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Preface 

My interest for biology and programming have always been present throughout my whole life. 

The last 4 years before starting my dissertation made me change my mind when it came to 

choosing a career path or even what area to work in the future. Even though I graduated in 

Biomedical Sciences, working in a programming related area was always a medium to long-term 

possibility and ambition. Despite enjoying investigation and being in a laboratory, I couldn’t 

imagine myself doing that for the rest of my life. Along the years, it became more and more 

clear to me that the life of a person working in a laboratory wasn’t that simple nor 

straightforward. It had its positives and negatives. But when I dug deeper into the whole 

investigation scenario, I found more negatives than positives. So, I decided I needed to change 

my course of action. 

That brings me to my last year of my undergraduate degree. What was I going to do after I 

finished? So, I thought to myself “Sure, I am going to do my Masters, but in what area?”. In my 

last year, there were two main subjects that help me make a decision as to what I might want 

to do in the future: Genetics and Bioinformatics. Like I mentioned before, I always liked 

programming, and genetics was also always an area of interest to me. Bioinformatics, since it 

encompassed both computer science and genetics, it was the ideal area. It combined both 

biology and programming, being exactly what I was looking for. 

I applied for the MSc program in Bioinformatics and Computational Biology in Lisbon at the 

Faculdade de Ciências da Universidade de Lisboa (FCUL), but unfortunately didn’t manage to 

enter. I applied for the MSc in Biomedical Sciences at Universidade da Beira Interior (UBI), my 

current university, and decided that, as my dissertation work, I would propose a theme in the 

bioinformatics area. And that’s exactly what I did. 

As mentioned before, I wanted to propose a theme related to the bioinformatics area. After 

extensive research, I decided on a specific area inside bioinformatics: Gene prediction tools. 

This area was completely new to me. I knew it would be a challenge and would require hard 

work, but it was going to be interesting. Many tools already exist, and are used today to aid 

geneticists in their investigations. But something I noticed was that, even though these tools 

were quite abundant, most of the are several years ago. This wasn’t necessarily bad, it simply 

meant that those tools were still good and their specificity and sensitivity was still good for 

modern times. The main goal for my dissertation work was to try and create something new, 

not necessarily from scratch, but something that could be innovative in the gene prediction 

tool area. Using pre-existent data and code, the goal was to try and make something a little 

faster and reliable. It wouldn’t give us as much information as a normal gene prediction tool 

would nor would it be as effective, but it would point the person who used it in the right 

direction, when various sequences are compared, using the model in question. A code to 
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discover Open Reading Frames (ORF) is used, storing them in a file created by the user. Then a 

Profile-HMM (Profile Hidden Markov Model) is used as the main model. The Profile-HMM returns 

us the Logarithmic Probability (Logp) of a certain sequence matching with another. In this case, 

the ORFs previously discovered with the desired matching sequence that the user inputs. Logp 

values are negative, so the closer the number is to 0 (Zero), the more similar it is to the input 

sequence. Even though this is the case, we managed to make the code output the lowest 

positive absolute value. The respective compared ORFs are aligned and Logp values compared, 

manually. Comparisons with same length sequence ORFs are made, to verify that the model 

worked. 

We can say that something new was created. It might not be the best way to predict genes or 

even be big or complex enough to be considered a gene prediction tool, but we think it’s 

definitively something innovative and should be considered as a base model for future 

investigation and research. 

 

  



 ix 

 

 

 

 

 

 

 

 

 

 



 x 

Resumo 

 

A bioinformática é uma área multidisciplinar que combina duas áreas fundamentais: biologia e 

ciências da computação. É uma das áreas de investigação que mais está a crescer nos dias de 

hoje. É também uma área fundamental para o processamento de dados e informação na área 

da genética. Um ramo prominente na área da bioinformática é a predição de genes. Várias 

ferramentas encontram-se disponíveis para auxiliar investigadores. Estas ferramentas também 

se encontram disponíveis ao público em geral. Embora existam várias ferramentas, as mais 

utilizadas já têm muitos anos. São ferramentas fiáveis porém algumas precisam de ser 

otimizadas e não são muito flexíveis no que toca à sua modificação. Neste trabalho de 

dissertação é proposto um novo modelo. Por meio da extração de ORFs a partir de sequências 

de DNA que codificam para proteínas, inserido pelo usuário em formato fasta, estes são 

comparados com uma sequência alvo escolhida pelo utilizador. Foi utilizado um Profile-HMM 

como modelo para comparar as sequências, em que um valor de probabilidade logarítmica 

(Logp) é devolvido consoante a semelhança entre as sequências comparadas: o ORF e a 

sequência alvo. Quanto mais semelhantes forem as sequências comparadas, melhor será o valor 

da probabilidade logarítmica. Foram criados vários cenários de modo a ver qual seria a melhor 

forma de implementar o Profile-HMM. Nestes, os estados de correspondência, inserção e 

deleção foram modificados, até chegar ao melhor cenário. O algoritmo de Viterbi foi utilizado 

para treinar o modelo, devido à sua velocidade. Os resultados obtidos pelo modelo foram 

concordantes com o que esperávamos: um ORF que está presente na sequência alvo terá um 

valor Logp melhor que um ORF que não está presente na sequência alvo. 
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Resumo alargado 
 

Os genes são a base da nossa existência, a razão que somos o que somos nos dias de hoje. a 

acumulação e o armazenamento de informação ao longo de milhares de anos de evolução. 

Codificam toda a informação necessária à nossa sobrevivência como espécie. Informação que 

nos foi transmitida, que nos distingue entre espécies. Somente uma pequena parte do nosso 

genome é diferente entre nós Humanos, sendo que partilhamos a maior parte dele. 

A genética é o ramo da biologia que estuda genes, variação genética e hereditariedade. Ajuda-

nos a compreender a complexidade da vida em si e entre organismos, desde um nível molecular 

até um nível populacional. 

Um gene pode ser descrito como a unidade de armazenamento da informação, sendo nos 

humanos o Ácido Desoxiribonucleico (ADN). Este contém certas características genéticas, que 

posteriormente são convertidos num produto funcional final. 

A área da genética é uma das áreas que mais está a crescer nos dias de hoje, sendo que milhares 

de publicações são lançadas todos os dias. Porém, a história da genética começou há milhares 

de anos atrás, com as primeiras descobertas a começar há 10,000 a 12,000 anos atrás. Em 1866 

Gregor Mendel, considerado o pai da genética, publicou um artigo sobre hereditariedade em 

ervilhas. Porém o seu trabalho só foi reconhecido nos anos 1900s, marcando o início de uma 

nova era na área da genética. 

Aos longo dos anos as investigações e as publicações têm vindo a ser cada vez mais, havendo a 

necessidade de processar e armazenar os dados recolhidos. Um ramo associado à genética que 

processa e analisa esses dados é a bioinformática. A bioinformática é um ramo que advém da 

combinação de dois outros principais: A ciência da computação e a biologia. 

Este ramo tem vindo a ser cada vez mais popular nos dias de hoje, havendo a necessidade da 

criação de novas ferramentas para processar dados. Um sub-ramo dentro da bioinformática é o 

de predição de genes. Este ramo trata da tentativa de prever zonas de genes que possam 

codificar para proteínas. Diversos programas já existem nos dias de hoje, sendo que todos os 

anos são lançados novos modelos e implementações, com algortimos inovadores ou melhorados. 

Este plano de trabalhos tem como objetivo criar um modelo de predição de genes, com base 

em informação disponível e já descrita na literatura. Com este modelo, pretendemos explorar 

a área de predição de genes e tentar implementar um novo método. 

Com a ajuda de um programa que encontra Open Reading Frames (ORF) em sequências, que 

nos permite escolher o seu comprimento, o número que queremos extrair da sequência entre 
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outras opções, foi possível extrair ORFs de sequências de genes codificantes de proteínas. Isto 

permite extrair sequências mais específicas das previamente sabidas. 

Com a ajuda dos pacotes de Python, Biopython e Pomegranate, foi possível criar o modelo de 

Markov a utilizar. O modelo de Markov escolhido para implementar foi o Profile-Hidden Markov 

Model (Profile-HMM), devido à sua capacidade de alinhar multiplas sequências. Isto permite 

uma análise ao mesmo tempo das sequências alinhadas, apresentando um resultado de todos 

os alinhamentos com a sequência alvo, ao mesmo tempo. 

O objetivo do alinhamento múltiplo de sequências foi encontrar, inicialmente, o valor da 

probabilidade logarítmica (Logp) mais baixo. Esta representa a probabilidade de uma dada 

sequência, dado as probabilidades de correspondência, inserção e deleção, pertencer ou estar 

alinhada com outra sequência alvo. Para treinar o modelo, foi utilizado o algoritmo de Viterbi, 

pois este é mais rápido e adequado para o trabalho em questão. 

Foram criados diversos cenários, cada um testados com diferentes probabilidades de 

correspondência, inserção e deleção, sendo que, assim que achado o melhor cenário, o 

utilizamos para comparar ORFs de sequências que pertenciam à sequência alvo e ORFs de 

sequências escolhidas ao acaso. 

