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Resumo Alargado 

As terapias baseadas em ácidos nucleicos têm surgido como excelentes abordagens no que diz 

respeito ao tratamento de diversas doenças como cancro e doenças neurodegenerativas. 

Contudo, para que estas biomoléculas possam ser usadas como biofármacos elas devem ser 

obtidas com elevados graus de pureza, apresentando atividade biológica e integridade 

estrutural. Sendo estes os maiores desafios na obtenção de biofármacos, é necessário 

desenvolver estratégias de purificação que assegurem a qualidade dos mesmos. Os líquidos 

iónicos (ILs) são sais líquidos à temperatura ambiente que apresentam propriedades muito 

interessantes, nomeadamente a possibilidade de criar inúmeras combinações entre catiões e 

aniões, adequando assim as estruturas aos objetivos pretendidos.  

Neste âmbito, o presente trabalho tem como principal objetivo o desenvolvimento de uma nova 

estratégia de purificação de ácidos nucleicos usando suportes funcionalizados com diferentes 

ILs. Paralelamente, pretende-se também avaliar a capacidade de estabilização de RNA que 

determinados ILs apresentam, assim como a sua toxicidade em linhas celulares humanas, de 

forma a averiguar a biossegurança destas substâncias. 

Inicialmente, diferentes ILs foram imobilizados covalentemente em suportes de sílica esférica, 

usada como fase estacionária, dos quais resultaram os seguintes materiais: [Si][C3C1Im]Cl, 

[Si][N3222]Cl, [Si][N3444]Cl, [Si][N3888] e [Si][N3114]Cl. Considerando estruturalmente os ILs 

selecionados, destaca-se a utilização como catião de um composto heterocíclico, um baseado 

em uma amina assimétrica e três com aminas simétricas que variam no tamanho da cadeia 

carbonada (contendo 2, 4 ou 8 carbonos). Para além da caracterização estrutural dos suportes, 

cada um deles foi empacotado em colunas de bancada e foram realizados ensaios de screening 

de ligação e eluição com amostras de RNA. Nestes ensaios, foi possível verificar que todos os 

ligandos tinham a capacidade de estabelecer interações electroestáticas e hidrofóbicas com o 

RNA, isto porque todos possuem grupos de carácter iónico e hidrofóbico, demonstrando assim 

a possibilidade de explorar um comportamento multimodal. Contudo, os resultados mais 

promissores foram obtidos com os suportes de [Si][N3222]Cl e [Si][N3114]Cl, pelo que foram 

estes os materiais usados nos ensaios seguintes. Neste contexto, a etapa seguinte foi de 

avaliação do potencial destes suportes para separar DNA e RNA presentes em amostras de 

lisado, considerando também o efeito do pH (entre 6 e 8) nos perfis de retenção e padrão de 

seletividade entre estas biomoléculas. Ambos os suportes demonstraram essa capacidade de 

separação, apesar de [Si][N3114]Cl ter apresentado melhor seletividade que [Si][N3222]Cl, 

sendo por isso mais promissor para outros estudos de separação. 

Adicionalmente, foram realizados ensaios de estabilização de amostras de RNA com quatro 

diferentes ILs, nomeadamente [N1111]Cl, [N2222]Cl, [N3333]Cl e [N4444]Cl. Com este estudo 

foi observado um efeito negativo na estabilidade do RNA consoante o aumento do tamanho da 

cadeia carbonada do catião, tendo-se apenas obtido aumento da estabilidade térmica do RNA 

com o IL [N1111]Cl. Por fim, e de forma a averiguar a toxicidade dos suportes e dos ILs análogos, 

foram realizados ensaios de citotoxicidade numa linha celular humana, em que os materiais e 
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ILs foram colocados em contacto com as células até um período de tempo de 48 horas. 

Verificou-se que os suportes com os ILs imobilizados na superfície não demonstraram qualquer 

toxicidade para estas células, ao contrário do observado com os ILs análogos aos usados nos 

suportes. Estes demonstraram significativa toxicidade, que também se verificou ser 

dependente do tamanho das cadeias carbonadas e da concentração de IL aplicada, 

apresentando assim uma vantagem dos ILs imobilizados em suportes, comparativamente ao uso 

de ILs no estado líquido. Desta forma, foi possível demonstrar a importância de vários ILs na 

purificação e estabilização dos ácidos nucleicos, tratando-se de uma área em constante 

crescimento. 
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Abstract 

Nucleic acids-based therapies have emerged as excellent approaches to treat various diseases 

such as cancer and neurodegenerative disorders. However, for these biomolecules to be used 

as biopharmaceuticals they must be obtained with high purity, presenting biological activity 

and structural integrity. As these are the main challenges in obtaining biopharmaceuticals, it 

is necessary to develop purification strategies that ensure their quality. Ionic liquids (ILs) are 

liquid salts at room temperature that have very interesting properties, namely the vast 

combination of cation and anion that can be made, thus tailoring the structures to the intended 

purpose. 

This work has as main objective the development of a new strategy for the purification of 

nucleic acids using functionalized supports with different ILs. In addition, we also intend to 

evaluate the RNA stabilizing capacity of certain ILs as well as their toxicity in human cell lines 

in order to ascertain the biosafety of these substances. 

Initially, different ILs were covalently immobilized onto spherical silica supports, used as a 

stationary phase, resulting in the following materials: [Si][C3C1Im]Cl, [Si][N3222]Cl, 

[Si][N3444]Cl, [Si][N3888]Cl and [Si][N3114]Cl. In addition to the structural characterization of 

the supports, and as a screening procedure, the binding and elution of low molecular weight 

RNA molecules was tested under ionic and hydrophobic conditions with all the synthesised 

supports, in order to select the most promising ligand(s) for nucleic acids purification. 

[Si][N3222]Cl and [Si][N3114]Cl were the chosen supports for further separation procedures 

between genomic DNA and RNA. Both supports showed ability for separating these two species, 

although [Si][N3114]Cl displayed better selectivity, thus becoming more promising for future 

separation assays. Additionally, RNA stabilization assays were performed with four different 

types of ILs, analogues to the ligands, namely [N1111]Cl, [N2222]Cl, [N3333]Cl and [N4444]Cl. 

Only [N1111]Cl showed to enhance RNAs thermal stability, verifying by this, a negative 

contribution of the alkyl chains lengths in the stabilization of this biomolecule. Besides, 

cytotoxicity assays with the two chosen supports and these four ILs were performed. IL-

immobilized supports did not present any cytotoxicity, while liquid ILs were discovered to 

largely compromise cell viability. In this sense, the usage of ILs immobilized onto solid supports 

appears to be safer than using bulk ILs. Thus, was possible to demonstrate the importance of 

various ILs in purification and manipulation of nucleic acids, becoming a continuously growing 

area. 
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CHAPTER 1 – Introduction
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1.1. Nucleic Acids 

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the molecular storage of 

genetic information in cells (Nelson & Cox, 2011), are constituted by nucleotides, which also 

have a variety of roles in cellular metabolism. Nucleotides are composed by three characteristic 

elements: a nitrogen-containing base, a pentose, and a phosphate group. The common bases 

and pentoses of the nucleotides are heterocyclic compounds. The base of a nucleotide is 

covalently attached by an N-β-glycosyl bond to the 1’ carbon of the pentose ring, and the 

phosphate is esterified to the 5’ carbon (Figure 1). Relatively to nitrogen bases they can be 

classified as purines, which include adenine (A) and guanine (G), and pyrimidines, which include 

cytosine (C), thymine (T) and uracil (U) (Figure 2). Purines are constituted by two rings of five 

and six atoms, while pyrimidines are constituted only by one ring of six atoms (Nelson & Cox, 

2011; Quintas et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

Both DNA and RNA contain the two purines, adenine and guanine, and the pyrimidine cytosine. 

However, they differ in one pyrimidine, because DNA has thymine in its constitution, while RNA 

has uracil. Only rarely thymine occurs in RNA or uracil in DNA (Nelson & Cox, 2011; Quintas et 

al., 2008).  

Figure 2: Structure of the major purines and pyrimidines that constitute nucleic acids (Adapted from 

Nelson et al., 2011). 

Figure 1: Structure of nucleotides. A represents the general structure of a nucleotide, with the 

convention numbering of the pentose ring. In this case, it is shown a ribonucleotide, due to the presence 

of the −OH group on the 2’ carbon (in orange), which is replaced by −H in deoxyribonucleotides. B and C 

represent the general structures of pyrimidine and purine bases of nucleotides, with the respective 

numbering conventions (Adapted from Nelson & Cox, 2011). 

A B C 
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Nucleotides in nucleic acids are successively linked by a covalent bond through phosphate-group 

“bridges”, in which the 5’-phosphate group of one nucleotide is linked to the 3’-hydroxyl group 

of the next nucleotide, and so creating a phosphodiester linkage. This molecules organization 

confers a moderate hydrophilic nature to both DNA and RNA. The phosphate groups, with a pKa 

near to 0, are completely ionized and negatively charged at pH 7, and the negative charges are 

generally neutralized by ionic interactions with positively charged groups on proteins, metal 

ions and polyamines (Nelson & Cox, 2011). 

1.1.1. Ribonucleic Acid (RNA) 

Regarding the role of RNA in cells, for long time it was only seen as a simple intermediate in 

the transference of genetic information from DNA to proteins, with no further functionalities 

in the complex gene expression process. However nowadays, it is known that different types of 

RNA play a pivotal role in several essential biological processes, including epigenetic control, 

gene transcription, translation, RNA turn over, chromosomal organization, genome defense, 

among others. Examples of classes of RNA involved in the catalysis and genetic regulation are 

ribozymes and micro RNAs (miRNAs), respectively.  Meanwhile, new roles for RNA continue to 

be discovered, thus proving the tremendous importance of this macromolecule in cell biology 

and consequently, in the potential diagnosis and treatment of many diseases (Guil & Esteller, 

2015; Martins et al., 2014; Sharp, 2009; Quintas et al., 2008). 

RNA is a polymer with a long chain of ribonucleotides, that often presents a single-stranded 

structure and is quite flexible. This biomolecule resembles to DNA in many ways, except for 

one nucleotide, as mentioned above. Besides this, each nucleotide in RNA has a 2’-OH group in 

the pentose ring (ribonucleotide), contrary to DNA, that has only a hydrogen atom in the same 

position (deoxyribonucleotide). This characteristic confers DNA a greater resistance to alkaline 

hydrolysis, and so RNA is less stable due to its 2’-OH group making the 3’-phosphodiester bond 

susceptible to nucleophilic cleavage, being easily hydrolyzed by hydroxide ions (Martins et al., 

2014). Therefore, RNA is quite unstable in vivo given that ribonucleases (RNase) are always 

present in serum and in cells (Burnett & Rossi, 2012). Though RNA displays usually a single-

stranded conformation, when short regions within the nucleotide strand have complementarity, 

they can pair and form secondary structures. In contrast, since DNA is already constituted by 

two complementary strands, is inherently more restricted in the range of secondary structures 

that can assume. RNA secondary structures are often designated as hairpins (or hairpin-loop or 

stem-loop structures). Once these secondary structures are determined by the base sequence 

of the nucleotide strand, many different types of structures can take place, and since their 

structures dictate their function, RNA molecules have the potential of performing a tremendous 

variety of functions (Pierce, 2016). These comparison between DNA and RNA characteristics is 

summarized in Table 1. 
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1.1.1.1. Coding and Non-coding RNA 

Coding RNA refers to the RNA that encodes for a protein, which is messenger RNA (mRNA). The 

mRNA contains the information needed to produce a protein, which means that the nucleotides 

sequence on the mRNA dictates the sequence of amino acid residues in the polypeptide chain 

resulting from the translation process (Pierce, 2016; Quintas et al., 2008).  

The first step of gene expression is transcription, in which an mRNA molecule is formed based 

on the information of a DNA template, by the enzyme RNA polymerase in the nucleus. The 

product of transcription of DNA is a single-stranded RNA, which tends to assume a right-handed 

helical conformation dominated by base stacking interactions, and when there are any self-

complementary sequences in the molecule, more complex structures take place (Nelson & Cox, 

2011). Following some modifications, the mature mRNA is then used in the translation process 

to obtain the encoded protein.  

Non-coding RNA (ncRNA) refers to RNA that does not encode a protein but modulates cell 

function by controlling gene expression programs through many different mechanisms (He et 

al., 2018; Idda et al., 2018). ncRNAs are divided into two groups: housekeeping ncRNAs and 

regulatory ncRNAs. The housekeeping ncRNAs are constitutively and ubiquitously expressed and 

play crucial roles in diverse cellular activities; they include transfer RNA (tRNA), ribosomal RNA 

(rRNA) and small nuclear RNA (snRNA). The tRNA acts like an adaptor molecule during protein 

synthesis, being the carrier of amino acids and acting as the physical linkage between mRNA 

and the amino acid sequence of the protein. In its turn, rRNA is one of the structural 

components of the ribosome and is the predominant product of transcription, constituting about 

80-90% of total mass of cellular RNA. In prokaryotes there are three types of rRNA: 16S, 23S, 

and 5S, while in eukaryotes exist 4 types: 18S, 28S, 5.8S, and 5S. Lastly, snRNAs comprise a 

small group of non-polyadenylated non-coding transcripts that act in the nucleoplasm (Quintas 

et al., 2008; Matera et al., 2007). 

On the other hand, regulatory ncRNAs are expressed in specific cell types and act in response 

to developmental cues, internal conditions, and environmental stimulations. Thus, regulatory 

Features DNA RNA 

Composed by nucleotides Yes Yes 

Sugar type Deoxyribose Ribose 

Presence of 2’-OH group No Yes 

Bases A, G, C and T A, G, C and U 

Double or single stranded Usually double Usually single  

Secondary structure Double helix Many types 

Stability Stable Easily degraded 

Table 1: Features comparison between RNA and DNA (Adapted from Pierce, 2016). 
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ncRNAs include short-interfering RNA (siRNA), piwi-interacting RNA (piRNA), long non-coding 

RNA (lncRNA), circular RNA (circRNA) and micro RNA (miRNA) (Idda et al., 2018; Quintas et al., 

2008). The siRNAs (20-25 nt) are a class of double-stranded RNAs (dsRNAs) designed specifically 

to silence the expression of target genes (Gallas et al., 2013). The piRNAs (24-32 nt) are short 

single-stranded ncRNAs produced via DICER-independent mechanism. By interacting with piwi-

proteins, these RNAs regulate gene expression programs through transposon silencing, gene 

transcription, as well as mRNA turn over and translation (Ponnusamy et al., 2017). LncRNAs 

(>200 nt) consist in pivotal molecules in the regulation of gene expression, once they bind to 

the mRNA with few or no protein-coding capacity. This type of RNAs can be located within 

nuclear or cytosolic fractions, and have some structural features similar to mRNA, including 5’ 

capping, polyadenylated 3’ tails and undergo through alternative splicing to give origin to the 

final product (Pereira et al., 2016 (b)). Regarding circRNAs (50-2000 nt), that were more 

recently discovered as a special novel type of endogenous ncRNAs, they present covalently 

closed loop structures with neither 5’ or 3’ polarities, and non-polyadenylated tails, unlike 

linear RNAs (Qu et al., 2015). This specific structure allows this class to not be affected by 

exonuclease RNase R. Although circRNAs in humans are considered to belong to ncRNAs class, 

some of them are experimentally verified to encode protein products (Bagchi, 2018). 

