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Resumo

Os Sistemas de Navegação por Satélite, (do inglês Global Navigation Satellite System - GNSS)
fornecem a posição de estações com uma precisão milimétrica. Estas posições não são con-
stantes ao longo do tempo devido ao movimento das placas tectónicas nas quais as estações
se encontram instaladas. O movimento das placas tectónicas não é igual em todas as partes
do globo, o que leva à acumulação de stress em algumas áreas, aumentado assim a ocorrência
de movimentos sísmicos. O conhecimento de tais movimentos é de extrema importância, bem
como a determinação da sua incerteza.
O movimento tectónico é um processo muito lento e constante ao longo de milhares de anos.
Como resultado, o movimento pode ser representado por uma tendência linear. Programas
como o Hector podem estimar tendências lineares em séries temporais com ruído temporal
correlacionado. Ruído correlacionado significa que as observações dos Sistemas de Navegação
por Satélite feitas hoje são similares às dos dias anteriores, o que implica que haja menos
informação do que se as observações fossem independentes. Esta é a razão pela qual a incerteza
real do movimento tectónico estimado é entre 5 a 11 vezes maior do que quando esta correlação
temporal não é considerada.
Infelizmente, ter em consideração essa correlação temporal na análise aumenta consideravel-
mente o tempo de computação. Com o crescente número de estações GNSS e o aumento da
duração das séries temporais existentes, é necessário acelerar essa computação. Este compor-
tamento também pode ser encontrado em outras séries temporais geodésicas, como as do nível
do mar observado em medidores de maré ou séries temporais da temperatura da superfície. Para
estudos das alterações climáticas, é importante que, para além de estimar a elevação do nível
do mar ou um aumento da temperatura, também as incertezas associadas sejam realísticas.
O conjunto de software Hector foi desenvolvido com o objetivo de reduzir o tempo de com-
putação tanto quanto possível. Nesta tese, investigaremos se o uso de uma potente Unidade
de Processamento Gráfico (do inglês Graphics Processing Unit), vulgarmente conhecida como
placa gráfica, pode reduzir ainda mais este tempo de computação. Até ao momento, nenhum
software semelhante ao Hector usa placas gráficas para realizar o processamento de dados. Esta
dissertação é, portanto, a primeira tentativa a ir nesse sentido.

Palavras-chave

CUDA, computação GPU, análise de séries temporais de sistemas de navegação por satélite,
estimativa de tendência linear, estimativa de densidade espectral de potência.
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Abstract

The Global Navigation Satellite System (GNSS) provides the position of stations with millimetre
accuracy. These positions are not constant over time due to motion of the tectonic plates on
which they are installed. The motion of tectonic plates is not the same all over the world,
leading stress to build up in some areas, thus increasing the occurrence of earthquakes. The
knowledge of such movements is of extreme importance, as is the determination of their un-
certainty.
The tectonic motion is a very slow process that is constant over thousands of years. As a result,
the motion can be represented by a linear trend. Programs such as Hector can estimate linear
trends in time series with temporal correlated noise. Correlated noise means that GNSS obser-
vations made today are similar to those of the days before, and it implies that one actually has
less information than when all observations were independent. This is the reason why the real
uncertainty of the estimated tectonic motion is between 5 to 11 times larger than when this
temporal correlation was not considered.
Unfortunately, taking this temporal correlation into account in the analysis slows down the com-
putations considerably. With the ever growing number of GNSS stations and the increasing length
of the existing time series, it is necessary to speed up these computations. This behaviour can
also be found in other geodetic time series such as sea level observed at tide gauges, and surface
temperature time series. For climate change studies it is important that besides estimating sea
level rise or an increase in temperature, also the associated uncertainties are realistic.
The Hector software package was developed with also the aim to reduce the computation time as
much as possible. In this thesis we will investigate if the use of a powerful Graphics Processing
Unit (GPU) can further reduce this computation time. So far, no Hector-like software uses
GPUs to perform data processing. This dissertation is therefore the first attempt to go in that
direction.