Os resultados mostram que sequências pertencentes à sequência alvo, com o modelo e o cenário 

utilizados, apresentam uma melhor probabilidade de aparecerem do que sequências escohidas 

ao acaso, o que seria esperado.  
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Abstract 

 

Bioinformatics is a multidisciplinary area that combines two major areas: Biology and Computer 

Science. It’s one of the fastest rising areas of investigation nowadays. It’s also a fundamental 

area for the processing of data and information from discoveries in the genetics area. One area 

that is prominent in the bioinformatics area is gene prediction, where various tools are available 

to aid researchers. Even though there are several gene prediction tools available, the most 

used are from several years back. They are reliable tools, but need optimization and some are 

not so flexible for modification. Tools created in the past years base their model on previous 

tools. In this dissertation work, a new model is proposed. Through ORF extraction from protein-

coding sequences of a fasta-formatted file that the user inputs, these are compared to a target 

sequence of the user’s choice. A profile-HMM is used as the model to compare the sequences, 

returning a Logp value for each ORF compared with the target sequence. Match, insert and 

delete state probabilities were modified, to find the best scenario. The Viterbi algorithm was 

used to train the model, due to its speed. The results obtained were concordant with what we 

expected: That an ORF, which would be in the target sequence, presented a better Logp value 

than an ORF from a randomly selected sequence. 
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Gene prediction; Human genome; Open Reading Frame; Pomegranate; Viterbi algorithm. 
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1. Introduction 

Genes are our base, the reason we are what we are at this moment in time. Our genes are the 

result of thousands of years of evolution and adaptation to the outside world. The accumulation 

and storage of information throughout thousands of years of evolution, leading to modern 

times. Information that was stored years ago that is now encoded into us, moulding each specie, 

differentiating us Humans, for example, from other mammals or even other kingdoms. Us 

Humans share almost all of our genetic information with each other. Only a small percentage 

of our genome is different, distinguishing us phenotypically. We are very much alike, but very 

different at the same time. Our genes encode all information necessary for our survival as a 

species. But only about 1% of our genes are protein-coding genes, making the rest either “Junk” 

or regulatory. This second function for the rest of the genes, was only recently discovered to 

have regulatory functions [1]. 

1.1. Genetics 

Genetics, a plural noun deriving from the singular “Genetic”, is referred to the branch of 

biology that studies genes, genetic variation and heredity in organisms. It allows us to 

understand the complexity of life itself between all organisms, going from a molecular level to 

a larger, populational level. The differences and diversity we observe intra and inter-species is 

known as genetic variation [2], [3]. 

As mentioned before, genetics is the study of genes, genetic variation and heredity in 

organisms. A gene is the basic unit for heredity. A gene can be described as a unit coded with 

information, for example a segment of DNA in Humans, that carries a certain genetic 

characteristic and produces a functional product. The product of this segment is a polypeptide, 

or a sequence of amino acids, that form proteins [2], [3]. 

Even though “Genetic” refers to “The study of heredity and the variation of inherited 

characteristics” [4], Genetics (Plural) is commonly used to define the area of study. It’s a 

massively growing field in modern times, with new discoveries being published almost every 

day. Thousands of publications online are directly or indirectly related to genetics, being 

published at an outstanding speed. Just to get a quick view of how fast articles are published 

related to the topic “Genetics”, a quick search on PubMed [5] showed that, since the beginning 

of 2019, 38780 articles have been published with the keyword “Genetics” (as of June 2019). 

This staggering number of published articles just goes to show the prevalence and importance 

of genetics as a topic of modern-day research. 
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1.1.1. Brief history of genetics 

Even though there are a lot of articles being published nowadays, the topic of genetics has been 

around for thousands of years. Evidence shows that the concept of heredity was first applied 

approximately 10,000 to 12,000 years ago in the Middle East. Organisms like wheat, peas and 

dogs are some examples. The Assyrians and Babylonians experimented with date palms, 

planting them so they varied in size, colour, taste and time to ripen. Hindu’s, around 2000 

years ago, hypothesized that different traits and characteristics were transmitted from the 

father, and differences between siblings were attributed to the mother. The ancient Greeks 

developed the concept of pangenesis, which assumed that certain particles from an organism 

carried information to the reproductive organs. This theory persisted until the late 1800’s [3]. 

It was not until the 1600’s that the actual science of genetics was properly recognised. 

Nehemiah Grew, in 1676, discovered that plants reproduced using male sex cells’ pollen. 

Several botanists started experimenting with plants and creating different hybrid species. 

Gregor Mendel, the father of Genetics, was one of these botanists. Although Mendel had 

discovered the basic principles of heredity and published his experiments on pea plants in 1866 

[6], his work was not widely recognized in the scientific community until 35 years after his 

discovery. Darwin also scraped the topic of heredity, and knew it carried a key role in the 

evolutionary process, but didn’t quite understand the nature of inheritance, omitting it in his 

1859 publication “On the Origin of Species” [3]. 

Cytologists demonstrated that the nucleus played a role in fertilization. August Weissman cut 

off tails of mice during 22 generations, coming to the conclusion that they remained quite long 

in length. He proposed the germ-plasm theory, which stated that the cells in the reproductive 

organs carried one full set of genes, that was then passed on to the egg and sperm. Moving on 

to the year 1900, Mendel’s work on the pea plants was recognized, giving biologists a base to 

work from (Figure 1). Experiments on mice, chickens and other organisms were conducted and 

their results showed that many traits were according to Mendel’s rules. In 1902 Walter Sutton 

proposed that genes were located in the chromosomes. Thomas Hunt Morgan also contributed 

to transmission genetics, by conducting experiments on fruit flies, discovering the first 

generation of them in 1910. In the 1940s geneticists started using bacteria and viruses due to 

their rapid and simple genetic systems, and in 1953 there was a huge breakthrough in science: 

The discovery of Deoxyribonucleic acid’s (DNA) structure, the double helix [7]. 
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Figure 1 – Gregor Mendel (on the left) and Mendel’s experiments crossing monohybrid peas (on the 

right) (Adapted from [3]). 

After this discovery, genetic advances took a huge leap. The first recombinant DNA experiments 

in 1973 provided another boost to the genetics research area. In 1977, Walter Gilbert and 

Frederick Sanger developed DNA sequencing methods. Kary Mullis and other scientists 

developed the Polymerase Chain Reaction (PCR) in 1983 [3]. 

In 1990 the human genome project was launched and everything changed. It was a huge mark 

in the history of not only genetics but for every scientific area. The project, funded by the 

National Institutes of Health and the U.S. Department of Energy, with a $3 billion-dollar funding 

for the completion of the genomic sequence. Its two main goals, that appeared in the 1980s, 

were as follow: to accelerate biomedical research and to be a project that would require 

worldwide efforts from several biomedical communities, infrastructure-wise, on a level never 

seen before. In 1998 it was announced that the intention was to build a facility to complete 

the project over 3 years. This huge collaboration of 20 groups aimed to produce a draft genome 

sequence, initially. The Human Genome Project was divided into three main phases: a 

preliminary phase, where the aim was to develop and refine key approaches for the next 

phases; A draft phase, where about 90% of the information for building the sequence was 

available; a finishing phase that provided researchers with approximately 99% of the 

euchromatin form of the genome complete. The draft genome sequence was generated from a 

physical map that covered 96% of the euchromatic (form of chromatin rich in genes) part of the 

human genome and 94% with additional sequences available in public databases. This sequence 
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only took around 15 weeks to complete, from 10% to 90%, in this early phase. Despite much 

work needing to be done, several factors could be determined such as: 

• There were several variations when it came to the distribution of several features 

such as: genes, GC content, CpG islands, transposable elements and recombination 

rate; 

• At first glance, there were about 30,000 to 40,000 protein-coding genes in the 

human genome; 

• Recombination rates tended to be much higher in distal regions (20 megabases 

(Mb)); 

• Identification of more than 1.4 million Single nucleotide Polymorphisms (SNP); 

• Amongst others. 

The Human Genome Project ended and was given as completed in 2003, with the sequencing 

of a near-complete sequence, going from around 90% in the draft phase, to roughly 99% of the 

chromatin region of the genome discovered in the finishing phase. Still, the euchromatin 

portion of the genome was not complete, with 1% left to determine. This was due to the lack 

of methods to understand these segments in this percentage of euchromatin. Even though 

almost all the human genome was sequenced, resources to complete the sequencing of the 

genome should be used in the future [3], [8]–[10].  

Figure 2 – Timeline of some genomic analysis, over the years. ESTs – Expressed sequence tags; SNPs – 

Single Nucleotide Polymorphisms (Adapted from [9]). 
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In 1995, the first fully sequenced DNA genome of an organism was determined: The bacteria 

Haemophilus influenzae. A year later, in 1996, the yeast sequence was also determined [11]. 

In 1997, the first cloned animal was created: Dolly. Ian Wilmut and his colleagues used 

mammary cells from an adult sheep (Finn Dorset, also known as white-faced sheep). In posterior 

years, cloning with animals such as mice and cows was done. In the year 2002, a cat by the 

name of Carbon Copy (CC) was cloned, being the first cloned pet (Figure 3) [2], [3]. 

 

Figure 3 – Dolly and her predecessor (on the left) and Carbon Cat (CC) (on the right) (adapted from [2]). 

In 2008 the 1000 Genomes project was launched, in order to gather more information on human 

genetic variation. 1000 anonymous people from around the globe were involved, as researchers 

tried to determine their DNA sequences. Over 2500 sequenced genomes were described in the 

scientific journal Nature after this project concluded [2]. 

1.1.2. Genes and the Genome 

Our genome is composed of 2 sets of 22 chromosomes, plus the sexual chromosomes, which are 

XX for a woman and XY for a man. In total, we have 2 sets of 23 chromosomes, excluding 

mutations (People who have Down syndrome, for example, carry an extra copy of the 21st 

chromosome). These 23 chromosomes form the Human karyotype, as can be seen in Figure 5. 

Our genes are located in these chromosomes, consisting of DNA and proteins. Our genetic 

information is encoded in a molecular structure denominated deoxyribonucleic acid (DNA) and 

for some species, for example bacteria, have DNA and ribonucleic acid (RNA). These nucleic 

acids consist of repeating units of nucleotides, which consists of a sugar, a phosphate and a 

nitrogenous base. These bases can differ from DNA to RNA. In DNA we have four different bases: 

Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). In RNA we have Uracil (U) instead of 

T. The order of bases matters for each protein-coding set of genes. Each amino acid is composed 

of 3 bases, forming a codon that can be translated later. Below is a list of 20 possible amino 

acids (Figure 4). 
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Figure 4 – Table of all possible 20 amino acids (Adapted from [12]) 

Genes are also what distinguish us phenotypically. These phenotypes, or traits, are directly 

inherited and also affected by environmental factors. These can be psychological or 

morphological, like personality or eye colour, respectively. Traits can also be behavioural, 

affecting the way an organism interacts with a certain environment [2], [3]. 