In respect to miRNAs (20-30 nts), they are the most intensively studied type of ncRNAs due to 

their great potential for the development and application in therapeutic strategies for diseases 

that are caused by gene defections, since Human Immunodeficiency Virus (HIV) infection, to 

various types of cancer, and even Alzheimer’s disease (AD). This therapeutic effect can be 

accomplished because miRNAs, depending on the degree of complementarity, are capable of 

binding to mRNA and directly repress the expression of the protein encoded in that same mRNA. 

This regulation is made through a series of successive biological steps, at the post-

transcriptional level, involving a miRNA precursor (pre-miRNA), and consequently, a mature 

miRNA that will be incorporated into the RNA-induced silencing complex (RISC) in order to 

regulate the target mRNA. This biochemical mechanism is more detailed in Figure 3 (Pereira et 

al., 2017; Pereira et al., 2016 (b); Gomes et al., 2013; Burnett & Rossi, 2012;). 

There are two different types of therapeutic strategies based on miRNA. One approach goes 

through a miRNA replacement, where a specific miRNA is under expressed in a disease, and 

therefore, a small double-stranded RNA molecule is delivered into the cells attempting to mimic 

the activity of the absent or downregulated miRNA. On the other hand, the other strategy 

undergo miRNA targeting, where antisense oligonucleotides bind to endogenous miRNAs to 

restrain their interaction with targets (Vidigal & Ventura, 2015; Guo et al., 2011). Since this 

targeting process requires the presence of such short-conserved sequences, experimental 

evidence has shown that under or overexpression of a miRNA in cultured cells results in the 

regulation of hundreds of genes (Vidigal & Ventura, 2015). 
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Figure 3: siRNA, miRNA and piRNA silencing pathways and their essential components (Pereira et al., 
2016 (b)). 
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1.1.1.2. ncRNAs: Role and Applications 

In Table 2 are summarized the main functions of each ncRNA presented in the previous topic, 

as well as their corresponding applications in many different research areas.  

 

ncRNAs Length Function Applications References 

tRNA 76-90 nt 

Helps to incorporate 

amino acids into 

polypeptide chain 

In vitro kinetics studies of 

translation rate 

Pierce, 2016; 

Ledbetter et al. , 

2018 

rRNA Variable 

Structural and functional 

components of the 

ribosome 

Structural and functional 

studies of mechanism 

features of translation 

process 

Pierce, 2016; 

Weisser & Ban, 

2019 

snRNA ~150 nt 
Splicing and other 

functions 

Understanding many human 

diseases 

Martins et al., 

2014; Matera et 

al., 2007 

siRNA 20-25 nt 
mRNA cleavage and 

translation repression 

Therapeutic tool for many 

diseases, including cancer 

Martins et al., 

2014; 

Hajiasgharzadeh 

et al., 2018 

piRNA 24-32 nt 

Supresses the 

transcription of 

transposable elements in 

reproductive cells 

Studies of molecular 

mechanisms, associated to 

various diseases, specially 

cancer 

Öner, 2019; 

Pierce, 2016 

lncRNA > 200 nt 

Transcriptional and post-

transcriptional 

regulation of gene 

expression 

Maintain cell physiology and 

are involved in a range of 

human diseases including 

AD, cardiovascular disorders 

and cancer 

Gomes et al., 

2013; Idda et al., 

2018 

circRNA 50-2000 nt 

Regulate gene expression 

by acting as a miRNA 

sponge, RNA binding 

protein sponge and 

translational regulator 

Novel therapeutic 

approaches to treat various 

diseases from neurological 

disfunctions to cancer 

Sekar & Liang, 

2019; Zhang et 

al., 2018 

miRNA 20-30 nt 
mRNA cleavage and 

translation repression 

Already shown promising 

results for treatment of 

cancer, degenerative 

disorders and viral 

infections 

Martins et al., 

2014; Saliminejad 

et al., 2018 

Table 2: Different types of ncRNAs with their corresponding lengths and main applications in various 

investigation areas. 



Ionic liquids for the purification and stabilization of nucleic acids 

8 

Besides the applications referred above, it must be noted that siRNA, lncRNA, piRNA, circRNA 

and miRNA are believed to be potential biomarkers for various diseases, thus developing an 

important role in the diagnosis and prognosis of these diseases (Fattahi et al., 2019; Öner, 2019; 

Sekar & Liang, 2019; Hajiasgharzadeh et al., 2018; Saliminejad et al., 2018). By this, we can 

infer the great importance of preparing these biomolecules in order to be applied in a large 

range of studies. 

1.2. Production of RNA 

RNA is gaining more and more relevance as an increasing number of functions, including 

regulatory and enzymatic functions, are being discovered. In order to understand RNA functions 

and perform biochemical, biophysical and genetic studies, sample preparation is required, and 

most techniques are still in development (Baronti et al., 2018; Beckert & Masquida, 2011). 

Several available techniques are adequate for molecular biology procedures, but if it is 

intended the preparation of RNAs for therapeutic purposes, other challenges must be overcome, 

and the procedures must be improved in accordance with the product requirements. Most 

miRNAs used in the development of new therapeutic strategies have been obtained by chemical 

synthesis, enzymatic synthesis, or recombinant production (Pereira et al., 2017 (a)). 

Chemical synthesis is the method of choice to produce oligonucleotides shorter than 10 

nucleotides, being the upper size limit of approximately 80 nucleotides. The synthesis reaction 

proceeds from the 3’ end to the 5’ end, and comprises four steps, that include 2’-OH and 5’-

OH protecting groups of phosphoramidite monomers and successive reactions of deblocking-

coupling-capping-oxidation. The whole cycle can be repeated until the desired length of the 

oligonucleotide polymer is achieved. Therefore, it is a fast method and possible to modify, 

however, it requires expensive equipment, it has a limited chain length, and modified 

phosphoramidites are very expensive (Baronti et al., 2018; Hogrefe et al., 2013; Caruthers et 

al., 2011). 

In the other hand, enzymatic synthesis, or in vitro transcription, allows template-directed 

synthesis of RNA molecules with any sequence, since short oligonucleotides to those of several 

kilobases. An RNA molecule is synthesized by in vitro transcription using the promotor 

components of bacteriophage systems, being the most frequently used the T7 system that 

requires only Mg2+ as a co-factor to perform RNA synthesis. Although this method can produce 

RNA molecules on a microgram scale, large-scale production is more difficult by the necessity 

of high quantities of RNA polymerases, which are very expensive. Besides that, the method 

often results in low yields and multiple enzymatic and purification steps are required in order 

to remove impurities associated to the process. In fact, the presence of some impurities can 

lead to non-targeted gene silencing, which unable these produced RNAs to be applied onto 

preclinical or clinical studies (Baronti et al., 2018; Pereira et al., 2017 (a); Beckert & Masquida, 

2011). 

However, considering that there is a need for rapidly produce promising biopharmaceuticals, 

and even achieve sustainable production procedures at large scale, recombinant production 
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emerges as the more promising method for this purpose. Recombinant RNA techniques using in 

vivo agents are more capable to retain the structure, function and safety properties of natural 

RNAs. The principle of this production strategy consists in the introduction of the target RNA 

coding sequence into a vector, and the resulting plasmid is inserted into the host cells, usually 

Escherichia coli (E. coli). Posteriorly, the cell machinery will produce the target RNA that will 

be accumulated in the cytosol. The recovery of RNA depends on the lysis of these cells, and 

finally the RNA of interest must be purified mainly by chromatographic techniques. Thus, 

recombinant approaches offer a cheap and simple alternative to in vitro synthesis, being 

capable of achieving high yields in a shorter period of time (Baronti et al., 2018; Pereira et al., 

2017 (a) ; Pereira et al., 2017 (b); Ponchon & Dardel, 2011). 

The possibility of using different expression hosts has been considered by Pereira and co-

workers, when using Rhodovulum sulfidophilum as an expression system. In that work, it was 

shown that, even though E. coli production could lead to higher yield within a shorter period 

of time, the production in R. sulfidophilum could be advantageous because of its ability to 

secrete the RNA to the extracellular medium, which greatly simplifies the downstream 

purification and limits protein contamination (Pereira et al., 2016 (a)). 

1.3. Chromatography for RNA purification 

Usually, RNA molecules are obtained from complex mixtures, being of great importance the 

establishment of a robust purification process in order to obtain the target molecule with total 

integrity, stability, and purity. In this sense, chromatography techniques arise as the method 

of choice for the purification of biomolecules, since they are capable of isolating different 

products with high intrinsic value (Scott, 2003). 

Chromatography consists in a very robust, efficient and versatile technique, in which with only 

a single step, it can be possible to separate a mixture into its individual components and 

simultaneously, have a quantitative characterization of each component. This differential 

separation of the mixture is achieved by the co-existence of two main phases, the stationary 

phase and the mobile phase of the system. The stationary phase is always composed by a solid 

phase, or solid support with ligands or a layer of a liquid adsorbed on its surface, while the 

mobile phase is always a liquid or a gaseous component (Coskun, 2016; Scott, 2003). The 

constituents of the mobile phase that interact more with the stationary phase are more 

retained in the system than those that are distributed selectively in the mobile phase. As a 

result, solutes are eluted from the system in the increasing order of affinity to the column, this 

is, the more interacting solutes will be eluted at the end, while the least interacting will be 

eluted at the beginning of the run (Grob, 2004). The elution process can be controlled by 

different conditions, including ionic strength, temperature, pH, various additives such as 

detergents, reducing agents and metals. Therefore, by appropriately adjusting the buffer 

composition, the conditions of binding and elution of the target biomolecule can be optimized 

(Janson, 2011). 
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As a matter of fact, a chromatographic process occurs in five main stages: 1) An equilibration 

of the two phases, adjusting de column to the binding conditions; 2) Sample injection; 3) A 

washing or elution of non-binding molecules; 4) Elution of the target biomolecule by altering 

the buffers composition; 5) A regeneration/re-equilibration step, in which all the remaining 

bound material and impurities are eluted, and de column is ready for another chromatographic 

process. An ideal matrix should be chemically and physically stable so that it can be resistant 

to extreme conditions usually used in regeneration and sterilization steps between 

chromatographic assays. It should also be rigid enough to allow high linear flow rates (5 cm/min 

or more), and the matrix substance should allow the formation of gels with a wide range of 

controllable porosities (Janson, 2011). 

1.3.1. Size exclusion chromatography (SEC) 

Size exclusion chromatography (SEC) or gel filtration consists of a separation technique that 

discriminates different compounds by their size or molecular weight. So, in the mobile phase, 

larger molecules, with higher molecular weight, flow through the column without being 

retained because they do not fit into the pores of the stationary phase. Therefore, these bigger 

compounds are the first ones to be eluted. Meanwhile, smaller particles that can fit into de 

smaller pores, reside longer in the stationary phase, being eluted later. Thus, in SEC, 

components of the mobile phase elute by decreasing order of their size (Coskun, 2016; Janson, 

2011; Grob, 2004). 

SEC is a separation process often chosen when a sample is already clarified, having the purpose 

of evaluating the presence of high-order impurities such as aggregates or degradation products 

(Shimoyama et al., 2017; Sousa et al., 2008). Regarding nucleic acids purification, SEC can be 

applied in a mixture containing genomic DNA (gDNA) or plasmid DNA (pDNA) that elute firstly 

in the run due to their high molecular weight, and other impurities like RNA, proteins and 

endotoxins, with lower molecular weights that elute later. It should be noted that this effective 

separation between DNA and RNA can only be accomplished by choosing an appropriate support. 

As a matter of fact, inherent disadvantages are associated with this type of chromatography, 

namely low resolution and the need for higher dilutions of the sample. Thus, SEC is mainly seen 

as a final step in the downstream processing of nucleic acids (Sousa et al., 2009; Fani Sousa et 

al., 2008). 

In a recent study, a novel minicircle DNA (mcDNA) purification method was established by 

Almeida and co-workers. In here, it was possible to successfully isolate mcDNA from RNA, 

parental plasmid and miniplasmid by size exclusion chromatography with a Sephacryl S-1000 SF 

matrix, achieving 66.7% of mcDNA recovery with 98.1% of purity (Almeida et al., 2019). 
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1.3.2. Hydrophobic interaction chromatography (HIC) 

Hydrophobic interaction chromatography (HIC) is a well-established bioseparation technique at 

the laboratory and industrial scales. HIC explores hydrophobic interactions between 

immobilized hydrophobic ligands and non-polar regions of the biomolecules surface, having few 

solvent requirements. In this method, the target biomolecule retention occurs at relatively high 

salt concentrations (usually ammonium sulfate), due to a displacement of ordered water 

molecules around the solute leading to an increase of the entropy. Then, desorption of bound 

solutes is achieved by performing a stepwise or linear gradient elution with buffer containing 

low salt concentration, thus weakening the hydrophobic interaction occurring between the 

biomolecules and chromatographic ligands. It is one of the simplest chromatographic separation 

methods in terms of operation mode, and although the interaction mechanism is complex, a 

minimal structural damage occurs to the biomolecule, preserving its biological activity 

(Guerrero-Germán et al., 2011; Janson, 2011; Freitas et al.,2009; Sousa et al., 2009; Sousa et 

al., 2008). 

Nevertheless, the need for high concentrations of salt in the binding step constitutes a major 

disadvantage, regarding the industrial application of this method, because the use of salt is 

directly associated with higher costs and negative environmental impact (Sousa et al., 2009). 