Keywords

CUDA, GPU computing, GNSS time series analysis, linear trend estimation, power spectral den-
sity estimation.
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Chapter 1

Introduction

From the beginning of this century, the number of permanent GNSS stations worldwide has been
increasing at a remarkably high pace to the point where, nowadays, there are several thousands
of them. Due to various geophysical signals, in particular tectonic plate motion, these stations
are constantly changing their position on the Earth’s surface. This motion is not the same all over
the world, which induces the increase of stress in the Earth’s crust in the plate boundaries. The
accumulation of stress increases significantly the likelihood of the occurrence of earthquakes.
Consequently, in the past years, the creation of strain rate maps to gain insight into the stress
accumulation became a subject of major importance for the geosciences and much development
has been seen.

It is essential to accurately estimate the associated uncertainties to properly evaluate the com-
puted tectonic motion and the derived strain rate maps. To do so, it is necessary to take into
consideration that GNSS observations are correlated in time and space.

Some GNSS time series analysis methods consider only the temporal correlation within the time
series. Hector is one of these software. Others consider only the spatial correlation that exists
between the time series of different GNSS stations. Analysing temporal correlation is an ex-
ceedingly slow process that requires a large number of computational resources, and this is the
reason of this dissertation: to make Hector faster through the usage of GPU resources. Besdies
GNSS time series this will also benefit the analysis of other geodetic time series such as those
observed at tide gauges.

1.1 Objectives

The analysis of time series is a slow process. In the scope of European Plate Observing System
(EPOS) [1], where SEGAL is a partner, there are presently around 700 stations with 10 years of
data on average. To analyse the data collected by them, it is needed a whole day, which leads
to an urgent need of making Hector faster, particularly because the number of stations to be
routinely analysed are expected to increase significantly in the near future.

Hector is currently one of the best software available in the world for GNSS time series analysis,
which is being used by numerous research centres all over the world.

Recently, SEGAL obtained a powerful NVIDIA GPU. The goal of this study is to adapt the source
C++ code of Hector software to make it faster by using GPU capabilities and analyse its results
on a normal GPU card and on a powerful one dedicated for scientific usage.

Hector is a software parallelised and already optimised to take advantage of CPU capabilities.
However, analysing the daily position time series for few years may need some hours, even with
software well designed and being constantly optimized as Hector. Williams [2] noted that the
computation time for analysing 10 years of data was around 6 hours. This was in 2003, nowadays,
computation capabilities have increased significantly. Nevertheless, we still need several hours
to analyse 10 years of data of a network with 100 stations in a normal computer.

1
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We will shown here the results of the usage of Hector software combined with GPU computation
and evaluate the difference from a CPU-only usage.

1.2 Hector Software

Hector [3] is a software package written in C++ language that can be used to estimate the linear
trend in time series with temporal correlated noise. Trend estimation is a common task in
geophysical research where one is interested in phenomena such as the increase in temperature,
sea level and position over time. It is well known that in most geophysical time series the noise
is correlated in time and this has a significant influence on the accuracy by which the linear
trend can be estimated [4] [5].

1.2.1 Hector Programs Bundle

Hector is a software package that comes with seven programs, described below:

• estimatetrend - Main program to estimate the linear trend.

• estimatespectrum - Program to estimate the power spectral density from the data or
residuals using the Welch periodogram method.

• modelspectrum - Given a noise model and values of the noise parameters, this program
computes the associated power spectral density for given frequency range.

• removeoutliers - Program to find offsets and to remove outliers from the data.

• findoffset - Program to find the epoch of a possible offset in the time series.

• simulatenoise - Program to create files with synthetic coloured noise.

• date2mjd - Small program to convert calendar date into Modified Julian Date.

• mjd2date - The inverse of date2mjd.