 

Figure 5 – The Human karyotype (Adapted from [13]). 

 



Mining the genome for ‘Known Unknowns’ 

 

 8 

1.2. Bioinformatics 

Bioinformatics is an interdisciplinary field that merges two major areas: Computer Science and 

Biology. Since its first usage in the 1960’s, pioneered by Margaret Dayhoff (Dayhoff, 1968), and 

its coining in the 1970’s [14], it is, and has been, an ever-growing area that is crucial nowadays 

for development and research, since its applications are used in the most diverse areas of study. 

Some of these areas are Molecular Biology, Mathematics, Genetics, Computer Science, 

Biotechnology and Biomedicine. Bioinformatics is an area that deals with big sets of biological 

data. With the advances in medicine and biology of modern times, the need to process this 

data is becoming more and more demanding. Processing and storing this data is essential for 

scientific advancement, leading to the creation of various public databases for a variety of 

data, going from DNA and RNA databases to protein databases. Some examples are UniProt [15], 

Ensembl [16] and NCBI [17]. Chen and Coppola summarised some of these databases, reviewed 

them in their article and placed them in a table presented in their publication [18]. The Israel 

Science and Technology Database also provides us with a plethora of databases in the 

biomedical area, with a much wider range [19]. A more detailed topic on Genomic databases 

will be presented later. 

1.2.1. Bioinformatics: A definition 

According to Encyclopaedia Britannica, Bioinformatics is the scientific area that links two main 

areas: biology and information technology. Biological data is used for storing information, 

distribution and analysis. Biomedicine is also an area included in this junction [20]. 

Luscombe et al. also proposed a definition for Bioinformatics, later submitted to the Oxford 

English Dictionary: “bioinformatics is conceptualising biology in terms of molecules (in the 

sense of Physical chemistry) and applying “informatics techniques” (derived from disciplines 

such as applied maths, computer science and statistics) to understand and organise the 

information associated with these molecules, on a large scale. In short, bioinformatics is a 

management information system for molecular biology and has many practical applications” 

[21]. 

1.3. Brief History of Bioinformatics 

Unlike people may think, and even though it is fairly recent compared to other scientific areas, 

Bioinformatics isn’t as recent as it seems. Even though the term bioinformatics was coined after 

it was discovered, it started to be used before both. We can argue that with the discovery of 

the DNA’s double helix structure by Watson and Crick in 1953 [7] was a huge breakthrough in 

science and an important mark for the bioinformatics scene, opening the path for future 

research in many areas. As mentioned before, Margaret Dayhoff was an American chemist that 



Mining the genome for ‘Known Unknowns’ 

 

 9 

pioneered computational methods in the biochemistry area. She created the Atlas of Protein 

Sequence and Structure, which was an annual journal that aimed to gather all known amino-

acid sequences, therefore becoming the first molecular biology database for researchers [22], 

(Dayhoff, 1968). FORTRAN [23] was used as the coding language for COMPROTEIN, designed for 

determining protein primary structure using Edman peptide sequencing data [24], [25]. 

The first solution to the problem between aligning distant homological sequences was first 

presented by Needleman and Wunsch (Figure 6). This dynamic programming algorithm was used 

to solve the issue for pairwise protein sequence alignment, being coined the Needleman-

Wunsch algorithm [26]. In the early 80’s, the first multiple sequence alignment algortihms 

started to emerge, ranging from a generalization of the algorithm to the multiple sequence 

alignment software CLUSTAL, still used in modern times [25]. 

 

Figure 6 – Needleman-Wunsch pairwise sequence alignment (adapted from [27]). 

In 1968, all 64 possible codons were discovered and this was a major breakthrough, making the 

attainment of DNA sequences more simple and affordable. In 1977, Sanger’s team created the 

“plus and minus” DNA sequenceing method. This method, also the first of its kind, relied on 

the sysnthesis with DNA polymerase. Some technical modifications were made, and that led to 

the Sanger chain termination method that is still used in modern times [28]. In 1979, Roger 

Staden published the first software for anlysing Sanger sequencing reads. These computer 



Mining the genome for ‘Known Unknowns’ 

 

 10 

programs had several functions, such as: Searching for overlaps in Sanger gel readings; 

Verifying, editing and joining sequence reads into contigs, annotating and manipulating 

sequence files. This package included additional characters to record uncertanties in a 

sequence read. In 1981, Joseph Felsensteinm was the first to create a Maximum Likelihood (ML) 

method for infering phylogenic trees from DNA sequences. Using nucleic acid sequences in 

phylogenics added important information that we could not obtain only with amino acid 

sequences. This model inspired Bayesian statistics in molecular phylogeny, still used nowadays 

[25], [29], [30]. 

In 1984, the eponymous ‘CGC’ software was published by the University of Winsconsin Genetics 

Computer Group. This package consisted of 33 command-line tools designed to manipulate DNA, 

RNA or protein sequences, being the first software collection designed for sequence analysis 

[31]. In the same year, slightly after the creation of ‘CGC’, DNASTAR was developed. It could 

be run on a CP/M personal computer [25]. 

Richard Stallman’s GNU manifesto was published in 1985, which promoted the creation of an 

open-source software. This software was at the core of several initiatives in the bioinformatics 

area, such as the European Molecular Biology Open Software Suite later developed in 1996. 

During the same period of time, the European Molecular Biology Laboratory (EMBL), GenBank 

and DNA Data Bank of Japan (DDBJ) united, to standarize data formatting, facilitating data 

sharing between these databases. In 1985, the journal Computer Applications in the Biosciences 

(CABIOS) was created. Nowadays, this journal goes by the name of Bioinformatics. Several 

dedicated journals started to emerge. Small-scale mainframe computers were used for large 

datasets instead of microcomputers [25]. 

Created in 1987 by Larry Wall, Perl (Practical Extraction and Reporting Language) is a high-

level scripting language, to facilitating parsing and text data in GNU. Until the late 2000s, Perl 

was the main language for bioinformatics, due to its flexibility. In 1989, Python was created, 

by Guido Van Rossum. It was designed to be more simplistic and easier to understand and 

interpret, but it was not until the late 2000s that Python became a major programming language 

[25]. 

With the creation of the world wide web in the early 1990s, many bioinformatics resources 

became available throughout the world. The EMBL Nucleotide Sequence Data Library, the first 

nucleotide sequence database, was made publicly available in 1993. Just a year before, the 

GenBank database was under the resposibility of NCBI. BLAST, the pairwise alignment tool, was 

made available in 1994. In upcoming years, several well known databases such as Genomes 

(1995), PubMed (1997) and Human Genome (1999) were created [25]. 

Bioinformatics projects really grew in number, and there was a need to adapt to the change 

and gather all the data discovered. Several government-sponsered organisations appeared, such 
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as: Compute Canada; New York Stat’s High Performance Computing Program; The European 

Technology Platform for High Performance Computing and China’s National Center for High-

Performance Computing [25]. 

1.4. Genomic databases 

As genome sequencing and discovery was becoming a more and more common theme as the 

years went by, several genomic databases started to emerge. 

The Israel science and technology directory presents us with a list of available databases in 

varied fields, as mentioned before, that range from Biomedical databases to virus databases. 

Inside this list of available databases, genome databases are divided into genomic prokaryotic 

and plant genomes, separately, making it easier for a day-to-day user to browse. The “Genome 

Databases” tab, where a list of all available databases for all types of genomes can be found, 

has some recognizable databases such as the NCBI Genome Database and the Ensemble Genome 

Browser. Very specific genomes such as the silkworm and the Zebrafish genome databases can 

also be found (Israel Science and Technology Directory, 2019). 

Chen and Coppola also present us with a series of databases, some included in the Israel Science 

and Technology directory. These are all summarised in a table, that range from DNA to RNA 

and Protein databases, as mentioned before in chapter. They mention that the first sequence 

of the human genome project, published in 2001, was created from eight bacterial artificial 

chromosome libraries and 16 additional ones from five donors [18]. This information on its own 

could not suffice to describe genetic variations across and within several populations. Allele 

frequencies of rare variants could only be found in large populations, something that was 

impossible in a small population, like the one presented. Therefore, samples from various 

individuals, from different populations, were used, from a project by the name of HapMap 

project [32]. This project consisted of determining common patterns of DNA sequence 

variations and make them publicly available. An international consortium developed a map of 

these common patterns according to the genotype of one million sequence variants from 

different ancestries. This would allow a much faster diagnosis of diseases, facilitate the 

development of diagnostic tools and enhance target choice for therapeutic intervention [18], 

[32]. 
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1.5. Gene prediction tools: Types and examples 

Gene prediction tools have been around for some years now. Since GeneMark [33], 

GeneMark.hmm [34], Augustus [35], GENSCAN [36] and Fgenesh [37] to CESAR 2.0 [38], BRAKER1 

[39], CodingQuarry [40], Seqping [41] and TaF [42]. Some of these are presented below, in table 

1. All these pipelines/programs have their differences, ranging from the type of cells they focus 

on: Eukaryotic or Prokaryotic. Each program can also be used for different kingdoms in the 

taxonomic ranks. Some are used for the fungi kingdom, such as TaF, others for the plantae 

kingdom, such as Seqping, others for the animalia kingdom, such as Fgenesh and others for the 

bacterial kingdom, such as GeneMark.hmm. This doesn’t mean that each tool is restricted to a 

certain kingdom or cell. AUGUSTUS allows gene prediction with eukaryotic cells in the Plantae 

and Animalia kingdom, being Arabidopsis thaliana and Drosophila melanogaster some 

examples, respectively [43]. 