In what concerns to nucleic acids purification, HIC has been applied more properly on 

preparative purification of pDNA. In this case, it takes place a negative chromatography, in 

which the aim is to bind impurities (RNA, gDNA, oligonucleotides, denatured pDNA) instead of 

binding the target biomolecule. Since the majority of impurities possess more hydrophobic 

character than the target molecule, they bind easily to the column in the presence of salt, 

while the double-stranded pDNA elutes in the first place. The single-stranded hydrophobic 

impurities can then be eluted by decreasing the ionic strength of the eluent (Sousa et al., 2009; 

Diogo et al., 2003).  

Diogo and co-workers studied the capacity of the support Sepharose CL-6B treated with 1,4-

butanediol diglycidyl ether to separate nucleic acids by exploring hydrophobic interactions. It 

was observed that, when a nucleic acids-containig mixture obtained from E. coli cells was 

loaded onto the column, it was possible to separate single stranded from double stranded 

nucleic acids. RNA and gDNA were more retained in the column, due to interactions occurring 

with the hydrophobic exposed bases of these biomolecules, while pDNA was eluted in the 

beginning since nitrogenous bases are less exposed (Diogo et al., 2002). These results allow to 

infer that HIC supports can also be used for RNA purification, exploiting its ability to bind and 

taking advantage from the different interaction strengths between ligands and other retained 

species.  
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1.3.3. Ion-exchange chromatography (IEC) 

In ion-exchange chromatography (IEC), the separation is based on the reversible electrostatic 

interaction between a charged solute and an oppositely charged chromatographic column. The 

strength of the interaction depends upon the overall net charge of the analyte, and the 

competition from other ions for the charged groups of the ion exchanger (Janson, 2011). This 

separation technique can be performed in two distinct ways. When the matrix is positively 

charged, the solutes that are negatively charged are going to be adsorbed onto the column, 

being this designated as anion-exchange chromatography. On the other hand, when the matrix 

is negatively charged, the solutes that are positively charged are going to be adsorbed, being 

this the cation-exchange chromatography (Coskun, 2016). When oligonucleotides are meant to 

be separated, it is anion-exchange chromatography that is used, and elution is achieved through 

competition of the binding site with an increasing gradient of anions in the mobile phase, and 

so nucleic acids elute in the order of an increasing overall net charge (McGinnis et al., 2012; 

Sousa et al., 2008). Nucleic acids, which are polyanionic molecules due to the presence of 

phosphate groups on their backbone structures, are conveniently captured on a support 

functionalized with positively charged groups. IEC offers many different advantages, such as a 

rapid separation and analysis, does not need the use of organic solvents, it is possible to perform 

sanitization with sodium hydroxide and there are many commercial stationary phases available 

in the market. However, there are some drawbacks, because in some cases RNA can co-elute 

with pDNA, and has a relatively low resolution between pDNA and endotoxins (Fani Sousa et 

al., 2008; Eon-duval & Burke, 2004). Easton and co-workers have described a fast method for 

RNA oligonucleotides purification using anion-exchange liquid chromatography with suitable 

quality for structural and biochemical studies. By using a diethylaminoethyl sepharose support 

it was possible to separate the desired RNA product from other RNA species like T7 RNA 

polymerase, small abortive transcripts and the plasmid DNA template (Easton et al., 2010). 

1.3.4. Affinity chromatography (AC) 

Affinity chromatography (AC) is the most powerful and versatile type of chromatography, even 

when the target biomolecule is a minor component of a complex mixture. The separation of 

sample components and the recognition of the target biomolecule is based in specific 

interactions, as the ones found for example between antigen-antibody, enzyme-substrate or 

nucleic acid-protein. So, these different types of interactions that naturally occur in many 

biological systems are extrapolated to AC, by immobilizing one of the members of the pair in 

the stationary phase (ligand), while the other member passes through the column in the mobile 

phase, being adsorbed in the solid phase (Janson, 2011). Nevertheless, the biological nature of 

the ligands can represent a limitation to this purification technique, since these ligands tend 

to be fragile and present low binding capacities. Hence, there is a growing interest on the 

design of synthetic ligands that would mimic the biologic ones, presenting the same selectivity, 

as well as high capacity, durability, robustness, and reproducibility (Pereira et al., 2016 (b); 

Sousa et al., 2008). 
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The interactions occurring in AC can be of many different natures, like electrostatic and/or 

hydrophobic interactions, hydrogen bonds, van der Waals forces, dipole-dipole forces, and π-π 

interactions. The selectivity results from the conjugation of multiple interactions. However, 

some interactions can be preferentially established depending on the chromatographic 

conditions used, namely in the mobile phase, which confers high selectivity and resolution to 

this technique. Hence, the elution step can be performed in two distinct ways: specifically 

(biospecific elution), where a competitive agent is applied in the mobile phase that can either 

bind to the retained target or to the immobilized ligand, depending on their characteristics, or 

non-specifically, where chemical changes are made in the mobile phase by altering ionic 

strength, type of salt, pH or polarity depending on the matrix and the chemical features of the 

biomolecule. It should be noted that the binding strength between ligand and target molecule 

should not be too weak, or there will be no adsorption, nor be too strong, in order to be possible 

to perform elution in moderate conditions. Thus, it is crucial that the complex ligand-

biomolecule forms a reversible bonding in order to preserve the good quality and biological 

activity of the target biomolecule (Pereira et al., 2016 (b); Sousa et al., 2009; Janson, 2011). 

Due to the high nucleotide bases exposure, RNA becomes very accessible for the establishment 

of many interactions with the ligand chosen for the separation. Therefore, different types of 

AC have already been tested and proven to succeed in the purification of ncRNAs, taking 

advantage of properties such as its size, charge and hydrophobicity, namely boronate AC, RNA 

affinity tags and amino acid-based AC, being their respective advantages and disadvantages 

discriminated in Table 3 (Wei et al., 2014; Pereira et al., 2014; Flores-jasso et al., 2013; 

Srivastava et al., 2012). It should be noted that our research group developed a successful 

purification method of pre-miR29 from other small RNA molecules through the use of an 

Arginine-Sepharose 4B gel, with high purity levels and structural integrity (Pereira et al., 2014). 
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Methods Target RNA Advantages Disadvantages 

Boronate 

Affinity 

Chromatography 

• tRNAs 

✓ Isolation from 

complex cell 

extracts 

✓ No pre-treatment of 

the sample is needed 

✓ High purity and 

quality 

✓ Efficient elimination 

of gDNA 

✓ Very fast process 

ｘ Sometimes, the 

column must be 

washed with 6M 

urea prior to 

washing with the 

regeneration 

buffer 

RNA Affinity 

Tags 

• shRNA 

• miRNA 

• miRNA-mRNA 

complex RNA 

oligonucleotides 

✓ Reliable, fast and 

robust method 

✓ Broadly applicable to 

any RNA of interest 

✓ High recovery and 

purity 

ｘ Chemical 

modifications 

during the process 

can lead to 

structural 

perturbations 

ｘ Contamination of 

the target RNA 

with tag can occur 

ｘ Use of proteases 

requires additional 

purification steps 

Amino Acid-

based Affinity 

Chromatography 

• pre-miRNA 

• rRNAs 

• tRNAs 

• total RNA 

✓ Isolation from 

complex cell extracts 

✓ Robust method using 

natural small ligands 

✓ High purity and 

quality of purified 

RNA 

✓ High reproducibility 

✓ Efficient elimination 

of endotoxin, 

proteins, gDNA and 

single/double 

stranded RNAs 

✓ Occurs under non-

denaturing conditions 

ｘ High salt 

concentrations can 

be required for the 

elution of the 

target RNAs 

ｘ Low recovery yields 

ｘ Lower durability of 

supports 

Table 3: Affinity Chromatography in the bioseparation of ncRNAs (Adapted from Pereira et al., 2016). 



Ionic liquids for the purification and stabilization of nucleic acids 

15 

1.4. Ionic Liquids: Brief History 

In the last few years, ionic liquids (ILs) have attracted the interest of many researchers, due to 

their versatility and many different applications in several areas. They can be used on almost 

all kinds of chemical transformations, and they present some exceptional properties, which will 

be discussed below (Kuchenbuch & Giernoth, 2015).  

The first IL was discovered by Paul Walden in 1914 when he was searching for molten salts that 

were liquid at temperatures at which he could use his equipment without special adaptations. 

Walden’s interest in these molten salts was the relation of their molecular size and their 

conductivity, however, and unfortunately, the potential of this breakthrough went unnoticed 

for a long time. Almost 40 years later, in 1951, another group recognized the potential benefits 

of lower melting points of the molten salts (Welton, 2018). Nowadays, ILs are extensively 

employed in various fields, like, organic, inorganic, physical, and biological chemistry (Shukla 

et al., 2018). 

1.4.1. General Properties 

ILs are pure salts that, in contrast with common electrolytes, are liquid at room temperature, 

because their melting point is below 100 ºC. They are constituted by a large and unsymmetrical 

organic cation and an organic or inorganic anion. This fact contributes to their enormous 

versatility since there are numerous possible cation and anion combinations, with the possibility 

of designing task-specific ILs, and because of that, they are designated as “Designer Solvents” 

(Ventura et al., 2017; Freire et al., 2012). Due to their ionic character, ILs present some 

outstanding features, including low volatility, non-flammability, variable viscosity, high ionic 

conductivity, wide electrochemical potential window, high solvation ability, as well as 

excellent chemical, thermal and electrochemical stability (Sintra et al., 2017; Ventura et al., 

2017; Freire et al., 2012). The first two characteristics contribute to the classification of ILs as 

“Green Solvents”, and as a result, these fluids have been viewed as good alternatives to replace 

dangerous and volatile organic solvents (VOSs) recurrently used in a wide range of processes. 

Theoretically, this replacement would eliminate these solvents’ losses to the atmosphere, and 

consequently reduce the harmful effects to the environment and human resources, making it 

possible to develop “greener” processes (Taha et al., 2017; Freire et al., 2012). ILs are also 

usually recognized by their excellent solvation capacity for a wide range of compounds, as well 

as a good stabilizing media for proteins, nucleic acids, and others (Ventura et al., 2017). In 

Figure 4 are represented the structures of commonly used IL cations and anions and in Table 4 

their general advantages and some disadvantages. 
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However, the fact that ILs have a negligible vapor pressure is not enough to assure that these 

fluids can be considered as environmentally harmless solvents, making it imperative to 

determine their environmental, health and safety impact (Sintra et al., 2017; Petkovic et al., 

2011). The ionic character of ILs makes most of them soluble in water, even the most 

hydrophobic ILs, which can lead to an environmental problem if they happen to be toxic to the 

Advantages Disadvantages 

Number of 

imaginable 

solvents 

High number, up until 1018 

possible combinations 
Cost 

Commonly 5-20 times more 

expensive than molecular 

solvents 

Tunability 
Tunable by varying functional 

groups or alkyl chain length 

(“Designer Solvents”) 

Viscosity 
Often very high viscosity of 

pure ILs 

Vapour 

pressure 

Negligible vapour pressure at 

normal conditions, with almost 

no emission to the atmosphere 

Vapour 

pressure 

Low vapour pressure limits 

distillative solvent separation 

Flammability Usually non-flammable Synthesis 
In many cases costly multi-

step synthesis  

Detachability 
Vaporable compounds can easily 

be separated 
Sustainability 

Green image, but often toxic, 

non-biodegradable and non-

sustainable in their way of 

synthesis 

Stability 
Thermo and electrochemically 

stable in a wide potential range 
Corrosiveness 

Often significant to very high 

corrosiveness 

Figure 4: Chemical structure of some IL cations and anions described in literature (Adapted from 

Soares et al., 2016). 

 Table 4: General advantages and disadvantages of ILs (Adapted from Kunz & Häckl, 2016). 
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aquatic environment and organisms living in it. The main challenges in using ILs for 

manipulation of biomolecules are the significant uncertainty of their toxicity, both eco and 

cytotoxicity, biodegradability and the eventual effect of the ILs on biomolecules (Sivapragasam 

et al., 2016). Due to that, researchers are more concerned about their potential impact on the 

aquatic and terrestrial environments, and since ILs are constituted by an anion and a cation, 

those two parts must be considered in this issues (Amde et al., 2015; Kudłak, 2015; Jordan & 

Gathergood, 2015). From the data hitherto reported, several studies have been done, in various 

cell types, like bacteria, fungi, algae, mammalian cell lines, vertebrates, and others (Sintra et 

al., 2017). It was found that the toxic effects of ILs vary considerably according to their type, 

test conditions and morphology of the model organisms (Amde et al., 2015). For example, it is 

well established that cation toxicity highly depends on the alkyl side chains length, due to 

increasing hydrophobicity and consequently, lipophilicity. This is, ILs with long alkyl chains in 

the cation, are significantly more toxic than ILs with shorter chain versions (Mikkola et al., 

2015). In addition to the strong side-chain effect, the chemical structure of the cationic group 

also has a significant effect on toxicity, this is, imidazolium, pyridinium and quinolinium groups 

display stronger toxicological effects even when they have shorter side chains linked 

(Sivapragasam et al., 2016). Regarding the effect of the anion part, studies have shown that 

this counterpart presents less toxicity effect than changing the alkyl chain substituent in the 

cation. However anions impact in toxicity should not be underestimated (Kudłak, 2015; Pham 

et al., 2010). Hence, it is of great importance to perform a complete ecotoxicological 

characterization before assuming ILs as environmentally compatible, as well as cytotoxic assays  

(Santos et al., 2015). 

There is also an agreement on the fact that functionalized cations tend to form less toxic ILs 

when compared with non-functionalized counterparts since they are made more hydrophilic, 

and that the cation is the main driver of toxicity (Santos et al., 2015). So, it was observed that 

incorporation of functional polar groups like ether, hydroxyl and nitrile groups to the side chains 

reduces toxicity when compared to those with “simple” alkyl side chains, and additionally 

increases the biodegradation efficiency to some extent (Pham et al., 2010). Considering their 

“designer solvent” character becomes possible to tailor ILs by combinaing suitable funtional 

groups on their structure, which will lead to a more environmental friendly compound, thus 

ensuring its safe application in biotechnological processes.  

1.4.2. Applications of Ionic Liquids 

It should be noted that ILs are not only limited to the role of solvents, on the contrary, due to 

their enormous versatility and beneficial features, in the last two decades, they could be 

extended to many different fields of industry like chemistry, electrochemistry, 

nanotechnology, medicine, material production, power engineering, biotechnology, among 

others (Kudłak, 2015). In the next topics we will focus mainly in the application of ILs in 

stabilization, extraction, and purification of different types of biomolecules.  
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1.4.2.1. Biomolecules Stabilization 

ILs have recently been studied as versatile solvents and additives in biotechnology field, 

particularly as stabilizers of proteins, enzymes and nucleic acids. In this industry it is of extreme 

importance the formulation of stable biopharmaceuticals, therapeutic proteins and vaccines, 

which have revolutionized the treatment of various diseases, as mentioned above. Thus, 

becomes very important to assure the preservation of these therapeutic biomolecules in long-

term storage, maintaining their integrity and biological function (Clark et al., 2018). Proteins 

storage in water limits their application in many fields since their thermal stability decreases. 