The normal sequence of steps of the analysis of a time series using Hector are shown in Fig.
1.1. Since temporal correlation is taken into account, the first step is to select a model of this
temporal correlation which is the same as choosing a noise model. The next step is to remove the
outliers that may exist in the data. Afterwards the linear trend is estimated using the program
’estimatetrend’ which is normally the slowest program of them all. This program also estimates
the noise parameters which can be used to predict the theoretical power spectrum of the noise.
This is compared with the actual power spectrum of the observations. If they agree, then this
confirms the choice of noise model was correct. If not, then another noise model needs to be
selected and the steps need to be repeated.

2
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Figure 1.1: Normal sequence of steps of using Hector to analyse a time series.

1.2.2 Hector Main Features

Hector main features include:

• Correctly deals with missing data. No interpolation or zero padding of the data nor an
approximation of the covariance matrix is required (as long the noise is, or has been made,
stationary [6]).

• Allows yearly, half-yearly and other periodic signals to be included in the estimation pro-
cess of the linear trend.

• Allows the option to estimate offsets at given time epochs.

• Includes power-law noise [7], ARFIMA [8], Generalized Gauss-Markov [9] and white noise
[10] models. Any combination of these models can be made.

• Allows taking the first difference of the data if power-law noise model is chosen (including
combination of white, flicker and random walk).

• Comes with programs to remove outliers and to make power spectral density plots.

• Provides a program + script to automatically detect offsets.

1.2.3 Hector License

Hector is free software. Its license is under the terms of the GNU General Public License as
published by the Free Software Foundation.

3
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1.2.4 Synthetic time series Generation - simulatenoise

simulatenoise is a program to generate time series with synthetic coloured noise. The gener-
ation procedure is based on the method described by Kasdin [11] where an impulse response,
different for each noise model, is convoluted with a white noise time series resulting in the de-
sired synthetic noise time series. Usually the convolution is performed using FFT (Fast Fourier
Transform).
Throughout this document, benchmarkings using time series as input will be presented. To fa-
cilitate the control over the size of these time series, it was used simulatenoise program to gen-
erate them. Every benchmarking in this dissertation uses time series created by simulatenoise,
except those where it is mentioned that real data were used.

1.3 NVIDIA Quadro P6000

Recently SEGAL acquired a powerful NVIDIA GPU: Quadreo P600. The NVIDIA Quadro P6000
is a GPU oriented to science and virtual reality, and by the time it was released, in October
2016, it was, according to NVIDIA, the world’s most advanced professional graphics solution ever
created. The next table helps to understand better the power of Quadro P6000 by comparing it
against GeForce 940MX, a mid-range laptop GPU. Both GPUs are used in the benchmarks in the
course of this dissertation.

GeForce 940MX Quadro P6000
Architecture Maxwell Pascal
GPU Memory 2GB 24GB
Memory Bus 64-bit 384-bit
Memory Bandwidth Up to 16 GB/s Up to 432 GB/s
NVIDIA CUDA® Cores 384 3840
Max Power Consumption 23W 250W
TMUS 24 240
FP32 (float) performance Up to 953.9 GFLOPS Up to 12.63 TFLOPS
FP64 (double) performance Up to 29.81 GFLOPS UP to 394.8 GFLOPS
Memory Type DDR3 GDDR5X
GPU Clock 1004 MHz 1506 MHz
Boost Clock 1242 MHz 1645 MHz
Memory Clock 1001 MHz - 2002 MHz 1127 MHz - 9016 MHz
Target Laptop Workstation
Release Date 2016 2016
Release Price N/A 5,999 USD

Table 1.1: Comparison between the GPUs used - Sources: nvidia.com and techpowerup.com

As can be seen from the table, Quadro GPU has totally disparate values from GEFORCE 940MX.
The price of GEFORCE 940MX is not available as it is a mobile GPU, sold only directly to computer
manufacturers, however, to comprehend the GPU target, it is available in laptops with a starting
price of approximately 500€.
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Chapter 2

State of the Art

In this chapter, concepts of CPU and GPU computation, CUDA programming and GNSS time series
analysis will be presented.
This chapter begins with the history of the CPUs, from the first to the most modern ones, and
from single to multi-core. Then there is an introduction to GPU computing, followed by its
applications. After, CUDA programming will be explained and demonstrated with a code sample
and will be introduced the CUDA concurrent, OpenCL. This chapter ends with an overview of
GNSS time series analysis software.

