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Resumo 

 

 
A capacidade de regenereação do sistema nervoso (SNC) central é limitada, gerando um desafio 

para a produção de novas terapias. Estudos recentes do nosso laboratório evidenciaram um 

potencial interessante para a aplicação de células estaminais mesenquimatosas (MSC) como um 

potencial agente terapêutico para o SNC no qual o seu secretoma (secreção de fatores tróficos 

e vesiculas) tem sido descrito como o principal mecanismo de ação, capaz de estimular 

neurogénese e a sobrevivência de células gliais. Neste contexto, astrócitos tem grande 

importância na homeostase do SNC modulando importantes funcões como neurotransmissão, 

fluxo sanguíneo e neurogénesis. Portanto, este projeto teve o objetivo de investigar o papel 

dos astroócitos nos efeitos modulatórios promovidos pelo secretoma de MSC’s nomeadamente 

nos seus níveis de proliferação e nas densidades gliais. Para isso, foi utilizado um modelo animal 

transgénico que possui o complexo SNARE bloqueado, reduzindo desta forma a transmissão 

astrocítica. Adicionalmente, a morfologia destes astrócitos foi estudada. Como controlos, 

foram usados murganhos C57BL/6. Uma semana após a injeção com o secretoma, procedeu-se 

a avaliações histológicas, os tecidos foram marcados para Ki-67 e GFAP e contramarcados para 

DAPI. O secretoma apresentou um papel estimulatório sob os níveis de proliferação 

evidenicados pelo maior número de células positivas para Ki-67 na zona sub-granular do 

hipocampo nos animais wild type e nos SNARE high, sendo a transmissão astrocitica importante 

para tal processo tendo em vista que, em comparação com animais SNARE low, os níveis de 

proliferação foram reduzidos, adicionalmente, o secretoma elevou a  proliferação de celulas 

gliais radiais (RGC) apenas nos animais Snare High, mostrando um possível efeito compansatório 

sob a redução da transmissão glial.  Adicionalmente, os animais tratados com secretoma que 

possuiam expressão do transgene, apresentaram morfologia hipertrófica e mais complexa 

quando comparados com animais wild type. Os resultados encontrados devem ser considerados 

com parcimónia pela natureza exploratória do presente estudo, vale a pena reasaltar que é a 

primeira vez que este tipo de abordagns experimentais e análises é desenvolvido neste modelo 

animal.  
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Resumo Alargado 
 
 
A capacidade de regenereação do sistema nervoso (SNC) central é limitada, e os processos 

fisiológicos que a governam são complexos, criando um desafio na geração de novas terapias. 

Atualmente diversas classes terapêuticas tem sido estudas e entre elas a terapia celular tem 

ganhado crescente atenção na comunidade científica. 

Estudos recentes do nosso laboratório evidenciaram o potencial a aplicação de células 

estaminais mesenquimatosas (MSC) como agente terapêutico para o SNC, no qual o seu 

secretoma (fatores tróficos e vesículas) tem sido descrito como o principal mecanismo de ação, 

capaz de estimular processos como a neurogénese, diferenciação neuronal, crescimento axonal 

e a sobrevivência de células gliais, processos essenciais para recuperação funcional do SNC. De 

fato, dados obtidos em modelos animais, de doenças como a doença de Parkinson ou lesões na 

medula spinhal mostraram aumentos da capacidade funcional, redução da area de lesão 

tecidual e redução da resposta inflamatória. Atualmente a assinatura molecular do secretoma 

é estudadar com objetivo de identificar os componentes responsáveis pelos efeitos benéficos e 

tem sido dada especial atencão às vesiculas extracelulares como exosomas e microvesiculas, já 

que estes norteiam a comunicação celular e tem a capacidade de alterar respostas teciduais a 

lesão em diversos modelos animais. 

Neste contexto, astrócitos apresentam elevada importância por estarem envolvidos em diversos 

processos homeostáticos no SNC, participando de eventos de neurotransmissão, regulação do 

fluxo sanguíneo e da neurogénese, bem como em respostas a lesões agudas ou doenças de 

caráter neurodegenerativo. Portanto, este projeto teve o objetivo de avaliar histologicamente, 

o papel dos astrócitos nos efeitos modulatórios promovidos pelo secretoma de MSC’s 

nomeadamente nos níveis hipocampais de proliferação e sob as densidades astrogliais. Para 

isso, foi utilizado um modelo animal transgénico que possui o complexo SNARE bloqueado 

denomeado dnSNARE. Neste modelo, ocorre uma importante redução significativa nos eventos 

exocitóticos reduzindo desta forma a transmissão astrocítica. Adicionalmente, a morfologia 

destes astrócitos foi estudada em resposta ao tratamento com o secretoma. Como controlos, 

foram usados murganhos C57BL/6 com transmissão astrocícita inalterada. Uma semana após a 

injeção do secretoma, os animais foram sacrificados e  procedeu-se à avaliações histológicas, 

para marcadores de proliferação e para marcadores de astrócitos. Os tecidos foram submetidos 

a immunohistoquímica para Ki-67 e GFAP e contramarcados para DAPI, e submetidos a 

microscopia confocal para obtenção de imagens em três dimensões. Foram feitas contagens de 

células proliferativas na zona sub-granular do hipocampo e no hílus, e para astrócitos na 

camada celular granular. O secretoma apresentou um papel estimulatório nos níveis de 

proliferação, evidenicados pelo maior número de células positivas para Ki-67 na zona sub-

granular do hipocampo nos animais wild type e sob menor dimensão nos SNARE high, 

evidenciando a importância da transmissão astrocítica neste processo. O secretoma aumentou 
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a  proliferação de celulas gliais radiais (RGC) apenas nos animais SNARE High, mostrando um 

possível efeito compansatório sob a redução da transmissão glial, o que poderá justificar a 

maior proliferação na zona sub-granular. 

Não foram encontradas deiferenças nas densidades astrogliais entre os diferentes grupos 

experimentais. 

Adicionalmente, os animais tratados com secretoma e que possuiam elevada expressão do 

transgene, SNARE High apresentaram característica morfologia hipertrófica e mais complexa 

em comparação com animais WT. Os animais com expressão do transgene baixa Snare Low 

apresentaram maior complexidade morfológica apenas marcada pela analise de Sholl. Salienta-

se que os resultados apresentados devem ser considerados com parcimónia dado a natureza 

exploratória do presente estudo. Vale a pena resaltar que é a primeira vez que este tipo de 

abordagens experimentais e análises é desenvolvido neste modelo animal.  
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Abstract 
 
 
The central nervous system (CNS) has a limited auto-regeneration capacity, which makes it 

challenging for the development of new therapies. Previous studies from our lab have 

demonstrated the applicability of mesenchymal stem cells (MSCs) as a possible therapeutic too 

for CNS, in which their secretome (e.g. the secretion of trophic factors and vesicles) has been 

described as the most probable mechanism of their therapeutic action, due to its ability to 

stimulate/modulate neurogenesis. Glial cells as astrocytes are important players in neural 

activity and in the modulation of neurotransmission, thereby being crucial elements in 

neurogenesis. Thus, in the present project, we aimed to evaluate the impact of astrocytes on 

the effects promoted by the application of MSCs secretome as a therapeutic tool for the 

modulation and generation of new neurons. For this, MSCs secretome was injected into the 

dentate gyrus (DG) of the hippocampus of a transgenic animal model (with the SNARE complex 

blocked) without astrocytic transmission, and therefore with their function partially depleted. 

Additionally, morphological features of astrocytes were assessed. As controls wild type Black 6 

mice, in which the astrocytic function has not been depleted were used. One week after 

secretome treatment, animals were sacrificed, and brains collected for molecular and 

histological analysis. Pre-frontal cortex tissue was used to perform a transgene analysis in order 

to divide the experimental groups in wild type (Wt), Snare high and Snare low (animals 

presenting different patterns of gene expression). Brains were immuno-stained for GFAP and 

Ki-67 and assessed under a confocal microscope for proliferations levels at the SGZ of the 

hippocampus, at the hilus, for counting of radial glial cells at the SGZ and for GFAP+ densities 

at the DG. Confocal images were also employed for morphological analysis. 

Results demonstrated increased levels of proliferation for Wt and Snare high animals at the SGZ 

when compared to Snare low when treated with secretome, furthermore, secretome increased 

levels of proliferating radial glial cell in Snare high animals. Morphological assessments revealed 

increased process hypertrophy and complexity in snare animals treated with secretome. The 

results could be attributed to trophic factors present in the secretome, previously shown to 

increase proliferation at the DG and also to alter astrocyte morphology. The impact of 

transgene expression is harder to explain, nevertheless, impaired exocytosis from astrocytes 

could have implications for the response to a proliferative stimulus given the established 

autocrine signaling trough this mechanism. 
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Chapter 1 – Introduction 
 

1.1. The central nervous system regenerative capacity 

Central nervous system regeneration is a hard feature to achieve in the human diseased brain. 

Although other species such as the zebra fish and even rodents present considerable 

regenerative capacity, traumatic lesion to the human brain have devastating effects with 

severe life-threatening risk and strongly associated co-morbidities (Williams et al., 2014; Otero 

et al., 2018).  

In fact, this inherent incapability for regeneration was challenged by Santiago Ramón y Cajal 

more than 90 years ago, the results of the experiments were published in his book entitled 

Regeneration and Degeneration of the Nervous System for the first time in English in 1928. This 

results presented compelling evidence for the possibility of growing axons either from 

peripheral or central nervous tissue in response to the exposure to growth-promoting substrates 

originated from peripheral nerves, challenging his very own decree from only 2 years before 

“In adult centers the nerve paths are something fixed, ended, immutable. Everything may die, 

nothing may be regenerated” (DeFelipe, Jones, 1991) (Silver et al., 2015; Williams et al., 2014). 

Since then our understanding of the cellular and molecular basis of CNS trauma and 

degeneration have evolved as well as the research avenues that aims to one day provide system-

wide regeneration of the CNS tissue. 

In aiming for CNS regeneration, a list of barriers must be surpassed in order to subvert the 

damages caused by an injury or prolonged neurodegeneration, a graphic representation of this 

barriers as well as the mechanisms that gives support to regeneration is present in (Figure 1) 

at the end of this section. Firstly, and probably the most important feat to be achieved is a 

way of promoting neuroprotection of the local cell population but also fostering cell 

proliferation and differentiation. Secondly, the promotion of sustained and controlled axonal 

growth coupled with efficient remyelination that targets the enforcement of synaptic 

connections. Thirdly, angiogenesis needs to exist in order to provide metabolic support to the 

area in regeneration, and finally, the complete restoration of the local homeostasis is achieved 

after repair of the blood brain barrier. 

In the case of a traumatic injury to the CNS, laceration, contusion and compression are the 

three pillars of the first injury and the cause for the disruption of local homeostasis, it results 

in cell death, but also amplifies into a second wave of injury related mechanisms such as 

ischemia, ionic imbalance mediated cell death, glutamatergic excitotoxicity, inflammation and 

hemorrhage (Ahuja et al., 2017). This second injury thereby magnify the damage caused by the 

first insult ultimately leading to cystic cavity and astroglial scar. Therefore, strategies should 

target the mechanisms of secondary injury in order to prevent the amplification of damage to 

spread into functional areas (Silva et al., 2013). 
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Neuroprotection is a key aspect that is currently being given considerable attention and 

numerous studies using a diverse range of strategies aiming at neuroprotection, did accomplish 

positive functional outcomes (Santamaria and Guest, 2017). 

Currently, some drugs are now being tested in clinical trials with mechanistic goals ranging 

from (excitotoxicity reduction, hemorrhage and inflammation control, and promotion of neurite 

sprouting, or angiogenesis). (Ulndreaj et al., 2017). 

Additionally, emerging therapies such as stem cell therapy are under intense pre-clinical 

investigation. In this context mesenchymal stem cells (MSC’s) are promising due to their ability 

to reduce inflammation, and most importantly due to the secretion of neurotrophic factors that 

have been shown to promote neuroprotection. (Squillaro et al., 2016; Inês et al., 2019) 

In regard to axonal damage and regrowth, their molecular characteristics are complex and, 

currently not fully established, nevertheless, according to the current evidence, it is possible 

to make some considerations, in this sense, axonal damage varies according to cell type, injury 

type and severity and also affected area. It is known that upon injury, a myriad of events takes 

place ultimately leading to axonal degeneration. (Egawa et al., 2017) For instance, the 

disruption of cell membranes leads to disrupted metabolic coupling among neuron and glial 

cells generating an environment of neuronal energy and metabolite deficiency, the 

dysregulation of ionic gradients for instance causes intracellular signaling pathway disturbance 

and microtube cytoskeleton destabilization, what together culminates in axonal dieback from 

both ends. (Filous et al., 2017; Silver et al., 2015). 

Attempts of intrinsic neuronal regeneration have been reported, and those showcase the 

existence of regenerative mechanisms contained within neurons that unfortunately are often 

hampered by molecules of glial origin such as myelin and proteoglycans as both present a strong 

inhibitory potential against axonal regeneration, demonstrating that axonal injury may not be 

a static end point, but probably a phenomenon that can be modulated, prevented or even 

reversed. (Willians et al., 2014; Aboul-Eneinm et al., 2006) 

It is now becoming increasingly evident of how important glial cells are for the fate of axonal 

regeneration and now it is recognized that by creating an extrinsic environment filled with 

negative cues they hinder the already limited neuronal regenerative potential. Therefore, 

strategies targeting the modulation of glial cells combined with others aiming to boost the 

neuronal intrinsic regenerative potential are likely the ones to achieve better outcomes 

(Willians et al., 2014). 

For instance, reactive astrocytes could be targeted to reduce the rates of chondroitin sulfate 

proteoglycan (CSPGs) production, an extracellular matrix component known to hamper axonal 

regeneration, additionally, strategies aiming to reestablish astrocyte-neuron metabolic 

coupling could be feasible to support neurons overcoming metabolic death (Escartin and 

Rouach, 2013; Siebert and Osterhout, 2011; Bradbury et al., 2002). 

Accordingly, dysfunctional oligodendrocytes and myelin derived proteins such as Nogo-A, MAG 

(mielin associated glycoprotein) and OMgp (oligodendrocyte/ myelin glycoprotein) are a 

promising target as they have been shown to promote growth cone collapse and neuronal 
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growth arrest mediated by a CREB inactivation mechanism. For instance, the presence of 

neurotrophic factors can counteract their actions as they elevate cAMP and P-CREB as well as 

mTOR, a potent growth promoting protein show to strongly promote axonal sprouting and 

growth. (Liu et al., 2011; Giger et al., 2010) 

Regarding the inflammatory response related to axonal damage, a specific role for microglia 

and macrophages have been established a long time ago where the injection of pyrogens 

induced an increased leukocyte presence at the lesion site that was correlated with better 

neurological recovery as well as reduced intralesional scarring in dogs. (Guth et al., 1994; Guth 

et al., 2006). 

The findings were confirmed decades later in spinal cord injured rats, where LPS treated 

animals presented higher intraspinal leukocytosis that correlated with a robust axonal growth 

and functional recovery (Kiger et al., 2009). The understanding of the inflammatory reaction 

to the spinal cord injury grew since then, and now it is understood that the increased presence 

of higher numbers of the polarized M2 macrophage the so-called anti-inflammatory macrophage 

is superior when compared to M1, the inflammatory sub-type. The reason for this might be 

explained by the fact that M2 cells release activin-A, a molecule that enhances remyelination 

dependent on oligodendrocyte progenitor cell differentiation (OPCs) (Miron et al., 2013).  

Although there is a current lack of in-vivo evidence to support the positive role of M2 cells in 

the promotion of axonal regeneration, infusion of IL-4 into guidance chambers implanted into 

injured sciatic nerves promoted M2 polarization together with Schwann cell migration 

culminating in enhanced axonal regeneration (Mokaram et al., 2012). 

Furthermore, in a model of spinal cord injury, systemic injection of IL-4 was able to promote 

increased functional recovery as well as a reduction in the number of cells expressing 

inflammatory markers such as CD11b/c and iNOS, accordingly, levels of the anti-inflammatory 

cytokine IL-10 rose considerably in the serum after treatment (Lima et al., 2017).  

Taken together, the existing evidence on the possibility of axonal regeneration is multifaceted 

and a positive outcome will likely arise from an integrated approach that focus at turning the 

intrinsic genetic neuronal machinery for regeneration on, with the modulation of the external 

cues in order to promote a more supportive environment for axonal regrowth. 

Essentially, after axonal growth, remyelination presents itself as the next challenge to be 

achieved, and although myelin contains inhibitory proteins for axonal growth, the myelin sheath 

and myelinating oligodendrocytes are critical for proper axonal function. (Zhang et al., 2013; 

Maki et al., 2013) In fact, the presence of OPCs (oligodendrocyte progenitor cells) have shown 

to be important for the generation of mature myelinating oligodendrocytes during injury states. 

Additionally, OPCs may support axonal regrowth trough the creation of a permissive 

environment mediated by the B-catenin signaling pathway, and they are now being explored as 

possible candidates for cell therapy targeting remyelination in different animal models of 

demyelination. (Kim et al., 2015; Wang et al., 2013; Rodrigues-Frutos et al., 2016) 

Another important hallmark to address in order to create an environment that fosters CNS 

regeneration is the reestablishment of the local microvasculature. Angiogenesis is a 
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phenomenon that shares conserved molecular constituents to the axonal guidance phenomena. 

It is a process that starts early in life to ensure adequate delivery of oxygen and nutrients to 

the developing brain. (Wang et al., 2017)  

Upon brain or spinal cord injury, depending on how severe the damage is, disruption of the 

blood brain barrier (BBB) and blood vessel rupture takes place, and data shows that the 

reassembling of such structures plays a remarkable importance in reestablishing a homeostatic 

environment to support regeneration. (Tata et al., 2015)  

Recently, a study on rats subjected with spinal cord injury found that increases in angiogenesis 

correlated with increases in functional recovery as well as sparring of white matter after a 

treatment with platelet rich plasma (PRP) injection (Chen et al., 2018). The authors attributed 

the effects to the angiogenic state created by PRP and also revealed the mechanism for such 

action, pointing for a role of angiopoietin-1 (Ang-1) Tie-2 pathway in mediating the effects 

encountered, additionally the researchers attested for the presence of an array of angiogenesis 

promoting molecules  such as PDGF and VEGF, contained in PRP. 

Additionally, a more mechanistic study found that the delivery of angiogenic microspheres 

containing VEGF, Ang-1 and FGF-2 was able to promote neural regeneration and motor function 

gains together with neurogenesis in rats subjected to spinal cord injury. (Yu et al., 2016). The 

authors discuss the importance of the sustained delivery of such angiogenic molecules to the 

promotion of a supportive environment for the intrinsic angiogenic response that takes place 

after SCI, interestingly the presence of such molecules prevented vessel regression 7 days after 

injury being able to further increase functional vessel density (Yu et al., 2016). 

