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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 122, Number 1, September 1994 

COMMUTATORS AS POWERS IN FREE PRODUCTS OF GROUPS 

LEO P. COMERFORD, JR., CHARLES C. EDMUNDS, AND GERHARD ROSENBERGER 

(Communicated by Ronald M. Solomon) 

ABSTRACT. The ways in which a nontrivial commutator can be a proper power 
in a free product of groups are identified. 

It is well known that in a free group, a nontrivial commutator cannot be a 
proper power. This seems to have been noted first by Schutzenberger [2]. It 
is, however, possible for a nontrivial commutator to be a proper power in a 
free product. Our aim in this paper is to determine the ways in which this can 
happen. 

Theorem 1. Let G = *EGi, the free product of nontrivial free factors Gi . If 
V, X, Ye G and Vm =X-1Y-XY= [X, Y] for some m >2, then either 

(1.1) V E W-IGiW for some W E G, i E I, and Vm is a commutator in 
W-1G'W; or 

(1.2) m is even, V = AB with A2 = B2 = 1, and Vm = [A, B(AB)(m-2)/2]; 
or 

(1.3) m is odd, V = AC-1AC with A2 = 1, and Vm = [A, 
C(AC-lAC)(m-l)/2]; or 

(1.4) m = 6, V = AB with A2 = B3 = 1, and V6 = [B-1ABA, B(AB)2]; or 

(1.5) m = 3, V =AB with A3 = B3 = 1, and V3 = [BA-1, BAB]; or 
(1.6) m = 2, V= AB with A2 =1 and B-1 = C-IBC for some Ce G, 

and V2 = [C-1A, B]; or 

(1.7) m = 4, V2 = ABC with A2 = B2 = C2 = 1, and V4 = [BA, BC]. 

We recall that in a free product every element of finite order lies in a conjugate 
of a free factor. Thus we have the following consequence of Theorem 1. 

Corollary 2. Let G = *iEiGi, where no Gi has elements of even order. If 

V, X, Y E G and Vm = [X, Y] for some m > 2, then either V E W-1GiW 

for some W E G, i E I, and Vm is a commutator in W-1GiW or m = 3, 

V = AB for some A, B E G with A3 = B3 = 1, and V3 = [BA2, BAB]. 

Part (1.7) of Theorem 1 is somewhat unsatisfactory in that it describes the 
form of V2 rather than that of V. Among the ways in which an element V 
of a free product may have V2 = ABC with A2 - B2 = C2 = 1 is V = DE 
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with D2 = E4 = 1, in which case V2 = (D)(E2)(E-1DE). Not every solution 
is of this form, as shown by G = (a, b ; a2 = b2 = (ab)2 = 1) * (c ; c2 = 

1) and V = acbeabc; here V2 - (acbca)(bcacb)(cabc), a product of three 
elements of order two, but V is not a product of two elements of finite order. 
A classification of elements V satisfying the conditions of (1.7) has eluded us. 

Relative to (1.6), we record the following well-known consequence of the 
Conjugacy Theorem for Free Products [1, Theorem IV. 1.4]. 

Lemma 3. If B is an element of a free product G = *iEGi and B-1 = C-1BC 
for some C E G, then either 

(3.1) B E W-1GiW for some W E G, i E I, and there is a C E W-1GiW 
such that B-1 = C-1BC or 

(3.2) B=DE for some DEEG with D2=E2=1. 

Before proceeding with a proof of the theorem, we establish some notation 
and terminology for the free product G = *1EGi . Our usage is that of Lyndon 
and Schupp [1] unless otherwise noted. A product PQ of elements P and Q 
of G is reduced if one of P, Q is trivial or if the last letter of the normal 
form of P is not inverse to the first letter of the normal form of Q. The 
product PQ is fully reduced if P or Q is trivial or if the last letter of the 
normal form of P is from a free factor different from that of the first letter 
of the normal form of Q; we sometimes denote this by writing P * Q. These 
notions extend to products of more than two factors, with the understanding that 
the noncancellation conditions continue to apply after trivial factors have been 
deleted. Thus a product P, ... Pk is fully reduced if and only if IP ... Pk = 

>=i I PiI, where I I denotes free product length. 
An element P of G is cyclically reduced if IPI < 1 or the first and last letters 

of its normal form are not inverses and is fully cyclically reduced if IP1 < 1 or 
the first and last letters of its normal form lie in different free factors of G. 

A key ingredient in our analysis will be the characterization by Wicks of the 
fully reduced forms of a commutator in a free product. The following is a 
restatement of Lemma 6 of [3]. 