2.1 CPU

The first commercial microprocessor, Intel 4004, was released by Intel in late 1971. It was
a 4-bit processor with a maximum clock speed of 740kHz. A year later, Intel releases a new
processor, the 8008. Intel 8008 was the first 8-bit processor, however, it was slower than the
4004 predecessor. In 1974 arises the Intel 8080 that increases the clock speed to 2MHz and
separates the address and data bus. This processor was the basis for the Intel 8086, 16-bit
processor that came up in 1978 and which is the ancestor of the commercial processors in use
nowadays, the x86 family that includes processors such as Pentium and Core i7.
The following years continued to bring innovation to the processor industry, and other brands,
such as Sun Microsystems or AMD, came into the market. This last one starts to face Intel with
the Am386, a 32-bit processor with 40MHz of clock speed. But, was in early 1993 that the great
innovation arises, the iconic Intel Pentium, with 66MHz of clock speed, 3.1 million transistors
and 32-bit, this was the most advanced processor manufactured at the time. The Pentium
family of successors kept leading the market until the 21 century and creased Intel as the main
processor manufacturer company.
Nowadays, there are a lot of processors in the marker, although, Intel keeps leading, with the
Intel Core family being the best sellers of the moment.

2.1.1 Evolution of CPU - From Single to Multi-core

CPUs began being single core devices. It implies that they could do only one task at once. With
the constant evolution of computing and its needs, processors needed to enhance is capabilities,
starting from being able to switch between tasks more quickly until the advent of the hyper-
threading, introduced by Intel in 2002 on their Pentium 4 HT.
Hyper-threading debuted as a revolutionary approach to improve single-core CPU’s perfor-
mance. Using hyper-threading, one CPU appears as two CPU’s to the operating system. Pre-
tending that has more cores than really has, CPU uses its own logic to speed up his processing
capabilities allowing the two logical cores to share physical resources [12]. For instance, the
two virtual processors can borrow resources to each other when needed.
Hyper-threading, even though that is not as fast as two physical cores, can effectively increase
CPU’s performance up to 30%.
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Presently, single-core CPU’s are almost not in use. Low and middle-range CPU’s, including
the advanced Intel Core i7 at its entry-level, commonly come equipped with 4 cores, that are
actually two physical cores who act as 4 logical cores. Hyper-threading, although it is not a
recent technology, is far from obsolete and it will certainly remain in use for much longer, due
to its high efficiency that permits cost and size savings on processors. Every Intel processor
comes equipped with hyper-threading, other brands have similar technologies.

Intel released recently the Intel Core i9-7980XE processor, equipped with up to 18 physical
cores, which with hyper-threading, have 36 logical cores. Although, AMD has already the AMD
Ryzen Threadripper 2990WX, with 32 physical cores which corresponds to 64 logical cores. The
performance of both is still similar, as is their price [13].

2.2 GPU Computing

GPU computing is the use of a graphics processing unit (GPU) to accelerate applications running
on the central processing unit (CPU) by processing some of the most intensive and consuming
portions of the code.

GPU’s are specialised microprocessors optimised to do specific tasks. It runs at lower clock
speed than CPUs but whereas a typical CPU consists of one to eight cores, a GPU consists of
hundreds of smaller cores that operate together to process more data and in a faster way. A
CPU can do any type of calculation, GPUs do more specific tasks.

The primary difference in the operating procedure of CPUs and GPUs is that considering a
pipeline of tasks, CPU would take the first element of the pipeline and process the first stage,
then the next, consecutively until the last, dividing the pipeline in time and applying all the
resources in each stage. A GPU would instead divide the pipeline in space and not in time,
dividing the resources among the different stages.

Essentially, the main difference between a CPU and a GPU is that the first is more appropriate
for sequential and generic tasks, while GPU is better suited for particular tasks that can profit
from parallelism.