Despite of the clear role of oxygen and nutrient provision and CO2 and metabolite removal 

provided by new vessel formation, another study presented an interesting result that 

strengthens the importance of angiogenesis for CNS regeneration, as the sole presence of new 

vessels, induced axonal sprouting trough prostacyclin production in as experimental model of 

encephalomyelitis, showing not only the importance of local blood flow but also the existence 

of local molecular signaling between capillary endothelial cells and neurons at the injury site. 

(Muramatsu et al., 2012) 

Together with the lesion site revascularization, reestablishment of the blood brain barrier (BBB) 

is essential to achieve regeneration, as the BBB promotes the interface with blood born 

inflammatory cells and mediators, promoting its functionality is crucial to reduce inflammation 

and restore local homeostasis (Bejjani et al., 2016; Alves et al., 2014). 

For instance, in the event of a neurotrauma the disruption of vasculature integrity leads to the 

entrance of blood derived molecules into the brain (Chodobski et al., 2011). Fibrin for example, 

acts on microglia increasing its phagocytic activity, thrombin, ramps up the production of NO 

(nitric oxide) as well as stimulating its proliferation, and inflammatory cytokines (IL-6 and IL-

12) production (Adam et al., 2007; Moller et al., 2000; Ryu et al., 2000). 

Similarly, albumin also acts on microglia inducing the production of NO (nitric oxide) and IL-1β, 

astrocytes are also responsive to the presence of albumin at the CNS, by expressing receptors 

to TGF-β receptor 2 (Ralay Ranaivo and Wainwright, 2010). Apart from these “strict” blood 
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born molecules, other, parenchymal derived substances exert important roles on the 

dysfunction of the post-traumatic BBB. Glutamate for instance, is released from various 

parenchymal cells including infiltrating neutrophils and increases BBB permeability (Palmer et 

al., 1993). Reactive oxygen species (ROS) have the ability to not only increase BBB permeability, 

but also allows the invasive capacity of inflammatory cells by inducing the overexpression of 

cell adhesion molecules such as intracellular adhesion molecule 1 (ICAM1), a similar effect is 

caused by the presence of TNF-α and IL-1β, these cytokines, up regulate the expression of E-

selectin, and vascular cell adhesion molecule 1 (VCAM1), in addition, these cytokines promote 

inflammation by increasing the production of chemokines (CXCL1-2 and CCL-2) by endothelial 

cells and astrocytes leading to increased leukocyte invasion (Bradley et al., 1993; Hess et al., 

1994; Stanimirovic et al., 1997) . 

Matrix metalloproteinases (MMP) also have an important role in BBB post injury dysfunction, 

they are produced by many cell types including invading leukocytes and act degrading the basal 

lamina proteins as well as tight junction therefore disrupting BBB integrity. (Cunningham et 

al., 2005; Yang et al., 2007). 

Taken together, the data mentioned above clearly states the obvious importance of the BBB as 

a central player in future strategies for CNS regeneration, it also highlights the past flawed 

view that a single molecule would be able to recapitulate the functionality of the BBB once its 

disrupted, and take us to the future where a more holistic approach will certainly be the best 

option for the design of new and efficient therapeutic strategies. 

New and exciting alternatives are paving the way for effective therapies aiming at regenerating 

the damaged CNS, the next chapter will provide an overview of the field of cell therapy for 

CNS regeneration giving special attention to the use mesenchymal stem cell and its derived 

products. 
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1.2. Mesenchymal stem cells as a regenerative tool 
 
The history of using cells to promote a desired therapeutic outcome is rich and long, for 

instance, over the last 50 years, over a million hematopoietic stem cell transplants (HSCT) 

have been performed, putting HSCT as the most well-established cell therapy currently in 

clinical use. Nevertheless, most cell-based therapies are experimental, with few exceptions 

reaching clinical trials, in fact, recent analysis have shown that the majority of cell-based 

therapies are still at early stage of development (clinical trials of phases 1 and 2) focusing on 

clinical safety and early signs of efficacy respectively (Trounson et al., 2015; Gratwohl et al., 

2015). 

Cell therapy could be classified according to clinical therapeutic indication, e.g. 

cardiovascular, neurological or ophthalmological; or if they are isolated from and destined to 

the same patient (autologous) or if they are transplanted into another individual (allogeneic) 

transplantation. Additional definition is provided by the EU and discriminates between 

minimally manipulated cells destined to homologous usage (transplants or transfusions) or those 

classified and regulated as medicine referred to as (Advanced Therapy Medicinal Products, 

ATMP’s) which are the ones required to demonstrate, quality, safety and efficacy standards in 

order to obtain marketing authorization before becoming commercially available. (Weissman 

and Shizuru, 2008) 

ATMP’s are further divided into gene therapy, somatic cell technology or engineered products 

and currently, the so far approved ATMP’s includes not only somatic cells such as dendritic cells 

Figure 1. Highlights the physiopathologycal mechanisms that takes place after an injury as well as the 
physiological phenomena that needs to happen in other to promote regeneration to the CNS.  (In red): 
physiopathological mechanisms and (in blue) the regenerative mechanisms. Abbreviations: BBB, blood 
brain barrier. 
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(Provenge®), cartilage-derived chondrocytes (ChondroCelect® and MACI®) and conreal limbal 

stem cells (Holoclar®), but also, in vivo gene therapy (Glyberra®). 

The rapid progress made in the field and the strong presence of somatic cells leading such 

innovations, confirms the importance of this area of research. 

Although the field of somatic cell technology is not only comprised by stem cells, most of what 

has been done at the pre-clinical and translational level is related to those cells. In fact, several 

hundred clinical trials using mesenchymal stem cells (MSC’s) or subpopulations of MSC’s are 

currently ongoing around the world and several of them are of phases 2 or 3 (Li et al., 2014). 

At figure 2, a graphic scheme summarizes the main tissue sources, advantages regarding 

therapeutic applicability. 

Indeed, in comparison to other cells, MSC’s do not present the same ethical constraints as 

embryonic stem cells nor they have the technical disadvantages of isolation and further 

expansion when compared to other cells such as neural stem cells (Salgado et al., 2010). 

Furthermore, MSC’s present a general immunosuppressive characteristic upon transplantation 

becoming a great candidate for allogeneic transplantation as well as being a good candidate 

for in vitro genetic manipulation aiming for the expression of proteins with regenerative 

interest (Dai et al., 2005; Meng et al., 2018). 

In addition, important aspects put MSC’s in an interesting position as a therapeutic tool for 

multiple conditions, for instance, their widespread availability limits the concerns regarding 

the amount of starting material as well as the need for invasive techniques of cell harvest.  

(Teixeira et al., 2017). 

Furthermore, as research advances, more tissue sources are identified as candidates, often 

presenting MSC’s with unique therapeutic applications, at the moment, researchers have been 

able to isolate MSC’s from mostly bone marrow, adipose tissue, birth derived tissues (umbilical 

cord’s blood and Warton’s jelly, amniotic fluid and placenta), dental pulp, peripheral blood, 

and skin, as seen in figure 2 (Gronthos et al., 2000; Teixeira et al., 2013; Niezgoda et al., 2017). 

Also, a smaller number of reports found them present and were able to successfully isolate, 

characterize, proliferate and pre-clinically study MSC’s from synovial fluid, endometrium, 

muscle and brain. (Jones et al., 2008; Xu Y et al., 2015; Paul et al., 2012) 

Another important characteristic is the fact that MSC’s present great proliferative potential 

with minimal senescence across multiple passages. It is worth pointing out that, some studies 

have identified a breaking point of when the cultured cells start to become considerably 

senescent, changing its differentiation capacity, reducing its proliferation and also the profile 

of secreted neuroregulatory proteins (Serra et al., 2018). Therefore, it is currently advisable 

that for therapeutic purposes, the number of passages as well as the age of the donor are to 

be given thoughtful consideration (Bonab et al., 2006; Gu et al., 2016). Notwithstanding, MSC’s 

can additionally be genetically engineered to over-express desired therapeutic proteins, in 

order to improve its regenerative performance trough different approaches ranging from 

different viral vectors, liposomes, siRNA and CRISPR (Borger et al., 2017; Gerace et al., 2017). 
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In light of such complexity and in order to standardize and promote its full characterization, it 

was introduced in 2006 by the International Society for Cell Therapy (ISCT), the minimal criteria 

for identification of MSC’s, the publication defines them as being a plastic adherent, multi-

potent population capable of differentiate down the osteogenic, adipogenic and chondrogenic 

lineages, expressing the membrane antigens CD105, CD90 and CD73, while presenting negative 

expression of classical hematopoietic markers such as CD44 and CD35. (Dominici et al., 2006) 

In fact, many in vivo reports had encouraging uses for MSC’s in a multitude of conditions ranging 

from spinal cord injury (SCI), bone marrow recovery in cancer patients, Parkinson’s disease, 

stroke and graft versus host disease (GVHD), despite of such positive data, the mechanisms of 

action behind those effects were uncertain (Koc et al., 2000; Li et al., 2001a; Li et al., 2001b; 

Ikehara et al., 2003). 

Mechanistically, in the late nineties trough to the early two thousand, their regenerative 

potential was attributed to two main aspects, firstly, many studies have showed MSC’s to have 

a great migratory potential towards any given lesion site, with results showing migration and 

homing capacities to the heart after allograft transplantation, to the brain after nerve injury, 

to the bone marrow after metabolic storage disorder, and to the kidney following acute tubular 

damage (Wu et al., 2003; Wynn et al., 2004; Herrera et al., 2007). 

The mechanism behind this homing capacity was revealed to be from an interaction between 

chemokines such as SDF-1 and fraktalkine released from the damaged tissue and chemokine 

receptors expressed by the MSC’s such as CXCR4 and CX3CR1. (Ji et al., 2004) 

Together with this homing capacity, the ability to differentiate into new and functional cells, 

replacing damaged ones to recover tissue homeostasis was the mechanism believed to mediate 

their actions (Pittenger et al., 1999; Bruder et al., 1998). At around the same time, several 

reports indicated that MSC’s could have an even greater differentiation capacity being able to 

differentiate beyond the mesodermal lineages, in fact, a genome wide, gene expression 

analysis, found expression profiles of not only mesenchymal traits but also, endothelial, 

epithelial and neuronal lineages (Tremain et al., 2001). Although later studies showed MSC’s 

aptitude to present neuronal-like morphology, the experiments revealed this to be an artifact 

of stressors in the culture conditions that led to cytoskeletal collapse, phenomena that could 

be mimicked by the use of actin cytoskeleton-disrupting pharmacological agents (Kemp et al., 

2011). Additionally, albeit there seems to be an in vivo potential for trans-differentiation of 

the engrafted MSC’s into neuronal or glial progenitors, the rates by which such event happen 

(1-5% of cells respectively) would hardly explain any of the increased functional results 

presented by such studies (Salehi et al., 2016) Furthermore, cell-fusion events have also been 

demonstrated to occur in vivo upon transplantation by different mechanisms to those of trans-

differentiation, but in the same way, the frequency by which such phenomenon occurs with 

fusion rates of 2-11 clones per million cells clearly deem this process unlikely to be the one 

behind the promotion of any of the functional results (Terada et al., 2002; Woodburry et al., 

2000). 
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Nevertheless, up until that point and without clear notion of the mechanisms behind MSC’s 

actions, a considerable number of evidences was mounting regarding its beneficial impacts for 

regenerative purposes, especially for CNS applications. (Maltman et al., 2011) 

A few years later, Gnechhi and colleagues, in 2005, published a paradigm shifting research, 

revealing the most probable mechanism of action for the MSC’s, opening a field for different 

ways and technologies to be explored in the way researchers used these cells for therapeutic 

purposes. His results demonstrated that the therapeutic potential of MSC’s was mostly related 

to the secretion of growth factors to its extracellular environment rather than to their 

differentiation potential. (Gnechhi et al., 2005). 

Indeed, a few years earlier, an array of different growth factors such as brain derived 

neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3),  

fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF), hepatocyte 

growth factor (HGF) and ciliary neurotrophic factor (CNTF) were identified  in the culture media 

of such cells after exposure to an ischemic brain extract confirming their paracrine capacities 

(Chen et al., 2002). 

Whereas the secretome nowadays, is widely accepted as one of the main drivers behind the 

therapeutic potential of MSC’s, it is worth mentioning that the sole presence of these cells in 

a damaged tissue present benefits, namely by contact mediated trophic support (Donders et 

al., 2015; Scuteri et al., 2014). 

Another important regenerative mechanism that have only recently began to be explored, is 

the MSC’s capacity to transfer functional organelles such as lysosomes and mitochondria to 

neighboring cells trough tunneling nanotubes (TNT) and extracellular vesicles (EV’s). 

The current research on the topic is new and comes mostly from in vitro and in vivo models of 

respiratory system inflammation or ischemia-reperfusion injury in the contexts of lung and 

heart disease (Murray and Krasnodembskaya, 2019). 

Transfer of mitochondria from MSC’s have been reported to happen between endothelial, 

epithelial, cardiac, renal and immune cells and is followed by physiological enhancement of 

oxidative phosphorylation and ATP production having important implications in the recipient 

cell bioenergetics (Hsu et al., 2016). Such process can be mediated by microvesicles, apoptotic 

bodies and TNT, and it shows to be protective against chronic obstructive pulmonary disease 

and asthma mouse models (Islam et al., 2012). Furthermore, EV-mediated transfer of 

mitochondria to macrophages, increases ATP turnover and enhances phagocytic activity in 

vitro, additionally TNT-mediated mitochondrial transfer promoted macrophage bioenergetics 

and improved phagocytosis in vitro and in models of Escherichia coli-induced lung injury 

(Phinney et al., 2015). 

In another context, TNT-mediated mitochondrial donation from MSC’s to cardiomyocytes 

improves bioenergetics as well as reduces apoptosis, interestingly the reverse transport also 

occurs in moments of oxidative stress when cardiomyocytes can transfer mitochondria to MSC’s 

triggering anti-apoptotic responses (Koyanagi et al., 2005). 
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Lysosomal transfer induces the maintenance of both lysosomal pH and pool during physiological 

stress, reducing the risk of early apoptosis and senescence of endothelial cells in the case of a 

vasculopathy. Transfer of lysosomes was shown to happen trough TNT endothelial progenitor 

cells (EPC’s) and endothelial cells inducing the rescue of vascular function through mediation 

of vaso-relaxation properties in models of diabetic-induced vascular senescence. (Yasuda et 

al., 2011) 

Such mechanisms, although underexplored at the moment, represent novel and important 

features of MSC’s in maintaining a responsive communication to its microenvironment and even 

at this point there is existing data to support the transfer of mitochondria and lysosomes as 

important mechanisms behind the therapeutic effects of mesenchymal stem cell therapy.  

 

1.3. Secretome of mesenchymal stem cell 

Since the beginning of its usage, the term cell secretome have gained more context, reaching 

areas even outside of stem cell biology or regenerative medicine, for that reason an accurate 

conceptual definition is hard to be made given the complexity of the biological processes it 

entails. Nevertheless, secretome could be broadly defined as the myriad of molecules secreted 

by any given cell, including (proteins, extracellular vesicles, signaling lipids, metabolites and 

even whole organelles). A graphic depiction of the molecular complexity of the secretome as 

well as identified CNS processes that it modulates can be found in figure 3. 

Further in this section, data from interventional studies applying the secretome for CNS 

regeneration purposes will be discussed (Praveen et al., 2019; Teixeira et al., 2013). 

Figure 2. Tissue origin and phenotypical characteristics of MSCs. MSCs are distributed throughout the 
different tissues of the body, increasing the number of tissue sources for isolation, they present 
multilineage differentiation potential and possess a high proliferative capacity, additionally, they can 
be easily cultured in vitro and manipulated using different culture technologies and genetic 
engineering to increase its regenerative potential. Abbreviation: CRISPR, clustered regularly 
interspaced short palindromic repeats. Adapted from: Merino-González., et al 2016. 
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MSC’s secretome has been shown to be extremely responsive to changes in the environment in 

which the cells are cultured, and as a regenerative product, it offers endless possibilities for 

modulation of its trophic potential depending on the type of MSC used as well as the culturing 

protocol of choice. For instance, the usage of hypoxic culture condition has been shown to 

increase the neuroregulatory profile of the secretome of MSC’s, moreover, secretome collected 

from cells cultured in dynamic bioreactors have a higher profile of trophic factors and is able 

to induce higher levels of neuronal proliferation and differentiation in vivo when compared to 

the secretome from MSC’s cultured in static conditions. (Teixeira et al., 2015; Teixeira et al., 

2016)  

Additionally, when primed with pro-inflammatory cytokines, bone marrow MSC’s (BMMSC’s) 

secretome presented higher levels of TIMP-1 a key anti-angiogenic protein, furthermore, 

pharmacological preconditioning has also been shown to induce changes in BMMSC’s and ADSC’s 

conditioned media showcasing the broad possibilities for modulation of the trophic profile of 

the secretome (Maffioli et al., 2017; Ferreira et al., 2018). 

Nowadays, such molecular changes in the secretome can be verified and characterized with 

the aid of multiple technologies, although we should recognize that more robust techniques 

with smaller detection limits would benefit the field immensely, which by allowing the total 

molecular characterization of the secretome would enable the full understanding of its 

mechanistical properties (Teixeira et al., 2017). 

At the moment, proteomic-based techniques are the most common for secretome 

characterization, reflecting the importance of the proteomic research field for general 

biomedical science, in this sense, techniques such as 2D-eletrophoresis, multiple liquid 

chromatographic techniques, mass spectrometry, multiplex-type essays and ELISA (enzyme-

linked immunosorbent assay) are the ones most used (Teixeira et al., 2017). 

Alternatively, and with an aim directed to metabolomics, nuclear magnetic resonance (NMR) 

spectroscopy can be employed to study the metabolic composition of the secretome (Pereira 

et al., 2014). 

As a matter of fact, several characterization studies based on proteomics have been carried 

out in the past few years, in which most of them were targeted to clarify differences among 

the secretome of different MSC’s population. In that sense, data from a LC-MS/MS study showed 

clear differences between the secretory potential of MSC’s derived from bone marrow, adipose 

tissue or umbilical cord tissue, the analysis revealed the expression of 451 different proteins, 

being 134 of them common among all three cell populations and in spite of such differences all 

cells presented relevant expression levels of important neuroregulatory proteins, which in the 

context of the study, answered important mechanistic questions from in vivo interventional 

studies. For instance, BMMSC’s secretome expressed important protective proteins against 

oxidative stress and apoptosis, whereas ADSC’s secretome presented expression profiles 

important for the prevention of excitotoxicity and inflammation, lastly, the secretome of 

umbilical cord perivascular cells (HUCPVC’s) showed to be appropriate to increase proteostasis 

and to reduce apoptosis (Pires et al., 2016). 
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Similar results were obtained from mass spectrometry analysis of the secretome from stem 

cells of the dental apical papilla (SCAP’s) in comparison to BMSC’s secretome, only this time, 

the number of identified proteins were higher (2,046) given the lower detection limit of the 

applied method, the results reviewed some degree of overlap between the two secretomes, 

but also highlighted differences among them, for instance SCAP’s presented increased secretion 

of proteins involved in metabolic processes, transcription, chemokines and neurotrophins and 

decreased secretion of proteins involved with immunomodulation, angiogenesis and 

developmental processes. (Yu et al., 2016) 

Although, extremely relevant, an important caveat of such proteomic data from mass 

spectrometry is the type of fractionation applied to the sample in order to increase the 

sensitivity of the measures, for instance, the different biogenic pathways that produce the full 

composition of the proteome that makes up the secretome is lost, in that sense, previous 

fractionation of the secretome would be advisable, specially, taking into account the fact that 

the secretome is composed not only of soluble proteins but also by extracellular vesicles with 

a rich protein content (Anjo et al., 2016; Yu et al., 2016).  Therefore, analyzing the two 

fractions (soluble protein fraction and vesicular fraction separately would give us insight into 

the complex mechanisms behind the physiological responses to the secretome. 