Gene prediction programs can be divided into two big groups: Ab initio (Intrinsic) and 

evidence/similarity-based (Extrinsic) [35], [44], [45]. Ab initio programs use solely the target 

sequence for gene prediction, with a known gene structure as the training set for training the 

parameters of the models, dealing with statistical approaches to conduct coding and non-coding 

region searches and find gene signals. Ab initio methods are quite sensitive, and their accuracy 

depends on the set they are given as the training set. They are faster than evidence-based 

methods but tend to inaccurately predict protein coding regions, misplacing start and stop 

codons. With no proper training set, they do not perform well [44], [45]. 

Evidence-based methods, on the other hand, are used to find genes based on homology, using 

similarity search procedures. They compare a certain sequence of interest to already available 

data or use external data to help the prediction, such as EST libraries or RNA-Seq information. 

However, evidence-based methods only predict if there is evidence of a transcription. They 

tend to miss genes that ab initio methods can encounter based on their statistical models [45], 

[46]. 
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Table 1 – Gene prediction tools 

Gene prediction tool Implementation Language(s) Model/Algorithm 

AUGUSTUS N/A 
Generalized Hidden Markov 

Model (GHMM) 

TaF 
Python and Apache, PHP and 

MySQL (APM) for web server 
AUGUSTUS 

BRAKER1 Perl GeneMart-ET and AUGUSTUS 

Seqping Bash and Perl 

BLAST+, CD-HIT, Splign, 

GlimmerHMM, AUGUSTUS, 

SNAP, MAKER and EMBOSS 

GENSCAN N/A General Probabilistic Model 

Fgenesh N/A Hidden Markov Model 

GeneMark.hmm N/A Hidden Markov Model 

inGAP-CGD C++ 

Supervised Support Vector 

Machine (SVM) with a codon-

based de Bruijn graph 

Before moving on to the next chapter in this introduction, some gene prediction tools that have 

been mentioned before will be briefly analysed. This analysis won’t be too extensive or 

detailed, and will consist on mainly explaining how each pipeline or gene prediction program 

works and how they are structured. 

1.5.1. AUGUSTUS 

AUGUSTUS is one of the main gene prediction tools used in modern times, to either predict 

genes or be used as a model for other gene prediction tools [39], [41], [42]. At the time of 

publication, it was based on a new HMM, implemented in the actual program AUGUSTUS. It 

finds the optimal parse of a genomic sequence. The program uses a more accurate method of 

prediction for modelling intron lengths. Short introns are modelled via the length distribution, 

due to them clustering around a certain length. Long introns are modelled via a geometric 

distribution. The Viterbi algorithm is used for training [35], [47]. 
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Figure 7 – AUGUSTUS states and respective transition possibilities. The r stands for reverse, so there can 

be a distinction between the forward and the reverse strand modelling. Esingle: single exon gene. Einit: 

First coding exon of a multi exon gene. DSS: donor (5’) splice site. Ishort: intron at most d nucleotides 

long. Ifixed: first d nucleotides of a longer intron. Igeo: individual nucleotides after the first d nucleotides 

of a longer intron. ASS: acceptor (3’) splice site, with branch point. E: internal exon. Eterm: last exon of 

a multi exon gene. IR: ‘intergenic region’. States which emit fixed lenght strings and explicit length 

distribution are represented by diamonds and ovals, respectively (Adapted from [35]). 
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1.5.2. TaF 

TaF is an ab initio, homology-based gene prediction pipeline (see Figure 7 for further details). 

It’s a very recent pipeline and web prediction server for filamentous fungal gene prediction. 

Its predictions accrue from homology (Shared ancestry between a pair of genes, in different 

taxa) and taxonomy (Description, identification, nomenclature and classification of organisms), 

based on queries for close relatives. It’s fundamentally divided into 4 steps: 

1. Searching for taxonomy based on close relatives; 

2. Gathering information on exon-intron boundaries from protein sequence data of orthologs; 

3. Gene prediction via ab initio and evidence-based methods; 

4. Gene models homology search. 

 

 

Figure 8 – Representative scheme of TaF’s pipeline. 

TaF was created to fill a gap in the fungal genome area, due to the lack of experimental 

verification in fungal species. Most of the recently sequenced fungal genomes have been put 

together via Next-generation Sequencing (NGS), mostly via Single-Molecule Real-Time (SMRT) 

sequencing. These manage to improve assembly errors, but lack experimental verification, as 

mentioned before. Even though there are existing fungal prediction and annotation tools such 

as SnowyOwl [48], ABFGP [49] and OrthoFiller [50], TaF is based on a new approach, being 

useful for the prediction of gene models from fungal draft genomes [42]. 
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1.5.3. BRAKER1 

BRAKER1 is a pipeline that results of the combination of two gene prediction tools: GeneMark-

ET [51] and AUGUSTUS [35]. Its pipeline is divided essentially into two parts, due to the two 

different gene prediction tools used. GeneMark-ET takes RNA-Seq data and generates ab initio 

predictions through unsupervised training. These predictions are then used as input to 

AUGUSTUS as training data, which also incorporates information from previously mapped 

unassembled RNA-seq reads [39]. 

BRAKER1 is coded in Perl. It requires an RNA-seq file alignment file, where the spliced alignment 

information is extracted and stored, and an analogous genome file. Firstly, GeneMark-ET uses 

the input file to produce a set of ab initio predictions. Those that have introns corresponding 

to the RNA-Seq alignments are selected for training in AUGUSTUS [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Scheme representing the BRAKER1 pipeline. Grey boxes represent files, green boxes 

represent GeneMark-ET and orange represent AUGUSTUS (Adapted from [39]). 
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1.6. Hidden Markov Models 

Hidden Markov Models have been used for several years, especially in the speech recognition 

field. These are used to represent the sound of phone-like units and words. It’s commonly 

modelled to the Maximum Likelihood Estimation (MLE) criterion, which is based on finding the 

most probable sequence of events, maximizing the probability of the training samples. This is 

based on the Expectation-Maximization (EM) algorithm, a variant of the Baum-Welch algorithm, 

presented later in this sub-chapter, relying on maximizing the log-likelihood of incomplete data 

and maximizing the log-likelihood of complete data [52], [53]. 

Hidden Markov Models (HMMs) are the most commonly used algorithms in gene prediction tools. 

Having said that, and coming as something quite obvious, it’s also the algorithm used in this 

project. HMM’s for biological data analysis can be subdivided into various types, such as Profile-

HMM, Pair Hidden Markov Models (Pair-HMM), Context-Sensitive Hidden Markov Models (csHMM) 

and Profile-csHMMs [54]. In this project, a Profile-HMM was used as the model, for several 

reasons presented later in a sub-chapter embedded in this chapter. 

An HMM is composed of two stochastic processes: One that is visible, serving as input, and 

another hidden stochastic process in a layer that’s invisible and can only be observed via the 

output, which is a sequence of symbols. The events observed, from the layer that is visible, are 

called “Symbols” and the underlying, invisible factors, are called “States”. The probability 

distribution of the symbol is dependant of the underlying state [54]–[56]. 

There are several training algorithms for an HMM. Two of the most common are the Viterbi [57] 

and Baum-Welch [58]. The Viterbi algorithm is an algorithm used to obtain the most likely state 

sequence inside the HMM training sequence. Also called forced alignment, it’s based on 

maximizing the likelihood of a state, given an observational sequence. It uses the most likely 

state sequence to estimate the parameters for the HMM, so each individual observation only 

contributes to the most likely state at a given time. However, the Viterbi algorithm requires 

some reasonable initialization and limits the data given by the training set, since only 

observations inside a certain HMM state are used for the parameters of that specific state, 

giving us a less robust model [53]. 

Baum-Welch algorithms are based on two computational functions: the forward and backward 

probabilities. These probabilities allow the model to weight each contribution of each 

observation, once computed. This allows for a more complex and robust model, but also takes 

longer to process [53]. 
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1.6.1. Profile-HMM 

A profile-HMM is a type of HMM that bases itself on multiple sequence alignment. There are 

three states present in a profile-HMM: A “Match” state, which represents columns with 

matching elements; An “Insert” state that represents a possible insertion of a base, in this case, 

between one column and another and a “Delete” state, that represents a deletion. Profile-

HMMs are linear, going from left to right, analysing the sequences and comparing them. The 

result is then returned as a sum of the probability parameters, a Logp value. These are 

comparable to how BLAST and FASTA scoring work: taking the probability of the match state x 

emitting a residue as px, and the background frequency as fx, the score for the residue at the 

match state in question is log(px/fx)(Figure 10) [56]. 

 

Figure 10 – An example of a small Profile-HMM, with three columns. Five different sequences were 

aligned. There are three match states (m1, m2 and m3), four possible insert states (i0, i1, i2, i3) and 

three possible delete states (d1, d2, d3). For each insert and delete state, there are 20 possible residue 

emission states. Delete states are also considered mute states, where there are no emission 

probabilities. There is also a beginning and an end state (b, e). As observed, the letter “C” was the most 

probable emission state in the first match state, due to the length of the black bar compared to the rest 

of the bars. At match state 2, the emission state for several residues were the same, meaning that the 

emission state was the same for those letters. In match state 3 the most probable letters to be emitted 

were “F” and “Y” (Adapted from [56]). 
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1.7. Aims 

The main aim of this dissertation work is to create a new gene prediction model, that has the 

ability to be faster and more flexible.  