2.2.1 GPU Applications

GPUs were firstly created in order to deal with 3D graphics and video. This is still nowadays
the main use of the GPUs. More recently, with the advent of the cryptocurrencies, GPUs took a
central role in mining the virtual currency.

GPU capabilities soon revealed interest from many other areas than just video rendering. Scien-
tists immediately commenced to take advantage of GPU high processing capabilities, and these
days, GPUs play an important role in scientific research. Data mining, deep learning, medicine,
forecasting, mathematics, etc, are some of the areas that do not discard the usage of GPUs.

2.2.2 CUDA

Compute Unified Device Architecture (CUDA) [14] is a parallel computer architecture and pro-
gramming model developed by NVIDIA, which introduced CUDA in 2006 and it is currently on its
10.1 version. CUDA includes a Runtime Application Programming Interface (API) and a Driver
API. The differences between the two APIs are mainly that the Driver API is a lower-level API
that can take control over the hardware and the Runtime API is a high-level API that allows the
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developers to create programs with simpler code and without having a deep knowledge of the
CUDA complexity and syntax.

CUDA has been achieving popularity mainly among scientists because it changed the paradigm
of the parallel programming. Before CUDA or OpenCL, developers needed to understand the
programming design of computer graphics processing to be able to create programs in other
fields. Now, it can be done in a much simpler way, using CUDA.

CUDA also lets the programmers focus on the algorithm and abstract from the mechanics of par-
allel programming. CUDA’s popularity led developers to create new libraries for GPU computing
using CUDA or adapting existing libraries for CPU programming. This is also responsible for the
increasing usage of CUDA amongst scientists, once it allows a faster and easier way to develop
efficient parallel computing programs.

CUDA programs are usually written in C language, however, many other languages, application
programming interfaces, or directives-based approaches are supported. Figure 2.1 synthesises
valuable information to get started with CUDA, the main libraries available for the platform,
all the programming languages supported and the NVIDIA devices enabled for CUDA as well
their architecture and the minimum corresponding CUDA driver version. CUDA architectures
have different constructions due to different goals or due to shifts in technology, this project
uses two NVIDIA devices, one with Maxwell architecture and the other with Pascal, Maxwell’s
successor. They have some variances with Pascal presenting higher bandwidth memory, unified
memory, and NVLink as main differences to the previous architecture model.

In this dissertation is used C++ language and the libraries cuFFT and MAGMA.

As CUDA is developed by NVIDIA, it can only be used in Nvidia GPU’s.

Figure 2.1: GPU computing applications. Source: CUDA Toolkit Documentation

2.2.3 CUDA Kernel

CUDA programming model is designed to process in parallel large amounts of data. The way to
developing CUDA applications consists on the host device, the CPU, invoking special C functions
(Kernels) that are executed N times by an array of threads that run the same code, however,
each kernel has an ID and many threads execute each kernel in parallel.
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To better understand how a kernel works, one can look at figure 2.2. A CUDA program launches
the already mentioned “special function”, i.e. a Kernel. In fact, to take advantage of CUDA
parallel computing is not launched one Kernel, but a bunch of Kernels, which in turn, are ex-
ecuted by another bunch of Threads. These Threads can be one, two or three-dimensional,
(vector, matrix or volume) and they constitute a Thread Block. There is a size limit for Threads
per Block, which in modern GPUs is 1024. Such as Threads, a group of Blocks can also be one,
two or three-dimensional and it is called a Grid. The number of Grids depends on the size of
the data being processed as well as the number of processors in the system [15].