When applied to in vitro and in vivo models of CNS diseases, the use of MSC secretome is shown 

to present promising results, for instance, in Parkinson’s disease , secretome usage is shown to 

improve cell survival of TH+ dopaminergic neurons in culture as well as protect them against 

neurotoxicity caused by MPTP and 6-OHDA toxins, two clinically relevant toxins used in 

Parkinson’s disease models. Furthermore, in vivo application of MSC secretome has shown to 

rescue the parkinsonian phenotype by reducing local inflammation and oxidative stress, as well 

as maintaining the TH circuitry of animals injected with 6-OHDA, similar effects were also 

encountered with the employment of undifferentiated hNPC’s (human neural progenitor cells) 

secretome in the same disease model. Such regenerative outcomes were associated with the 

presence of secreted trophic factors, BDNF, IL-6, glial cell-line derived neurotrophic factor 

(GDNF), cystatin C, glia-derived nexin, galectin-1, pigment epithelium-derived factor (PEDF), 

vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), (FGF-2), 

endothelial growth factor (EGF), anti-inflammatory, IL-10 and TGF-β, anti-oxidant proteins, 

peroxiredoxin-1, superoxide dismutase and protein deglycase (DJ-1) and extracellular matrix 

enzyme MMP-2 (matrix metalloproteinase 2). (Cova et al., 2010; Park et al., 2012; Kim et al., 

2009: Teixeira et al., 2017; Pinheiro et al., 2018). Such pre-clinical data moved research into 

early clinical trials of safety and efficacy assessment of BMSC or UC derived MSC’s. Currently 

two studies are undergoing patient recruitment and one is currently active. (NCT03550183, 

NCT02611167, NCT03684122. 2019, Clinical Trials.gov National Library of Medicine) 

Regarding spinal cord injury (SCI), several reports have showed that the secretome from MSC’s 

modulates important physiological hallmarks associated with improved disease outcome, for 

instance, in vitro and in vivo data, supports  the use of secretome for axonal sparring, reducing 

inflammation and apoptosis and maintaining levels of myelination thus promoting axonal 
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regeneration, neurite outgrowth and glial scar reduction, which in turn mediates functional 

recovery. Such results demonstrate that the presence of trophic factors in the secretome such 

as BDNF, VEGF, NGF, IL-6, SDF-1α, HGF and GDNF were responsible to drive those mechanisms   

(Cantinieaux et al., 2013; (Ciskova et al., 2018; Szekiova et al., 2018; Kingham et al., 2014; 

Wright et al., 2010). Indeed, such results encouraged researches to move forward, and several 

clinical trials exploring the role of MSC’s transplantation are now undergoing.  

Recently, a metanalysis of a systematic review from MSC’s transplantation data in humans was 

published comprising eleven studies and 499 patients, the results reviewed encouraging 

improvements in sensory and bladder functions although, no differences were seen in motor 

function or activities of daily living (ADL) when compared to controlled groups. (Xu and Yang, 

2019). Such data reveal the potential clinical applications for interventions in sub-acute SCI 

lesions and encourage the exploration of other treatment strategies such as different routes of 

administration, use of the secretome with or without cell therapy and also the exploration of 

combined strategies. 

Indeed, more recently, MSC-derived extracellular vesicles, including exosomes and micro-

vesicles are being studied for their role in MSC-based cell therapy, such vesicles have been 

shown to at least partially mediate cell-cell communication, cell signaling and also influence 

cellular metabolism locally or at distant organs, furthermore, studies have found them able to 

modulate responses to injury, such as inflammation, and cell survival ultimately influencing 

disease onset, progression and therapy (Phinney and Pittenger, 2017; Rosca, et al., 2017). 

Extracellular vesicles are an heterogenous class of lipid bilayer vesicles containing a diverse 

cargo. In order to be characterized, EVs could be assigned to their biogenesis pathway within 

the cell, although, such characterization requires the correct imaging technique to be 

employed and should capture the exact moment of release by using techniques such as electron 

or atomic force microscopy (Lotvall et al., 2014).  Instead, a more traditional characterization 

is achieved accordingly to morphological features and specific membrane marker expression 

patterns. For instance, vesicles coming from endocytic origin are normally termed exosomes, 

and vesicles coming from the shedding of plasmatic membrane are usually referred to as 

ectosomes (micro-vesicles or microparticles) (Thery et al., 2018). 

Morphologically, exosomes present diameters in the range of 30 to 150nm whereas ectosomes 

could present diameters of a 100nm to more than one micrometer, Nevertheless, the current 

MISEV, 2018 guideline suggests a division defined by ranges, where vesicles that are smaller 

than 100nm or not bigger than 200nm should be referred to as (small EV’s) and vesicles that 

are bigger than 200nm should be called (large/medium EV’s). Additionally, they can be 

categorized by its density (low, middle or high), and also, biochemically based on known 

membrane markers such as (Annexin A5, CD63, CD9, CD81, TSG-101, HSP-70 and many others). 

(Thery et al., 2018) 

The biogenesis of exosomes follows the typical endocytic pathway, where transmembrane 

proteins are endocytosed and trafficked to early endosomes, those early endosomes mature 

into late endosomes in a process where the endosomal membrane invaginates generating intra 
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luminal vesicles (ILV’s), as a result, the multivesicular bodies (MVB’s) are formed and are 

destined to the plasma membrane for exocytosis. The process of intraluminal vesicle formation 

is governed by sphingomyelinase 2 and is ceramide dependent, whereas the formation of MVB’s 

is governed by the ESCRT machinery, a protein arrangement formed by four different protein 

complexes (Zorec et al., 2016). 

The fusion of the MVB’s to the plasma membrane is mediated by different proteins of the Rab 

family (Ras superfamily of small GTPases) Rab 11, Rab 27 and Rab 35, and its contents are 

released to extracellular environment (Qin and Xu, 2014). 

Although far less complex, the biogenesis of ectosomes also involves both the ESCRT machinery 

and ceramide, being controlled by the interaction of ARRDC1 (Arestin) and tumor sensitive gene 

(TSG-101), a process that allows for the assembly and budding of the vesicles. The size of 

ectossomes can vary broadly, and EV’s of over 4µm in diameter have also been reported. Such 

large sized EV’s present a specific membrane shedding marker, β1-Integrin, and also exhibits 

in its outer leaflet acid sphingomyelinase and phosphatidylserine, they can contain whole 

organelles such as lipid droplets and even mitochondria, and although the physiological 

relevance of its release has not yet been fully revealed the possibility that they can represent 

apoptotic bodies remains plausible. (Bianco et al., 2009; Bianco et al., 2005) 

Additional to the already verified positive effect of the secretome and its existing protein 

content, early investigations are being made in the context of further characterization of the 

vesicular component of the secretome aiming for better understanding of the molecular 

mechanisms governing such findings. In fact, the possibility exists that at least some of the 

proteins already identified as composing the soluble portion of the secretome are also present 

inside extracellular vesicles such as exosomes and, in fact, BDNF, FGF, VEGF, MMP’s, HGF, IL-

10, TGF-β have been found to be expressed in MSC exosomes (Chisanga et al., 2015) . 

Furthermore, many interventional reports now have data from in vitro and in vivo experiments, 

where the role of MSC’s derived exosomes is evidenced, for instance in the promotion of 

angiogenesis, immunomodulation and myogenesis as well as in the reduction of oxidative stress 

and apoptosis, having strong implications for, hearth, kidney and autoimmune diseases (Jing et 

al., 2018). In what concerns CNS pathologies additional benefits were also observed, for 

instance in stroke, exosomes from MSC’s mediated neurite outgrowth and functional recovery 

by the delivery of mIR-133b in vivo (Xin et al., 2016). Similarly, in TBI they were shown to 

reduce neuroinflammation by suppressing microglial and astrocyte activation and also by 

inducing neurogenesis by stimulating neurogenic niches (Yang et al., 2017). Such tendency was 

also observed in SCI where MSC’s exosome injections presented modulatory effects of 

inflammation and regeneration what led to functional recovery in rats. (de Rivero et al., 2015) 

In neurodegenerative diseases such as Alzheimer’s, exosomes from ASC’s were shown to express 

functional neprilysin (NEP) capable of degrading Aβ aggregates 40 and 42, and in Parkinson’s 

where the presence of catalase in MSC exosomes presented strong neuroprotective function in 

the 6-OHDA rat model (Katsuda et al., 2013; Chang et al., 2018). 
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Although extremely encouraging, the results mentioned above gives rise to an important 

mechanistical question, of where is the beneficial impacts of MSC’s secretome therapy coming 

from? The evidence is clear that either the secretome as a whole or the isolated extracellular 

vesicles and exosomes possesses a huge potential when applied to different pathological 

contexts. A solution to this question would emerge from carefully designed studies aimed to 

test in the same disease context and population, not only the secretome as a whole but also a 

second arm with the isolated EV’s and a third arm with the soluble proteins left from the 

isolation protocol from the same secretome batch. Coupling such study with a proper molecular 

characterization of each fraction would likely yield a huge amount of valuable information for 

the design of future therapies as well as clinical trials and will likely be decisive in the future 

of cell-free based therapies. 

 

1.4. Astrocyte functions in the CNS an overview 

The basis created in the first chapter will help the reader to understand the different molecular 

aspects necessary to support the different functional roles astrocytes have in the CNS. 

This sub-chapter will be divided into the most relevant and well-studied astrocytic functions 

aiming to construct a final picture that enables easy recognition of key targets for the 

understanding of pathophysiological implications as well as therapeutic opportunities. 

 

 

Figure 3. MSCs secretome molecular complexity and function. MSCs trough different secretory 
pathways secrete an array of molecules that modulate clinically relevant pathological hallmarks of 
numerous CNS diseases. Abbreviations: HSP-27, heat-shock protein 27; Gal-1, galectin-1; IL-6, 
interleukin-6; PEDF, platelet endothelial derived factor; PAI-1, plasminogen activator inhibitor 1; 
CADH2, cadherin-2; SEM7A, Semaphorin 7A; BASP1, Brain acid soluble protein 1; GDN, glial derived 
nexin; TRX, thioredoxin; CYPA, cyclophilin A; CYPB, cyclophilin B; CYSC, cystatin C; PRDX1, 
peroxiredoxin-1; DJ-1, protein deglycase-1  Adapted from: Phinney and Pittenger, 2017; Pires et al., 
2016 
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1.4.1. Neurodevelopment 

 

Originally recognized as cells with predominantly structural roles being responsible for the 

tilling of the brain cytoarquitecture, astrocytes have earned progressive attention and are 

currently seen as crucial cells for sustaining normal brain physiology. 

In neurodevelopment, astrocytes show remarkable importance by coordinating neuronal 

survival, differentiation and maturation trough contact mediated or the release of its 

secretome composed of soluble trophic factors, signaling vesicles and extracellular matrix 

proteins (ECM), what allows for neurite outgrowth and controlled modulation of synapse 

formation and function (Clarke and Barres, 2013). 

These functions are sustained by the continuous communication between neurons and 

astrocytes what gives the necessary molecular inputs that thanks to the expression of receptors 

for neurotransmitters are interpreted and translated into astrocytic secretion of molecular cues 

able to alter neuronal physiological fate. 

For instance, in the CNS development of embryonic drosophila, astroglia was shown to be 

responsible to maintain viability of follower neurons while they migrate towards pioneer 

neurons by cell-cell interaction via axonal guidance (Booth et al., 2000). 

Regarding neurite development, astrocytes are involved by secreting lamnin-1, fibronectin and 

plasminogen activator inhibitor-1, such ECM proteins were responsible for elongation and 

maturation of neurites after astrocyte muscarinic and also thyroid hormone (T3) stimulation. 

(Guizzetti et al., 2008; Martinez Rodrigo et al., 2002). 

Additionally, astrocytes have been shown to promote synapse formation by the release of 

thrombospondins (Christopherson et al., 2005), synapse maturation by the secretion of TNF-

alfa (Stellwagen et., 2006) and control of synapse function and support of synaptic plasticity 

by sustaining LTD (long-term-depression) mediated by vesicular ATP release (Pascual et al., 

2012). 

 

1.4.2. Neurotransmission 

Astrocytes have the ability to infiltrate into the neuropil and wrap its processes around the 

synapse, by doing that, they can sense the molecular synaptic microenvironment and also 

respond to it by sending specific molecules with three main targets, modulation of synaptic 

structural formation, induction of functional changes and in some cases synapse elimination.  

The astrocytic involvement in synapse formation have been attested in many synapses such as 

glutamatergic, GABAergic, glycinergic and cholinergic ones, and multiple molecular signals that 

govern this process are both contact-mediated or secreted cues (Allen et al., 2017; Chung et 

al., 2015). 

As an example, in the formation and maturation of presynaptic terminals, cholesterol is seen 

as an essential molecule released by astrocytes into apoE (apolipoprotein E) that is responsible 

to increase vesicle density and fusion probability leading to increased presynaptic function (van 

Deijk et al., 2017). 
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An important step in the establishment of functionally connected synapses is the ability to 

eliminate dormant or superfluous ones based on its activity. Such process is achieved by the 

secretion of SPARC (secreted protein acidic and cysteine rich) that antagonizes the positive 

effects of HEVIN, also, by the secretion of TGF-β that promotes synaptic c1q expression what 

leads to c3 receptor-mediated microglial recognition and phagocytosis. In addition, astrocytes 

also can autonomously eliminate excess synapses via the phagocytic receptors Mertk and 

Megf10. (Kucukdereli et al., 2011; Schafer et al., 2012)  

 

1.4.3. Brain metabolism 

The human brain consumes approximately 20% of the total energy substrate at rest even though 

it only represents around 2% of the total body mass. This high energetic efficacy is achieved 

thanks to the considerably high metabolic plasticity of astrocytes (Morita et al., 2019; 

Falkowska et al., 2015). 

Astrocytes are strategically positioned in a way that reveals its central role in CNS metabolism 

and in fact, these cells sit between the cerebral microvasculature and densely distributed 

neuronal processes and synapses (Verhatsky et al., 2017). This specific localization is 

important, because astrocytes are able to cover entire surfaces of capillaries where they 

express multiple transporters such as GLUT 1, which enables facilitated diffusion of glucose, 

monocarboxylate transporters (MCT) that facilitates absorption of lactate and also fatty acid 

translocase (FAT) enabling absorption of fatty acids (Leino et al., 1997; Pierre et al., 2005; 

Husemann et al., 2001). Such nutritional substrates serve as basic fuel for the different 

neurochemical reactions required for normal brain homeostasis. Additionally, astrocytes are 

put in the center of this metabolic control specially because they present a large enzymatic 

capability as well as being arguably the only stock of glycogen in the brain. Glycogenolysis 

serves to provide glucose for ATP production, oxidative stress management, synthesis of 

neurotransmitters and neurohormones, and structural components for brain cells (Belanger et 

al., 2011). Although the basal blood supply of glucose seems to be enough to sustain neuronal 

glycolytic requirements throughout normal activities, during periods of high energy demands 

and in hypoglycemia the relevance of astrocytic derived glucose is increased. For instance, 

during intense firing patterns, where there is an accumulation of glutamate in the peri synaptic 

space, astrocytes can absorb the excess glutamate in exchange for lactate and glutamine 

fueling the metabolic neuronal requirements in the phenomenon known as ANLS (astrocyte-

neuronal L-lactate shuttle). (Li et al., 2015; Abe et al., 2006) In addition, evidence from 

experiments of glucose-deprivation conducted on the optic nerve shows that astrocytes are 

relevant in maintaining axonal fuel by breaking glycogen down to lactate and transferring it 

into neurons. (Wender et al., 2000). 

Additional metabolic roles for astrocytes involve the supplying of lipids for synaptic membrane 

and myelin synthesis by neurons and oligodendrocytes respectively. 
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1.4.4. Blood flow 

The high energy demand imposed by functioning neurons to maintain basal brain activity is 

supported by an extensive vasculature (Mishra et al., 2017). The concept of an interconnected 

neuro-vascular system has emerged from over a hundred years ago when the term neurovascular 

coupling (NVC) was first described (MacVicar et al., 2015). Since then, the vascular responses 

that are followed after surges in neuronal activity have been established as a fundamental 

hallmark of brain physiology, being currently exploited by many of the non-invasive diagnostic 

tools such as PET (positron emission tomography), BOLD fMRI (blood oxygenation level 

dependent functional magnetic resonance imaging) Fnirs (functional near infrared 

spectroscopy) all exploring such fluctuations of blood flow as a standard measure for neuronal 

activity (Hendrikx et al., 2019). The earlier mentioned ideal position between neurons and 

blood vessels likely translates the important role astrocytes have in modulating NVC, for 

instance, (Paulson and Newman, 1987) demonstrated that K+ released by astrocytic end-feet in 

response to neuronal activity can be a viable mechanism to promote local blood flow increase, 

in fact, this theory was accepted after the study of (Filosa et al., 2006), showed that neuronal 

activity which is responsible for causing intracellular Ca2+ increases in astrocytes, leads to an 

activation of K+ channels on astrocytic end-feet that translates in a marked K+ efflux onto the 

vasculature resulting in hyperpolarization of VSMC (vascular smooth muscle cells) and 

consequent arteriole dilation. 

Another proposed mechanism for astrocytic modulation of cerebral blood flow is the release of 

vasoactive agents. Astrocytes can metabolize membrane phospholipids into AA (arachidonic 

acid) which is the main precursor of vasodilatory molecules such as prostaglandins and EETs 

(epoxyeicosatrienoic acids). Furthermore, modulation of AA metabolism pathway was shown to 

reduce functional hyperemia in vivo, and, further in vitro evidence from slice experiments 

demonstrated that neuronal activity mediated vasodilation was dependent on astrocytic Ca2+ 

increases and concomitant prostaglandin E2 (PGE2) production (Zonta et al., 2003). 

Additionally, AA metabolite EET’s is quickly metabolized into 20-hydroxyeicosatrienoic acid 

(20-HETE) which provokes vasoconstriction. 20-HETE’s role as a vasoconstrictor was further 

validated, by studies showing considerable reduction in arteriole lumen in hippocampus and 

retina after 20-HETE’s release from activated astrocytes either by Ca2+ uncaging or 

metabotropic glutamate receptor (mGluRs) activation (Mulligan et al., 2004; Metea et al., 

2006). 