The specific aims for this dissertation work include: 

• Implementation of an ORF finder to find shorter, more specific sequences;  

• A Profile-HMM that aims to perform a multiple sequence alignment, reducing the 

probability of there being mistakes in the sequences; 

• Creating several scenarios for finding the ideal match, insert and delete state values 

for the Profile-HMM; 

• The target input sequence that is know having a better Logp value that a random 

unknown sequence the user inputs; 

• Reducing training time by using the Viterbi algorithm to train the model, since it’s 

faster and there is no need for a forward-backward algorithm, such as Baum-Welch; 

• Plotting the Logp values that are returned after the Profile-HMM is run; 

• Proving that some values, when input in HMM, don’t return a realistic Logp value or any 

at all, and therefore can’t be used to create a model. 
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2. Materials and Methods 

2.1. Implementation 

The programming language used for implementation was Python, a high-level programming 

language created in the late 1980’s by Guido van Rossum. Named after the British Comedy 

group Monty Python [59], it was based on a pre-existing programming language, ABC, that was 

designed to be taught to computer users with some knowledge, but were not computer 

programmers or software developers (Rossum, 2003). But why choose Python to implement the 

code? To answer the question very briefly, Python presents us with a variety of nifty features: 

• It’s easy to learn and interpret, making it a great language for people with less 

experience in the programming area, just like its predecessor ABC; 

• It’s syntax, dynamic typing and interpreted nature make it great for scripting and rapid 

development, without any major run-arounds, in a plethora of areas in an extensive 

number of platforms; 

• Modules that are installable and callable via imports, facilitating programming and 

cross-language extensibility; 

• Cross platform compatibility with other languages, usable as an extension for new 

functions and data types in C or C++; 

• No need to compile the code like in C or C++; 

• Amongst other functionalities. 

In short, Python, just like its predecessor ABC, is a programming language ideal for computer 

users outside the programming area, like scientists. Its simplistic code writing and one-liners 

make coding easier. In Python we are able to condense several lines of code into one or just 

two, simplifying the whole “Coding” process by quite a fair margin [59], [60]. 

2.2. The program and code 

The program that created is a mix of various sources, including original code, therefore being 

very diverse. With the help of some pre-existing code and information, and the junction of 

both, below is presented what is thought to be the start of an experimental code for gene 

prediction or gene finding in specific target sequences. It still is a gene prediction tool, but not 

as complex as others present in modern times. With the help of some Python modules, the code 

was condensed and simplified, making it easier to interpret and to read. A table of the 

modules/packages that were used are presented below (Table 2). Most modules are part of the 

main packages used in this project, meaning that their purpose is more of a “support” module 

for a specific package than an actual main module used in the project. This code is purely 
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experimental and an attempt to create something new without having the need to create 

something entirely from scratch. Due to Python’s versatility, this was possible. With the help 

of documentation available for each package, the best parsers and workarounds were found 

and used to facilitate the merging of the code, making it work and giving an output that was 

what was expected. 

The program isn’t very extensive, most of it being occupied by the ORF finder [61], that 

suffered a few modifications. Visual Studio was used to implement the code, on an 8 GB RAM 

Laptop, with an AMD Ryzen 7 Processor. The program runs relatively fast and there is no need 

for a long waiting time. 

Table 2 – Packages/Modules used and their respective functionality. 

Package/Modules Version (As of May 

2019) 

Description 

attrs  19.1.0 Helps writing concise and correct 

software, without slowing down code 

writing 

backcall 0.1.0 Specifies for call-back functions 

passed int to an API 

biopython 1.73 Python tools for computational 

molecular biology 

bleach 3.1.0 HTML sanitizing library that escapes 

or strips mark-up attributes 

colorama 0.4.1 Makes ANSI escape character 

sequences work for MS Windows 

cycler 0.10.0 Creates “base” cycler objects and a 

class with composition and iteration 

logic 

decorator 4.4.0 Facilitate the definition of signature 

preserving function decorators and 

decorator factories 

defusedxml 0.6.0 Python-only workarounds and fixes of 

service and other vulnerabilities in 

Python’s XML libraries 

entrypoints 0.3 Helps packages advertise objects with 

some common interface 

graphviz 0.10.1 Facilitates the creation and rendering 

of graph descriptions in the DOT 

language of Graphviz 
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ipykernel 5.1.1 IPython kernel for Jupyter 

ipython 7.5.0 Helps use Python interactively 

ipywidgets 7.4.2 HTML widgets for Jupyter notebooks 

and the IPython kernel 

jedi 0.13.3 Static analysis tool for using in 

IDEs/editors 

jinja2 2.10.1 Template engine written in pure 

Python 

joblib 0.13.2 Lightweight pipelining in Python 

jsonschema 3.0.1 Implementation of JSON Schema 

jupyter-client 5.2.4 Jupyter protocol implementation and 

client libraries 

jupyter-console 6.0.0 IPython-like terminal for Jupyter 

kernels 

jupyter-core 4.4.0 Jupyter core package 

jupyter 1.0.0 Jupyter metapackage 

kiwisolver 1.1.0 C++ implementation of the Cassowary 

constraint solving algorithm 

MarkupSafe 1.1.1 Safely add untrusted strings to 

HTML/XML markup 

matplotlib 3.1.0 Python plotting package 

mistune 0.8.4 Markdown parser in pure Python 

nbconvert 5.5.0 Converts Jupyter Notebooks 

nbformat 4.4.0 Jupyter Notebook Format 

networkx 2.3 Creating and manipulating graphs and 

networks 

notebook 5.7.8 Web-based notebook environment for 

interactive computing 

numpy 1.16.3 Fundamental package for array 

computing with Python 

pandocfilters 1.4.2 Writing of pandoc filters in Python 

parso 0.4.0 Python parser 

pickleshare 0.7.5 Small database with concurrency 

support 

pip 19.1.1 Tool for installing Python packages 

pomegranate 0.11.0 Graphical models library for Python 

prometheus-client 0.6.0 Python client for the Prometheus 

monitoring system 
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prompt-toolkit 2.0.9 Building interactive command lines in 

Python 

Pygments 2.4.0 Syntax highlighting package written in 

Python 

pyparsing 2.4.0 Python parsing module 

pyrsistent 0.15.2 Persistent/Functional/Immutable 

data structures 

python-dateutil 2.8.0 Extensions for the Python datetime 

module 

pywinpty 0.5.5 Python bindings for the winpty library 

PyYAML 5.1 YAML parser and emitter for Python 

pyzmq 18.0.1 Python bindings for 0MQ 

qtconsole 4.4.4 Jupyter Qt console 

scipy 1.3.0 SciPy: Scientific Library for Python 

Send2Trash 1.5.0 Send file to trash natively 

setuptools 41.0.1 Download, build, install, upgrade and 

uninstall Python packages 

six 1.12.0 Compatibility library 

terminado 0.8.2 Terminals served to xterm.js using 

Tornado websockets 

testpath 0.4.2 Test utilities for code working with 

files and commands 

tornado 6.0.2 Python web framework and 

asynchronous networking library 

traitlets 4.3.2 Traitlets Python config system 

wcwidth 0.1.7 Measures number of Terminal column 

cells of wide-character codes 

webencodings 0.5.1 Character encoding aliases for legacy 

web content 

widgetsnbextension 3.4.2 IPython HTML widgets for Jupyter 

Most of the modules are support modules for Jupyter, Pomegranate or Biopython, the most 

used packages in this work. From all the modules present, the two that were used and are more 

visible, visually, throughout the project, are Pomegranate and Biopython, a package for 

modelling probabilistic data and another for processing data on a molecular level, respectively. 

After explaining what these packages do and why they are so important, it’s crucial to explain 

the main part of the code: The Profile-HMM. It’s the base of this project. Without it the project 

would have almost no meaning and reaching the final goal wouldn’t be possible.  
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2.2.1. Pomegranate 

Pomegranate is a Python package, created by Jacob Schreiber from the University of 

Washington, aimed at implementing probabilistic modelling in a fast and flexible manner, 

ranging from Bayesian Networks (BN) to HMM. Based on its predecessor Yet Another Hidden 

Markov Model (YAHMM), it was created to fill a gap in the Python ecosystem, using maximum 

likelihood estimates to update the parameters in probabilistic machine learning models. Even 

though there are existing packages that implement certain probabilistic models individually, 

for example hmmlearn for HMMs, libpgm for BNs and scikit-learn for Gaussian Mixture Models 

(GMM), pomegranate implements several more probabilistic models in a modular type of 

programming. This has two main effects: 

• Adding a new distribution makes it so that all models are built using that distribution; 

• When one improvement is made to one area of pomegranate, it’s automatically 

improved to all models that could benefit from that improvement. 

Pomegranate’s design allows it to be easy to use and efficient without sacrificing computational 

efficiency. A model can be written from scratch with each component if previous data is 

present, or learnt directly from the data that is used as input, if previous data isn’t present 

[62]. 

Until this date, and of the data available to our knowledge, no article has been published using 

this package. Due to its speed because of its implementation in Cython, pomegranate is 

definitively a package that makes this stand out from other HMM packages or even traditional 

HMMs [62]. 

2.2.2. Biopython 

Biopython is a Python package and provides tools for computational molecular biology. It has a 

lot of functionalities, some of which were used in this project. The main goal is to provide tools 

for Python related to Bioinformatics, allowing the user to create high-quality, reusable modules 

and classes. Biopython has a variety of parsers for several Bioinformatics file formats, such as 

BLAST, Clustalw, GenBank, UniGene, FASTA, etc. The last format, FASTA, is what’s used as 

input for the program. This parser was largely used throughout this dissertation work, being 

one of the crucial parts of the same, allowing fasta-formatted files to be read and the data 

used in the Profile-HMM [63]. 
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The Biopython package offers several other functionalities, including: 

• Bioinformatics file parsing into Python data structures, supporting formats such 

as those mentioned before; 

• The files can be iterated over record by record or indexed via a Dictionary 

interface; 

• Code to interpret online bioinformatics websites such as NCBI and ExPASy; 

• Interfaces for Bioinformatics programs like Blast from NCBI, Clustalw alignment 

program and EMBOSS command line tools; 

• Sequence class that deals with sequence, their id’s and features; 

• Amongst others [63]. 

