3] =1. Letus write V, =a € G; forsome i € ]
and V3 =b € G; for some j € I. Then since Q = b(X~'aXb)** is conjugate
to P! =g (Xb~'X~1g~1)k either a> = b?* = 1 and a is conjugate to b,
as described in (1.3), or a2 # 1,.b2 # 1, k = 1, and there is a factorization
X1 - X, of X such that one of the following holds:

(5 b7 X7 X amix = BAXG X laX X,

(6) Xl‘la‘zXleb‘le‘l = bzXz‘le‘laXle.

If (5) is true, either X, is empty and a3 = b3 =1 asin (1.5) or X, is nonempty
and X,b~! = b2X,; !, so that X, = b2X; and X;' = X;'b~! for some X3,
producing the contradiction b2 =b. If (6) is true, X? =1 and

X a2 X1 X007 = B2 X X a X

If X, is nonempty, X; = Xyb~! and X[' = b2X,;! for some X,, whence
b~! = b~2, a contradiction. Thus X; is empty, and a~2X2b~! = b?X; 'a
implies that b~! = a and X, = X;'. Thus ¥ = XaXa~! with X? =1, and
(1.3) applies. 0O
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