Interestingly, the fact that astrocyte activation provoked mixed results regarding brain vaso-

activity in different brain regions, raises the question for a possible dual role for astrocytic 

control of the brain vasculature. 

 

 

 



19 

 

1.5. Astrocyte signaling (mechanisms and physiological relevance 

to the CNS) 

Astrocytes, currently being referred to as being neural homeostatic cells, have the ability to 

sense its extracellular environment presenting a key role for information processing in the 

central nervous system (CNS). This processing has been shown to be mediated by changes in 

intracellular second messengers such as Ca2+ and cyclic adenosine monophosphate (cAMP) and 

although astrocytes are electrically non-excitable, they possess an extended number of 

excitable molecules and mechanisms. (Verhatsky and Zorec, 2019; Horvat and Vardjan, 2018 

Volterra et al., 2014), 

Structurally, astrocytes present plasmalemmal ion-channels and receptors to 

neurotransmitters, neuromodulators and neurohormones and also cytoplasmatic structures that 

are able to generate transient elevations in the concentration of such second messengers. 

(Verkhratsky and Zorec, 2019; Horvat and Vardjan, 2018 Volterra et al., 2014), 

 

1.5.1. AMPc signaling processing in astrocytes 

 

AMPc is a second messenger that thanks to the development of new cAMP reporter technology 

has had its spatial-temporal dynamics been studied and further understood. Its presence in 

astrocytes is correlated with the expression of genes with important homeostatic functions such 

as (extracellular environment control, antioxidant defense, communication and lastly neuronal 

metabolic and trophic support) (Parpura and Verkhratsky, 2012). 

Its actions need to be tightly regulated in space and time in order to maintain a high level of 

specificity and normal cell function. cAMP concentrations are increased after GPCRs (G-protein 

coupled receptor) stimulation and for proper selectivity, it signals in physically separated 

compartments within the cell (compartmentalized signaling), being also the duration of the 

signaling precisely controlled. (Horvat and Vardjan, 2018) 

Astrocytes present a broad expression of GPCRs linked to either Gs or Gi proteins and have been 

recognized as the main target of the noradrenergic system in the CNS. Illustrated in the figure 

1 are the signaling pathways for α-1 and β adrenaline receptors in rat astrocytes. 

Although data with cAMP recordings are still scarce, its elevations in astrocytes have been 

linked to a reduction in astrocyte swelling (cytotoxic edema) when subjected to a hypotonic 

environment or a neurotrauma, showing that its activation could have neuroprotective 

implications. (Vardjan et al., 2016) 

 

1.5.2. Astrocyte Ca2+ signaling processing 

The current understanding regarding Ca2+ signaling in astrocytes came from years of studies 

employing the calcium imaging technique where the first reports arose from experiences 

monitoring calcium surges in cultured astrocytes and also in situ after glutamate exposures 

(Cornell-Bell et al., 1990; Cornell-Bell and Finkbeiner,1991; Finkbeiner, 1992; Wang et al., 
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2006). Although such experiments led us to a remarkable advancement in the understanding of 

how astrocytes respond to neuronal transmission and synaptic activity, they only focused, due 

to methodological constraints, on the assessment of somatic Ca2+ surges, giving us the idea that 

astrocytes respond to only intense neuronal firing patterns. Further work carried out on 

astrocytic processes revealed a much more refined response of even synapses of lower levels 

of activities, suggesting that the Astrocytic Ca2+ activity encompasses the whole spectrum of 

neuronal communication (Volterra et al., 2014). 

Presently it is understood that neurons are able to transfer information over to astrocytes 

mainly by the spillover of synaptic transmitters and factors that are able to bind to high-affinity 

GPCRs that trigger inositol-1,4,5-triphosphate (IP-3) production and therefore Ca2+ release from 

the endoplasmic reticulum (ER). Once activated this signaling system can generate a wide range 

of oscillatory Ca2+ signals. (Volterra et al., 2014)  

Furthermore, other mechanisms of increased intracellular Ca2+ concentration exist in 

astrocytes, namely, the stimulation of Ca2+ permanent ionotropic receptors in regions such as 

the cerebral cortex by NMDA receptor stimulation, the ectopic stimulation of AMPA receptors 

in the cerebellum and the reversal of Na+/Ca2+ exchangers following neurotransmitter uptake 

and other pumping activities (Berridge et al., 2003; Rizzuto and Pozan, 2006). 

The main endpoint triggered by cytoplasmic increases in Ca2+ concentration is the release of 

neuro-chemical mediators named (gliotransmitters) which have been shown to have modulatory 

activities on other glial, neurons and vascular cells. (Berridge et al., 2003; Rizzuto and Pozan, 

2006). 

 

1.5.3. Mechanisms of astrocyte transmission. 

Many underlying mechanisms govern astrocyte transmission (gliotransmisson) but in a simplistic 

way they could be divided into 3 sub-categories namely, diffusion trough membrane pores, 

passage through membrane transporters or by means of vesicular exocytosis as seen in figure 

4. In this section an attempt to summarize the most relevant and well-studied mechanisms of 

transmitter secretion in astrocytes was made, summarizing the information in figures 5 and 7. 
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1.5.4. Diffusion of signaling molecules trough membrane pores 

 

Cell swelling is a phenomena that typically occurs after the appearance of an hypo-osmotic 

condition such as in cases of trauma (stroke/traumatic brain injury/spinal cord injury), and, to 

compensate for this  increase in cell volume, astrocytes open volume-regulated anion channels 

(VRAC), and trough this channels the passage of inorganic and small organic anions such as 

aspartate, glutamate and taurine have been reported, especially after the application of highly 

concentrated KCl, or by culturing the cells in and hypo-osmotic environment (Kimelberg et al., 

2004). Several lines of evidence shows a relatively complex control of VRAC anion diffusion, for 

instance, the levels of cytosolic Ca2+, nitric oxide, hydrogen peroxide, thrombin and activation 

of kinases all seem to play relevant roles in such secretion pathway, furthermore, ATP mediated 

astrocytic swelling was shown to induce aspartate, glutamate and taurine release by VRACs 

being its action attenuated by the use of channel blockers (Rutledge et al., 1998; Kimelberg et 

al., 1990). 

Additionally, there is some evidence in support of GABA release by VRAC after the induction of 

cell swelling and although the authors confirmed the noninvolvement of purinergic ion-channels 

and hemichannels pharmacologically, it should take into consideration that the use of anion 

channel blockers causes direct effects on GABA receptors (Raiteri et al., 2008). 

Figure 4. Astrocytes present diverse mechanisms of gliotransmission, from which they maintain CNS 
homeostasis, responding to neuronal synaptic activity, extracellular ionic concentration, blood brain 
barrier function and inflammatory insults. Adapted from Verkhratsky et al., 2016   
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Although the conclusive determination of what transmitters can be diffused trough VRACs has 

proven complicated due to the lack of specific inhibitors, such secretory pathway certainly 

deserves the appropriate attention of future studies aiming to dissect the secretory capacity 

of astrocytes.  

Another form of pore formation that is implicated in astrocytic transmitter release is the 

formation of connexons (GAP-junctions), such structures are formed by the junction of two 

hexamers of the protein connexin, being the connexin Cx43 apparently the more prevalent in 

astroglia (Contreras et al., 2003). There is data showing that unpaired connexons may be able 

to act as functional hemichannels which are able to provide a mechanism of outwardly 

transmitter diffusion in astrocytes, in fact hypotonicity was able to induce the release of 

glutamate, aspartate and taurine in hippocampal astrocytes, being their release attenuated by 

the application of gap-junction blockers. (Contreras et al., 2003) This mechanism was further 

tested in Cx43 knockout mice which by using astrocyte cultures of such model, the authors 

were able to show an important reduction in glutamate release right after the exposure to low 

extracellular divalent cations when compared to wild type controls. (Speidel et al., 2002) 

Coincidentally some properties related to hemichannel function correlates well with those of 

pannexons (non-junctional channels formed by pannexin proteins), having the same ability to 

communicate the extra and intracellular environments. (Bruzzone et al., 2005) These channels 

are not activated by fluctuation in extracellular Ca2+ but in turn, are activated by increases in 

cytoplasmatic Ca2+. Although there is a lack of functional evidence for the release of glutamate 

trough these channels, RNA from pannexins 1, 2 and 3 have been identified in astrocytoma and 

glioma cells opening the possibility for this pathway to have a considerable role in broader ways 

of gliotransmission and not just being confined to the well-established release of ATP. 

Furthermore, pannexin 1 protein expression was detected in cultured astrocytes and in glial-

like taste bud cells (Bruzzone et al., 2005). 

Another pore forming ion channel, the purinergic P2X receptor may serve as an additional way 

for signaling amino-acid release in astrocytes (North et al., 2002). P2X receptors are ATP gated 

non-selective cation channels that shows amplified responses upon low divalent ionic 

extracellular concentration. There are 7 known types of P2X subunits that can assemble and 

form a homomeric pore capable of passing molecules of up to 900Da. This receptor has been 

identified in cultured astrocytes by RtPCR, immunoblotting and immunostaining, and although 

there is a lack of functional evidence for its actions in vivo, Duan and colleagues in, 2003, have 

provided evidence for the first time that these channels were able to mediate the release of 

glutamate and aspartate from astrocytes in vitro after ATP P2X stimulation. Additionally, 

evidence from hippocampal slices experiments showed an induction of tonic currents in 

pyramidal neurons caused by NMDA receptor stimulation, the researchers attributed the source 

of the stimulation to a possible astrocytic glutamate release coming from P2X7 channels as the 

blockage of this channel using specific antagonists (oATP and Brilliant Blue G) drastically 

reduced the tonic currents and its overactivation by means of reduced extracellular Ca2+ 
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concentration had the opposite effect, increasing the hippocampal tonic currents, extensively 

reviewed in (Verkhratsky et al., 2013). 

Further in vitro evidence, also adds GABA to the pipeline of gliotransmitter released by P2X7 

channels as Wang et al 2002, showed that the application of ATP was able to induce the release 

of radio-labelled GABA from the RBA-2 astrocyte cell line, action that could be blocked by oATP 

confirming the release trough P2X7. (Wang et al., 2002) 

ATP was also showed to be released by P2X7 receptors, and its currently understood that ATP 

is responsible for mediating the propagation of intercellular Ca2+ waves in astrocytes. 

(Verkhratsky et al.,2013). 

Diffusion of ATP trough anion channels forms an additional option for the release of such 

transmitter from astrocytes, for instance, astrocytic swelling can open more than one chloride 

channel. Furthermore ATP-binding cassette (ABC) protein superfamily may act as transporters 

for ATP, according to Queiroz et al 1997, the ATP molecule would have an additional and also 

unconventional role in promote the opening of the anion channel instead of only serving for 

energy donation, nevertheless there is conflicting evidence regarding these findings and the 

hypothesis remains under intense investigation. 

Regarding other nucleotide species such as adenosine and guanosine, the mechanisms of 

astrocytic release are not as well described and understood. Despite the existence of data 

showing the release of adenosine trough Ca2+ dependent mechanisms from neurons, the most 

commonly designated mechanism for adenosine release is thought to be trough the equilibrative 

nucleoside transporters (ENT 1 and 2) that move adenosine trough the plasma membrane 

according to its concentration gradient. Other mechanisms of release have been identified 

being the concentrative nucleoside transporter (Na+ dependent symporter) able to produce 

reverse adenosine movements towards the extracellular environment albeit having relatively 

less importance in mediating adenosine release (Lazarowski et al., 2000; Lazarowski et al., 

2003). 

In relation to cAMP release from astrocytes, the implied release mechanism has been the 

passage through the ABC transporter family MRP having implications for neuronal tonic 

inhibition given that cAMP is degraded by ectophosphodiesterase and ectronucleotidase into 

adenosine being able to activate A1 receptors (Lantini and Pedata, 2001). 

Astrocytes have been showed to be the major source of guanine-based nucleosides, those being 

present in even higher concentrations when compared to those of adenine-based nucleosides, 

ischemic and hypoxic events were able to produce sustained increases in adenosine and 

guanosine levels, and again being guanosine present at much higher levels. (Gu et al., 1996) 

Albeit the mechanisms of guanosine release were not investigated the authors speculate that 

guanosine could have been derived from extracellular GTP hydrolysis or released from the 

cytosol via concentrative N2/cit bidirectional carriers. Hence, these data points to a possible 

trophic action mediated by the increased concentration of guanosine over time, during and 

after an ischemic event. (Cicarelli, 1999; Gu et al 1996). 
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Additional guanosine-based nucleoside release mechanisms are under investigation and in 

astrocytes the release trough ABC transporter MRP have been pharmacologically tested after 

stimulation with C-type natriuretic peptides, similar results were achieved after interleukin-b1 

stimulation, culminating in the release of cGMP. Despite not been tested mechanistically, the 

current data allow us to theorize that cGMP rises could be neuroprotective for being a weak 

competitive inhibitor of kainate receptor with possible physiological implication in cases of 

glutamate excitotoxicity. (Montoliu et al., 1999). 

The release of the nucleotide NAD+ from astrocytes were shown by Verdeiro et al in 2001, where 

they showed a steady NAD+ release after a washing protocol where the culture media was 

constantly removed. This release was shown to be made viable trough hemichannels which is 

an interesting fact given that, recently, NAD+ was shown to have actions on neurons directly by 

activation of P2Y1 receptors. 

 

1.5.5. Transmembrane transporters 
 
One of the functional hallmarks of astrocytic function is the maintenance of the extracellular 

environment by means of neurotransmitter reabsorption at the vicinity of synapses with the 

end goal of terminating the stimulation of the post-synaptic neuron preventing excitotoxicity 

(Verhratsky and Nedergaard, 2013). 

This neurotransmitter homeostasis control is obtained in astrocytes using Na+ dependent plasma 

membrane amino acid transporters that drives neurotransmitters into the cell with the aid of 

Na+/K+ gradients. Two predominant types are expressed in astrocytes GLAST-1 (glutamate and 

aspartate transporter) and GLT-1 (glial glutamate transporter) in rodents, and, the also called 

excitatory amino acid transporters in humans (EAAT1 and EAAT2) respectively. (Gadea and 

Lopes Colome, 2001) 

In physiological states, the concentration gradients drives excitatory amino acids into the 

cytosol resulting in the entrance of Na+ or H+ together with glutamate or aspartate in exchange 

of the exit of K+ into the extracellular milleu, however, throughout a pathological event such 

as in hypoxia or perturbed ionic states (e.g; in cases of high K+ extracellular concentrations) 

the transporter may operate in reverse releasing glutamate or aspartate. (Danbolt, 2001) 

In fact, multiple studies have demonstrated by the use of transporter inhibitors that the reverse 

transport of glutamate and aspartate occurs during periods of ischemia or metabolic 

impediment. (Verhratsky and Nedergaard, 2013). 

Another crucial gliotransmitter, D-serine, has been shown to be internalized in astrocytes by 

the Na+ dependent alanine-serine-cysteine transporter (ASCT2), and its transport was found to 

be coupled to a counter-transport of another neutral amino acid. 

D-serine reverse transport although could be induced even in levels of physiological 

extracellular L-serine concentration showing this to be a possible pathway for D-serine release 

in astrocytes. (Dun et al., 2007) 
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Regarding to GABA, and in contrast to the clearance of excitatory glutamate, only 

approximately 20% of its content is reabsorbed by astrocytes due to the relatively low density 

of specific transporters for it in the astrocytic plasma membrane. (Schousboe., 2003) 

The majority of the GABA that is taken up by astrocytes is metabolized trough the TCA cycle or 

trough GABA transaminase. This transmitter is taken together with two molecules of Na+ and 

one of Cl-, and studies have shown that the reversal in this transporter operation also occurs, 

for instance, stimulation with kainate, quisqualate and AMPA all have led to GABA release to 

the extracellular environment of astrocytes in multiple studies. Astroglia presents GAT1 as the 

main transporter for GABA and its reverse operation was shown to occur after exposure to 

glycine in a dose-dependent manner and also independently of Ca2+ fluctuation confirming the 

reverse transport of GABA trough GAT1. (Rishcerson and Wu, 2003) 

Another important mechanism of glutamate release from astrocytes is the transportation trough 

the cysteine-glutamate antiporter, this system is important for the maintenance of basal levels 

of cysteine for glutathione synthesis and it could serve as a way of releasing glutamate to the 

extracellular environment. This hypothesis was initially tested by Cavalier and Atwell 2005, in 

cerebellar slices and it was put forward in vivo by Moran et al, 2005, when the physiological 

importance of this system was demonstrated after increase in astrocytic cell death by blockage 

of the transporter, being these results attributed to the reduced synthesis of glutathione. 

 

 

Figure 5. Astrocytes possesses different secretory mechanisms. In this image transmembrane diffusion 
and transport are shown. A) Transmembrane pores (Red), B) transmembrane transporters (Blue) 
Adapted from: (Verkhratsky et al., 2016 and Malarkey and Parpura, 2018) 
 

A 

B 
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1.5.6. Exocytosis 
 

The ability to secrete a diverse type of membrane bound organelles containing a complex 

cargo have emerged early in evolution, being this process, a common trait in the majority of 

eukaryotes (Spang et al., 2015). Exocytosis have been shown to play a crucial role in 

intercellular communication maintaining normal cell physiology trough the release of 

important chemical and biological mediators, additionally secondary roles have been 

proposed such as the important role of targeting receptors and transporters to the plasmatic 

membrane having important implications in membrane plasticity. 

The concept that astrocytes can act as secretory cells is sustained by data that confirms its 

ability to release vesicles containing neurotransmitters, peptides and growth factors, and 

although similarly complex to those of neurons, astrocytic exocytosis differs especially 

considering the dynamics of its kinetics being demonstrably slower, and also in its spatial 

arrangements and molecular mechanisms (Verkhratsky et al., 2016; Harada et al., 2016). 

The underlying molecular mechanism of exocytosis in astrocytes shows to be tied to 

intracellular  Ca2+ fluctuations, and in fact, the first experiments conducted by Parpura et al 

1994, using HPLC to monitor glutamate release from astrocytes in vitro, showed that an 

increase in Ca2+ is not only sufficient but also necessary to generate glutamate release from 

astrocytes, such idea was also confirmed by depleting intracellular calcium with thapsigargin 

(blocker of store specific Ca2+ ATPase) or by buffering cytoplasmic calcium with BAPTA both 

generating considerable reductions in glutamate release (Bezzi et al., 1998; Araque et al., 

1999). 

Although compelling, the aforementioned studies did not aim to clarify the mode of transmitter 

release, therefore opening the question if this increases in intracellular calcium were causing 

the opening of ion channels favoring glutamate release or actually trough the mediation of 

vesicle exocytosis. 

To identify exocytosis as the release mechanism, tetanus and botulinum toxins that are capable 

of cleaving the VAMP2/3 and SNAP 23/25 proteins selectively, have to be used to block 

exocytosis, the results shows a blockage of the synaptic effects of gliotransmission, confirming 

the release of glutamate by exocytosis to be at least a relevant mode of transmitter release. 