2.3. The ORF Finder 

This part is very important to the project. It facilitates the HMMs work and is what allows 

distinction between sequences. But first, what is an ORF? An ORF is a possible protein-coding 

sequence, located between a start and a stop codon. It contains a continuous set of codons, 

where each codon specifies one amino acid and is the simplest way to find a certain DNA 

sequence that might encode for a protein or various proteins. In prokaryotes, the DNA 

sequences are transcribed into mRNA and then translated into proteins, with no major 

modifications. In eukaryotes the process is slightly different. Transcription of protein-encoding 

regions is followed by removal of introns from the mRNA via splicing, leaving us with only the 

protein-encoding regions, the exons. Once this process is over, and other necessary 

modifications have been made, the resulting mRNA sequence con be translated [64]. 

The ORF finder used is publicly available. It was created to identify ORFs in a study regarding 

wound healing and regeneration in cnidarian Calliactis polypus [61]. 

The ORF finder is very easy to use. Each step has instructions to aid the user. These were 

slightly modified in this dissertation work, to fit the main purpose and find smaller sequences, 

since protein-coding gene sequences are already being used to test. It has 8 main input steps, 

these being: 

1. Specifying the name of the fasta file from where to extract the ORFs; 

2. Specifying the name of the output file where these same ORFs will be stored; 

3. The minimum length of any ORF to search for; 

4. The maximum length of any ORF to search for (for bigger ORFs, we can input a 

larger number as to search for more); 

5. The number of ORFs the user wants to extract from each nucleotide sequence; 
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6. Determining the weighting of non-coding start sequences for the ORFs; 

7. What ORF formatted file types should be saved (protein translated, nucleotide CDS 

or both); 

8. Ability to replace alternative start codons with M (only if the protein translated file 

is chosen). 

2.4. The Profile-HMM 

The HMM model, from the pomegranate package, was used as our base model, more specifically 

the Profile-HMM model. And why? Due to its ability to compare various sequences at the same 

time, in other words, perform a multiple sequence alignment. With this program, several 

sequences can be compared at the same time with the target sequence that the user inputs. 

This gives us a more specific and accurate answer, narrowing down the margin for error, due 

to its parallel sequence comparison. In the end, the program is told to print out the lowest Logp 

value and all Logp values, each one associated to its respective ORF. 

The user inputs the full directory of the ORF file that was previously saved using the ORF finder. 

With the help of Biopython, the data was parsed. Each ORF is compared separately with the 

target sequence, input by the user. Since a target file may contain several sequences, for every 

new comparison, the user has to input the file containing the ORFs. 

Testing the model to obtain the best possible results was needed. As a method to obtain these 

same results, various scenarios were created, based on various possibilities. Some were more 

unrealistic than others, but confirmation that they didn’t work was needed. In each scenario, 

at least one value was modified. The most important values to find, in other words ideal values, 

were of the match states. And why? Because the match states are what give us the confirmation 

if there is really a match between an ORF and the target sequence. 

In each scenario, there are match states, insert states and delete states. The match states 

were the first to be changed. To see which match state values were ideal, various scenarios 

were created. Once the ideal match state was found, insert states came next. These insert 

states had to be managed carefully, as giving an insert state too much probability of appearing 

could lead to false positives, something not wanted. The last types of states to be modified 

were the delete states. Just like the insert states, not giving too much probability to these 

states was crucial, as it could give us false positives. Unrealistic scenarios such as not using any 

insert state or any delete states were excluded, primarily because it made no sense as it would 

defeat the purpose of creating a Profile-HMM in the first place and also due to the unrealistic 

results these would produce. 
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To train the model, the Viterbi algorithm was used, due to its speed and the fact that the 

sequences used were not that big and needed not a complex algorithm for analysis. In the next 

section, the most relevant scenarios will be presented. 
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3. Results and Discussion 

The code was run countless times, testing for the ideal amount of ORFs to compare and the 

ideal Profile-HMM scenario. For the ORF finder, the same settings were used for all the input 

files. Based on the steps previously presented before in the ORF finder sub-chapter, the ideal 

values and settings used for the final Profile-HMM were (in order): 

1. Choosing the name of the fasta-formatted file to extract the ORFs from. The 

file was always in the same directory of the python file for the project, 

facilitating extraction; 

2. Giving a name to the file to store the ORFs in. For testing purposes, naming the 

files was always done randomly; 

3. Entering the minimum amino acid length to accept as a valid ORF. Since the 

program searches for codons, if the input were 100 base pairs for example, it 

would search 300 amino acids. 50 was used, as to find smaller and possible 

ORFs; 

4. Entering the maximum length for the ORFs. No maximum was set, as to search 

for longer sequences and as many as it possible could; 

5. Entering the number of ORFs to extract. The recommended is normally 1-3. But 

since the files are already protein-coding sequences, searching for smaller, 

more specific ORFs made more sense, to make it more accurate. 50 was chosen 

as the maximum number of ORFs to extract; 

6. Choosing if the default settings of the code were to be used or not. The default 

settings were used; 

7. Choosing if only a nucleotide ORF file was to be produced or if a translated 

protein file was to be produced too. Both were produced for all cases; 

8. Choosing to replace the alternative start positions with an M for Methionine. 

These were replaced; 

9. Wanting to discover ORFs with unresolved regions. Since this wasn’t pertinent 

to the rest of the program, no unresolved region was discovered; 

10. Appending the ORF numbers to the transcript ID’s. These were appended. 

The ORF finder also has the functionality to search for alternative start codons. Some ORFs that 

were retrieved don’t start with the typical start codon, ATG. So, when comparing sequences, 

some start with an alternative start codon. 

Finding the best Profile-HMM wasn’t an easy task. Through trial and error, reach an ideal model 

was reached, with specific values for each state (Initial, match, insert and delete). The code 

was tested various times with different insert states, delete state and initial state values. Even 

if the values were different, every single attempt had at least one initial, match, insert and 
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delete state. What varied were the values and the number of states, depending on which 

attempt was currently being tested. These attempts can be divided into various scenarios, that 

differ either a lot or slightly from each other, which will be presented next. In each scenario 

presented, the values for each state are explained, the reason why those specific values were 

used and, for the scenarios not used for the project, the reason why they weren’t feasible. 

Before explaining each scenario, a decision tree will be presented. This will serve as a guide, 

for better understanding of each scenario. 

In each scenario, the Logp values are plotted and the best value is printed as a positive absolute 

value. This allows us to compare with scenarios. For example, if we wanted to discover if a 

sequence is more probable to be the one compared to another or other sequences, we simply 

use the program. It gives us the ORFs of the input sequence, storing them in a certain directory. 

Then they are used with the second part of the script, the Profile-HMM, which will run through 

all the sequences and gather the best Logp value. The process is repeated with the different 

scenarios to analyse and also gather their Logp value. The Logp value that is the lowest, or 

closest to zero, represents the scenario with the ORF that has the highest probability of being 

found in the target sequence. Only one input sequence can be analysed at a time. To obtain 

results regarding other sequences for analysis, re-running the program is necessary. 

The final results are presented as a comparison between the Logp values of the ORFs, compared 

from different input files with the same target exit sequence. Sequences from the ORF files of 

the same size are used, taken from the same region of the Profile-HMM prediction. This allows 

for a more accurate analysis of the veracity of the program. 

The test file used for the project was a fasta-formatted file containing protein-coding genes 

for JAK2 Janus kinase 2 [Homo sapiens (human)]. This specific gene, a protein tyrosine kinase 

involved in a specific subset of cytokine receptor signalling pathways, was chosen at random. 

Upon a search for the word Haemoglobin in the Human Genome database in NCBI’s database 

[65]. 
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Figure 11 – Decision tree demonstrating possible scenarios for each state. 
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3.1. Scenario 1 

The first scenario that’s presented is based on the hypothesis that the probability of the match 

state is higher than the probability of there being and insert or delete state. We define four 

match states, in which each represents a 100% probability of encountering a specific base. 

When setting the distribution parameters, the assumption was made on the basis that there 

was no prior information, to make the program as unbiased as possible so that it could fully 

give us feedback on any sequence, independent on where it came from. An initial state was 

created, also known as an initial distribution (i_d), where initial probabilities were defined for 

each base. These were calculated from the input sequence that the user wants to use as 

comparison with the ORFs previously stored. It is pertinent to mention that the percentages of 

each base were converted to integers then multiplied by 0.001, to give us a number between 

zero and one, due to the fact that each overall probability adding up to one (1) in each 

distribution. We created four match states, each with different probabilities. These were put 

into four different discrete distributions, where each one had a one hundred percent chance of 

encountering one of the four DNA bases. For example, Discrete Distribution 1 (d1) gave the 

probability of encountering the base A, a one hundred percent (1 on a scale from 0 to 1), and 

the other bases a zero percent chance of being found in that match state. Discrete Distribution 

2 (d2) was given a one hundred percent chance of finding a C, and so on. What changed were 

the transition states. Each base appears in a different amount when it comes to DNA. Chargaff’s 

rule was applied, where the amount of the base A is the same as the amount of T, and the 

amount of the base G is the same as the amount of C [3], so A = 0.30, C = 0.20, G = 0.20 and T 

= 0.30. Since the bases only represent 0.8 of the total amount of the distribution, converting 

the probabilities to fit the model had to be done. To better show what values were used, below 

are several with the respective values and variables: match state transition values, insert state 

transition values and delete state transition values. It’s pertinent to mention that the insert 

state transition values and delete state transition values were tested and are ideal for this and 

several other scenarios. In other scenarios, as will be presented ahead, these were changed for 

testing purposes. In the table below, a_int, c_int, g_int and t_int represent the integral values 

for each base, a, c, g and t, calculated from the target sequence, respectively. Below, three 

different tables with each transition values will be presented (Tables 3 to 6). 
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Table 3 – Model start transition values (Scenario 1) 

Transition State Value probability (0-1) 

Model start – Match state 1 (m1) a_int * 0.8 

Model start – Match state 2 (m2) c_int * 0.8 

Model start – Match state 3 (m3) g_int * 0.8 

Model start – Match state 4 (m4) t_int * 0.8 

Model start – Insert state 1 (i1) 0.20 

 