Most of the preservation methods used to overcome this problem, like chemical modification, 

immobilization and stabilizers addition do not prevent their irreversible thermal denaturation. 

By this, numerous studies have shown that some ILs are efficient in maintaining or even 

increasing proteins solubility and stability. Once proteins solubilization in ILs is favoured, it is 

less likely to occur protein aggregation, consequently improving their stability and activity 

(Sivapragasam et al., 2016). Taha and co-workers have discovered that stability of bovine serum 

albumin (BSA) in aqueous solutions of cholinium-based Good’s buffers ILs (GB-ILs) was increased 

when compared to other aqueous solutions (Taha et al., 2015).  

Regarding DNA, it also has been proven many advantages of using ILs in their storage, including 

enhanced solubility and excellent stability. Nucleic acids are highly susceptible to nuclease 

cleavage, mainly RNA since it is less stable, however most stabilization studies with ILs have 

been more focused on DNA (Pedro et al., 2018; Clark et al., 2018). For example, in a study, 

25% (w/w) of DNA was solubilized in 2-hydroxyethylammonium formate, which is an ammonium-

based IL, and a long-term chemical and structural stability was verified upon storage under 

ambient conditions for at least one year. This was indicative of a great nucleic acid preservation 

medium (Singh et al., 2017). Another study performed by Tateishi-Karimata and co-workers, 

proved that solutions with high concentrations of choline dihydrogen phosphate induced an 

increased stability of G-quadruplex and i-motif DNA (Karimata et al., 2015). A more recent 

study with RNA, performed by our research group, has proven that some GB-ILs like [Ch][HEPES] 

and [Ch][MES] would also increase this biomolecule thermal stability, preserving its structural 

characteristics. Besides this, these specific ILs also shown no cytotoxicity to human cell lines, 

which is extremely relevant when envisaging the use of RNA as biopharmaceutical (Pedro et 

al., 2018). 

1.4.2.2. Extraction of Biomolecules by Aqueous Biphasic Systems 

The ability of ILs to create biphasic splitting makes them promising candidates for Aqueous 

Biphasic Systems (ABS). ABS are a softer and greener alternative to traditional liquid-liquid 

extraction techniques, which generally make use of hazardous VOSs and aim for the efficient 

separation of biomolecules.  

ABS consist of two immiscible aqueous rich phases based on combinations of polymer-polymer 

(for example polyethylene glycol and dextran), polymer-salt, or salt-salt. Both solutes are 

water soluble, however, above a given concentration, they separate into two coexisting phases: 
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one of the aqueous phases is rich in one solute, whereas the other phase is enriched with the 

other polymer/salt. These systems have been recognized as an economical method, exhibiting 

low-energy consumption, high performance, high biocompatibility and suitability for scale-up. 

Furthermore, IL-based ABS have many advantages when compared to conventional liquid-liquid 

extractions, such as their low viscosity, which leads to quick phase separation, and the ability 

to tune their polarities and affinities (Shukla et al., 2018; Taha et al., 2017; Freire et al., 

2012). This last advantage is one of the most interesting, which can be accomplished by proper 

manipulation of the cation/anion design and their combinations. Moreover, this aspect is 

usually viewed as a tremendous limitation to polymer-based ABS, given that the polarity range 

is limited, making the application of ILs even more advantageous (Freire et al., 2012). ABS are 

used for the extraction of various products like proteins, enzymes, antibodies, and nucleic 

acids, some of which are described in Table 5.  

 

Despite their advantages, these systems are not capable of good selectivity, comparatively to 

chromatography, that can achieve great selectivity and better purity levels, which are required 

for biopharmaceuticals. Thus, extraction techniques are mainly used as a capture, clarification 

or pre-purification procedure, that can be combined with a chromatographic step to complete 

the purification process. 

 

 

Product type Example Separation process Reference 

Protein BSA 

Extraction of BSA with ABS formed with 

polypropylene glycol and GB-ILs (almost 

100% extraction efficiency) 

Taha et al., 

2015 

Enzyme Extremozymes 

Enzyme extraction with ABS formed by 

ammonium sulphate salt and IL-rich phase 

(96% extraction efficiency) 

Gutiérrez-

Arnillas et al., 

2015 

Antibodies IgG 

Extraction of IgG antibody with 

polypropylene glycol and biobased ILs 

(100% extraction recovery) 

Mondal et al., 

2016 

Nucleic acids RNA 

Extraction of RNA with ABS formed by 

amino-acid-based ILs (AA-ILs) and 

polypropylene glycol  

Quental et al., 

2019 

Table 5: Extraction of various interest compounds using IL-based ABS.  
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1.4.2.3.  ILs in chromatography 

The purity level of the target compounds is a crucial parameter to be considered when 

attempting the development of novel purification and separation processes (Ventura et al., 

2017). The usage of bulk ILs in the liquid state has some drawbacks, such as high cost derived 

from large quantities required, low diffusion coefficients and sometimes inherent difficulties 

in product purification and solvent recycling. On the other hand, the concept of IL 

immobilization onto solid supports can overcome some of these disadvantages, since fewer IL 

quantities are needed, their unique physicochemical properties can be transferred to substrates 

(mainly their “designer solvent” capacity) and can be achieved higher recovery yield and purity 

levels (Xin & Hao, 2014). During the last two decades, ILs have been used in liquid 

chromatography in three distinct ways: as additives of the mobile phase, as stationary phase 

itself or as ligands of the stationary phase (Wang et al., 2006; Zhang et al., 2004).  

1.4.2.3.1. ILs as mobile phase additives 

Several studies demonstrated that the use of ILs in separation techniques, namely in high-

performance liquid chromatography (HPLC) as additives in mobile phases, can contribute to a 

decrease in the amount of organic solvents used, as well as to a decrease in the energy 

consumption by increasing the speed of analysis without compromising the analytical 

performance or even improving it (Soares et al., 2016). Since ILs work as low concentration 

additives they were found to be more useful than organic modifiers in HPLC. So, the primary 

aim of adding ILs to the mobile phases is to shield the acidic silica surface (common support for 

HPLC) in order to obtain better peak shapes and reduce peaks broadening. The retention 

mechanism of ILs as additives is complex, once both the cation and anion can be adsorbed on 

the stationary phase, creating a bilayer. This justifies the alteration in the retention behaviour 

and peak shape (García-alvarez-coque et al., 2015; Sun & Armstrong, 2010). However, 

implementation of ILs in mobile phases requires also an extensive knowledge of their potential 

hazardous environmental impact, and only being much less harmful than organic solvents would 

justify their replacement.  

1.4.2.3.2. ILs as stationary phase 

ILs-based stationary phases can be synthesised using ILs that display mechanical and physical 

properties of a polymer. Poly(ionic liquids) (PILs) consist in many IL species connected through 

a polymeric backbone that forms a macromolecular framework, which are being explored as 

novel separation phases in gas separation membranes, gas chromatography and solid-phase 

microextraction. In this last one, it is possible to extract specific components from complex 

systems, such as gas, metal ions and even pharmaceuticals inorganic pollutants. In a very recent 

study, PILs have been used as separation matrices for purifying M13 phages, that are a possible 

antimicrobial agent for treatment of bacterial infections. This method enabled the usage of 

PILs as anion exchanger as a fast and simple method for recovering phage M13 with over 70% 

recovery. However, it should be noted, that PILs have some limitations due to structural 



Ionic liquids for the purification and stabilization of nucleic acids 

21 

instability under certain circumstances and there is still a need of understanding their physical 

properties (Jacinto et al., 2018; Tomé & Marrucho, 2016; Yuan et al., 2013).  

1.4.2.3.3. ILs as ligands of the stationary phase 

Usually, ILs are immobilized on the surface of solid supports by covalent bonding of their cations 

or anions (Shi et al., 2015). By this, there are five distinct ways to perform the IL immobilization 

onto the supports, as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

In Figure 5, A, IL cation is covalently attached to the solid support while the anion acts as a 

free counterion. This case is relatively easy to prepare and has the advantage that free anions 

can be easily replaced, making regenerations processes simpler, or even exchanged, enabling 

slightly modifications by the conversion of various anions (Shi et al., 2015). Spherical porous 

silica is often used as a stationary phase matrix for HPLC, in which an imidazolium ring (most 

commonly used IL for covalent modification) is immobilized with a spacer arm. This type of 

stationary phase has already proven to be efficient in the separation of alkaloids, inorganic 

anions and cations (Qiu et al., 2009), xylose and glucose (Bi et al., 2010). Besides that, this 

solid phase shows capacity of exploring different types of interactions, demonstrating 

hydrophobic and ionic properties, and hence, multi-mode separation. Usually, the cation is 

anchored on the silica by a small spacer arm, and different lengths of these spacers may 

influence selectivity of the support by alteration of hydrophilicity (Shi et al., 2015; Zhang et 

al., 2014; Qiu et al., 2012). Moreover, in a study performed by our research group, where a 

macroporous support was functionalized with an IL (1-methylimmidazole), it was also proven 

the establishment of different types of interactions between the ILs and biomolecules like gDNA 

and RNA, enabling the effective separation of these two species. Several aspects point to the 

potential of ILs as truly multimodal ligands, considering their ability to interact with analytes 

through different mechanisms, including hydrophobic, electrostatic, hydrogen bonding, π-π, 

and dipole-dipole interactions, owning to their unique structure that comprises both 

hydrophobic and ionic moieties.  

Figure 5: Illustration of distinct ways of IL immobilization onto a support. In A and B only the cation or 

anion is immobilized on the supports, while the counterions are free. In C and D are immobilized 

zwitterionic ILs, where the cation and anion are linked through a covalent bond. In E the cation and the 

anion of the IL are co-immobilized on the support (Adapted from Shi et al., 2015). 

A B C D E 
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On the other hand, anions are rarely immobilized on the supports and the cations are free 

(Figure 5, B), since in a particular study by Qiu and co-workers, demonstrated that in this case 

of stationary phases the counterions where easily exchanged by the ionic species present on 

the mobile phases during usage (Qiu et al., 2013). In Figure 5, C and D are the examples of 

zwitterionic ILs which can avoid the previous issues, once the cation and anion are covalently 

bond to each other, varying between which one is immobilized onto the solid support. Qiao and 

co-workers developed a zwitterionic stationary phase with a positively charged imidazole ring 

and a negatively charged sulfonate group, which exhibited good selectivity and favourable 

retention for a wide range of polar solutes, including nucleosides and nucleic acid based (Qiao 

et al., 2013). Lastly, in Figure 5, E, ILs are co-immobilized on the solid supports which can 

improve the stability of these ligands during the use of different types of buffers in mobile 

phase, influencing selectivity by the distribution of polar groups (Qiu et al., 2014; Zhang et al., 

2014).  

1.4.2.3.4. ILs to modify other chromatographic supports 

New ligands screening is clearly recommended to be performed with cheaper supports, like 

silica support. However, this type of support is more suitable for analytical chromatography 

(HPLC) rather than preparative chromatography. In this sense, it is very important to transpose 

these ILs-based ligands to other types of chromatographic supports that can display better 

separation and purification performance and binding capacity. Examples of novel and promising 

supports in this area are sepharose, bigger spherical silica particles, macroporous matrices and 

even monoliths. These types of supports can stand higher pressure, flow rates, better 

robustness and packing characteristics. Together with the advantages of ILs, like the numerous 

combinations between cation and anion, these supports functionalized with ILs can 

demonstrate great potential in what concerns to good selectivity for the analyte, as well as a 

good chromatographic performance and capacity (Liu et al., 2015; Shi et al., 2015).   
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CHAPTER 2 – Global Aims
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Purification of biomolecules through chromatographic processes is a field highly established but 

also in continuous need of evolution, particularly when considering challenging molecules as 

biopharmaceuticals. Actually, with this technique it is possible to obtain these valuable 

therapeutic molecules, highly pure, active, and presenting suitable quality to be used for the 

treatment of numerous diseases. Nucleic acids have been discovered through the years that 

can regulate cell function and pathological pathways, therefore working as a great tool for 

treatment of many diseases caused by gene defects, like cancer, Parkinson’s Disease, 

Alzheimer’s Disease, among others. 

Ionic liquids (ILs) have aroused interest in this area as they can be involved in the development 

of new alternative purification strategies which turn biopharmaceuticals obtention more viable. 

ILs display unique physicochemical features that make them extremely versatile for application 

such in recovery or purification processes. Beyond numerous cation/anion combinations that 

can be explored, they also present less negative environmental impact than other organic 

solvents usually used in biotechnological processes. 

In this sense, the main aim of this work is to test the capacity of ILs immobilized onto a silica 

support, to bind and reversibly elute nucleic acids, and consequently display some selectivity 

between different nucleic acids species. Through ILs structure it is expected that they can both 

display electrostatic and hydrophobic interactions, since the immobilized cation has a charged 

and a hydrophobic moiety. By this, these will be the two conditions explored for the screening 

chromatographic assays. Additional stabilization and cytotoxicity assays will be performed with 

ILs analogues to the ones used in the immobilization process, in order to explore their safety. 

In a general way, this work aims for the development of a new and eco-friendly purification 

process that allows the preparation of purified and intact nucleic acid fractions in order to be 

suitable for use as biopharmaceuticals.  
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CHAPTER 3 – Materials and Methods
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3.1. Materials 

For the activation of silica, it was used Silica gel spherical with a particle size of 75-200 µm 

from Supelco and hydrochloric acid (purity 37%) from Sigma-Aldrich (St. Louis, Missouri, EUA). 