(Jourdain et al., 2007) 

Such studies aiming to dissect the molecular machinery of astrocytic exocytosis were also 

conducted with novel gliotransmitters, for instance D-serine, as since not so long ago we 

believed the mammalian body to be able to produce only L-isomer amino acids. 

D-serine is produced by the enzyme serine racemase using L-serine as a substrate and pyridoxal-

5-phosphate as a cofactor, being allosterically activated by the complex ATP/Mg2+ (Mothet et 

al., 2005). 

In cultured astrocytes, application of glutamate elevated Ca2+ mediated release of D-serine via 

the activation of AMPA, kainate and glutamate metabotropic receptors. Accordingly, 

pharmacological agonists of AMPA and Kainate were found to increase intracellular calcium and 
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subsequent D-serine release, which was reduced by the inhibition of such receptors. Moreover, 

the cleavage of VAMP2/3 by tetanic neurotoxins and the inhibition of V-ATPase in V-GLUT2 

containing vesicles that are colocalized with D-serine supresses agonist-evoked secretion of D-

serine, suggesting that D-serine is stored in synaptic-like vesicles and is released from the 

vesicles in a Ca2+ dependent manner. (Martineau et al., 2013) 

In conjunction with the previous data, new forms of exocytosis started to be investigated, and 

the possible release of ATP from astrocytes posed as a new mechanism of exocytosis that did 

not involve synaptic-like vesicles, but it did involve lysosomes, in fact, astrocytes express a 

secretory lysosome marker (VAMP7 or TI-VAMP), and vesicles with this marker have been shown 

to contain ATP and being Ca2+ dependently released. Furthermore to test if ATP molecules are 

stored inside lysosomes, Verderio et al, 2012, labelled lysosomes containing V-NUT (Vesicular 

nucleotide transporter) with fluorescent ATP, and showed that the inhibition of V-NUT reduced 

the amount of fluorescently labelled lysosomes, additionally, data from total internal reflection 

fluorescence microscopy revealed exocytotic events of secretory lysosomes in astrocytes after 

the application of Ca2+ ionophore, ATP or glutamate, conclusively showing that ATP is stored in 

lysosomes and are released by exocytosis following intracellular Ca2+ surges. (Oya et al., 2013). 

Albeit the release of the aforementioned transmitters has proven importance in the regulation 

of synaptic physiology and global neuronal-astrocyte crosstalk, they are not the only 

transmitters secreted trough astrocytic exocytosis. In fact, a rather complex composition of 

the different types of vesicles have been described, each of them, having different mechanisms 

of biogenesis, numerous types of membrane markers and a rich molecular cargo (proteins, 

peptides, amino acids, metabolites and genetic material). In the future paragraphs, an attempt 

to exemplify all different types of astrocytic exocytosis will be made, giving special attention 

to its molecular constituents and secretion machinery. 

 

1.5.7 Molecular machinery of exocytosis 

The main effector and evolutionary conserved protein family SNARE is the responsible for most 

of the processes concerning exocytosis. They can be divided into R and Q-SNARES and the 

former is associated with the vesicular membrane (also referred to as VAMP), while the later 

are either integral plasmatic membrane proteins (syntaxin) or just associated with the plasma 

membrane (SNAP-25/23) (Bohmbach et al., 2017). 

Upon increases in cytosolic Ca2+ concentrations R and Q-SNARE proteins form a complex by 

joining one of the Vamp2 and syntaxin SNARE domains each, with two from SNAP 23 to form a 

quadruple α-helical bundle denominated (SNARE pin) as demonstrated in figure 6, this bundle 

mediates the docking and fusion of the vesicles with the plasmatic membrane (Harada et al., 

2016). 

The determinants of exocytosis kinetics are highly heterogenous among different cell types and 

depends on many different cellular aspects. First, sensitivity of the secretory apparatus to 

cytosolic Ca2+ fluctuations plays a very important role. Second, the progression of the Ca2+ 

fluctuations differ among cell types (Sahlender et al., 2014). 
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As an example, synaptic exocytosis has an exceedingly fast progression (being often ≤1 ms) as 

the molecular machinery is in close proximity to the Ca2+ source, differently, in astrocytes, 

exocytosis of synaptic-like vesicles has much slower kinetics which can be attributable to a 

different expression patterns of SNARE proteins (Verkhratsky et al., 2016). 

 

 

1.5.8. The diversity of secretory organelles in astrocytes 

Different types of secretory organelles are present in astroglia and they are currently divided 

as extra or intracellular. Intracellular organelles are described as the transport vesicles, 

lysosomes and other types of secretory vesicles such as (synaptic-like vesicles and dense core 

vesicles) and extracellular vesicles are represented by exosomes, micro-vesicles, microparticles 

and apoptotic bodies. These vesicles are characterized as having different morphological 

aspects such as their size and expression of membrane markers but also differs considerably in 

their biogenesis, cargoes and release mechanisms (Cocucci et al., 2015). 

Typically, the different types of vesicles derive either from the trans-Golgi network or from 

early or recycling endosomes, although other routes have been identified such as in the case 

of lysosomes and multivesicular bodies. A depiction of the different secretory organelles is 

made in figure 6. 

 

 

Figure 6. SNARE mediated exocytosis mechanism in astrocytes. Molecular response to intracellular 
calcium increases. Formation of the SNARE complex and mediation of the synaptobrevin-2/VAMP-2 
vesicle docking. Abbreviations: Rab, Ras associated binding protein; Munc 13/18, Mammalian 
uncoordinated proteins 13 and 18; SNAP, Synaptosomal nerve associated protein; RIM, Regulating 
synaptic membrane exocytosis protein. Adapted from: Bohmbach et al., 2017. 
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1.5.8.1. Synaptic-like microvesicles carry aminoacids 

Astrocytic SLMV’s range in sizes of 30 to 100nm and appear in pair or groups of 2-15 vesicles, 

number that is expressively smaller than the neuronal synaptic vesicles that exist in groups of 

hundreds or thousands. Bigger SLMV’s (1-3 µm diameter) have also been identified in 

hippocampal slices and is believed they could be formed by the merging of smaller vesicles 

after sustained Ca2+ increases or mechanical stimulation, contributing to the pool of 

extracellular D-serine (Martineau et al., 2013). 

An important physiological aspect of secretory vesicles is their ability to concentrate 

transmitters internally. This is accomplished by the existence of VNT’s (vesicular 

neurotransmitter transporters), six types of VNT’s have been identified so far in neurons, 

including transporters for ATP (VNUT), glutamate (VGLUT1-3), acetylcholine (vAChT), 

monoamines (VMAT1-2), GABA/glycine (VIAAT, also known as VGAT) and aspartate 

(sialin/VEAT). Fairly recently, and although its molecular identity has not yet been fully 

disclosed, data points to the enrichment of SLMV’s with D-serine via (VSerT). 

Each of the transporter differs from each other in terms of energy coupling, substrate 

specificity and affinity, forming the fingerprints underlying regulated exocytosis (Blakely et al., 

2012). 

The expression of VNT’s in astrocytes is not as well characterized as it is in neurons, and in 

fact, conflicting results have emerged considering the expression of VGLUT in cultured 

astrocytes, for instance, analysis in situ using gene chip microarray, single cell RT-PCR and 

immunofluorescence produced variable results, in some cases, even objecting the concept of 

astroglial exocytosis (Li et al., 2013). 

Nevertheless, results from immunogold electron microscopy, confocal microscopy and single-

cell RT–PCR experiments have demonstrated that sub-populations of astrocytes in the brain not 

only express VGLUT 1 (Bezzi et al., 2004, Bergersen et al., 2012, Ormel et al., 2012), VGLUT 2 

(Bezzi et al., 2004) and VGLUT 3 (Bezzi et al., 2004, Ormel et al., 2012), but also secrete 

glutamate upon Ca2+ rises. 

Although the results from in vitro and in situ contrast themselves regarding the co-localization 

of glutamate and D-serine in the same vesicles, fact is, that astrocytes present a bulk of this 

vesicles located at peri-synaptic processes as well as in somata, its release is controlled by Ca2+ 

rises and is blocked by astrocytic R-SNARE (VAMP-2 and 3) tetanus toxin mediated cleavage. 

 

1.5.8.2. Dense-core vesicles carry peptides 

DCV’s are the main compartment of storage and release of neuropeptides and neurohormones 

for neuroendocrine cells and neurons, such vesicles are also laid with ATP, which likely 

accumulates via VNUT’s, albeit this transporter expression has not yet been reported. (Potokar 

et al., 2008). Although physiologically important, the overall amount of VAMP-2 labelled DCV 

respectively to the total number of vesicles is small, representing only 2% of the total vesicle 

content. In what regards to the ultrastructure of the DCV’s in astrocytes they seem similar to 

those of neuroendocrine and neuronal cells, except for its core that seems much less dense, 
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similarly to those of neuroendocrine cells, furthermore, morphologically, they are on average 

considerably bigger than SMLV’s (100-600nm) although some ANP (atrial natriuretic peptide) 

DCV’s can be as small as (50nm) in diameter. In cultured astrocytes, DCV’s contains the 

secretory proteins secretogranins 2 and 3 and chromogranins all of them with a clear 

physiological role not yet established. Additionally, secretogranins have been found to be 

expressed in DCV’s of human brain samples, confirming it’s in situ existence.  ANP and 

neuropeptide Y were also identified in vitro astrocytic DCV’s, for instance, NPY, a peptide that 

is widely distributed throughout the mammalian brain, where it acts as a neuroproliferative 

factor and modulates the growth of vascular tissue, it is released after metabotropic glutamate 

receptor (mGluR) activation trough exocytosis of DCV’s (Barnea et al., 1998, Barnea et al., 

2001, Hansel et al., 2001, Geloso et al., 2015). 

Accordingly, BDNF (brain derived neurotrophic factor) in the form of its precursor (pro-BDNF) 

was found to be taken up by astrocytes after strong neuronal stimulation by the p75-

neurotrophin receptor, which mediated clathrin attached endocytosis. The internalization of 

pro-BDNF in single vesicles were confirmed by TIRF (Total internal reflection fluorescence) and 

confocal microscopy, and its recycling mechanisms were confirmed to happen as astrocytic 

stimulation with glutamate leads to the secretion of BDNF. It is also important to mention that 

the release of neurotrophin was blocked by tetanus neurotoxin suggesting an involvement of 

VAMP-2 mediated exocytosis as the main pathway for BDNF secretion in astrocytes (Lu et al., 

2005, Juric et al., 2008, Bergami et al., 2008). 

 

1.5.8.3. Lysosomes and its secretory potential in astrocytes 

Lysosomes, an organelle that was first described in 1955 by De Cuve and collaborators, is a 

prominent intermediate of endo- and exocytotic pathways, operating virtually in all eukaryotic 

cells including astroglia. 

Exocytosis of lysosomes has been shown to be another viable mechanism of transmitter release 

in astrocytes and in fact secretory lysosomes are the main contributor for the Ca2+ dependent 

secretion of ATP in cultured astrocytes. Presenting diameters in the range of 300 to 500nm they 

coexist with SLMV’s and express specific lysosomal markers such as LAMP 1, Cathepsin D, Rab7 

and VAMP7 (Verderio et al, 2012). 

The secretion of lysosomes from astrocytes has been shown to rely on the expression of the 

tetanun resistant VAMP7 as its downregulation inhibits the fusion of ATP-labelled vesicles (Oya 

et al., 2013). 

The kinetics of its release is slow and is triggered by locally restricted Ca2+ elevations, 

differently from the fusion of SLMV’s that happens following fast Ca2+ spikes. Astrocyte 

stimulation with agonists or metabolic blockade have been shown to induce regulated 

exocytosis of such vesicles as confirmed by TIRF microscopy, which was shown to be blocked 

by the use of Ca2+ chelator BAPTA (Andrews and Chakrabarti, 2005). 
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1.5.8.4. Extracellular vesicles (exosomes, micro-vesicles and ectosomes) 

In fact, astrocytes have been shown to release both types of EV’s, as seen in figure 6. For 

instance, ectosome release from astrocytes were shown to happen after the activation of P2X7 

purinoceptors by the action of extracellular nucleotides and nucleosides that rapidly activates 

acid sphingomyelinase causing it to move towards the outer membrane, changing membrane 

fluidity, what leads to vesicle blebbing and shedding. The mechanism was shown to be at least 

partially controlled by p38 MAPK cascade activation. As shown by Bianco et al 2009 and Proia 

et al 2008, in 2-day-old rat cultured cortical astrocytes the diameter of the ectossomes shed 

varied between 100nm and a 1,000nm.  

Ectossomes from astrocytes carry neuroregulatory molecules that can regulate the fate of cells 

in its microenvironment, for instance, FGF-2, IL-1β, VEGF, triphosphate diphosphohydrolases 

and matrix metalloproteinases (Bianco et al., 2009; Proia et al., 2008; Ceruti et al., 2011). 

Interestingly, astrocytes presented increased release in triphosphate diphosphohydrolases 

(enzyme that degrades extracellular nucleotides), upon ischemia induction, showing a 

protective mechanism against increasing levels of ATP released from the damaged BBB cells. 

(Ceruti et al., 2011). 

Regarding astrocytic exosomes, their cargo enrichment has been shown to be at least as 

complex as any other cell and in fact, recent results postulate the possibility of using them as 

biomarkers of CNS degenerative disorders such as in Alzheimer disease (AD) and multiple 

sclerosis (MS) by employing novel methods for recognition of internal proteins, especially in the 

case of AB42 and GFAP respectively (Goetz et al., 2016). 

 

1.5.8.4.1 The impact of specific protein cargo contained in astrocyte derived EV’s. 

Although the in vivo evidence for EV´s release from astrocytes is scarce, the evidence for 

constitutive release of exosomes in vitro is pilling. For instance, different stimuli such as 

(ischemia, inflammation, oxidative and heat stress) have all been shown to affect EV´s release 

both quantitatively and qualitatively. 
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The first report for exosomal release from astrocytes came in 2007 from Milligan`s group, where 

they showed the presence of the classical protein markers Hsp70/Hspc70 in a fraction obtained 

from a differential-ultracentrifugation protocol. Hspc70 concentrations were increased in the 

exosomes from conditioned media in response to thermal stress, suggesting a possible role for 

exosome mediated regulation of stress response by astrocytes. Three years later, results from 

the same lab showed the release of synapsin-1 in exosomes from astrocytes, and although the 

authors didn’t evidence any functional role of these exosomes on neuronal populations, it has 

been suggested that synapsin-1 could have a positive effect on neuronal survival and neurite 

outgrowth. (Taylor et al., 2007, Guescini et al., 2010). Two years later, Wang et al., 2012 

demonstrated that the exposure of astrocytes to B-amyloid in-vitro or in-vivo induced exosome 

mediated release of ceramide and PAR-4 causing increased apoptosis of neighboring astrocytes 

showcasing the existence of an autocrine mechanism to be further explored. 

Additional evidence of different physiological roles for exosome release from astrocytes are 

under current investigation and early data from such experiments showed they are also able to 

Figure 7. An overview of the different exocytotic organelles in a schematic representation. (a-h) shows 
ultrastructural electron microscopy images and intracellular localization within the astrocyte. 
Abbreviations: aSMase, acid sphingomyelinase; BMP, bis(monoacyl glycerol) phosphate; FGF2, 
Fibroblast growth factor 2; HSP70, 70kDa heat shock protein; miRNA, microRNA; mtRNA mitochondrial 
RNA; MMPs, matrix metalloproteinases; nSMase2, neutral sphingomyelinase 2; NTPDase, nucleoside 
triphosphate diphophohydrolases; PS, Phosphatidylserine; REST, RE-1-silencing transcription factor; 
tPA, tissue plasminogen activator; VEGF, vascular endothelial growth factor. 
Adapted from:(Verkhratsky et al., 2016) 
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secrete EAAT-1 and 2 (Excitatory amino-acid transporters) through small size EV´s, and that 

these vesicles were able to accumulate aspartate inside them, having a possible regulatory role 

in the homeostasis of extracellular glutamate apart from the clear role in inter-cellular 

communication. (Gosselin et al., 2013) Although interesting, the aforementioned studies did 

not test the possibility of astrocyte-derived exosomal transfer of such proteins over to neurons. 

Nevetheless, (Dickens et al., 2017) showed that upon an IL-1β induced brain lesion, exosomes 

derived from astrocytes were able to promote peripheral leukocytosis. 

 

1.5.8.4.2 The impact of specific miRNA cargo contained in astrocyte derived EV’s. 

Extracellular vesicles contain a multitude of genetic material making up its internal cargo, 

together with lipids and proteins. Most of this genetic material, is composed of mRNA and a 

variety of small non-coding RNA’s. Among such RNA species, microRNA’s receives the most 

attention given the fact it can reprogram protein expression in recipient cells (Théry et al., 

2018). 

MicroRNAs can inhibit transmission by two distinctive mechanisms, being the first one, the 

targeting of the messenger RNA to direct degradation, and the second one, by interfering with 

the ribosomal recognition sites to the mRNAs therefore, reducing translation and consequently 

protein expression (Lafourcade et al., 2016). 

The loading of miRNA into astrocytic exosomes have been confirmed in several studies, this 

process favors the enrichment of some miRNA’s over others and it has been shown to be 

dependent on the KRAS-MEK-ERK pathway. The sorting mechanism involves three specific 

factors: First, the presence of special miRNA sequences such as uridylated miRNA’s and 

EXOmotifs (special sequences of nucleotides) that function as sorting motifs to incorporate RNA 

into exosomes. Second, the binding of miRNA’s to lipid raft regions in the cytoplasmatic face 

of the membrane of multi-vesicular bodies, and third, interactions with sumoylated nuclear 

proteins or AGO2. Although the recognition of such factors has led to tremendous advancement 

in our understanding of exosomal miRNA loading, the specifics of each microRNA sorting into 

astrocytes are still lacking, warranting the encouragement of further explorations. (Zhang et 

al., 2015; Janas et al., 2015; Cha et al., 2015). 

To date, the most comprehensive study aiming to dissect astrocyte exosomal composition 

regarding miRNA’s was conducted by (Jovicic and Gitler, 2017) where they were able to 

quantify the expression of 752 mature rodent miRNAs from astrocyte primary cultures. 

Interestingly and in accordance with other studies, the miRNA profiles of astrocytic exosomes 

were different from the profiles of whole astrocytes, supporting the evidence for distinct 

regulatory mechanisms of miRNA sorting into exosomes. Accordingly, the authors were also able 

to find a marked enrichment in 5 RNAs (miRNA’s 1274a, 1937b, 1937c, 2134 and 2182) that 

were later confirmed to be tRNA. 

Additionally, upon the induction of a model of ALS, (amyotrophic lateral sclerosis) where there 

is active participation of astrocytes in its etiopathology, the authors failed to detect important 

changes in miRNA content coming from such astrocytic exosomes therefore, showing that the 
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toxic effect seen when motor neurons are put in contact with the conditioned media of such 

astrocytes cannot be attributed to changes in astrocytic exosomal miRNA profile (Jovicic and 

Gitler, 2017). Furthermore, astrocytes appear to upregulate their exosome secretion upon 

being cultured together with miR-133b containing exosomes from MSC’s and induce a secondary 

wave of exosome release that correlated with improved functional recovery after stroke in rats. 