Lemma 4 (Wicks). If U E G = *iEGi is a commutator, either U E W-IGiW 
for some W e G, i E I, and U is a commutator in W-1GiW, or some fully 
cyclically reduced conjugate of U has one of the following fully reduced forms: 

(4.1) X-la1Xa2 with X $ 1, a, $ 1, ai, a2 E Gi for some i E I, and ai 
conjugate to aj- in Gi; or 

(4.2) X- I a, Y- I a2Xa3 Ya4 with X $ 1, Y 5$ 1, a1, a2, a3, a4 E Gi for some 
i EI, and a4a3a2a1 = 1; or 

(4.3) X-1a1Y-1b1Z-1a2Xb2Ya3Zb3 with a1, a2, a3 E Gi for some i E I 
and a3a2a1 = 1, b1, b2, b3 E Gj for some j E I and b3b2b1 = 1, and 
either not all of a1, a2, a3 , b, b2, b3 are in any one free factor of G or 
each of X, Y, Z is nontrivial. 

As a final preliminary step, we examine the ways in which both an element 
and its inverse can occur as fully reduced subwords of a proper power in a free 
product. 
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COMMUTATORS AS POWERS 49 

Lemma 5. Suppose that V is a fully cyclically reduced element of G =*EIGi 
with IVI > 2, that m > 1, and that, for some X, R, S, T E G, Vm = 

X-1 R = S * X * T. Then one of the following is true: 

(5.1) IXI > IVI, X = X1 * B * A and V = A * B for some A, B. X1 with 
A2 = B2 = 1, and SX = Vn A for some n < m; or 

(5.2) 1IVI < IXI < IVI, X =XI X2 * X3 and V =X3 -X2-' *X1 X2 for 
some XI, X2, X3 with X2 = X32= 1, and =V n . X3. X2-1 for some 
n < m; or 

(5.3) IXI < I VI, X = XI * X2 and V = X-1 * Xi * X2 * T, for some XI, X2, T 
with X2 = 1, and S = Vn. X2-1 for some n < m; or 

(5.4) IXI < I VI, X = XI * X2 and V=X2 *XV1 52 * XI for some XI, X2, 52 
with X22 = 1, and S = Vn *X2.X11.S3 forsome n < m; or 

(5.5) IXI < 'iVI - 1 and V = X-1 * V2 * X * V3 for some nontrivial V2, V3 
and S = Vn'X-1V2 forsome n <im. 

Proof of Lemma 5. If X is empty, clause (5.5) applies with V = V2 * V3 a 
fully reduced factorization of V such that S = Vn . V2 for some n < m. We 
suppose, then, that X $ 1 . 

If IXI > IVI, we factor V as ARAB so that SX = Vn *A with JAI < IVI. 
It follows that X = X1 B * A for some X1 . But since X- 1 = A-1 . B 1- X1 I 

is an initial subword of Vm = (A * B)m, A-1 = A and B1 = B. This is the 
situation described in (5.1). We assume, henceforth, that IXI < IVI. 

Let n be the largest integer such that I Vn I < ? I, and let SI, JVI be such that 
S = Vn - S1 and V = X-1 * V1 . We cannot have IS, I = IXI or IS, I + IXI = IlVI, 
for that would violate our hypotheses on the fully reduced factorizations of Vm . 

Suppose that S, I < IXI and IS I + IXI > I VI. Then X factors as XI 1X2 . X3 

with X-1 = SI * X11, V = SI * X1 * X2, and X1 and X2 nonempty. Now 
SI = X3'-1 X2-', so V = X3'-1 X2-' * XI * X2 . But SX = Vn+l * X3, which 
implies that X3- 1 = X3, and V = X3* 1 * Xl 1 V V, which yields X-1 = XI. 
This is the situation of (5.2), and we note that IVI < iSIl + IXI and ISIl < IX 
imply that I VI < 2Xi. 

Next suppose that ISIl < IXi and ISIl + IXI < vI . Then X factors as 
X1 X2 with SI = X2-1 and V= S1 *X T1 for some T1, so V = X-'X1I . 
X2 

. T1 = Xi1 * X1 X V1 . It follows that X11 = X1, and we are in situation 
(5.3). 

Now suppose that IS, I > iXi and ISi I + iXi > I VI. We factor X as XI * X2 

with V = S1 * X1 and factor SI as X-1 *53 . Then V = X2-1' x1 S *53 * XI 
and, since S. X = Vn+ X2, X2-1 = X2; this is (5.4). 