Table 4 – Match state transition values (Scenario 1) 

Transition State Value probability (0-1) 

m1 – m1 a_int * 0.8 

m1 – m2 c_int * 0.8 

m1 – m3 g_int * 0.8 

m1 – m4 t_int * 0.8 

m1 – Insert state 2 (i2) 0.10 

m1 – Delete state 1 (d1) 0.10 

m2 – m1 a_int * 0.8 

m2 – m2 c_int * 0.8 

m2 – m3 g_int * 0.8 

m2 – m4 t_int * 0.8 

m1 – Insert state 2 (i3) 0.10 

m1 – Delete state 2 (d2) 0.10 

m3 – m1 a_int * 0.8 

m3 – m2 c_int * 0.8 

m3 – m3 g_int * 0.8 

m3 – m4 t_int * 0.8 

m1 – Insert state 2 (i4) 0.10 

m1 – Delete state 3 (d3) 0.10 

m4 – m1 a_int * 0.8 

m4 – m2 c_int * 0.8 

m4 – m3 g_int * 0.8 

m4 – m4 t_int * 0.8 

m1 – Insert state 5 (i5) 0.10 

m1 – Delete state 4 (d4) 0.10 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 
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Table 5 – Insert state transition values (Scenario 1) 

Transition State Value probability (0-1) 

i1 – i1 0.10 

i1 – d1 0.10 

i1 – m1 0.80 

i2 – i2 0.10 

i2 – d2 0.10 

i2 – m2 0.80 

i3 – i3 0.10 

i3- d3 0.10 

i3 – m3 0.80 

i4 – i4 0.10 

i4 – d4 0.10 

i4 – m4 0.80 

i5 – i5 0.10 

i5 – Model end 0.90 

Table 6 – Delete state transition values (Scenario 1) 

Transition State Value probability (0-1) 

d1 – d2 0.15 

d1 – i1 0.15 

d1 – m2 0.70 

d2 – d3 0.15 

d2 – i2 0.15 

d2 – m3 0.70 

d3 – d4 0.15 

d3 – i3 0.15 

d3 – m4 0.70 

d4 – i4 0.30 

d4 – Model end 0.70 

Logp values were plotted using matplotlib (Figure 11). A graph with all Logp values of the ORFs 

is shown below. Dots represent the ORFs and the lines are merely connectors and don’t have 

any significant value. 
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Figure 12 – Logp values for Scenario 1. Stored ORFs were used to compare with the target sequence. 

The bigger oscillations seen represent the 7 sequences that the ORFs were compared to from the target 

file. The best score, represented as a Logp value, is -305.68. In total, 420 alignments were made. 

As can be observed, the ORFs stored from the ORF finder were all compared to the sequences 

present in the target fasta file. Longer sequences have a larger Logp value (negative in this 

case) and shorter sequences have a smaller Logp value. This only means that a longer sequence 

may be less likely to find than a shorter one, not excluding the possibility that it doesn’t exist 

in the target sequence. 
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3.2. Scenario 2 

In this scenario all match states have the same probability, not taking into consideration 

Chargaff’s rule. We give each match state transition a value of 0.20, making it evenly 

distributed. The insert states and delete states have the same values as the previous scenario, 

for testing purposes. This scenario is based on the premise that each base is evenly distributed 

in DNA and the probability of encountering any one of the four bases is the same. The inital 

distributions, just like the previous scenario, are integers calculated from the input sequence 

that the user wants to use as comparison with the ORFs previously stored. Insert state transition 

values and delete state transition values are the same as the previous scenario. The tables 

below, 7 to 10, represent the values used for each state. Logp values were plotted using 

matplotlib (Figure 12). 

Table 7 – Model start transition values (Scenario 2) 

Transition State Value probability (0-1) 

Model start – m1 0.20 

Model start – m2 0.20 

Model start – m3 0.20 

Model start – m4 0.20 

Model start – i1 0.20 

Table 8 – Match state transition values (Scenario 2) 

Transition State Value probability (0-1) 

m1 – m1 0.20 

m1 – m2 0.20 

m1 – m3 0.20 

m1 – m4 0.20 

m1 – i2 0.10 

m1 – d1 0.10 

m2 – m1 0.20 

m2 – m2 0.20 

m2 – m3 0.20 

m2 – m4 0.20 

m1 – i3 0.10 

m1 – d2 0.10 

m3 – m1 0.20 

m3 – m2 0.20 

m3 – m3 0.20 

m3 – m4 0.20 
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m1 – i4 0.10 

m1 – d3 0.10 

m4 – m1 0.20 

m4 – m2 0.20 

m4 – m3 0.20 

m4 – m4 0.20 

m1 – i5 0.20 

m1 – d4 0.20 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 

Table 9 – Insert state transition values (Scenario 2) 

Transition State Value probability (0-1) 

i1 – i1 0.10 

i1 – d1 0.10 

i1 – m1 0.80 

i2 – i2 0.10 

i2 – d2 0.10 

i2 – m2 0.80 

i3 – i3 0.10 

i3- d3 0.10 

i3 – m3 0.80 

i4 – i4 0.10 

i4 – d4 0.10 

i4 – m4 0.80 

i5 – i5 0.10 

i5 – Model end 0.90 
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Table 10 – Delete state transition values (Scenario 2) 

Transition State Value probability (0-1) 

d1 – d2 0.15 

d1 – i1 0.15 

d1 – m2 0.70 

d2 – d3 0.15 

d2 – i2 0.15 

d2 – m3 0.70 

d3 – d4 0.15 

d3 – i3 0.15 

d3 – m4 0.70 

d4 – i4 0.30 

d4 – Model end 0.70 

 

Figure 13 – Logp values for Scenario 2. The best score, represented as a Logp value, is -305.26. In total, 

420 alignments were made, the same number as the previous scenario. 
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3.3. Scenario 3 

This scenario is slightly similar to the first, but with some attempts to tweak the model. 

Chargaff’s rule is applied, just like in the first scenario, but this time without the percentages 

being taken from the target sequence. The percentages used are the base probabilities of 

encountering any base with their normal probability, without any previous analysis of which 

part of the genome the sequence is. The percentages of the bases are also multiplied by 0.8 

due to them only representing 80% of the probability, the rest going to the probability of 

encountering an insert state right after starting the model. In tables 11 to 14, the transition 

values for each state are shown. Once again, matplotlib was used to plot the Logp values (Figure 

13). 

Table 11 – Model start transition values (Scenario 3) 

Transition State Value probability (0-1) 

Model start – m1 0.24 

Model start – m2 0.16 

Model start – m3 0.16 

Model start – m4 0.24 

Model start – i1 0.20 

Table 12 – Match state transition values (Scenario 3) 

Transition State Value probability (0-1) 

m1 – m1 0.24 

m1 – m2 0.16 

m1 – m3 0.16 

m1 – m4 0.24 

m1 – i2 0.10 

m1 – d1 0.10 

m2 – m1 0.24 

m2 – m2 0.16 

m2 – m3 0.16 

m2 – m4 0.24 

m1 – i3 0.10 

m1 – d2 0.10 

m3 – m1 0.24 

m3 – m2 0.16 

m3 – m3 0.16 

m3 – m4 0.24 

m1 – i4 0.10 
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m1 – d3 0.10 

m4 – m1 0.24 

m4 – m2 0.16 

m4 – m3 0.16 

m4 – m4 0.24 

m1 – i5 0.10 

m1 – d4 0.10 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 

Table 13 – Insert state transition values (Scenario 3) 

Transition State Value probability (0-1) 

i1 – i1 0.10 

i1 – d1 0.10 

i1 – m1 0.80 

i2 – i2 0.10 

i2 – d2 0.10 

i2 – m2 0.80 

i3 – i3 0.10 

i3- d3 0.10 

i3 – m3 0.80 

i4 – i4 0.10 

i4 – d4 0.10 

i4 – m4 0.80 

i5 – i5 0.10 

i5 – Model end 0.90 
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Table 14 – Delete state transition values (Scenario 3) 

Transition State Value probability (0-1) 

d1 – d2 0.15 

d1 – i1 0.15 

d1 – m2 0.70 

d2 – d3 0.15 

d2 – i2 0.15 

d2 – m3 0.70 

d3 – d4 0.15 

d3 – i3 0.15 

d3 – m4 0.70 

d4 – i4 0.30 

d4 – Model end 0.70 

 

 

Figure 14 – Logp values for Scenario 3. The best score, represented as a Logp value, is -301.43. In total, 

420 alignments were made, the same number as the previous scenarios. 
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Surprisingly, and comparing all three previous scenarios, this was the one that returned the 

lowest Logp value out of all of them. Based on that, the testing for the target sequence and 

then comparison with another random sequence from NCBI’s genome database, was done using 

these values. 
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3.4. Scenario 4 (Insert state scenario) 

Having discovered the best match state, insert state and delete state insert and transition 

values for the Profile-HMM, a scenario where the insert state transition values are modified was 

next. This scenario is purely experimental. We are guessing, from the get go, that this scenario 

is not a viable one. And why? Due to the fact that an insert states is returned only if there are 

is no matching base in the sequence at a given position. The aim of this program is to find 

sequences that are present in the target one, and not sequences that don’t belong. Even though 

these insert states are necessary for other sequences not present in the target sequence in 

order to distinguish them, it isn’t expected for a given sequence to only have insert states and 

no match states or even delete states. Insert state values are subsituted so that, and purely in 

an experimental matter, the probability of there being an insert state is higher than there being 

a match state or a delete state. Insert state transition values and probabilities were given 

matching probabilistic values as the match states combined in the previous scenarios. Tables 

15 to 18 contain the values used for this scenario. Figure 14 represents the plot of the ORF logp 

values, compared to the target sequence. 