Figure 2.2: CUDA kernel hierarchy - Source: codingbyexample.com

Each Thread, Block and Grid have their own ID 2.3. A Thread ID i is given by i = blockIdx.x +

blockDim.x + threadIdx.x where blockIdx.x is the x dimension Block identifier, blockDim.x

is the x dimension of the Block dimension and threadIdx.x is the x dimension of the Thread
identifier. i values will range from 0 to 1023.
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Figure 2.3: CUDA kernel hierarchy IDs - Source: nvidia.com

2.2.4 CUDA Kernel Sample

Below is presented a very basic CUDA code. This can be called the CUDA Hello World, two arrays
are summed in parallel and their result is stored on a third array. A normal CPU approach to
this code would be to loop through the arrays sequentially and sum each position, in CUDA, it
can be done simultaneously with each Thread performing one sum [16].

cuFFT sample

#define N 10000

//CUDA kernel
__global__ void add(int *da, int *db, int *dc) {

int i = blockIdx.x;
if (i<N) {

dc[i] = da[i] + db[i];
}

}

int main() {
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int a[N], b[N], c[N];

//Allocates memory on GPU
int *da, *db, *dc;
cudaMalloc((void **)&da, N*sizeof(int));
cudaMalloc((void **)&db, N*sizeof(int));
cudaMalloc((void **)&dc, N*sizeof(int));

//Fills arrays with dummy data
for (int i = 0; i<N; ++i) {

a[i] = i;
b[i] = i;

}

//Copies input array from CPU to GPU
cudaMemcpy(da, a, N*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(db, b, N*sizeof(int), cudaMemcpyHostToDevice);

// Launches kernel
//Since there are N elements to process, and 1024 threads per
//block, one just needs to calculate the number of blocks to get
//at least N threads. Commonly , one simply divides N by the block
//size (being careful to round up in case N is not a multiple of
//blockSize).
int blockSize = 1024;
int numBlocks = (N + blockSize - 1) / blockSize;
//numBlocks -> number of threads blocks in a grid
//blockSize -> number of threads in a thread block
add<<<numBlocks , blockSize >>>(da, db, dc);

// Copies output array from GPU to CPU
cudaMemcpy(c, dc, N*sizeof(int), cudaMemcpyDeviceToHost);

// Free up the arrays on the GPU
cudaFree(da);
cudaFree(db);
cudaFree(dc);

return 0;
}

2.2.5 OpenCL

Open Computing Language (OpenCL) is a low-level API for heterogeneous computing. With the
same programming model as CUDA, the two APIs have a quite similar purpose, although, there
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are some differences between them. OpenCL is open-source and heterogeneous, and therefore,
it means that OpenCL can run not only in GPUs but also in CPUs, Digital Signal Processor (DSP),
Field Programmable Gate Array (FPGA) and other processor types.
OpenCL applications are portable, however, the performance is not. OpenCL needs kernels its to
be compiled and when they are used in hardware for which they are not tuned, the performance
decreases. Peng Du at al. (2012) [17] considers that with the lack of an automatic performance
tuning for OpenCL applications, OpenCL cannot be established in the area of high-performance
scientific computing.
[18] compared OpenCL against CUDA and for the conducted tests, the performance was just
slightly different, with CUDA still prevailing the best. OpenCL is not as used and popular as
CUDA, due to the market share totally subdued by NVIDIA [19], CUDA has a competitive edge
over OpenCL. It is also pertinent to consider the wide variety of APIs available for CUDA that
also contribute to making it the most dominant platform.
The advantage of OpenCL, considering the GPUs sector only, is the convenience of OpenCL on
running in both NVIDIA and AMD GPUs.

2.3 GNSS time series Analysis Software

Hector is not alone in the world of GNSS time series analysis software. There are two other
software that does the same as Hector: est_noise [20] and the first and perhaps the most
popular CATS [21].
Hector is, however, the most advanced software available for GNSS time series analysis. Hec-
tor differs from all the others due to two factors: Hector accepts only stationary noise, with
constant noise properties and, most importantly, the way of creating Full Covariance Matrices.
While others use Maximum Likelihood Estimation to create Full Covariance Matrices, Hector uses
the Levinson–Durbin recursion algorithm implemented by Ammar and Grag and that is explained
in detail in [3].
Maximum Likelihood Estimation requires O(n3) operations for n observations, Hector reduces the
number of operations to O(n2). Maximum Likelihood Estimation is a method that to invert ma-
trices needs to go through all the matrix, so almost a brute-force method, while Levinson–Durbin
recursion, the chosen method for Hector, uses a Toeplitz Matrix and Cholesky decomposition,
which speeds up the process.
Once this project attempts to use Hector alongside GPU computation, is relevant to mention
that so far, there is no GNSS time series analysis software that uses GPU cards, being this project
the first attempting to accelerate the slow process of GNSS time series analysis.