Finally, suppose that ISl > IXi and ISl + IXI < IV. In this case, S, 
factors as X-1 * V2 for some V2 and V = S, * X. V3 for some V3. Then 
v = X-l * V2 * X * V3, where necessarily V2 and V3 are nonempty, and (5.5) 
applies. o 

Proof of Theorem 1. Each of the forms specified for V (or, in (1.7), V2) in 
the conclusion of Theorem 1 is preserved if V is replaced by a conjugate of 
itself, so we lose no generality in assuming that V is fully cyclically reduced. 
If V E Gi for some i E I, then Lemma 4 tells us that (1.1) holds. We suppose, 
then, that IVI > 2. 
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By Lemma 4, some fully cyclically reduced conjugate of Vm has the form 
specified in (4.1), (4.2), or (4.3). After again replacing V by a fully cyclically 
reduced conjugate and relabeling in (4.2) and (4.3) if necessary, we may assume 
that Vm has form (4.1), or form (4.2) with IXI > IYI, or form (4.3) with 
IXI > IYI and IXI > IZI. 

Let P = a, and Q = a2 in form (4.1), P = aY-Ia2 and Q = a3Ya4 = 

a3Yalaj-1a-l in form (4.2), and P = aIY-Ib1Z-Ia2 and Q = b2Ya3Zb3 = 

b2Ya -'a -1Zbj -bj-1 in form (4.3). In each instance, Vm = X- P X Q and 
Q is conjugate to P-' in G. Further, IP1 = IQI = 1 in (4.1), IP1 < IXI + 2 
and IQI < IXI + 2 in (4.2), and IPI < 21X1 + 3 and IQI < 21X1 + 3 in (4.3). 
We proceed by cases according to which clause of the conclusion of Lemma 5 
is satisfied, with R = PXQ, S X-X1P, and T = Q. 

Case (5.1). Suppose that X =X1 B * A and V = A * B for some X1, A, B 
with A2 = B2 = 1, that X1-lPX1 = (AB)kA forsome k, O<k<m-3,and 
that Q = B(AB)m-k-3. 

If m is even, (1.2) is satisfied, while if m is odd, Q conjugate to P-1 
implies that B is conjugate to A and (1.3) holds. 

Case (5.2). Suppose that X = XI * X2 * X3 and V = X3 * Xj-' * XI * X2 for 
some XI, X2, X3 with X12 = X32 = 1, that P = X2X3X-Il(XIX2X3X-l)k for 
some k, 0 < k < m - 3, and Q = XilX1X2(X3XilX1X2)m-k-3. 

As in the previous case, (1.2) applies if m is even, and if m is odd, Q 
conjugate to P-' implies that X3 is conjugate to X1 and (1.3) obtains. 

Case (5.3). Suppose that IXI < IVI, X = X1 * X2 and V = X7-1' XI * X2 * Ti 
for some X1, X2, T1 with X2 = 1, and that P = X2T1Xi-l (XIX2T1X-l)k for 
some k O < k < m - 2, and Q = T1(XlX1XIX2T1)m-k-2. 

We first notice that since IPI < 21X1 + 3 < 21 VI + 1 and IQI ? 21X1 + 3 < 
21VI + 1, we have m <6. Now Q is conjugate to P-, so P and Q must 
have fully cyclically reduced conjugates of the same length. It is not hard to see 
that this implies that either k = m - k - 2 or T?2 = 1. If T12 = 1, we find 
as in previous cases that (1.2) applies if m is even and that (1.3) applies if m 
is odd. We suppose, then, that T?2 5$ 1 and k = m - k - 2. The possibilities 
to consider are that m = 2 and k = 0, m = 4 and k = 1, and m = 6 and 
k = 2. 

If m = 2 and k = 0, T1 is conjugate to TV1 and (1.6) holds. 
If m = 4 and k = 1, Q = T1X2-X1X2T1 and P = X2T1Xj-1X1X2T1X-' , a 

conjugate of Q. Now T2 :$ 1 , so Q is not in a conjugate of a free factor of G, 
but since Q is conjugate to P-, Q is conjugate to Q-1. By Lemma 3, then, 
Q = DE for some D, E with D2-= E2 = 1. But then V2 = Xi-1XIX2DE, 
and (1.7) applies. 