For the functionalization of the SIL materials, the reagents used were toluene (purity 99.98%), 

ethanol (purity 99.99%) both from Fisher Scientific, methanol (purity < 98%) and triethylamine 

(HPLC grade) from Fisher Chemical (Waltham, EUA), (3-chloropropyl)trimethoxysilane (purity 

98%), 1-methylimidazole (purity 99%), tributylamine (purity 99%) all provided by Acros Organics 

(Geel, Belgium), trioctylamine (purity < 98%) from Fluka (United Kingdom) and N,N-

dimethylbutylamine (purity 99%) from Aldrich (St. Louis, Missouri, EUA). For the cytotoxicity 

assays the ILs used were tetramethylammonium chloride (purity 97%), tetrabutylammonium 

chloride (purity 97%) from Sigma-Aldrich (St. Louis, Missouri, EUA) and tetraethylammonium 

chloride (purity 98%) and tetrapropylammonium chloride (purity 98%) from Thermo Fisher 

Scientific Inc. (Waltham, USA).For the culture of bacterial cells, the reagents used were 

tryptone and yeast extract both from Bioakar (Beauvais, France), glycerol from Himedia, 

dipotassium hydrogenphosphate (K2HPO4) from Panreac (Barcelona, Spain), potassium 

dihydrogen phosphate (KH2PO4) from Sigma-Aldrich (St. Louis, Missouri, USA), “Luria-Broth 

Agar” from Pronalab (Mérida, Yucatán, Mexico) and kanamycin from Thermo Fisher Scientific 

Inc. (Waltham, USA). For the extraction of nucleic acids, the reagents used were guanidine 

thiocyanate, N-Lauroylsarcosine sodium salt, sodium citrate and isoamyl alcohol all from Sigma-

Aldrich (St. Louis, Missouri, USA), isopropanol from Thermo Fisher Scientific Inc. (Waltham, 

USA), and β-mercaptoethanol from Merck (Whitehouse Station, USA). In the chromatographic 

assays it was used sodium chloride (NaCl) and ammonium sulphate ((NH4)2SO4) both 

commercialized by Panreac (Barcelona, Spain) and tris(hydroxymethyl)aminomethane (Tris) 

from Merck (Darmstadt, Germany). All solutions were prepared with Milli-Q water treated with 

0.01% of diethyl pyrocarbonate (DEPC) from Sigma-Aldrich (St. Louis, Missouri, USA). The 

buffers were then filtered through membranes with a pore size of 0.20 μm and sonicated for 

about 15 minutes before each utilization. The molecular weight marker and Green-Safe were 

purchased from Grisp (Porto, Portugal). For the cytotoxicity assay it was used the Cell 

Proliferation Kit I (MTT) from Merck (Darmstadt, Germany). For cell culture of human dermal 

fibroblasts (hFIB) the following reagents were used: “Dulbecco’s Modified Eagle’s 

Medium/Nutrient Mixture F-12” (DMEM-F12) from Sigma-Aldrich (St. Louis, Missouri, USA), fetal 

bovine serum (FBS) from Gibco, Life Technologies (EUA), and penicillin-streptomycin from Grisp 

(Porto, Portugal). 
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3.2. Methods 

3.2.1. Ligand immobilization in silica  

For the functionalization of the silica support, three steps are required. The first step consisted 

in the activation of silica gel (5g) with hydrochloric acid (HCl) 37% for 24 hours. After this, the 

activated silica was washed with large volumes of water until pH reached approximately 7, and 

then dried at 100 ºC in an incubator. In the second step, 5 g of activated silica are added to 60 

mL of toluene (solvent of the reaction) and 5 mL of (3-chloropropyl) trimethoxysilane, which is 

the binding agent to the -OH groups in the activated silica. The suspension is refluxed at 95 ˚C, 

and 500 rpm for 24 h. After this, the material is filtered and washed with 100 mL of toluene, 

200 mL of ethanol/H2O (1:1), 500 mL of H2O and 100 mL of methanol and dried at 60 ºC. Then 

in the third, 5 g of SilPrCl are added to 60 mL of toluene and 5 mL of the compound that will 

originate the cation of interest, being the reaction carried out at 110 ºC, and 500 rpm for 24 h. 

The resultant material is filtrated and washed with 100 mL of toluene, 350 mL of methanol, 

300 mL of H2O and 150 mL of methanol, and then dried in the incubator at 60 ˚C.  This process 

is summarized in Figure 6, where the synthesis of the six different supported ionic liquid 

materials are described. 

3.2.2. Support characterization 

All the synthesized materials were analysed by elemental analysis, solid state 13C nuclear 

magnetic resonance (NMR) and scanning electron microscopy (SEM) in order to verify the 

functionalization with the ligands of interest.  By elemental analysis, using the equipment 

Truspec 630-200-200, carbon, and hydrogen percentages were obtained, after the sample 

burned at 1348 K, by absorption at infra-red radiation and nitrogen quantification by thermal 

conductivity. For the measurements, approximately 2 mg of material was used. For solid state 

13C NMR, about 100 mg of each material were analysed with the equipment Bruker Avance III 

400 MHz (DSX model) using 4 mm BL cross-polarization magic angle spinning (CPMAS) VTN probes 

at 100.6 MHz, at room temperature. In order to verify the effect on the morphology, of ILs 

binding to the supports, some SEM images were collected with the equipment Hitachi S4100 at 

25 kV, with magnifications of 100x, 250x and 1000x. For this, and to obtain electrical 

conductivity, the samples were placed in an appropriate support and coated with a carbon thin 

film 
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3.2.3. Nucleic acids production in Escherichia coli DH5α  

Production of RNA was performed in a strain of Escherichia coli DH5α (E. coli) previously 

transformed with the plasmid pBHSR1-RM containing the sequence of human pre-miRNA29b. 

Firstly, E. coli was cultured in a plate with solid medium “Luria-Broth Agar” (LB-Agar) 

supplemented with 50 µg/mL of kanamycin, overnight at 37 ˚C. The pre-fermentation and 

fermentation were performed in “Terrific Broth” medium (TB) with the following composition: 

12 g/L of tryptone, 24 g/L of yeast extract, 5.5x10-5 M of glycerol, 0.017 M of KH2PO4 and 0.072 

M of K2HPO4. Pre-fermentation medium was then inoculated with E. coli from the plaque and 

incubated at 37 ˚C in an orbital shaker at 250 rpm. Optical Density (OD) was frequently 

measured at 600 nm, until it reached 2.6. The volume of pre-fermentation needed for de 

fermentation to start with an OD of 0.2 was calculated by the following equation: 

𝐕𝐭𝐨 𝐭𝐚𝐤𝐞 𝐟𝐫𝐨𝐦 𝐩𝐫𝐞−𝐟𝐞𝐫𝐦𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧 =
(𝐕𝐩𝐫𝐞−𝐟𝐞𝐫𝐦𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧 + 𝐕𝐟𝐞𝐫𝐦𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧) × 𝐎𝐃𝐟𝐞𝐫𝐦𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧

𝐎𝐃𝐩𝐫𝐞−𝐟𝐞𝐫𝐦𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧

 

During the process the OD was measured in the spectrophotometer Pharmacia Biotech Ultraspec 

3000 UV/Visible (Cambridge, England). Fermentation was kept for 8 hours in order to obtain 

low molecular weight RNA. For the lysates the fermentations were kept for about 16 hours. The 

medium was then centrifuged at 3900 g and 4 ˚C for 10 minutes, being the resultant pellets 

stored at -20 ˚C. This process is summarized in Figure 7. 

 

   

Pre-fermentation E. coli DH5α 
Orbital Shaking at 

250 rpm and 37 ˚C 

Pre-fermentation 

OD = 2.6 

Fermentation with 

initial OD = 0.2 

Fermentation for 

8 or 16 hours 

Figure 7: Summarized scheme of the E. coli fermentation process.  
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3.2.4. Low molecular weight RNA extraction  

RNA extraction was performed by the method of acid guanidinium thiocyanate-phenol-

chloroform. Firstly, the pellets of E. coli stored at -20 ˚C were thawed and resuspended in 0.8 

% NaCl, followed by centrifugation at 6000 g for 10 minutes at 4 ˚C. Supernatant was discarded 

and the resultant pellets were resuspended with 5 mL of D Solution (4 M guanidinium 

thiocyanate, 0.025 M sodium citrate pH 7, 0.5 % sodium N-lauroylsarcosinate and 0.1 M β-

mercaptoethanol) and incubated in ice for 10 minutes. After this, 0.5 mL of 2 M sodium acetate 

pH 4 and 5 mL of phenol were added to the suspensions, being carefully homogenized at each 

step. Then, 1 mL of a mix of chloroform/isoamyl alcohol (49:1) is added followed by vigorous 

shaking and incubation in ice for 15 minutes. The suspensions were centrifuged at 10000 g for 

20 minutes at 4 ˚C. Two aqueous phases are formed, being the upper phase enriched in RNA 

while the bottom phase is enriched in DNA, so the upper phase must be very carefully 

transferred to new lysis tubes, avoiding DNA contamination. To these new tubes, were added 

5 mL of isopropanol in order to precipitate the RNA and centrifuged at 10000 g for 20 minutes 

at 4 ˚C. After discarding the supernatant, RNA pellets were dissolved in 1.5 mL of D Solution, 

and then 1.5 mL of isopropanol, followed by centrifugation at 10000 g for 10 minutes at 4 ˚C. 

Supernatant was discarded, and resultant pellets were resuspended in 2.5 mL of 75% ethanol 

in DEPC water, incubating the samples at room temperature for 10-15 minutes, followed by a 

centrifugation at 10000 g for 5 minutes at 4 ˚C. Pellet was then dried for 5-10 minutes at room 

temperature. Finally, RNA pellets were dissolved in 1 mL of DEPC treated water and incubated 

at room temperature for 10-15 minutes. The concentration of RNA was measured in the Nano 

Photometer (IMPLEN, United Kingdom) and integrity of the samples was verified by agarose gel 

electrophoresis, being the samples stored at -80 ˚C.  

3.2.5. Nucleic acids extraction 

For the extraction of nucleic acids from E. coli cells, the protocol was initiated with chemical 

lysis. Pellets were resuspended in 5 mL of D Solution (4 M guanidinium thiocyanate, 0.025 M 

sodium citrate pH 7, 0.5 % sodium N-lauroylsarcosinate and 0.1 M β-mercaptoethanol), allowing 

the disintegration of the membrane cells. Then, the lysis tubes were incubated in ice for 10 

minutes, following a centrifugation at 16000 g for 30 minutes at 4 ˚C.  To the supernatant, 5 

mL of isopropanol were added to each tube for the precipitation of nucleic acids. The tubes 

were incubated in ice for 30 minutes and then centrifuged at 16000 g for 20 minutes at 4 ˚C. 

After discarding the supernatant, 2.5 mL of 75 % ethanol-DEPC were added to each tube 

followed by room temperature incubation for 10 minutes. A centrifugation at 16000 g for 5 

minutes at 4 ˚C was performed and the supernatant was discarded, and pellets were air-dried 

for 10 minutes. Pellets were suspended in 2 mL of DEPC treated water and incubated in a 60 

˚C water bath for 10 minutes, and finally centrifuged at 16000 g for 30 minutes at 4 ˚C, being 

the supernatant recovered. The concentration of nucleic acids was measured in the Nano 

Photometer (IMPLEN, United Kingdom) and integrity of the samples was verified by agarose gel 

electrophoresis, being the samples stored at -80 ˚C. 
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3.2.6. Agarose gel electrophoresis 

Analysis of the extracted nucleic acids and peaks recovered from chromatographic assays was 

performed with horizontal electrophoresis in 1 % agarose gel. For the visualization of nucleic 

acids, the gel was prepared with 0.012 µL/mL of Green Safe (Porto, Portugal). Electrophoresis 

was performed at 120 V for 30 minutes in TAE buffer (40 mM Tris base, 20 mM acetic acid and 

1 mM EDTA, pH 8.0). The gels were revealed using ultraviolet (UV) light exposure in the Uvitec 

Cambridge Fire-Reader equipped with a UV chamber (UVITEC Cambridge, Cambridge, United 

Kingdom). 

3.2.7. Chromatographic assays 

3.2.7.1. Screening of RNA binding/elution with different supports 

For the screening of RNA behaviour in terms of binding and elution to the different supports, 

each one of the synthesised materials was packed in an empty column. For this, each support 

was dispersed in Milli-Q water and then added to de column until it reached 2 cm of height, 

being extremely important to perform this with constant running water. All the supports were 

washed with large volumes of water and then closed with a filter, keeping them always 

hydrated.  

Chromatographic conditions that mainly favour electrostatic interactions: 

Equilibrium stage was performed by applying 10 mL of 10 mM Tris-HCl pH 8 to the packed 

column allowing it to empty by gravity flow, followed by injection of approximately 30 µg of 

low molecular weight RNA. Binding step was favoured by applying 10 mL of 10 mM Tris-HCl pH 

8, collecting fractions of 1 mL for further analysis. Elution step was then favoured by adding 10 

mL of 1.5 M NaCl in 10 mM Tris-HCl pH 8, also collecting the fractions of 1 mL for further 

evaluation. At the end of each assay, columns were washed with DEPC treated water, and the 

absorbance of the fractions was measured in the Nano Photometer (IMPLEN, United Kingdom). 

Chromatographic conditions that mainly favour hydrophobic interactions: 

Equilibrium stage was performed by applying 10 mL of 2 M (NH4)2SO4 in 10 mM Tris-HCl pH 8 to 

the packed column allowing it to empty by gravity flow, followed by injection of approximately 

30 µg of low molecular weight RNA. Binding step was favoured by applying 10 mL of 2 M 

(NH4)2SO4 in 10 mM Tris-HCl pH 8, collecting fractions of 1 mL for further analysis. Elution step 

was then favoured by adding 10 mL of 10 mM Tris-HCl pH 8, also collecting the fractions of 1 

mL for further evaluation. At the end of each assay, columns were washed with DEPC treated 

water, and the absorbance of the fractions was measured in the Nano Photometer (IMPLEN, 

United Kingdom). 
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3.2.7.2. Separation between nucleic acids 

Chromatographic assays to test the separation of different nucleic acids in the supports that 

showed better results in the screening experiments, were performed in the equipment AKTA 

Avant with the software UNICORNTM 6.3 (GE Healthcare Biosciences Uppsala, Sweden). The 

supports under evaluation were in this case two functionalized silicas, namely [Si][N3114]Cl 

and [Si][N3222]Cl. The supports were packed in columns with 10 mm diameter x 20 mm of 

height. For each chromatographic assay, the column was equilibrated with a solution previously 

filtered and sonicated, of 10 mM Tris-HCl (pH 8), using a flow rate of 1 mL/min. After 

equilibration, samples of RNA or lysate were independently injected in a 200 µL loop. 

Completed the binding step, it was applied a linear gradient of increasing salt concentration 

up to 1 M NaCl in 10 mM Tris-HCl (pH 8), in order to analyse different retention patterns and 

eventual species separation. A final step with higher salt concentration was performed, 

whenever it was needed, to guarantee the total elution of the sample. All experiments were 

performed at room temperature. Absorbance of eluted species was continuously monitored at 

260 nm. The fractions of the elution peaks were recovered and further desalted with 

concentrators Vivaspin 10.000 KDa (Vivascience) until reaching 100 µL being lastly analysed by 

agarose gel electrophoresis. 