(Xin et al., 2017) All these different mechanisms serve to highlight the elevated complexity 

regarding astrocyte signaling, and that possible negative interference in any of these events 

could culminate in the generation of an ethiopathological environment to the CNS. Additionally, 

the modulation of specific targets or pathways relating to gliotransmission could also represent 

future approaches regarding therapeutic applications in either disease prevention, 

management or treatment. 
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1.6. Astrocytes and pathophysiology of CNS traumatic injury and 

neurodegeneration - loss of normal function or gain of toxic 

function 

 

1.6.1. Astrocyte responses to acute focal insults 

Reactive astrogliosis is a newly coined term used to define the ability astrocytes have to 

respond to an insult, being the magnitude of the response dependent on the nature as well as 

the duration of the insult. 

Acute and focal injuries tend to trigger wound repair with tissue replacement where diffuse 

and chronic diseases provoke gradually escalating tissue changes that ultimately culminate in 

loss of function (Burda and Sofroniew, 2014). The CNS responses to such insults involve complex 

cellular interactions among neuronal and non-neuronal CNS cells and also the recruitment of 

CNS extrinsic cells that gain access to the disease site via the circulation (Dossi et al., 2018). 

The research around astrocyte reactivity is progressively gaining momentum, and different 

phenotypes have now been associated to different disease states or brain areas, for instance, 

in a focal CNS damage, the response to such insult evolves through three distinctive but also 

overlapping phases. Broadly, in the first phase there is evident cell death and the instalment 

of a highly inflammatory environment, in the second, visible cell proliferation occurs and in the 

third, tissue remodeling takes place (Scuderi et al., 2013). 

Astrocytes functionally participate in the initiation and progression of this processes, where in 

the first moments after the injury (seconds to hours) they remain in situ without migrating 

towards or away from the lesion site, instead, they osmotically swell and depending on how 

severe the insult is, they can die, locally or in some cases proliferate (Bardehle et al., 2013; 

Phatnani et al., 2013). 

In a second moment (after the first days), the proliferation of scar-forming astrocyte 

progenitors takes place leading to the formation of a compact astrocyte scar. Cellular and 

molecular mechanisms that govern the formation and positioning of the astrocytic scar border 

remain incompletely understood but are likely to involve a complex interplay of molecular 

signaling fostering phagocytosis and debris clearance together with signals of cell protection 

and self-preservation. (Wanner et al., 2013). 

Lastly, the third phase of the response to an acute injury begins along the end of the first week 

and is comprised of tissue remodeling events such as the repair of the BBB and reorganization 

of the astroglial scar. The role of astrocytes in this phase, remains not totally understood, but 

it is of known importance, for example, the establishment of a compact interdigitating scar 

that forms a structural and functional border separating the lesion core containing 

inflammatory and fibroblast lineage cells from the functional tissue around containing all three 

neuronal lineage cells presents an intriguing facet of the regenerative process. (Wanner et al., 

2013) Data from transgenic loss-of-function studies highlight that the disruption of astrocyte 
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scar formation, leads to increased lesion size, neuronal death and demyelination, as well as 

decreases in functional recovery. Furthermore, there is still a huge debate in the field regarding 

the impact astrocytes have on axonal growth, as in vitro data show them to promote axonal 

regrowth inhibition based on the synthesis of certain proteoglycans, although in vivo studies 

present compelling evidence showing axonal regrowth along astrocyte bridges (Herman et al 

2008; Wanner et al., 2013). 

A better understanding of such molecular mechanisms will surely open up new avenues 

regarding the possibility of astrocytic scar modulation, targeting an overall reduction in lesion 

size, for instance, data from experimental studies on ischemic infarcts show that final lesion 

size can be influenced by subacute metabolic manipulation leading to a possible novel 

therapeutic strategy (Lo, 2008). 

In a different physiopathological context, classically induced inflammatory insults such as in 

LPS administration where the insult is governed by an intense microglial activation followed by 

inflammatory cytokine release (IFN-gama, TNF-alfa, c1q and IL-1B) induces a profile of 

astrocyte activation that is followed by upregulation of a multitude of inflammatory response 

genes as well as considerable changes in cellular morphology and function, affecting neuronal 

survival, neurite outgrowth and synaptogenesis negatively, as well as presenting considerable 

reductions in their phagocytic capacity (Liddelow et al., 2017; Zamanian et al., 2012). In 

another pathological context, hypoxic ischemic lesions induce a different pattern of astrocytic 

activation termed A2 astrocytes, these astrocytes show an upregulation of several neurotrophic 

factor genes as well as being protective against neuronal cell death and capable of promoting 

axonal growth (Liddelow et al., 2017; Zamanian et al., 2012). 

The main pathway thought to be involved in A2 phenotype polarization is the JAK-STAT3 

pathway as many studies have implicated its importance in scar-forming astrocyte reactivity 

after acute brain injury. (Liddelow et al., 2017) 

 

1.6.2. Astrocyte responses to chronic focal insults 

Albeit acute focal injury models serve as the probable best way to assess the mechanisms 

behind astrocyte reactivity, reactive astrogliosis during chronic forms of damage are also 

observed along-side multicellular responses that resemble those seen in acute insults (Liddelow 

and Barres, 2017). 

For instance, in immune compromised individuals, focal injuries can be infected spontaneously 

which therefore can evolve chronically and form an abscess. In such cases, reactive astrogliosis 

is present with formation of an astrocytic scar depending on how lengthy the presence of the 

insult is. Genetic disruption of astrocytic scar formation in transgenic loss of function studies 

reveals drastic spread of infection and inflammation throughout adjacent neural tissue 

presenting devastating effects, demonstrating the importance of astrocyte focal containment 

of the infection (Drogemuller et al., 2008). A similar relevance is given to astrocytic response 

in Chikungunya virus infections where they present an important mode of defense governing 

innate immune response. (Trina Das et al., 2015) 
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In the case of tumors, both primary and metastatic disease drives reactive astrogliosis in similar 

ways to what happens in other forms of focal lesion and interestingly non-invasive tumors are 

contained by encapsulating astrocyte scar in the same way seen in traumatic damage. 

Accordingly, highly aggressive and invasive tumors are not contained by astroglial scar but on 

the opposite, induces a different type of reactivity where the derived multicellular response 

supports the creation of a favorable microenvironment that is supportive of tumor growth, 

vascularization and metastasis (Silver et al., 2013; Watkins and Sontheimer 2012). 

In the context of autoimmune conditions, although they are classically classified as chronically 

diffuse diseases, individual autoimmune lesions greatly resemble acute focal lesions, for 

instance, in multiple sclerosis plaques, astrocyte scar separate the lesion core that is devoid of 

viable neuronal tissue from the surrounding tissue containing all three neural lineages (neurons, 

oligodendrocytes or astrocytes) pretty much in the same way that occurs in traumatic or 

ischemic lesions preserving extra lesion area functional capacity (Frohman et al., 2006).  

Evidences from clinical and experimental lines both point out to a crucial role for scar forming 

astrocytes in mediating the limited spread of inflammation in CNS autoimmune conditions, but 

its involvement seems not to be only impactful in disease progression, but it may also be 

causally related with disease onset (Scuderi et al., 2013; Phatnati et al., 2015; Dossi et al., 

2017) For example, loss of function in CNS intrinsic cells such as astrocytes have been related 

with onset of autoimmune inflammation in some patients that presents auto-antibodies against 

astrocyte potassium channels Kir4.1 opening up a new rationale for the assessment of the 

impact the possible gain or loss of function in astrocytes and its relations not only with disease 

progression but also in disease onset (Srivastava et al., 2012). 

 

1.6.3. Astrocyte responses to chronic diffuse insults 

Initially, diffuse insults to CNS tissue tend to be less intense when compared to acute focal 

lesions such as stroke, rarely causing tissue damage in the beginning of its time course. 

Conditionally, this damage accumulates overtime and as it progresses, the scattered tissue 

damage becomes more severe, evoking reactive astroglioses and multicellular responses that 

finally culminate in the full onset of the disease, presenting BBB breakdown, inflammation and 

recruitment of leukocytes and although in a less severe scale, they resemble a recollection of 

smaller acute focal lesions with their on peri-lesion compartment. It is worth mentioning that 

in many conditions this distributed lesioned area is intermingled with functionally active 

neurons and viable circuitry and this surely must have implications to synaptic functioning. 

(Burda and Sofroniew, 2014; Rouach et al., 2017). 

The dissection of the existing contribution between astrogliosis and neurodegeneration is 

challenging and far from advanced. Although experimental and clinical roles for astrogliosis are 

described in both onset and progression of neurodegeneration, it is hard to pinpoint with 

certainty its relevance to the disease process as a whole.  

Interesting findings relating to astroglial reactive response to neurodegeneration comes from 

experiments of B-amyloid clearance, the experiments revealed active astrocytic involvement 
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in the aggregate’s clearance both in vitro and in vivo and also, the use of transgenic attenuation 

of astrogliosis showed an accumulation of B-amyloid in a mouse model of Alzheimer disease as 

showed in another study (Wyss-Coray et al., 2003). 

Another condition where astrocytes respond reactively is Parkinson Disease and in fact the 

impact of astrocyte is relevant in both disease initiation and progression. Functionally, 

protoplasmic astrocytes were shown to accumulate alpha-synuclein aggregates early in the 

disease process and also that alpha-synuclein was transferred from neurons to astrocytes 

inducing a dose dependent inflammatory response (Song et al., 2009; Lee et al., 2010).  Relative 

to the molecular triggers of reactive astrogliosis, there is the evident role of neurotoxic 

accumulation of B-amyloid and other protein aggregates, but also, actions for neuronal or 

synaptic damage have been described to act as triggers specially in ALS (amyotrophic latera 

sclerosis) or in HD (Huntington disease). Additionally, perturbations to the neurovascular unit 

leading to disruption of BBB integrity which can foster the recruitment of blood-borne 

inflammatory cells have also been shown to act as a trigger (Boilee et al., 2006; Maragakis and 

Rothstein, 2006). Furthermore, this complexity makes it hard to draw a line for where 

astrocytes become toxic and therefore causally involved in disease onset, or if specific disease 

aspects turn astrocytes into their reactive form. Understanding these differences will likely 

present opportunities for the development of future therapeutics aiming at astrogliosis 

modulation for either disease prevention or treatment. 
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Chapter 2 – Research objectives 
 
 

Based on the demonstrated evidence for a complex and yet not fully demonstrated therapeutic 

mechanism governing the performance of MSC’s secretome based therapies applied to CNS 

regeneration, and considering the importance astrocytes have on CNS physiology, the present 

work had the following objectives: 

- To determine if an impairment in astrocytic VAMP-2-mediated exocytosis presented a 

modulatory effect on the secretome’s performance in inducing proliferation at the level of the 

hippocampus. 

- To assess the impact of MSCs secretome and astrocyte transmission in astrocyte morphological 

features. 

With these purposes we employed a transgenic mouse model of impaired astrocytic signaling 

named dnSNARE, in which the exocytosis mediated by VAMP-2 molecular machinery is 

conditionally ablated selectively in astrocyte. 
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Chapter 3 – Materials and methods 

 

 

3.1. Bone marrow mesenchymal stem cell culture 

Bone marrow MSC’s (BMSC’s) were resuspended in Alpha-Mem medium (Invitrogen, USA) 

supplemented with 1 % of antibiotic/ antimycotic (Invitrogen, USA) and 10 % of fetal bovine 

serum (FBS) (Invitrogen, USA), and plated on culture at a density of 4.0×103 cells/cm2. 

Subsequently, the culture medium was renewed every 3 days and the culture maintained at 37 

°C, 5 % CO2, 95 % air and 90 % relative humidity until confluence. 

 

3.1.1. Secretome collection procedure 

The secretome used was collected from BMSC’s cultures in passage five (P5) previously plated 

and kept at a density of 4.0×103 cells/cm2 for 3 days in Alpha-Mem medium (Invitrogen, USA) 

supplemented with 1 % of antibiotic/antimycotic (Invitrogen, USA) and 10 % FBS (Invitrogen, 

USA). After this, the flasks were washed three times in Neurobasal A medium (Invitrogen, USA) 

for 5 min and then, washed five times in PBS without Mg2+/Ca2+ (Invitrogen, USA). Following 

this Neurobasal A medium supplemented with kanamycin (1 %) (Invitrogen, USA) was added to 

the cells. After 24h the secretome was collected, centrifuged at 300g for 10 minutes to remove 

cell debris and then frozen at −80 °C until use. 

 

3.2. Animal model 

The mice used for the experiments were a transgenic model named dnSNARE. In this model, 

the cytosolic portion of synaptobrevin 2 (VAMP-2) protein is overexpressed (amino acid 1 to 96), 

such procedure causes the blockage of VAMP-2 dependent vesicle fusion, inducing impaired 

gliotransmission. Such mice are obtained by crossing two lines of transgenic animals. In the 

first one, GFAP.tTA, the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter drives 

the expression of the tet-Off tetracycline transactivator (tTA), and the second, which is 

tetO.SNARE, contains a tet operator (tetO)–regulated SNARE domain for the expression of 

VAMP-2.  

The selectivity of the model is achieved by using the GFAP promoter as the driver for the 

expression of the “tet-Off” tetra-cycling transactivator. To prevent transgene expression during 

mice early development doxycicline (Dox) is administered through the animals drinking water 

supply. Dox usage allows for the conditional suppression of transgene expression, as Dox bind 

to tTA preventing tet-o promoter activation. 
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3.3. Surgical Procedures 

All experiments were conducted using 8 weeks old male dnSNARE mice and its wildtype 

counterparts C57BL/6 mice (Charles River, Spain). Consent from the Portuguese national 

authority for animal experimentation, Direção Geral de Veterinária (ID: DGV9457), was 

obtained before the experiments. Animals were kept and handled in accordance with the 

guidelines for the care and handling of laboratory animals in the Directive 2010/63/EU of the 

European Parliament and of the Council. The animals were housed and maintained in a 

controlled environment at 22–24 °C and 55 % humidity, on 12 h light/dark cycles and fed with 

regular rodent’s chow and tap water ad libitum. Animals were handled for 1 week prior to the 

beginning of the injections, in order to reduce the stress induced by the surgical procedures. 

For the cerebral injections two experimental groups were used (n=17/group in the Secretome 

group) and n=11 in the Neurobasal group). Young adult mice were anesthetized with ketamine 

hydrochloride (150 mg/kg) plus medetomidine (0.3 mg/kg). Using a stereotaxic system 

(Stoelting, USA) and a Hamilton syringe (0.5 μl Hamilton, Switzerland) all injections made in 

these two groups were bilateral according to previously determined coordinates (Munhoz et al 

2006. PNAS) A/P, -2.3 mm, M/L, +-1.3 mm, and D/V, -2.0 mm. The volume injected per DG was 

0.250 μl with a rate of injection of 0.1 μl per minute. Two minutes were allowed after each 

injection in order to avoid any backflow up the needle tract. Neurobasal group was only 

injected with 0.5 μl of Neurobasal A medium; Secretome group were injected with 0.5 μl of 

BMSC’s secretome. At the end, the animals were sutured and then injected with 100 μl of anti-

sedating (Orion Pharma, Finland) in order to recover from surgical procedure. 

Figure 8. Graphic representation of dnSNARE model: Demonstration of transgene expression when Off-Dox 
in pink. Mechanism of transcription blockage of transgene expression when On-Dox. Abbreviations: GFAP, 
glial fibrillary, acidic protein; tTA, tetracycling trans-activator; tetO, tet off; v-SNARE, vesicular snare; 
t-SNARE, transmembrane SNARE; Dox, doxycycline. Adapted from: Fujita et al., 2014. 
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One week after the injections (week 9), the animals were killed with sodium pentobarbital 

(Eutasil, 60 mg/kg i.p.; Ceva Saúde Animal Portugal), and transcardially perfused with 4% 

paraformaldehyde (Merck, Portugal) in 0.1Mphosphate-buffered saline (PBS). 

 

 

 

3.4. Transgene expression analysis 

 

3.4.1. RNA isolation protocol 

Tissue from pre-frontal cortex isolated upon animal’s sacrifice were submitted to total RNA 

extraction using phenol and guanidine isothyocyanate (TRIzol, Invitrogen). Briefly, tissue was 

mechanically homogenized with 1mL of TRIzol with the aid of a 10G syringe. To the lysate, 

isopropanol was added, and the samples were centrifuged for 10 minutes at 12,000xg at 4ºC. 

The resulting pellet containing RNA was resuspended in 75% ethanol and centrifuged this time 

for 5 minutes at 7,500xg at 4ºC. 

The final RNA pellet was air dried for 5 minutes to allow for total solvent evaporation and was 

resuspended with RNase free water for quantification. 

Quantification was carried out on a NanoDrop (NanoDrop 1000, ThermoFisher), a microvolume 

sample retention system. NanoDrop functions by combining fiber optic technology with natural 

surface tension properties to capture and retain minute amounts of sample. The reduction on 

volume of the sample requirement is essential in order to increase workflow efficiency, 

allowing for the introduction of quality control steps along the experimental process which in 

turn promotes greater confidence in the downstream results. 

In our case, 2uL of RNA were pipetted onto the fluorospectrometer platform and the upper arm 

was brought into contact with the sample bridging the gap with the platform. NanoDrop then, 

calculated RNA concentrations and the purity ratios. 

 

Figure 9. Experimental timeline. Abbreviations: Dox, doxyciclin. 
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3.4.2. cDNA synthesis 

cDNA synthesis was carried out using (Xpert cDNA Mastermix, Grisp), the mastermix is an 

optimized reaction mix containing a balanced concentration of olido(dT) and random hexamer 

primers, dNTPs and RNase inhibitors, guaranteeing the preparation of full-length cDNA with 

minimal degradation. 

Briefly, an amount of total RNA totaling 500ng/µL for each sample was used as the template 

material for the reaction aiming to standardize the starting genetic material concentration in 

the downstream reactions. 

To the varying amounts of RNA samples, 10µL of reaction mix and up to 19µL of RNase free 

water were added and the total mixtures were submitted to 5 minutes of heat treatment in a 

thermoblock (Accublock, Lab Net International), at 65ºC to promote removal of possible 

secondary RNA structures. For cDNA synthesis 1µL of enzyme (Reverse Transcriptase 200U/µL) 

was added to the samples followed by thermocycler (MyCycler, Biorad) heat up for 15 minutes 

at 50ºC. Heat inactivation of the enzyme was carried at end of the process by heating the 

samples at 85ºC for more 5 minutes at the thermocycler. 

 

3.4.3. qRT-PCR for transgene expression  

The target of our transgene expression analysis was to enable for the correct division of the 

different experimental groups according to their degree of synaptobrevin/VAMP2 gene 

expression. The animals were divided into 3 groups (wild type, SNARE high, SNARE low) and 

subdivided accordingly to the treatment that was given, being either secretome (SEC) or 

neurobasal (NBA). 