Suppose, then, that m = 6 and k = 2. We must have IXI = IVI - 1 and 
IPI = IQI = 21VI + 1, so X2 is empty and T1 has length one. Let us write 
XI = C- a * C with C E G and a E Gi for some i E I and a2 = 1 
and T1 = b E G1 for some j E I with b2 $ 1. We then have P = Q = 
b*C-*a*C-b*C-*a*C-b,so b2.C-.a.C-b.C-.a.C isafully 
cyclically reduced conjugate of P which, like P, is conjugate to its inverse. 
There must then be a factorization C1 * C2 of C such that one of the following 
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holds: 

(1) C~1aCIC2b-1C2j1C-'aCIC2b-2C7-1 

= b2C- I 
C11aCI C2b7CV- C1 aaCi C2, 

(2) C2b-1CI-1CV1aCI C2b-2C-1CV1aCI 

= b2Cj-1Q'aCIC2bC7-1CV1aCI C2, 

C-1aCIC2b-2C7-2C-'aCIC2b-1C21 

(3) = b2C7-1C-1aCIC2bC2j-1C-1aCi C2, 

C2b-2C-1CV1aCIC2b-1C71 CV1aCI 

= b2C7 1 CV1aCl C2bC71 Cj1aC1 C2. 

If (1) is true, a length comparison on the fully reduced products on the two 
sides shows that 

C1 -aCi C2b-1C7-1 = b2CV- C1 aCIC2 

and 
CV1 aCi C2b-2QC-1 = bC7-1CV1aCIC2. 

The left sides of these two equations begin with the same normal form letter, so 
looking at the right sides we get b2 

- b, a contradiction. Similarly, (2) yields 

C2b-1C l C-'aCI = b2CV-IC-'aCIC2 

and 

C2b-2CqICV'aCl = bC7-1CV'aCIC2, 

from which we get the contradiction b2 = b if C2 is nonempty or the equation 
b-I = b2 if C2 is empty. This last possibility corresponds to (1.4). If (3) holds, 
we get 

CV1aCIC2b-2C7-1 = b2C7-1CV'aCIC2 

and 
C1-'aCiC2b -Cj-1 = bCj-1CV -aCiC2. 

As in (1), we derive the contradiction b2 - b. Finally, if (4) is true, 

C2b-2C-1CV1aCI = b2C7-CV1aCIC2 

and 

C2b-1Cj1 C-1aCI = bCj-lC-1aCIC2- 

This yields the contradictions b-h = b if C2 is empty and b2 = b if C2 is 
nonempty. 

Case(5.4). Supposethat IXI<IVI, X=XI.X2 and V=X2.XVA S2.Xi 
for some X1, X2, S2 with X22 = 1, that P = S2(XlX2XlS I2)k for some k, 
O < k < m - 2, and Q = X- lS2X1 (X2X- lS2X,)m-k-2. 
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Replacing V by its fully cyclically reduced conjugate XIX2Xj1S2 and chang- 
ing notation reduces this to Case (5.3). 

Case (5.5). Suppose that IXI < 2IVI - 1, V = -1 V2 * X * V3 for some 
V2, V3, that P = V2(XV3X-lV2)k for some k 0 < k < m- I, and that 
Q - V3(X-I V2XV3)m-k-l. 

Since IPI < 21X1 + 3 < IVI + I and IQI ? 2IxI + 3 < IVI + 1, we have 
m < 3. We first consider the case that m = 2. If k = O, Q = V3X-1V2XV3 
conjugate to P-I = VJ-1 implies that V32 = 1 and V2 is conjugate to V2-19 
(1.6) applies. If k = 1, P = V2XV3X-1V2 is conjugate to Q-1 = V 5- so 
V22 = 1, V3 is conjugate to V-1, and again (1.6) applies. 

Now suppose that m = 3. In this event, we must have I = 2 I Vl - 1 and 
IPI = IQI = IVI + 1, so V21 = IV31 = 1. Letuswrite V2 = a E Gi forsome i E I 
and V3 = b E Gj for some j E I. Then since Q = b(X-laXb)2-k is conjugate 
to P-' a-1(Xb-lX-la-l)k, either a2= b2 1 and a is conjugate to b, 
as described in (1.3), or a2 $ 1 , -b2 $ 1, k = 1, and there is a factorization 
XI * X2 of X such that one of the following holds: 

(5) X2b-1X-1 XV1a -2XI b2Xi- j1X-1aXIX2, 

(6) X-1a-2XIX2b-'Xi- = b2X- IX-'aXiX2. 

If (5) is true, either X2 is empty and a3 - = 1 as in (1.5) or X2 is nonempty 
and X2b-1 = b2X7- I, so that X2 = b2X3 and Xi- 1 = X- 1 b- 1 for some X3, 
producing the contradiction b2 = b. If (6) is true, X22 = 1 and 

XV1a-2XIX2b-/ = b2Xi-71XV1aXI. 

If X1 is nonempty, X1 = X4b-1 and X-1 = b2X471 for some X4, whence 
b-I = b-2, a contradiction. Thus X1 is empty, and a-2X2b-1 = b2Xi-la 
implies that b-h = a and X2 = X71-. Thus V = XaXa-1 with X2 = 1, and 
(1.3) applies. o 
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