3.2.8. Column regeneration 

To guarantee the reproducibility between experiments and maintain the performance of these 

supports, it is imperative to stablish an effective regeneration protocol, that allows the elution 

of any specie strongly retained. For that, a solution of 0.2 M of sodium hydroxide (NaOH) was 

added to the support in order to remove any residues of sample followed by a solution of 0.5 M 

of HCl for replacement of the counterion (Cl-) in the matrix. After every regeneration protocol, 

the supports were washed with large volumes of DEPC treated water. 

3.2.9. Circular Dichroism (CD) spectroscopy 

Circular Dichroism (CD) experiments were performed in a Jasco J-815 spectropolarimeter 

(Jasco, Easton, MD, USA), using a Peltier-type temperature control system. CD spectra were 

acquired at a constant temperature of 20 °C using a scanning speed of 50 nm/min, with a 

response time of 1 second over wavelengths ranging from 200 to 320 nm. The recording 

bandwidth was of 1 nm with a step size of 1 nm using a quartz cell with an optical path length 

of 1 mm. Three scans were measured per spectrum to improve the signal to-noise ration and 

the spectra were smoothed by using the noise-reducing option in the operating software. CD 

melting experiments were performed in the temperature range from 20 to 100 °C, with a 

heating rate of 1 °C/min, by monitoring the ellipticity at 265 nm.  
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3.2.10. Eukaryotic cell culture and cytotoxicity assay (MTT) 

Normal human dermal fibroblasts (hFIB) were used for the cytotoxicity evaluation assays. Cells 

were cultured in DMEM-F12 medium (Sigma-Aldrich) supplemented with 10 % (w/v) FBS heat 

inactivated and 1 % (w/v) penicillin-streptomycin. The cellular cytotoxicity effect of the 

different supports and analogues ILs was evaluated using the Cell Proliferation Kit I (MTT) assay. 

To this end, hFIB cells at passages 10-20 were seeded at a density of 1x104 cells per well in a 

96-well plate and 24 h after, the cell culture medium was replaced by new medium and the 

different supports, in different quantities namely 25 µg, 50 µg and 100 µg, were placed in 

contact to the cells. For the ILs different percentages were applied in each well, namely 0.5 

%, 1 % and 2 % (w/w). In both assays, MTT was performed at different time points (24 and 48 

h). Hence, the medium was replaced by a mixture of 100 µL of medium and 10 µL of MTT 

reagent, and cells were incubated during 4 hours at 37 ˚C in a humidified atmosphere 

containing 5 % CO2. Following incubation, the medium was removed, and 100 µL of dimethyl 

sulfoxide (DMSO) were added to each well and the plate was placed in agitation for about 15 

minutes for crystals solubilization. The absorbance measurements were performed in a 

microplate reader at 570 nm. All experiments were repeated three times and for positive 

control for cytotoxicity cells were treated with 70 % ethanol. 

3.2.11. Statistical analysis 

All cytotoxicity experiments were repeated three times using independent culture 

preparations. The data are expressed as mean ± standard error. Quantitative data were 

statistically analysed by One-Way Analysis of Variance (ANOVA), followed by pair-wise 

comparisons using Dunnett’s test. “*” indicate significant difference versus untreated cells.
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CHAPTER 4 – Results and Discussion
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Immobilization of ILs onto solid supports, and consequently their use as chromatographic 

ligands can become an interesting field in downstream processing due to the potential of ILs to 

establish different types of interactions with biomolecules. Hence, it is expected that these 

multiple interactions can contribute to achieve greater selectivity in the purification of nucleic 

acids. For this, in this work, different ILs were immobilized onto a solid support, namely the 

spherical silica, proceeding to an initial test of binding and elution profiles of RNA samples in 

order to choose the most promising ligands for the separation/purification of nucleic acids. 

Silica was the chosen support for this initial screening, because it is robust, cheaper than other 

chromatographic supports and the synthesis protocols with ILs are well stablished, becoming a 

good choice for the screening of new chromatographic ligands. 

4.1. Characterization of functionalized supports 

The functionalization of SilPrCl with 1-methylimidazole, triethylamine, tributylamine, 

trioctylamine and N,N-dimethylbutylamine originated five Supported-Ionic Liquids (SILs): 

[Si][C3C1Im]Cl, [Si][N3222]Cl, [Si][N3444]Cl, [Si][N3888] and [Si][N3114]Cl respectively. After 

the synthesis of the SILs it was important to analyse and verify if the different ligands were 

correctly bound to the silica support, through different techniques. Besides analysing the SILs, 

it was also analysed activated silica (SiO2) and the intermediate support with the spacer arm 

(SilPrCl) as controls (Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Representation of the chemical structures of functionalized silica with the different ILs. A 

- [Si][C3C1Im]Cl; B - [Si][N3222]Cl; C - [Si][N3444]Cl; D - [Si][N3888]Cl; E - [Si][N3114]Cl; F - SiO2 e G – 

SilPrCl. 
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One of the ligands is based in a heterocyclic compound (Figure 8, A) which has already been 

proven to be a good ligand for the separation of gDNA and RNA in a previous work from our 

research group. Meanwhile, the other ligands are tetraalkylammonium-based cations which 

vary mainly in the length of the alkyl chain and in the symmetry, being three of the ligands 

symmetrical (Figure 8, B, C and D) and one asymmetrical (Figure 8, E). It was clearly observed 

that with the increasing of the alkyl chain length, the dispersion capacity in water decreased, 

indicating that the hydrophobicity increases with the increase of the alkyl chain length of the 

cation, as expected. 

4.1.1. Elemental Analysis  

The first method used for the characterization of the new supports was elemental analysis 

(Table 6). Neither the activated silica nor the SilPrCl present a content in nitrogen as expected, 

but by elemental analysis we confirmed the presence of nitrogen in the SILs materials. These 

results proved that the studied ILs were efficiently immobilized on the silica. In Table 6 are 

presented the results of elemental analysis for each support, in which the real percentage (RS%) 

of carbon, hydrogen and nitrogen measured in the support samples are compared to the 

theoretical percentage (TS%) of these compounds taking into account the chemical structure 

of each ligand and respective molar mass. The aim of this study is to verify if the real 

percentage of elements comes close to the theorical percentage after functionalization 

reactions.  

Considering the [Si][N3114]Cl, it was obtained 7.64% as total of real element percentage in the 

sample, which represents 100%, and corresponds to the sum of 5.64% carbon, 1.29% of hydrogen 

and 0.71% of nitrogen. Thus, if 7.64% correspond to 100%, consequently, we have in the sample 

73.83% of carbon, 16.83% of hydrogen and 9.35% of nitrogen. Regarding theoretical molar mass 

of the three analysed elements in the support, it was obtained a total of 143.27 g/mol (100%) 

in which 108.10 g/mol are carbon (75.45%), 21,17 g/mol are hydrogen (14.77%) and 14.01 g/mol 

are nitrogen (9.78%). In case of real sample percentage (RS%) divided by theoretical sample 

percentage (TS%) comes close to 1, it indicates a correct functionalization of the support with 

the IL.  

Trough analysis of Table 6, we can verify that [Si][C3C1Im]Cl is correctly functionalized. 

Immobilization of this kind of IL is the most described in literature, and here we could see that 

all RS%/TS% value for each element come close to 1 (Carbon = 0.94, Hydrogen = 1.47 and 

Nitrogen = 0.97), thus proving an effective binding of this IL to silica support. The same 

successful functionalization can be observed with [Si][N3114]Cl, once the reasons of all three 

elements was also very close to 1. However, analysing the results for [Si][N3222]Cl, 

[Si][N3444]Cl and [Si][N3888]Cl regarding to nitrogen content (0.48, 0.29 and 0.37 

respectively), we can conclude that this is a residual presence of this element. This might be 

indicative of less effective functionalization of the support with these ILs, which might be due 

to stereochemical impediment of the alkyl chains from the cation that may difficult the binding 

process. Functionalization with these types of ILs might be enhanced with the increasing of 
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ligand quantity used in synthesis reactions. Nevertheless, despite these three supports might 

not present such an effective functionalization, it was possible to analyse their behaviour in 

screening assays realized with nucleic acids. 

  

Support Element 
Real 
Mass 
(%) 

Real 
Sample % 

(RS%) 

Molar Mass 
(g/mol) 

Theoretical 
Sample % 

(TS%) 

𝐑𝐒%

𝐓𝐒%
 

[Si][C3C1Im]Cl 

Carbon 6.86 63.69 84.08 67.70 0.94 

Hydrogen 1.55 14.35 12.10 9.74 1.47 

Nitrogen 2.37 21.97 28.01 22.56 0.97 

Total 10.77 100 124.19 100 - 

[Si][N3222]Cl 

Carbon 4.83 76.70 108.10 75.45 1.02 

Hydrogen 1.17 18.60 21.17 14.77 1.26 

Nitrogen 0.30 4.70 14.01 9.78 0.48 

Total 6.30 100 143.28 100 - 

[Si][N3444]Cl 

Carbon 4.48 78.15 180.17 79.22 0.99 

Hydrogen 1.15 20.05 33.26 14.63 1.37 

Nitrogen 0.10 1.80 14.01 6.16 0.29 

Total 5.74 100 227.43 100 - 

[Si][N3888]Cl 

Carbon 4.46 80.53 324.30 81.94 0.98 

Hydrogen 1.01 18.15 57.46 14.52 1.25 

Nitrogen 0.07 1.32 14.01 3.54 0.37 

Total 5.54 100 395.76 100 - 

[Si][N3114]Cl 

Carbon 5.64 73.83 108.10 75.45 0.98 

Hydrogen 1.29 16.83 21.17 14.77 1.14 

Nitrogen 0.71 9.35 14.01 9.78 0.96 

Total 7.64 100 143.27 100 - 

 

Table 6: Elemental analysis results of carbon, nitrogen and hydrogen for each synthesized support. 

Comparison between real sample and theoretical percentages. 
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4.1.2. Nuclear Magnetic Resonance 

NMR is a characterization technique that can be used to study samples of nucleus that present 

spin numbers, allowing the evaluation of different chemical environments of the nucleus. 13C 

NMR provides information about carbon nucleus in the structure. In Figure 9 are represented 

the NMR spectra for each synthesized material. 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing de spectra obtained by NMR, we can see significant differences between the 

different supports. We can verify that the support [Si][C3C1Im]Cl (red) is well functionalized 

since there are present two of the characteristic signals for the carbons of the imidazole ring 

between 120 and 140 ppm. Relatively to the other supports, [Si][N3222]Cl (dark blue), 

[Si][N3444]Cl (light blue) and [Si][N3888]Cl (purple) it is not possible, through NMR spectra, to 

affirm if the functionalization occurred correctly, since the chemical deviations of the cations’ 

carbons are similar among them (alkyl chains) and also similar to the chemical deviations of 

the silane carbons, which was used as compatibilizer. Regarding [Si][N3114]Cl (green) the signal 

observed approximately at 51 ppm corresponds to the methyl groups bound to the nitrogen, 

giving an indication of effective functionalization of the support. 

 

  

Figure 9: Results of NMR 13C analysis of functionalized silica supports in the solid state with the 

different ILs. 
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4.1.3. Scanning Electron Microscopy  

Since the synthesis conditions may sometimes be aggressive to the supports, due to the use of 

high temperature and high agitation rates, it is necessary to confirm if there is not an alteration 

in the morphology of the functionalized silica supports that may compromise their application 

as chromatographic supports.  For this, in Figure 10 we have some SEM representative images 

of SiO2, [Si][N3222]Cl and [Si][N3114]Cl with different magnifications.  

Figure 10: SEM analysis of activated and functionalized silica surface. Observations with x100, x250 

and x1000 of magnification. 

 

 

 

 

 

 

 

 

 

By analysing and comparing the SEM images of activated silica with the two representative IL-

functionalized materials, we can observe that the IL binding to the silica surface, despite de 

aggressive conditions used during the synthesis process, did not compromised the beads 

morphology since their round shape is maintained intact. Although only SEM images of two SILs 

are shown, one with a symmetrical amine and other with an asymmetrical amine, it is expected 

that the other materials show similar morphologies. 
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4.2. Screening of binding/elution conditions for RNA 

As mentioned, the ability of these new ligands to interact with RNA must be tested and 

analysed, and for that different experiments were performed adapting experimental conditions 

to mainly favour ionic or hydrophobic interactions, establishing binding and elution profiles for 

each one of these conditions. The regeneration protocol with NaOH and HCl was performed 

after 3 assays, since the binding capacity was decreased in consecutive assays, thus allowing 

the normal conditions of the matrix to be restored between experiments.  

4.2.1. Electrostatic interactions 

For evaluating the possible interactions occurring between RNA and the different ligands in 

conditions that mainly favour electrostatic interactions, the binding step was established with 

10 mM Tris-HCl, while the elution step was accomplished with 1.5M NaCl in 10 mM Tris-HCl pH 

8.0 in order to increase the ionic strength of the buffer. The results of RNA behaviour regarding 

the binding and elution were analysed by absorbance measurement at 260 nm, calculating then 

the elution percentage in each step of the chromatographic assay.  

When analysing essentially electrostatic interactions, the main contribution is from the charged 

group in the cation, the charged tetrasubstituted amine. Regarding the activated silica (SiO2) 

and the intermediate support with the spacer arm (SilPrCl) (Figure 11, A and B) we can observe 

that there is no interaction with the sample, since there are no charged groups in these two 

supports. On the other hand, with [Si][C3C1Im]Cl and [Si][N3114]Cl (Figure 11, C and G) 

occurred total binding of the injected RNA, thus showing an excellent retention ability of the 

supports for RNA, when using these conditions.  

As mentioned above, with the increase of the alkyl chains in the cation, it was observed an 

increase of the hydrophobicity evaluated by the low dispersion of the supports in water, and 

this was also confirmed in the chromatographic assays. With [Si][N3222]Cl occurred a good 

binding of RNA as well as total recovery with the increase of the  ionic strength of the buffer. 

Meanwhile, [Si][N3444]Cl showed less ability to bind RNA than [Si][N3222]Cl (Figure 11, E and 

D) probably because the alkyl chains are longer, and the charged group is less exposed for the 

interaction to occur. Hereupon, there can exist a higher stereochemical impediment for the 

access of RNA to the charged region, and the more hydrophobic characteristics of the ligand 

become more evidenced. So, the binding of RNA in conditions that favour electrostatic 

interactions is less effective. Similarly, with [Si][N3888]Cl, RNA binding was even less effective 

since the alkyl chains are even longer, as well as the stereochemical impediment, thus 

conferring very high hydrophobic properties to this support (Figure 11, F).  