 

  

The qRT-PCR protocol used was based on the enzyme (Xpert Fast SYBR uni Blue, Grisp), where 

the mastermix presents all the necessary components for the realization of the procedure apart 

from primers and template materials. The intercalating dye used in the mix causes negligible 

inhibition which allows for extremely high sensitivity and specificity. Briefly, a master mix is 

prepared by adding 10µL of enzyme, 8µL of RNase free water and 0,25µL of the specific forward 

and reverse primers for the genes of interest and for the housekeeping gene, furthermore 

Groups Interventions N° 

Wild Type NBA 3 

Wild Type Secretome 4 

Snare High NBA 5 

Snare High Secretome 5 

Snare Low NBA 3 

Snare Low Secretome 8 

Table 1. Outline with experimental groups 
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18,5µL of this mixture is added to the PCR plate. For every space in the plate it is added 1,5µL 

of a 4x dilution in RNase free water of cDNA corresponding to each biological sample. 

For every biological sample, two technical samples are assessed, and in every PCR plate, a no-

template (NTC) condition for each gene is assessed. Primer efficiency was tested, by developing 

a five-point concentration gradient where serially reduced amounts of template are added to 

the mix and completed with RNase free water. 

The whole procedure was carried out over ice, covered from light and as fast as possible in 

order to reduce possible RNase exposure. 

The quantification was performed on the thermocycler (7500 Applied Biosystems, 

Thermofisher) with the following thermal protocol. 

After the amplification, a melting curve of the amplified products was built for primer dimer 

and non-specific amplification assessment. 

 

Nº of Cycles Temperature Time Procedure 

1x 95ºC 2 minutes Enzyme activation 

40x 95ºC 5 seconds Annealing 

60ºC 25 seconds Extension 

Dissociation/Melt 

Analysis 

Up to 95ºC with 0,5ºC 

increments 

Increment every 5 

seconds 

Quality control 

 

Primer sequence Sequence 5´3 Tm 

(UC) 

Product size (bp) 

Synaptobrevin II-

forward 

CTGCACCTCCTCCAAACCTTACGTTA 60 297 

Synaptobervin II-

reverse 

GGATTTAAGTGCTGAAGTAAACGATG 60 297 

18S-forward GGACCAGACCGAAAGCATTTG 60 260 

18S-reverse TTGCCAGTCGGCATCGTTTAT 60 260 

Table 2. Chart with the qRTpcr cycling protocol for transgene expression analysis. 

Table 3. Primer sequences used in the transgene expression analysis. 
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3.5. Histology and immunohistochemistry 
 

3.5.1 Histological Procedures 

Coronal hippocampal sections were obtained by means of a vibratome (Leica VT1000S, 

Germany). Sections of 40 µm were produced by slicing the whole brains fixed by a solution of 

3% agarose gel, with the aid of a stainless-steel blade. 

Special attention was given to the angle where the brain was ultimately fixed, which in order 

to standardize the slicing axis, they were placed rested on the cerebellum after a straight slice 

had been removed to create a flat surface to match the slicing base of the equipment. 

Hippocampal slices were used for immunohistochemistry experiments. 

After slicing, the sections were kept in 1% Phosphate buffer (PBS) solution supplemented with 

sodium azide 0,2% in order to preserve the tissue from fungi and bacteria overgrowth. 

 

3.5.2 Immunostaining experiments 

Immunohistochemistry was carried out on free-floating hippocampal sections; the goal of this 

experiment was to answer if the impaired gliotransmission had an effect on the already positive 

modulation of neuronal and glial proliferation in the (DG) of the hippocampus shown after local 

application of secretome. 

For this, GFAP primary antibody was used to stain astrocytes, anti-Ki-67 was employed to mark 

proliferative cells (cells that are not at the G0 phase), and as a counter staining, DAPI was used 

to reveal total cell nuclei. 

Regarding the immunostaining protocol, slices are first thoroughly washed in a solution of 1% 

PBS for 3 minutes under slight agitation. Permeabilization of plasma membrane was achieved 

by washing the slices with PBS plus 0,5% triton. Nuclear antigen retrieval for Ki-67 transcription 

factor was done by submerging the slices into 1% citrate buffer in 1,5ml Eppendorf tubes and 

heating the solution to 80ºC for 20 minutes with the aid of a thermoblock (D1200, LabNet) 

After cooling under air hood, the samples were submitted to endogenous blocking by adding 

10% fetal calf serum (FCS) for 1,5 hours. 

After blocking, overnight incubation with primary antibodies (1/200 anti-GFAP, Dako and 1/100 

anti-Ki67, BD Biosciences) was performed in 300µL which is the necessary volume used to easily 

cover all the slices. 

In the following day, the slices are thoroughly washed in 1% PBS for 4 times and secondary 

antibodies (AlexaFluor 488 and Alexa Fluor 594, ThermoFisher) both at 1/1000 dilution factor 

are added to the slices for a 2-hour incubation time covered from light. 

DAPI counter-staining was performed by adding 150µL of 1/500 solution to the slices for 10 

minutes, followed by three more washes. 

The slices are then mounted into 60x25 slides (Superfrost, ThermoFisher) with the aid of 

mounting media (Immumount, ThermoFisher). 
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3.5.3. Confocal microscopy image acquisition 

Photomicrographs for cell counts were taken using (FV1000 Olympus, Laser Scanning Confocal 

Microscope) with a 40x objective (UPLSAPO NA:0.90), using lasers, 405(Blue), 488(Green) and 

559(Red), with a resolution of 640x640px. 

In order to standardize the image acquisition and minimize inter-sample variation, photos were 

taken at a speed of 4µs/pixel, pinhole aperture 110µm, and excitations of 544 for DAPI, 452 for 

GFAP and 551 for Ki-67. 

Images were acquired sequentially, using a time lapse controller for mechanical orientation 

enabling the construction of a mosaic-like structure of the hippocampus, allowing for cell 

quantification at all three hippocampal layers (granular cell layer, sub-granular zone, molecular 

layer and hilus) in a tridimensional manner. 

For morphology assessment, the same parameters mentioned above were used, apart from 

employing a higher resolution of 1084x1084px in order to improve clarity for astrocyte processes 

segmentation. The images were not submitted to post-processing. 

 

3.5.4 Cell counting 

To assess number of proliferative cells Ki-67+ as well as GFAP+ cells at the DG of the 

hippocampus, the area of the DG was divided into sub-granular zone (SGZ) and granular cell 

layer (GCL). The SGZ was defined as the three cells layer composing the inner part of the DG, 

followed by the outer GCL. The hilus was defined as the area between the two arms of the DG 

as seen in fig. 

The area of all parts was determined using the software Image J (NIH Image, Bethesda, USA). 

All counting was normalized by area (mm2) of any given subsection and Ki-67+ cells were 

counted when nuclei appeared bright red and GFAP+ cells according to normal astrocyte 

morphology. Radial glial cells were counted at the SGZ whenever a cell expressed the 

characteristic GFAP+ staining around the nuclei and processes together with a positively stained 

nucleus for Ki-67. 

Primary antibody Dilution Company 

Rabbit anti-GFAP 1:200 Dako 

Mouse anti-Ki-67 1:100 BD Biosciences 

Secondary antibody Dilution Company 

Alexafluor 594 (RED) anti-
mouse 

1:1000 ThermoFisher 

Alexafluor 488 (BLUE) 
anti-rabbit 

1:1000 ThermoFisher 

Counter Staining Dilution Company 

DAPI 1:500 ThermoFisher 

Table 4. Antibody Chart. Primary, secondary and counter staining for immunohistochemistry 
experiments. 
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3.5.5. Morphometric analysis 

Astrocytes were readily identified by their characteristic GFAP-positive bushy shape, displaying 

thicker processes around the DAPI-stained nucleus. Between four and five astrocytes were 

reconstructed per animal with maximum two cells per slice. Cells with only one DAPI stained 

nuclei and without truncated processes were considered for reconstruction. The reconstruction 

of the astrocyte processes was carried using the plugin Simple Neurite Tracer (SNT) from FIJI 

(NIH, Bethesda, USA). The software, semi-automatically fills the registered paths respecting 

normal path tortuosity and tridimensional structure suggesting a midline. Due to heterogeneous 

structure of the astrocytic soma, and its relationship with its processes, the DAPI stained nuclei 

was consider the initial starting point with every main path being reconstructed from this point. 

After the cell processes are reconstructed, process length and number are automatically 

retrieved, and its sums easily calculated by the software. To proceed with the volume analysis, 

all the paths must be selected, and an adequate threshold must be used as the filling tool starts 

from the midline and progresses filling the processes outwardly. The threshold must achieve a 

filling pattern that respects both the thicker and the thinner processes. (0.05 yielded 

reproducible results across animals). 

Regarding the Sholl analysis, all the traced processes were selected and the starting point for 

the analysis was set at the center of the DAPI stained nuclei. Spherical radius with a 4 µm space 

was sufficient to provide enough morphological detail. The whole process of morphometric 

analysis is clarified at (Tavares et al. 2017 Brain Struct Funct) 

Figure 10. Mosaic photomicrograph of a DAPI channel for better delineation of the dentate gyrus (DG) of 
the hippocampus. Represented in blue is the sub-granular zone (SGZ) internally, followed by the granular 
cell layer (GCL) in red externally. Hilus region is the area in between the two arms of the DG. 
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3.6. Data analysis 

Data are shown as the mean ± standard error of the mean (SEM), Statistical analysis was 

performed using two-way ANOVA, followed by Tukey or Sidak Multiple Comparison Tests. 

Correlation was performed using Pearson’s tests. Values of P<0.05 were considered significant. 

*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 when compared to wild type animals (WT) or 

control conditions. Data sets were built using excel software (Windows 10, Microsoft, USA). 

Statistical analysis was performed using GraphPad Prism version 8 (GraphPad Software, San 

Diego, CA, USA) or SPSS version 25 (SPSS 25, IBM, USA). 

Figure 10. Graphic representation of the astrocyte process segmentation via simple neurite tracer (SNT). 
In purple is shown the main GFAP+ processes that are included in the multiple analysis. 
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Chapter 4 – Results 
 
4.1. Transgene expression analysis 
 
In order to establish the validity of the animal model and to inform us of which animals 

presented impaired levels of astrocytic gliotransmission, qRT-PCR was performed. 

Alternatively, other authors have reported same results when testing for the expression of 

reporter genes such as GFP (Sardinha et al.,2017). The graph on figure 11, demonstrates the 

clear distinction between high and low “expressors”. Mean Snare High= 0.016±0.005, n=10; 

mean Snare Low= 0.001±0.0005, n=13. P=0.0109. The expression levels of Wt animals were 

undetected as expected. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Transgene expression analysis by qRTpcr. Results shows a clear distinction between the so 
called “low” and “high” expressors. Results shown as mean of relative expression compared to 18s 
housekeeping gene expression. Data presented as mean±SEM. n=10-13 *P<0.05. Statistical analysis was 
performed using one-way ANOVA followed by Bartlett’s test 
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4.2. Proliferation levels at the SGZ of the hippocampus 
 
Proliferation is the first event preceding neurogenesis and gliogenesis at the hippocampus, and 

it is believed to be reduced in disease states (Allen et al., 2016). Additionally, MSC’s secretome 

have been shown to modulate SGZ proliferative state and induce neurogenesis. (Teixeira et al., 

2014) The assessment of proliferation was done by counting the number of positive cells at the 

SGZ of the hippocampus as seen (Figure 12, A-B), cells expressing Ki-67, a highly expressed 

transcription factor during all active stages of the cell cycle.  

Proliferation levels were elevated in Wt and Snare High animals treated with BMSCs secretome 

when compared to Nba treated animals. There were no differences in proliferation in Snare 

Low animals. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
  

B) 

A) 

Figure 12. Ki-67 cell counting’s. A) Confocal 
photomicrographs of the DG of the 
hippocampus showing in blue DAPI stained 
nuclei, in red Ki-67+ proliferative nuclei and in 
green GFAP+ astrocytic processes. 
B) Graph showing results for Ki-67+ cell 
counting at SGZ in cells/mm2. Multivariate 
analysis (Two-way ANOVA) followed by t-test, 
Wt Sec **P<0.01 when compared to Wt Nba, and 
Snare High Nba, ***P<0.001 when compared to 
Snare low Nba and Snare low Sec. Snare high 
Sec *P<0.05 when compared to Wt Nba and 
Snare Low Sec, **P<0.01 when compared to 
Snare low Nba. Data presented as Mean±SEM. 
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Regarding the proliferation of radial-glial cells, cells that are positively stained by GFAP and 
Ki-67 and can give origin to neuronal or glial progenitors we can see as depicted by (Figure 13 
A-B), that in the Snare high Sec group, secretome had a profound impact in increasing its 
proliferative status. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
  

Marker Experimental 
Group 

Mean±SEM Significance Source of Variation 

   Interaction  Genotype Treatment 

Ki-67 
at SGZ 

Wt Sec 82.6±7.8 P Values 0.059 0.031 <0.0001 

Wt Nba 31.9±11.5 F Values F (2, 22) = 
3.209 

F (2, 22) 
= 7.596 

F (1, 22) = 
23.57 Snare High 

Sec 
68.8±8.0 

Snare High 
Nba 

42.6±7.5 

Snare Low 
Sec 

37.5±4.3 

Snare Low 
Nba 

25.9±2.1 

Table 5. Statistical Analysis of Ki-67+ cells at the SGZ-Two-way ANOVA + Tukey test 

A) 

B) Figure 13. GFAP/Ki-67 double labelled cells at the 
SGZ. A) Confocal photomicrographs of the DG of the 
hippocampus highlighting a radial glial cell in the 
insertion. In blue DAPI stained nuclei, in red Ki-67+ 
proliferative nuclei and in green GFAP+ astrocytic 
processes. 
B) Graph showing results for GFAP/Ki-67+ double 
labelling at the SGZ in cells/mm2. Multivariate 
analysis (Two-way ANOVA) followed by t-test, Snare 
high Sec *P<0.05 when compared to Snare high Nba 
and Snare Low Sec, **P<0.01 when compared to Wt 
Nba. Data presented as Mean±SEM. 
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4.3. Proliferation levels at the hilar region of the hippocampus 
 
Regarding the cytogenic capacity of the hilar region, it is known to be a place where glial 

progenitors migrate and differentiate into astrocytes, interestingly, as seen in (Figure 14 A-B) 

we found increased although not statistically significant proliferation marked by Ki-67+ 

expression when gliotransmission was ablated in Snare high animals treated with BMSC 

secretome. 

 

 

Marker Experimental 
Group 

Mean±SEM Significance Source of Variation 

   Interaction Genotype Treatment 

Ki-
67+/GFAP+ 

at SGZ 

Wt Sec 12.5±1.7 P Values 0.1574 0.0135 0.0183 

Wt Nba 3.2±1.6 F Values F (2, 22) = 
2.013 

 

F (2, 22) = 
5.270 

 

F (1, 22) = 
6.494 

 
Snare High 

Sec 
32.4±7.5 

Snare High 
Nba 

12.6±3.9 

Snare Low 
Sec 

11.9±2.9 

Snare Low 
Nba 

10.5±5.9 

Table 6. Statistical Analysis of Ki-67+/GFAP+ cells at the SGZ- Two-way ANOVA + Tukey test 

Figure 14. Ki-67 expression at the hilar region of 
the DG of the hippocampus. A) Confocal 
photomicrographs of the DG of the hippocampus 
highlighting the hilus and the proliferative cells 
marked by Ki-67 staining. In blue DAPI stained 
nuclei, in red Ki-67+ proliferative nuclei and in 
green GFAP+ astrocytic processes. 
B) Graph showing results for Ki-67+ labelling at 
the hilus in cells/mm2. Multivariate analysis 
(Two-way ANOVA) followed by t-test. Data 
presented as Mean±SEM. 
 

B) 

A) 
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Marker Experimental 
Group 

Mean±SEM Significance Source of Variation 

   Interaction Genotype Treatment 

Ki-67+ in 
the Hilus 

Wt Sec 2.2±0.4 
 

P Values 0.8621 
 

0.0529 
 

0.2457 
 

Wt Nba 1.8±0.4 
 

F Values F (2, 22) = 
0.1494 

 

F (2, 22) = 
3.370 

 

F (1, 22) = 
1.423 

 Snare High Sec 3.8±0.7 
 

Snare High Nba 2.8±0.6 
 

Snare Low Sec 2.2±0.3 

Snare Low Nba 1.8±0.05 
 

  

Table 7. Statistical Analysis of Ki-67+ cells at the hilus- Two-way ANOVA + Tukey test 



56 

 

4.4. GFAP+ cells at the DG of the hippocampus 
 
Although much attention has given to the study of the differentiation potential of radial glial 

cells, little is known about the generation and differentiation of glial cells at this region. 

Nevertheless, time-lapse imaging has shown that immature astrocytes migrate radially trough 

the granular cell layer towards the molecular layer of the DG, where they adopt their final 

position (Sultan et al., 2015). The (Figure 15 A-B), demonstrates a slight increase in astroglial 

densities at the DG of the hippocampus in every group treated with the secretome of BMSCs, 

although the results were non-significant. 

 
 
 
 
 
 
 
 
 
 

Figure 15. GFAP+ expression at the DG of 
the   hippocampus. A) Confocal 
photomicrographs of the DG of the 
hippocampus highlighting GFAP+ expressing 
cells. In blue DAPI stained nuclei, in red Ki-
67+ proliferative nuclei and in green GFAP+ 
astrocytic processes. 
B) Graph showing results for GFAP+ cells 
counting at DG in mm2. Multivariate 
analysis (Two-way ANOVA) followed by t-
test. Data presented as Mean±SEM. 
 

B) 

A) 
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Marker Experimental 
Group 

Mean±SEM Significance Source of Variation 

   Interaction Genotype Treatment 

GFAP+ at 
the DG 

Wt Sec 469±37 
 

P Values 0.9664 
 

0.4129 
 

0.1902 
 

Wt Nba 426±32 
 

F Values F (2, 22) = 
0.03424 

 

F (2, 22) = 
0.9211 

 

F (1, 22) = 
1.827 

 

Snare High Sec 515±24 
 

Snare High 
Nba 

483±26 
 

Snare Low Sec 498±37 
 

Snare Low Nba 448±20 
 

Table 8. Statistical Analysis of GFAP+ cells at the DG of the hippocampus – Two-way ANOVA + Tukey 
test 
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4.5. Astrocytic morphometric analysis 
 
Astrocytes present great morphological complexity, such feature enables much of its 

homeostatic functions by placing them in close contact with synapses and blood vessels.  