Table 15 – Model start transition values (Scenario 4) 

Transition State Value probability (0-1) 

Model start – m1 0.10 

Model start – m2 0.10 

Model start – m3 0.10 

Model start – m4 0.10 

Model start – i1 0.50 

Table 16 – Match state transition values (Scenario 4) 

Transition State Value probability (0-1) 

m1 – m1 0.10 

m1 – m2 0.10 

m1 – m3 0.10 

m1 – m4 0.10 

m1 – i2 0.50 

m1 – d1 0.10 

m2 – m1 0.10 

m2 – m2 0.10 

m2 – m3 0.10 

m2 – m4 0.10 

m1 – i3 0.50 

m1 – d2 0.10 
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m3 – m1 0.10 

m3 – m2 0.10 

m3 – m3 0.10 

m3 – m4 0.10 

m1 – i4 0.50 

m1 – d3 0.10 

m4 – m1 0.10 

m4 – m2 0.10 

m4 – m3 0.10 

m4 – m4 0.10 

m1 – i5 0.50 

m1 – d4 0.10 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 

Table 17 – Insert state transition values (Scenario 4) 

Transition State Value probability (0-1) 

i1 – i1 0.80 

i1 – d1 0.10 

i1 – m1 0.10 

i2 – i2 0.80 

i2 – d2 0.10 

i2 – m2 0.10 

i3 – i3 0.80 

i3- d3 0.10 

i3 – m3 0.10 

i4 – i4 0.80 

i4 – d4 0.10 

i4 – m4 0.10 

i5 – i5 0.90 

i5 – Model end 0.10 
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Table 18 – Delete state transition values (Scenario 4) 

Transition State Value probability (0-1) 

d1 – d2 0.10 

d1 – i1 0.10 

d1 – m2 0.80 

d2 – d3 0.10 

d2 – i2 0.10 

d2 – m3 0.80 

d3 – d4 0.10 

d3 – i3 0.10 

d3 – m4 0.80 

d4 – i4 0.90 

d4 – Model end 0.10 

 

Figure 15 - Logp values for Scenario 4. The best score, represented as a Logp value, is -251.56. In total, 

420 alignments were made, the same number as the previous scenarios. 

Even though the Logp probability is lower than the best match state scenario, it’s completely 

unrealistic. The HMM assumes that there are no match states and the only state present is i5, 
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or insert state 5. The sequences match at the first one to three stages, matching with random 

initial bases, but immediately jump to i5 until the end of the model. 
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3.5. Scenario 5 (Delete state scenario) 

Having proven that insert state transition values higher than match state transition values is 

not a viable scenario, the same was proven with delete states. In this scenario, the delete 

states are modified. Just like when the insert state transition values were modified, this design 

is purely experimental, due to the fact that in this scenario, with the delete states higher than 

the match states or even the insert states, the assumption is made that, a sequence aligned 

with another will present more deletions than matches. Tables 19 to 22 represent the values 

used for the model in this specific scenario. 

Table 19 – Model start transition values (Scenario 5) 

Transition State Value probability (0-1) 

Model start – m1 0.20 

Model start – m2 0.20 

Model start – m3 0.20 

Model start – m4 0.20 

Model start – i1 0.20 

Table 20 – Match state transition values (Scenario 5) 

Transition State Value probability (0-1) 

m1 – m1 0.10 

m1 – m2 0.10 

m1 – m3 0.10 

m1 – m4 0.10 

m1 – i2 0.10 

m1 – d1 0.50 

m2 – m1 0.10 

m2 – m2 0.10 

m2 – m3 0.10 

m2 – m4 0.10 

m1 – i3 0.10 

m1 – d2 0.50 

m3 – m1 0.10 

m3 – m2 0.10 

m3 – m3 0.10 

m3 – m4 0.10 

m1 – i4 0.10 

m1 – d3 0.50 

m4 – m1 0.10 
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m4 – m2 0.10 

m4 – m3 0.10 

m4 – m4 0.10 

m1 – i5 0.10 

m1 – d4 0.50 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 

m1 – Model end 0.25 

Table 21 – Insert state transition values (Scenario 5) 

Transition State Value probability (0-1) 

i1 – i1 0.10 

i1 – d1 0.80 

i1 – m1 0.10 

i2 – i2 0.10 

i2 – d2 0.80 

i2 – m2 0.10 

i3 – i3 0.10 

i3- d3 0.80 

i3 – m3 0.10 

i4 – i4 0.10 

i4 – d4 0.80 

i4 – m4 0.10 

i5 – i5 0.50 

i5 – Model end 0.50 
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Table 22 – Delete state transition values (Scenario 5) 

Transition State Value probability (0-1) 

d1 – d2 0.15 

d1 – i1 0.15 

d1 – m2 0.70 

d2 – d3 0.15 

d2 – i2 0.15 

d2 – m3 0.70 

d3 – d4 0.15 

d3 – i3 0.15 

d3 – m4 0.70 

d4 – i4 0.30 

d4 – Model end 0.70 

The program was run but didn’t manage to end due to an error. We assume this occurs due to 

how an HMM works, and since having solely delete states tampers with the model itself. It could 

also create an infinite loop of deletions, never being able to find neither a match or insert 

state.  
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3.6. Final comparison 

To test the veracity of the program, the Logp values of two different sequences were compared. 

One was the test sequence, the JAK2 Janus kinase 2 [Homo sapiens (human)] genome protein-

coding fasta formatted file. The other file was chosen at random. The CRP C-reactive protein 

[Homo sapiens (human)] genome protein-coding fasta formatted file was chosen. Both were run 

with the program and the results were as follow. Below are the resulting Logp graphs, plotted 

using matplotlib. 

 

Figure 16 – Graphs representing the number of ORFs and Logp values. A) CRP C-reactive protein [Homo 

sapiens (human)] ORFs, B) JAK2 Janus kinase 2 [Homo sapiens (human)] ORFs. 
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Even though the Logp value for the shortest ORF in the CRP C-reactive protein [Homo sapiens 

(human)] ORF file was lower, the comparison can’t be made that way, due to sequence length. 

So, two equally sized sequences were taken from each Profile-HMM comparison run, and then 

compared Logp values. 

Sequence taken from the CRP C-reactive protein [Homo sapiens (human)] ORF file: 

‘CAGCACAAAGTCCCACATGTTCACATTTCCAATGTCTCCCACCAGGGACTGGCTTCCTTCAAAGTTCCC

ACCGAAGGAATCCTGCTCCTGCCCCAAGATGATGCTTGCTTCTGCCCCCACAGTGTATCCCTTCTTCAGA

CTCTTCCTCACCCTGGGCTTCCCATCTACCCAGAACTCCACGATCCCTGA’ 

Logp value: -367.78 

Sequence taken from JAK2 Janus kinase 2 [Homo sapiens (human)] ORF file: 

‘GTGTTGTCCTGTAGAGGGTCATACCGGCACATCTCCACACTCCCAAAATTACCCTTGCCAAGTTGCTGT

AGAAATTTCAAATGTCTCTCTTCAAACTGTGTAGGATCCCGGTCTTCAAAGGCACCAGAAAACCCCAGGG

CACCTATCCTCATATTTGGTAACATGTCATTTTCTGTTAATAGTTCATAA’ 

Logp value: -354.41 

As can be observed, the Logp values for the target sequence are better than the Logp values 

for the sequence that is unknown. The ORF finder didn’t find as many ORFs for the unknown 

sequence as it did for the unknown one, due to smaller protein-coding sequence sizes and 

therefore smaller ORFs and in less quantity. Even though this was the case, a same-sized 

sequence was compared from both ORF files, with the respective Logp values, resulting in the 

previously made analysis.  
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4. Conclusion 

The method for gene prediction presented in this project is different. Even though the possible 

ORFs are taken from a previously known coding sequence, it makes it even more specific. Since 

a Profile-HMM is used, a comparison can be made between several files, using discovered ORFs 

with the same size and their respective Logp values. As mentioned, and presented above, lower 

Logp values mean better probability of the input file, with several sequences, belonging to the 

target sequence. Even though in theory this is true, sequences from different ORF files may 

have different sizes and therefore a smaller sequence will, in theory, already have a small Logp 

value than a longer one, due to the probability distribution. Hence the need to compare Logp 

values between equal sized sequences. As presented in the results, a comparison with a random 

fasta formatted file containing protein-coding gene sequences, from the CRP C-reactive protein 

[Homo sapiens (human)] gene, show that the program, when comparing sequences, that belong 

to the target sequence, with random sequences, results in a better Logp value for the sequence 

that is present in the target one. 

With all the information present in the results and discussion, it’s safe to assume that models 

with either insert transition states and values or delete transition states and values, are 

completely unrealistic, due to the fact that they bypass and defeat the purpose of having 

different base percentages and even that bases exist; and only delete states are present, 

meaning that the sequences hardly ever match or never match (respectively). 
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5. Future Perspectives 

Gene prediction tools have been created along the years, either from scratch or making use of 

previous algorithms. It would be interesting to see how the implementation of different types 

of models, apart from HMMs, would benefit the gene prediction tool scenario. For example, 

inGAP-CDG, mentioned before, uses a completely new approach to gene prediction as a whole, 

also taking advantage of machine learning [66]. Using a different HMM could also lead to 

different results and open up new insights to models in gene prediction. 

In this project the VA was used, due to its speed and highest probability function value. 

Substituting the VA algorithm with the Baum-Welch algorithm or another Expected 

Maximization (EM) algorithm, could present us with quite different results. It wouldn’t be as 

fast as the VA algorithm but its accuracy would most certainly go up, due to the forward-

backward method the Baum-Welch algorithm implements. Even though training would take 

longer, the results would be more viable and trustworthy due to the nature of the algorithm 

and how it works. 

The method presented in this dissertation work needs more research, but can be a starting 

point to the creation of a more advanced gene prediction tool in the future. Using a Profile-

HMM to compare several ORFs at the same time, with a target sequence, and then comparing 

Logp results between same-sized sequences. Other types of HMMs could be tested or even a 

completely new model, such as a BN or GHMM. 
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