In general, the purification of biomolecules using electrostatic interactions are easier and 

preferable to perform since, comparatively to the salts used in hydrophobic interaction 

(ammonium sulphate), sodium chloride is easier to remove from purified samples and is less 

hazardous to the environment. Considering this, it is reasonable to consider [Si][N3114]Cl and 

[Si][N3222]Cl as promising supports to exploit other applications in downstream processing. 
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Figure 11: Elution behaviour of RNA at each step of the chromatographic process in conditions that 

favour electrostatic interactions. A – SiO2; B – SilPrCl; C - [Si][C3C1Im]Cl; D - [Si][N3222]Cl; E - 

[Si][N3444]Cl; F - [Si][N3888]Cl; G - [Si][N3114]Cl. 
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4.2.2. Hydrophobic interactions 

For evaluating the binding of RNA to the different ligands in conditions that favour mainly 

hydrophobic interactions, the binding step was defined as 2M (NH4)2SO4 in 10 mM Tris-HCl while 

the elution step was accomplished with 10 mM Tris-HCl in order to decrease the ionic strength 

of the buffer. The results of RNA behaviour regarding to binding and elution were analysed by 

absorbance measurement at 260 nm, calculating the elution percentage in each step of the 

chromatographic assay. 

When analysing essentially hydrophobic interactions, the main contribution is from the alkyl 

chains. Regarding activated silica and the intermediate support with the spacer arm (Figure 12, 

A and B) there was a significant interaction with RNA sample. Since the spacer arm is essentially 

an alkyl chain, and can demonstrate some hydrophobic behaviour, thus resulting in significant 

interaction when these conditions are favoured. However, this result does not compromise 

further analysis with functionalized supports. For the support [Si][C3C1Im]Cl it was observed a 

good retention in the binding step (Figure 12, C), proving the multimodal capacity of this ligand 

since it has shown also good binding properties when electrostatic interactions were favoured. 

The same was also observed with [Si][N3114]Cl (Figure 12, G). Concerning the other supports, 

[Si][N3444]Cl and [Si][N3888]Cl (Figure 12, E and F), have shown excellent binding ability of 

RNA sample, being the main issue the elution step, as it was verified a difficulty for the 

effective recovery of bound RNA. For [Si][N3222]Cl (Figure 12, D), it was observed partial 

elution of the sample, which may be interesting since it can already show some selectivity of 

this ligand. Meanwhile, as [Si][N3444]Cl is more hydrophobic than [Si][N3222]Cl, the 

interactions that occur with RNA are so strong that elution is significantly decreased (Figure 

12, E). In the same way, with [Si][N3888]Cl, which is more hydrophobic, elution was even more 

difficult, being only possible to elute RNA sample with a second elution step with 1.5M NaCl in 

10 mM Tris-HCl (Figure 12, F). This is because, when loading Tris-HCl 10 mM in the column, 

electrostatic interactions are also being favoured, thus not being enough for the recovery of all 

sample loaded. When NaCl flows through the column, electrostatic interactions are not 

favoured, leading to total elution of RNA sample. 

Besides the binding and elution profiles, it was also evaluated the packing characteristics of 

the materials. As mentioned above, the more hydrophobic the material, more difficult it was 

to disperse it in water and therefore, more difficult turned out the packing of the columns. 

[Si][N3444]Cl and [Si][N3888]Cl when mixed with water formed aggregates of material which 

compromised the packing, and therefore, was not a good choice to explore in Akta equipment. 

[Si][C3C1Im]Cl, [Si][N3222]Cl and [Si][N3114]Cl were easy to pack since they had a good 

dispersion in water, not forming any type of aggregates. Since [Si][C3C1Im]Cl has already been 

tested by the group and proven to show good selectivity between gDNA and RNA, [Si][N3222]Cl 

and [Si][N3114]Cl seemed to be the most promising supports for further purification assays, due 

to their good binding ability at both ionic and hydrophobic conditions, and their good packing 

characteristics. 
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Figure 12: Elution behaviour of RNA at each step of the chromatographic process in conditions that 

favour hydrophobic interactions. A – SiO2; B – SilPrCl; C - [Si][C3C1Im]Cl; D - [Si][N3222]Cl; E - 

[Si][N3444]Cl; F - [Si][N3888]Cl; G - [Si][N3114]Cl. 
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4.3. Separation between gDNA and RNA 

Once completed the screening of all synthesised supports, was time to try to use of this 

spherical silica in the AKTA Avant equipment to, firstly study the effect of pH on the retention 

of RNA in each support. Silica is an interesting choice for the screening of new ligands since it 

is cheap and synthesis protocols with ILs are well stablished with this material. Although the 

supports had shown good binding and elution capacities when exploring hydrophobic 

interactions, the use of high salt concentrations imply more time to remove the salt from 

recovered peaks and has more environmental impact than the salts used when establishing 

electrostatic interactions. By this, the conditions able to mainly promote electrostatic 

interactions were chosen to test the supports for the purification of RNA. The assays performed 

with [Si][N3222]Cl are represented in Figure 13, A. For the assay with a pH 8 in the binding 

step, it was observed that the support had almost no binding ability for the RNA sample. 

However, when a pH 7 was tested in the binding step, de retention of RNA significantly 

increased comparatively to the previous assay, but binding was not complete since in the first 

peak we can observe some elution of the RNA (Figure 13, B). In the linear gradient it was 

possible to verify that with pH 7, there was a need of a higher salt concentration for the total 

elution of the sample comparatively to the assay at pH 8. In the same way, when using a pH 6  

it was also observed a better retention of the sample in the binding step, and even a higher 

salt concentration was needed for the total elution of RNA, in comparison to the ionic strength 

required to elute RNA in the assay at pH 7. These results indicate that, with the decrease of 

the pH, there is a higher retention of RNA onto the support, favouring this interaction.   

The experiments performed with [Si][N3114]Cl are represented in Figure 13, C, in which the 

RNA binding was even more pronounced than with [Si][N3222]Cl. In all the pH range under 

study, the binding was stronger, however, retention times were different from the observed in 

the other support. With pH 8 the retention was higher, since the total elution of RNA occurred 

later, this is, with a higher salt concentration. The behaviour of the support in the assay at pH 

7 and pH 6 was very similar in terms of retention time of the samples, eluting almost at the 

same salt concentration. However, was expected that RNA retention would increase with de 

decreasing of the pH buffers, but at pH 8 RNA was more retained, this result can be influenced 

by the fact that this was the first assay performed in the matrix, thus being in the best binding 

conditions to perform an assay since it had not been submitted to any previous assay nor 

regeneration process, which means that the binding capacity was not compromised. By the 

agarose gel electrophoresis of the assays at pH 8, 7 and 6 in [Si][N3114]Cl (Figure 13, D), and 

comparing to the agarose gel electrophoresis of the assays at pH 8, 7 and 6 in [Si][N3222]Cl 

(Figure 13, B), we can see that the retention of RNA onto the [Si][N3114]Cl is much higher than 

the observed with [Si][N3222]Cl. This may indicate some contribution of the ligand symmetry, 

this is, since [Si][N3114]Cl is an asymmetrical cation it can establish interaction with different 

conformations of different types of RNAs that constitute the sample. It should be noted that, 

through supports characterization, [Si][N3114]Cl was more effectively functionalized than 

[Si][N3222]Cl, which can also have influence in the analysis of binding ability. 
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After the assays with RNA, it was important to test if these supports had some selectivity 

between different types of biomolecules. For this, it was used a more complex mixture of 

genomic DNA (gDNA) and RNA, and the chromatographic assays were performed in the same 

conditions used in the previous assays.  

In the assay performed with [Si][N3222]Cl (Figure 14, A) at pH 8 it was observed that the binding 

step did not allow the retention of neither RNA or gDNA. However, in the same way as it was 

previously observed with RNA, a stronger binding was achieved with the decrease of the pH, 

this is, at pH 7 and pH 6 RNA bound totally to the column (Figure 14, B). In the electrophoresis 

of the assay at pH 6 it was possible to observe that in the first peak (binding step), gDNA did 

not bound to column, eluting at lower salt concentrations. On the other hand, when linearly 

increasing salt concentration, it was possible to conclude that the second peak in the 

chromatogram corresponded to RNA, although being possible to see a little gDNA 

contamination. The same was verified in the assay performed at pH 7. In this way, it was 

possible to prove that [Si][N3222]Cl has selectivity and is able to distinguish between different 

nucleic acids, being gDNA eluted in the binding step, and since RNA is more retained, it only 

elutes with the increasing of salt concentration. 

Ultimately, when tested the mixture of gDNA and RNA in [Si][N3114]Cl it was possible to 

conclude that this support had better binding ability than [Si][N3222]Cl, since RNA was retained 

in the column at all tested pH values (Figure 14, C) and the same was observed in the previous 

assays with the sample containing only RNA. Regarding the retention time, it was possible to 

conclude that in the assay performed at pH 6, RNA was more retained in the column since it 

was needed a higher salt concentration in order to elute all bound RNA. For the assay at pH 8, 

previously it was observed that RNA was more retained in this support, however since it has 

been submitted to other assays and regenerations this behaviour changed, thus, in these case 

with a more complex sample RNA did not bound so efficiently. In the electrophoresis of the 

assay at pH 8 (Figure 14, D) we can verify that the first peak corresponds to gDNA, and the 

second peak corresponds to RNA. gDNA may elute in the first place, since its structure is double-

stranded and bigger, and nucleotide bases are not so exposed as RNA, thus being less accessible 

for establishing interactions with the ligands. On the other hand, RNA for being smaller and 

having bases exposed, can easily interact with the ligands, being more retained (Diogo et al., 

2002). 

In all the assays, sometimes it was difficult to visualize the gDNA band in the electrophoresis 

gel, since this is a more fragmented sample and more subjected to denaturation. Therefore, it 

was necessary to increase de gDNA injected into the column, thus allowing the recovery of 

more gDNA quantity and after concentration it was possible to observe, although faint, a band 

of gDNA in the first peak of elution. In general, [Si][N3114]Cl showed better selectivity capacity 

than [Si][N3222]Cl, since in electrophoresis with this last support it is possible to see some 

contamination  of RNA recovered fraction with gDNA. In this way, the asymmetry of the ligand 

seems to contribute to better selectivity in the separation of these two species of biomolecules. 

  



Ionic liquids for the purification and stabilization of nucleic acids 

47 

 

 

 

 

 

 

 

  

A
 

D
 

C
 

B
 

F
ig

u
re

 1
4
: 

R
e
p
re

se
n
ta

ti
v
e
 c

h
ro

m
a
to

g
ra

m
 o

f 
th

e
 a

ss
a
y
s 

p
e
rf

o
rm

e
d
 w

it
h
 m

o
re

 c
o
m

p
le

x
 s

a
m

p
le

s 
o
f 

g
D

N
A

 a
n
d
 R

N
A

 i
n
 [

S
i]

[N
3
2
2
2
]C

l 
(A

) 
a
n
d
 r

e
sp

e
c
ti

v
e
 a

g
a
ro

se
 g

e
l 

e
le

c
tr

o
p
h
o
re

si
s 

o
f 

o
f 

p
H

 8
, 

7
 a

n
d
 6

 a
ss

a
y
s 

(B
).

 I
n
 (

C
) 

is
 t

h
e
 c

h
ro

m
a
to

g
ra

m
 o

f 
th

e
 a

ss
a
y
s 

p
e
rf

o
rm

e
d
 i
n
 [

S
i]

[N
3
1
1
4
]C

l 
a
n
d
 r

e
sp

e
c
ti

v
e
 a

g
a
ro

se
 g

e
l 
e
le

c
tr

o
p
h
o
re

si
s 

o
f 

p
H

 8
, 

7
 a

n
d
 6

 a
ss

a
y
s 

(D
).

 T
h
e
 a

ss
a
y
s 

w
e
re

 p
e
rf

o
rm

e
d
 i

n
 t

h
e
 s

a
m

e
 c

o
n
d
it

io
n
s 

in
 w

h
ic

h
 b

in
d
in

g
 w

a
s 

fa
v
o
u
re

d
 w

it
h
 l

o
w

 s
a
lt

 c
o
n
c
e
n
tr

a
ti

o
n
 f

o
ll
o
w

in
g
 a

 l
in

e
a
r 

g
ra

d
ie

n
t 

a
n
d
 f

in
is

h
in

g
 

w
it

h
 a

 w
a
sh

in
g
 s

te
p
. 

(M
 –

 M
o
le

c
u
la

r 
w

e
ig

h
t 

m
a
rk

e
r;

 S
 –

 I
n
je

c
te

d
 s

a
m

p
le

; 
P

1
 –

 F
ir

st
 P

e
a
k
; 

P
2
 –

 S
e
c
o
n
d
 P

e
a
k
).

 



Ionic liquids for the purification and stabilization of nucleic acids 

48 

4.4. Circular Dichroism  

In order to test the integrity and stability of RNA samples after the purification assays, CD 

spectra were made for either RNA purified with [Si][N3222]Cl and with [Si][N3114]Cl. Typical 

RNA CD spectra is characterized by having two main ellipticity peaks: a maximum at 

approximately 265 nm (positive band) and a minimum at approximately 210 nm (negative band) 

(Yao et al., 2018). In Figure 15, RNA spectrum is represented in purple line, and it is possible 

to verify the two characteristic bands at 265 and 210 nm. RNA spectra from a purified fraction 

obtained with [Si][N3222]Cl is represented in pink line, being possible to observe a decrease of 

the ellipticity in the positive band, thus demonstrating some destabilization of RNA sample, 

although is not very significant. In the other hand, in RNA spectra from a purified fraction of 

the purification assay with [Si][N3114]Cl, represented in green line, the ellipticity in the 

positive band was maintained similar comparatively to the initial RNA sample, indicating that 

after purification, RNA structure is maintained. These results show that purification process 

might be better with [Si][N3114]Cl than with [Si][N3222]Cl, since the first did not compromise 

RNA integrity after the experiment. 