Dynamic changes in its morphology have been associated with specific phenotypes in response 

to different physiological and pathological states. Herein we assessed the morphology of 

astrocytes immuno-stained for GFAP+ a marker that has been shown to correlate with 

morphological changes, process hypertrophy and overall reactivity. The study was carried, 

employing an open access tool Simple Neurite Tracer (SNT) that allowed for the verification of 

astrocytes main processes length, number, volume as well as arbor complexity. In (Figure 16 A, 

the resulting drawings of the traced astrocytes are demonstrated). In 16, B and C, respectively, 

it is showed that astrocytes from animals presenting a high gliotransmission inhibition (Snare 

high Sec) that were treated with secretome presented more and longer processes.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

A) 

B) C) 

Figure 16. Morphometrical analysis of astrocytes. A) Confocal photomicrographs (max projections) of the 
DG of the hippocampus highlighting chosen astrocytes for reconstruction with representative SNT traced 
astrocytes. In blue DAPI stained nuclei, and in green GFAP+ astrocytic processes. 
B) Snare high Sec animals present astrocytes with more processes, Snare high Sec *P<0.05 when compared 
to Wt Sec and **P<0.01 when compared to Wt Nba. C) Snare high Sec animals present astrocytes with 
longer processes *P<0.05 when compared to Wt Nba and Wt Sec. Multivariate analysis (Two-way ANOVA) 
followed by t-test. Data presented as Mean±SEM. 
 

Wild Type Snare Low Snare High 
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Regarding astrocyte process volume, despite of a tendency for increased volumes in all 

experimental conditions when treated with secretome, no statistic differences were found 

among groups. Nevertheless, positive correlations were seen between astrocyte volume when 

compared with process number and length as seen in (Figure 17. A-C) 

 
 
 
 
 
 
 
 
 
 
 

Morphometry Experimental 
Group 

Mean±SEM Significance Source of Variation 

   Interaction Genotype Treatment 

Number of 
Processes 

Wt Sec 19.3±0.6 
 

P Values 0.7389 
 

0.0021 
 

0.0797 
 

Wt Nba 16.5±0.5 
 

F Values F (2, 22) = 
0.3068 

 

F (2, 22) = 
8.227 

 

F (1, 22) = 
3.376 

 Snare High 
Sec 

29.0±1.7 
 

Snare High 
Nba 

24.1±2.2 
 

Snare Low Sec 23.6±2.0 
 

Snare Low 
Nba 

21.7±0.9 

Morphometry Experiment
al Group 

Mean±SEM Significance Source of Variation 

   Interaction Genotype Treatment 

Process Length Wt Sec 287.8±10.9 
 

P Values 0.1547 
 

0.0117 
 

0.1767 
 

Wt Nba 278.4±11.1 
 

F Values F (2, 22) = 
2.034 

 

F (2, 22) = 
5.488 

 

F (1, 22) = 
1.948 

 Snare High 
Sec 

456.9±39.0 
 

Snare High 
Nba 

341.5±33.0 
 

Snare Low 
Sec 

352.0±30.9 
 

Snare Low 
Nba 

358.4±17.3 

Table 9. Statistical analysis of astrocyte process number – Two-way ANOVA + Tukey test 

Table 10. Statistical analysis of astrocyte process length – Two-way ANOVA + Tukey test 
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To assess overall arbor complexity, Sholl analysis was employed for 3 different assessments. 

There was no difference in indirect complexity marked by distance of the last intersection 

between groups. The classical Sholl analysis showed a shift to the right in multiple distance 

points, what represents increased complexity in the astrocytes from animals with impaired 

gliotransmission that were submitted with BMSCs secretome treatment. 

Additionally, astrocytes from Snare high animal submitted to secretome treatment presented 

increased number of intersections.  

 
 
 
 
 
 
 

Morphometry Volume vs Process 
Length 

Volume vs Process 
Number 

Pearson 
Correlation 

R2=0.263/P=0.0026 R2=0.204/P=0.0079 

Linear Regression P=0.0052 P=0.0158 

A) B) 

C) 

Figure 17. Morphometrical analysis of astrocytes. A) No 
statistical differences besides a tendency for increased 
volumes in secretome treated animals. 
B) Positive Pearson’s Correlation between volume and 
process length. C) Positive Pearson’s Correlation among 
volume and number of processes. Univariate (One-way 
ANOVA) followed Linear regression. Data presented as 
Mean±SEM. 
 

Table 11. Statistical analysis of Pearson’s correlation of process volume with process number and 
length-Linear regression 
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Morphometry Experimental 
Group 

Mean±SEM Significance Source of Variation 

   Interaction Genotype Treatment 

Total number 
of 

Intersections 

Wt Sec 56.6±2.3 P Values 0.4186 
 

0.0203 
 

0.3406 
 

Wt Nba 54.9±1.2 F Values F (2, 22) = 
0.9062 

 

F (2, 22) 
= 4.679 

 

F (1, 22) = 
0.9489 

 
Snare High Sec 86.0±8.3 

Snare High Nba 69.8±8.0 

Snare Low Sec 69.9±5.6 

Snare Low Nba 70.6±4.7 

Figure 18. Morphometrical analysis of astrocytes. A) Snare animals treated with secretome presented 
increased arbor complexity in multiple distance points. Snare high Sec **P<0.01 when compared to 
Wt Nba and *P<0.05 when compared to Wt Sec. Snare Low Sec *P<0.05 when compared to Wt Nba 
and Wt Sec 
B) Distance of last intersection was the same among experimental groups. C) Snare high Sec animals 
presented astrocytes with increased number of intersections. Multivariate (Two-way ANOVA) 
followed Tukey’s test. Data presented as Mean±SEM. 
 

A) 

C) 

Table 11. Statistical analysis of number of intersections - Two-way ANOVA + Tukey test 

B) 



62 

 

  



63 

 

Chapter 5 – Discussion 
 
5.1. Hippocampal proliferative state and astroglial density. 
 
The use of MSC’s secretome for the treatment of CNS diseases has broad therapeutic 

applications, its capacity to modulate neurogenesis has been implied as a probable mechanism 

of action in several in vivo studies (Harrel et al., 2019). Since astrocytes represent a major 

player in the regulation of hippocampal neurogenesis, studying the interactions between 

astrocytic function and MSC’s secretome application into the DG could help us understand how 

this highly responsive cell population participate in the complex physiology of the hippocampal 

neurogenic niche. In fact, early data from our group have demonstrated that the secretome is 

an active modulator of hippocampal neurogenesis, inducing new-born neuron proliferation and 

differentiation, furthermore, the secretome is also capable of increasing glial survival in vitro 

as well as improving astrocytic densities when applied in vivo into the DG (Salgado et al., 2015; 

Salgado et al., 2010; Ribeiro et al., 2011; Teixeira et al., 2016; Teixeira et al., 2014). 

Considering such data, we aimed to study the impacts of impaired astrocytic signaling on the 

modulatory effects mediated by BMSCs secretome application into the DG. For that, the 

transgenic dnSNARE mice model was employed which works by overexpressing the cytosolic 

portion of the SNARE protein synaptobrevin-2 under the control of the GFAP promoter allowing 

for the selective transgene expression only in GFAP expressing cells. (Pascual et al., 2005) 

In that sense, as seen in figure 12 A-C, our experiments revealed that in comparison to the 

control neurobasal (NBA) injection, BMSC secretome increased levels of proliferation marked 

by the number of cycling cells (Ki-67+) at the sub-granular zone of the hippocampus in wild 

type and only in the dnSNARE-high group. Such result could be interpreted in two ways, for 

instance, the response from the wild-type animals was expected as (Teixeira et al., 2016), also 

demonstrated the same effect in rats, by showing an increased number of proliferative cells 

co-expressing the early-neuronal marker double-cortin (DCX) and Ki-67, the results were 

associated with the increased presence of neuroregulatory molecules such as FGF-2, BDNF, 

GDNF, IGF-1, VEGF and miR-16. (Teixeira et al., 2014; Teixeira et al., 2016) 

Regarding the response of the dnSNARE animals, to the best of our knowledge, this was the 

first study to explore such outcome on this animal model, nevertheless, it is worth mentioning 

that astrocytic transmission trough SNARE mechanisms plays an important role in mediating the 

maturation of adult-born neurons, and the impairment of such function may have induced a 

proliferative feedback, in order to maintain adequate levels of proliferation. (Sultan et al., 

2015)  

Importantly, herein we showed data from animals presenting low levels of transgene 

expression, as shown in figure 11,  which is uncommon in studies employing this animal model, 

in this sense, regarding the proliferation levels, the responses of the low expressing animals 

appears similar to the observed in wild type animals with the exception of the proliferation 
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levels in the SGZ, posing an interesting question of whether the effects of the secretome in 

transgene animals can be isolated or not, specially, given the clear physiological impact of 

exocytosis blockage. It is worth mentioning that, in studies employing such animal model, the 

animals expressing lower levels of transgenes are usually disregarded from data analysis 

(Sardinha et al., 2017) 

Interestingly, as showed in figure 13 A-B, the increase in the number of Ki-67+ cells in the 

dnSNARE-high group could be explained by the increase in the counting of cells co-expressing 

GFAP and Ki-67+ the so called radial glial cell, effect that was observed only in such 

experimental group. In fact, it has been demonstrated that radial glial cells can give origin to 

astrocytes (Cassé et al., 2018). Accordingly, when homeostasis is disrupted in cases of 

inflammatory responses, the proliferation associated with the establishment of astrogliosis 

happens due to early commitment of glial precursors to the astrocyte lineage, in fact, during 

pre-natal brain development, upon the appearance of the first cells exhibiting astrocyte 

characteristics, neurogenesis decreases in favor of gliogenesis (Costa et al., 2009; Kanski et al., 

2014; Nagao et al., 2016). 

Furthermore, astrocytes have been shown to negatively regulate neurogenesis by reducing 

Type-a/Neural stem cell proliferation trough contact mediated NOTCH signaling, a process 

dependent on intermediate filament protein GFAP and vimentin, what explains why we 

observed reduced levels of radial glial cell proliferation in the wild type animals. Accordingly, 

Barkho et al, 2006 identified several proteins such as (IGFBP-6 and decorin) that inhibits the 

proliferation of neural stem/radial glial cells expressed by astrocytes. 

Although such proteins have been identified in the secretome of human MSCs, it is worth 

mentioning that no study have been conducted with the aim of identifying such proteins in 

astrocyte exocytotic vesicles nor conditioned media, nevertheless, it is possible that the higher 

levels of proliferation and radial glial cell counting witnessed in dnSNARE high animals herein 

could have been due to reduced negative signaling from IGFBP-6 and decorin. (Barkho et al, 

2006) 

Moreover, astrocytes have also been shown to establish contact with radial glial/neural stem 

cells by sharing the surface of blood vessels of the molecular layer with processes from neural 

stem cells, and such interaction has been shown to increase proliferation and neurogenesis. 

(Kinouchi et al., 2003; Ashton et al., 2012) Thus, demonstrating that astrocytes present a strong 

influence in controlling the proliferation and differentiation of radial glial/neural stem cells in 

the hippocampus, and that such influence is dependent on astrocyte’s state and protein 

expression profile as well as molecular cues from its microenvironment. Such molecular cues, 

could be represented by the trophic factors and extracellular vesicles present in the MSC’s 

secretome as they have demonstrated the potential of changing cellular fate upon application. 

Considering the levels of proliferation in the hilar region of the hippocampus,  as seen in figure 

14 A-B, a robust tendency for higher Ki-67+ expression was observed in the dnSNARE high 

animals treated with the secretome, albeit, the differences between groups were not 

statistically significant, this finding is interesting given the actual lack of abundance in 
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publications reporting hilar proliferative events. Nevertheless, from what has been published, 

this could have implications for neuropsychiatry disorders as the low levels of proliferation 

marked by reduced Ki-67 expression in this hippocampal region have been correlated to 

schizophrenia, (Allen et al., 2016) Furthermore, this result could have been, again, derived 

from a proliferative response against the dnSNARE transgene expression, specially taking into 

account that the majority of proliferating progenitors that become astrocytes do it so in the 

hílus. Such response could be interpreted as a trial to reestablish normal gliotransmission 

particularly in this animal model, where not every astrocyte presents transgene expression (Han 

et al., 2011; Sultan et al., 2015; Sardinha et al., 2017). 

In what regards the GFAP+ cell density at the DG of the hippocampus, although there were no 

statistically significant differences between the treatment groups nor between the three 

phenotypes as seen in figure 15 A-B, an interesting tendency with a strong effect size was seen 

towards increased densities whenever secretome treatment was present. Indeed, previous 

results from our lab demonstrates that the secretome when applied to the DG, induces higher 

GFAP densities when compared to the NBA injected animals (Teixeira et al., 2016). 

Furthermore, such result makes physiological sense especially given the fact that the secretome 

contains EGF and FGF-2 which are the main ligands for EGFR and FGFR two highly expressed 

receptors that define astrocyte progenitors. (Pires et al, 2016; Lasorella et al. 2017). 
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5.2. Astrocyte morphological responses 
 
The existence of a sustained dialog between neurons and astrocytes is only possible due to the 

uniquely morphologic features presented by astrocytes in their long astrocytic processes 

coupled with their highly ramified structure (Sofroniew et al., 2015). 

Such complex morphology put astrocytes in the center of neurotransmission events providing 

strategic points of contacts with synapses and blood vessels (Sofroniew et al., 2015). Indeed, a 

single astrocyte may enwrap thousands of individual synapses and a myriad of parenchymal 

blood vessels (Tavares et al., 2017). 

At these points, astrocytes have the capacity to sense and respond to different levels of activity 

trough the release of signaling neuroactive molecules, ultimately altering neuronal activity, 

microvascular response and behavior processing (Araque et al., 2014). 

In fact, considerable morphological distinctions can be seen across species, brain regions and 

physiological states, and in addition, during certain pathological conditions astrocyte 

morphology is drastically affected (Sierra et al., 2015). Thus, in the scope of the present 

research, the study of astrocyte morphology was carried with the purpose of assessing the 

responses to the secretome injections as well as the influences that the dnSNARE transgene 

expression had in this cell population.  

For that, we employed the use of an open-source tool, Simple Neurite Tracer (SNT), that 

enables the reconstruction of the astrocytic main processes in a tridimensional manner, the 

software allows for the analysis of astrocyte morphology from a large number of sample, yet, 

in a simple, semi-automatic, effective and inexpensive way (Longair et al., 2011). 

The animal samples used for such analysis were stained for (GFAP), a broadly used marker for 

astrocyte main processes which its expression is highly responsive in cases of morphological 

changes, being one of the main molecular markers employed to asses and study astrocyte 

reactivity (Oberheim et al., 2012; Sofroniew et al., 2015) . 

In this context, we aimed to evaluate astrocyte main processes number, length, volume and 

overall arbor complexity. As seen in figure 16 A-C, astrocyte process number and length were 

significantly increased only in the dnSNARE high group treated with secretome, additionally, 

although no statistical differences among experimental groups were seen for process thickness, 

a strong and positive correlation between process volume, number and length was present, 

evidenced by figure 17 A-C. This result reveals the existence of a possible converging 

stimulatory mechanism among the secretome and the exocytosis blockage in astrocytes that 

led to overall process hypertrophy. 

Such result could be explained partially by the presence of stimulatory proteins present in the 

secretome of BMSCs such as FGF-2, PEDF, CADH2 and GDN, all molecules previously shown to 

induce astrocyte process hypertrophy (Pires et al., 2016; Kanemaru et al 2013; Ridet et al., 

1997). 

Moreover, another potential explanation comes from the fact that, the reduction in exocytotic 

events seen in dnSNARE high animals inhibits the presence of autocrine ATP signaling events 
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that normally emanates from astrocytes. Such signaling for instance, has been implicated in 

the astrocytes ability to control its morphology in response to changes in the microenvironment, 

therefore, its blockage, could lead to changes in cell morphology (Shen et al., 2017; Schmitt et 

al., 2012). 

Importantly, autocrine ATP/ADP signaling trough 2PY receptors have been implicated in 

astrocyte release of glutamate, this could have implications for diseases where excitotoxicity 

plays an etiologic role such as in traumatic brain and spinal cord lesions, epilepsy and 

neurodegenerative disorders (Nikolic et al., 2018; Allen et al., 2016). Considering arbor 

complexity, we employed sholl analysis, a method that measures the number and distance of 

intersections present in each process by creating concentric spheres around the astrocytic soma 

(Sholl DA. 1953). From such analysis, as demonstrated in figure 18 B, there were no differences 

regarding the distance of the last intersection which is an indirect measure of arbor complexity.  

Furthermore, as seen in figure 18 A and C, the total number of intersections was shown to be 

bigger in the dnSNARE high group treated with secretome, being such result complemented by 

an increased arbor complexity, as shown by the curve intersection shift to the right. In addition, 

secretome also increased overall arbor complexity from dnSNARE low animals but failed to do 

it so in the wild type ones, showing that, indeed the transgene expression was in fact the most 

important variable mediating such morphological changes.  

Taken together, these data shows that the secretome from BMMSCs is a potent mediator of cell 

proliferation marked by increased Ki-67 staining in the sub-granular zone of the hippocampus 

of wild type and in dnSNARE high animals, additionally, high transgene expression appears to 

exert a proliferative pressure in radial glial cells trough mechanisms yet to be determined, and 

in addition appears to act in a synergistic way together with the secretome to mediate the 

morphological changes in astrocytes presented herein. This can have implications for the 

physiopathology as well as treatment of many CNS diseases given the increased relevancy and 

broad implications that has been given to the role of astrocytes and gliotransmission recently.  
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Chapter 6 – Conclusions 
 
As a concluding remark, the work that has been presented and included in this dissertation 

provides important insights of how astrocytic signaling mediated by exocytosis affects the 

BMSCs secretome performance in modulating the proliferative levels and astrocyte morphology 

in the mice hippocampus. In fact, we showed astrocytic exocytosis to be crucial for the response 

to the proliferative stimuli produced by the secretome at the SGZ, by demonstrating reduced 

levels of proliferation in transgenic mice when compared to wild type. Furthermore, although 

the lack of gliotransmission did not present an impact on glial densities at the DG, it appeared 

to generate a proliferative pressure in radial glial cells at the SGZ and at the hilar region that 

was supported by the secretome treatment. In addition, we demonstrated that whenever there 

was a high disruption of exocytotic events and presence of secretome the animals presented 

astrocytes with more complex and hypertrophic morphologies, probably due to a synergistic 

effect on different signaling pathways caused by the trophic molecules in the secretome and 

the reduced autocrine signaling due to disruption of exocytotic events. 

More studies, aiming to reveal the molecular machinery of biosynthesis, storage and release of 

gliotransmitters as well as their impact for astrocytic responses to brain pathologies are 

warranted, especially if we want to one day, harness the opportunities for modulation of this 

cell population. Similarly, more research should be encouraged in the area of MSC biology, 

specifically in what concerns the full molecular characterization of the secretome (soluble 

proteins, extracellular vesicles, metabolites and signaling lipids), in order to provide us with 

an idea of the transcriptomic impact of applying such a complex cocktail of molecules to 

achieve a desired therapeutic outcome. Knowing the molecular mediators behind the 

therapeutic effect of this therapy is of unmeasurable importance in enabling us to translate 

the so far encouraging effects of pre-clinical studies into the clinics. 
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