 

 

 

 

 

 

 

 

 

 

 

In the same way, CD spectra were measured for RNA with different types of ILs namely 

tetramethylammonium chloride ([N1111]Cl), tetraethylammonium chloride ([N2222]Cl), 

tetrapropylammonium chloride ([N3333]Cl) and tetrabutylammonium chloride ([N4444]Cl) 

(Figure 16). These specific ILs, analogues to the ligands used in the supports, were chosen 

because they are constituted by a tetraalkylammonium-based cation and the counter-ion 

chloride. Despite all the ILs being constituted by symmetrical amines, it was possible to 

evaluate the impact they have in the stabilization of RNA and thereby correlate the results with 

the alkyl chain length since we had a range from shorter to longer alkyl chains.  

Figure 15: CD spectra (210 – 320 nm) of RNA collected from the purification assays with [Si][N3222]Cl 

and [Si][N3114]Cl. The purple line represents RNA, the pink line corresponds to RNA purified with 

[Si][N3222]Cl and the green line to RNA purified with [Si][N3114]Cl.  
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Therefore, in order to ascertain this, samples of RNA were prepared with 20% (w/w) of each IL 

and were incubated for 1 hour at 4 ºC before the spectra acquisition. In Figure 17, CD spectra 

of RNA in presence and absence of ILs are presented, as well as the spectra for each IL. RNA 

spectra without any IL is represented in dark grey (control), being verified the presence of the 

two characteristic bands at 265 and 210 nm. Analysing spectra obtained with RNA in 20% (w/w) 

[N1111]Cl (red line) we could see that ellipticity of the positive band was almost maintained 

comparatively to the control, as well as the negative band, thus indicating no destabilization 

of the RNA sample. The same analysis cannot be applied to the other three ILs. Regarding the 

sample of RNA in 20% (w/w) [N2222]Cl (dark blue) it was possible to see a significant ellipticity 

decrease in the positive band indicating some destabilization of the sample. With RNA in 20% 

(w/w) [N3333]Cl (green line) ellipticity decrease was less accentuated, however when 

observing this IL spectra (brown) it is clear a great interference with CD signal below 240 nm, 

compromising spectra analysis below this wavelength. Lastly, the analysis of RNA in 20% (w/w) 

[N4444]Cl showed a decrease on the ellipticity at 265 nm, which may also indicate some 

destabilization of RNA sample.  

At first analysis, ILs with longer alkyl chains seem to compromise more RNA integrity since the 

main changes on the spectra occur with these ILs. A way to improve the stabilization of RNA 

would be adjusting ILs pH, since when we have measured the corresponding pH of each IL 

solution an acidic character prevailed. Pedro and co-workers verified that non-buffered 

[Ch][DHP] highly impaired RNA stability, whereas GB-ILs with more alkaline character 

beneficially maintained RNA integrity (Pedro et al., 2019). 

Figure 16: Chemical structure of the four different ILs used for RNA stabilization. A - 

tetramethylammonium chloride ([N1111]Cl); B - tetraethylammonium chloride ([N2222]Cl); C - 

tetrapropylammonium chloride ([N3333]Cl); D - tetrabutylammonium chloride ([N4444]Cl). 

A B C D 
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As an additional analysis, thermal denaturation experiments were performed with the view of 

studying RNAs secondary structure stability in presence and absence of the four ILs. Melting 

temperature (Tm) is assessed by following changes in the spectrum at 265 nm with increasing 

temperature, from 20 up to 110 ºC (Ranjbar & Gill, 2009). The Tm determined at 265 nm for 

RNA dissolved in DEPC water was of 49.1 ºC (Figure 18 and Table 7). Analysing all melting 

temperatures obtained with the presence of ILs, only [N1111]Cl showed a great improvement 

in the stabilization of RNA sample, by increasing Tm aproximatly 14 ºC. On the contrary, 

[N2222]Cl, [N3333]Cl and [N4444]Cl all shown to decrease RNA stability by decresing its Tm 

aproximatly 7, 11, and 19 ºC, respectively. This can be justified by the high stereo chemical 

impediment of these 3 ILs since longer alkyl chains limit interation of RNA with charged amine 

of the cation, what could limit some stabilization effect. An interesting test to perform would 

be to ensure if [N1111]Cl at a higher concentration than 20% would be capable of incresing even 

more RNAs Tm. 

  

Figure 17: CD spectra (210 – 320 nm) of RNA in the absence and presence of ILs. The dark grey line 

represents RNA, the red line corresponds to RNA in 20% (w/w) [N1111]Cl, the dark blue line to RNA in 20% 

(w/w) [N2222]Cl, the green line to RNA in 20% (w/w) [N3333]Cl and the light purple line to RNA in 20% 

(w/w) [N4444]Cl. ILs spectra, without RNA, are also represented. RNA was incubated for 1 hour at 4 ºC 

with each ILs before measurements. 

 



Ionic liquids for the purification and stabilization of nucleic acids 

51 

  

Sample Melting Temperature (Tm) °C 

RNA + DEPC 49.10 ± 0.59 

RNA + 20% [N1111]Cl 63.22 ± 0.28 

RNA + 20% [N2222]Cl 42.21 ± 1.14 

RNA + 20% [N3333]Cl 37.82 ± 0.64 

RNA + 20% [N4444]Cl 30.28 ± 1.80 

Figure 18: CD melting curves (265 nm) of RNA fractions incubated for 1 hour at 4 ºC with different 

ILs. The curves were obtained in a temperature range from 20 ºC to 100 ºC. The dark grey spots represent 

RNA, the red spots correspond to RNA in 20% (w/w) [N1111]Cl, the blue spots to RNA in 20% (w/w) 

[N2222]Cl, the green spots to RNA in 20% (w/w) [N3333]Cl and the light purple spots to RNA in 20% (w/w) 

[N4444]Cl. 

Table 7: Melting temperatures (Tm) obtained from CD melting curves for each sample of RNA with the 

different ILs. 
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4.5. Cytotoxicity effect of ILs 

Since in this work, we are testing new ligands for the purification of biomolecules with the aim 

to be used as biopharmaceuticals, it is of great importance to test any cytotoxic effect that 

these ligands might present, once, although not expected, sometimes ligand leaching might 

occur. In this sense, the colorimetric assay MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) was used for the assessment of human fibroblasts (hFIB) viability 

in the presence of [Si][N3114]Cl and [Si][N3222]Cl in three different quantities, 25, 50 and 100 

µg of support (Figure 19).  

 

 

 

Figure 19: Cellular viability (MTT assay) of human fibroblasts after 24 (A) and 48 hours (B) incubation 

with [Si][N3114]Cl support, and 24 (C) and 48 hours (D) incubation with [Si][N3222]Cl support. 

Untreated cells (C-) and ethanol treated cells (C+) were used as negative and positive control, respectively. 

Viability percentage is expressed relatively to the control cells. Values were calculated with the data 

obtained from three independent measurements (mean ± SD, n = 3). Statistical analysis was performed 

using “One-way ANOVA”. (ns = p > 0.05; **** p ≤ 0.0001; *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05) 

A B 

C D 
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Through analysis of Figure 19 at 24h and 48h (A and B) in which hFIB were maintained in culture 

with [Si][N3114]Cl support, it was possible to assure that this ligand did not induce any cytotoxic 

effect on these cells. Despite of at 48h, cell viability with 100 µg of support was significantly 

different from negative control, it was still above 80%, suggesting that even that quantity did 

not represent cytotoxicity. Regarding the [Si][N3222]Cl support at 24h and 48h (C and D), also 

no cytotoxicity was observed. Cell viabilities were inferior at 24h comparatively to 48h, and 

this might be due to errors in cell seeding or in materials mass. It is important to emphasize 

that support masses used were much higher than the ligand leaching that can eventually occur, 

which also supports the safety of these materials. As additional results, cytotoxicity assay was 

also performed in hFIB with the ILs tested for stabilization of RNA, which are analogues to the 

ILs used in the functionalization of the chromatographic supports, in order to compare the 

behaviour between liquid solutions of ILs and immobilized ligands. For that, three different 

percentages of the four studied ILs were utilized in contact with hFIB, namely 0.5, 1 and 2% 

(w/w). Results at 24h and 48h are represented in Figure 20, A and B respectively. 
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As presented in Figure 20, A, in general, cell viability is compromised when hFIB are incubated 

with the different ILs during 24h. Regarding experiments with [N1111]Cl at 0.5 and 1% (w/w) 

and [N3333]Cl at 0.5 and 1% (w/w), these were the only ILs and concentrations that did not 

induce toxicity in seeded cells, since cell viabilities were above 80%. On the contrary, [N2222]Cl 

and [N4444]Cl shown to be cytotoxic for all concentrations tested and also [N1111]Cl at 2% 

(w/w) showed cytotoxicity. It should be noted that for experiments performed with incubation 

time of 48h, all ILs at all tested concentrations shown to induce cytotoxicity (Figure 20, B). 

According to what is described in literature, it was expected that cytotoxicity would increase 

with the increase of the alkyl chains cation, however this did not occurred linearly, once 

[N2222]Cl showed to be more cytotoxic than [N3333]Cl (Mikkola et al., 2015; Wang et al., 2015). 

A 

B 

Figure 20: Cellular viability of human fibroblasts after 24 (A) and 48 hours (B) incubation with 

different ILs. Untreated cells (C-) and ethanol treated cells (C+) were used as negative and positive 

control, respectively. Viability percentage is expressed relatively to the control cells. Values were 

calculated with the data obtained from three independent measurements (mean ± SD, n = 3). Statistical 

analysis was performed using “One-way ANOVA”. (ns = p > 0.05; **** p ≤ 0.0001; *** p ≤ 0.001; ** p ≤ 0.01; 

* p ≤ 0.05) 
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In order to unravel these results, we thought that solutions pH could be causing these 

alterations, so pH of each solution was measured. As a matter of fact, [N2222]Cl presented a 

pH more close to 5 and [N3333]Cl close to pH 6, thus justifying [N2222]Cl to be more cytotoxic 

than [N3333]Cl, proving that not only the length of the alkyl chain influence cytotoxicity. 

However, when measuring [N4444]Cl pH, this was more close to 7, but since the alkyl chains 

are so long, this feature prevailed, being the most cytotoxic IL among all ILs tested. Similarly, 

to what was previously discussed in the RNA stabilization, pH control of ILs solution would 

maybe improve cell viability results by probably decreasing their toxic character.  

In general, ILs with longer alkyl chains are more lipophilic than those with shorter versions. By 

this, it is presumed that they tend to be incorporated into the phospholipid bilayers of cells 

membranes. In this regard, increased toxicity of longer ILs can be accounted for enhanced 

membrane permeability, altering the physical properties of the lipid bilayer, thus conducting 

to decreasing cell viability (Pham et al., 2010). Another important observation is the evident 

variation of toxicity with the increasing percentage of IL studied, with a significant cell viability 

decrease with increasing IL concentration. It was also reported by Feng and co-workers that 

molecular volume might affect the capacity of chemicals to cross the cell membrane, thereby 

leading to varied toxicity (Feng et al., 2013). 

It is important to emphasize that these liquid ILs are not exactly like the ligands immobilized 

onto the silica supports but can give an idea of the impact of alkyl chains length on stabilization 

and cytotoxicity. Comparing the results obtained in cytotoxicity assays between liquid ILs and 

immobilized supports, these shown to be much less toxic than the first ones.  
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CHAPTER 5 – Conclusion and Future Perspectives 
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Nucleic acids-based therapies have been arising as a new strategy for the treatment of 

numerous diseases namely those caused by alterations in gene expression. In this sense, it is 

extremely important to develop new purification strategies of these biomolecules in order to 

obtain them with total integrity, highly pure and with biological activity, in accordance to the 

guidelines of regulatory agencies for biopharmaceuticals. However, it is still difficult to have 

an ideal biotechnological process that allows biomolecules preparation in desired conditions, 

to be tested, in accordance to what is considered to be safe to be applied onto clinical trials. 

Within the biotechnological processes, liquid chromatography is the method of choice for 

biomolecules purification, based on reversible interactions, to explore the selective separation 

and purification of biomolecules of interest. However, standard purification processes have 

some problems associated, namely the types of supports available and the use of solvents that 

can be environmentally hazardous.  

This is where ionic liquids emerge as a new strategy for the purification of nucleic acids. Besides 

presenting excellent physicochemical characteristics, due to their characterization as 

“designer solvents”, becomes possible to manipulate cation/anion combinations that present 

good selectivity capacity for purification of nucleic acids and non-cytotoxic character as well.  

With this work, it was possible to prove the correct functionalization of silica supports with ILs, 

having the cation immobilized and anion as counter-ion, through covalent binding and 

nucleophilic substitutions. Besides, morphology support was not compromised after 

functionalization reactions turning possible its application for chromatographic experiments. 

With the initial screening of binding and elution of RNA samples to each synthesized support, 

was possible to verify the multimodal capacity of all tested ligands, since they could establish 

interactions of either electrostatic or hydrophobic nature. After this screening tests, 

[Si][N3222]Cl and [Si][N3114]Cl were the chosen supports for further purification assays, as 

these showed to be the most promising ligands. Initially, were performed assays with only RNA 

and changing pH in the binding step from 6 to 8, in order to compare its influence on samples 

retention. In general, it was observed that with lower pH, RNA tends to be more retained in 

the column. Secondly, for analysing some selectivity of these ligands, a mixture of gDNA and 

RNA was loaded onto de columns, in the same conditions used for RNA experiments. With these 

chromatographic assays, both columns showed to have good selectivity between the two 

different nucleic acids species, with gDNA eluting in the beginning and RNA eluting with 

increasing salt concentration. After purification, CD spectra were obtained for RNA purified 

fractions and compared with initial sample of RNA, being possible to verify that these 

biomolecules could maintain their integrity. Therefore, this purification technique seems to be 

very promising for the purification of nucleic acids.  

In the additional tests of stabilization with solutions of different ILs, it was possible to verify 

that with shorter alkyl chains in the cation, we could achieve an enhancement of RNAs melting 

temperature, proving its capacity of stabilizing RNA sample. Furthermore, in cytotoxicity 

assays, it was also observed an impact of the alkyl chains length on toxicity, since ILs with 

longer alkyl chains, such as [N4444]Cl, showed to be more harmful for cells. It is to be noted 
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that immobilized ligands showed to be much less harmful for cell than liquid solutions of ILs, 

proving a great advantage of using immobilized supports comparatively to liquid-liquid 

extractions, in which sample contamination with IL can be much higher.  

As future perspectives, these ligands can be tested for purification of non-coding RNAs, once 

these represent a promising biomolecule to be used as biopharmaceuticals in the treatment of 

many diseases caused by gene defects. Besides, since they show to have multimodal 

characteristics, it would be interesting the use of these supports in continuous mode, thus 

achieving greater selectivity in the purification of different types of RNAs.  
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