2.4 Summary

An overview of the current state of GPU programming and its APIs, as well as the GNSS time
series analysis software, has been provided in this chapter.
This chapter is essential to understand the following chapters, where one needs to have funda-
mental concepts of GPU programming, CUDA, and Hector software.
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Chapter 3

Fourier Transform

The best known of the Transforms, the Fourier Transform is the basis of this chapter and crucial
for many parts in the Hector software. This chapter discusses the first efforts to turn Hector
into a hybrid program that uses both CPU and GPU in its implementation. The chapter starts
by explaining the Fourier Transform and the best libraries to execute on a computer the Dis-
crete Fourier Transform. Then, it is provided a benchmark of Fast Fourier Transform using CPU
and GPU libraries as well as the algorithms used by these libraries. Further, in this chapter,
are shown the results of the transformation of two Hector programs, estimatespectrum and
modelspectrum, that are programs totally dependent on FFTs.

3.1 Fourier Transform

The Fourier Transform [22], named in honour of the French mathematician Jean Fourier, is
an extension of the Fourier Series. Fourier Series are a way to re-write complicated periodic
functions as a sum of simple waves, represented by sines and cosines. The Fourier transform
decomposes a function of time (a signal) into sinusoids (the frequencies that make it up) and
shows that any waveform can be re-written as the sum of sinusoidal functions. Fourier Transform
extended the Fourier Series in a way that the period of the function can be infinite.

Figure 3.1: Fourier Transform - Source: thefouriertransform.com

The Fourier Transform is widely used in many areas, being of extreme importance in the pro-
cessing of digital signals. Listening to digital music or watching TV are among the ordinary daily
activities that could not be done without this Transform.

Hector uses several Fourier Transforms, and this will be one of the aspects that will try to be
improved in the development of this dissertation.

There are multiple slightly different formulas to describe the Fourier Transform. All of them
can be outlined as:
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Figure 3.2: Fourier Transform summarised - Source: johndcook.com

Where m is 1 or 2π, σ is +1 or -1 and q can be 2π or 1. So, there are 8 potential definitions [23].

3.1.1 Discrete Fourier Transform

In order to compute the Fourier Transform on computers, one needs discrete values instead of
continuous ones. Therefore, on computers, Discrete Fourier Transform (DFT) is used.

Figure 3.3: Discrete Fourier Transform and its inverse - Source: wikipedia.org

DFTs [24] algorithms are quite sluggish, their complexity is O(n2), in this way, on computers, is
used Fast Fourier Transform (FFT) to calculate Fourier Transforms. FFTs [25] [26] are no more
than a factorisation of the DFT matrix into a product of sparse factors with a complexity of
O(nlogn).

There are many algorithms to calculate FFTs, the most significant ones are going to be detailed
further in this chapter.

Figure 3.4: Fourier Transform to Discrete Fourier Transform - Source: sp4comm.org
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3.2 FFTW

Fastest Fourier Transform in the West (FFTW) [27] is a C subroutine library for computing the
Discrete Fourier Transform in one or more dimensions, of arbitrary input size, and of both real
and complex data.

The first version was released in MIT by Matteo Frigo and Steven G. Johnson and is an open-source
library, released under GNU General Public Licence [28], currently on version 3.3.8.

FFTW is the most widely known library for Fourier Transform computing and the one with the
[29] best performance among all the free FFT software for CPU usage.

Among other interesting features, FFTW supports parallel transforms and it is portable to any
platform with C compiler.

The library operates only on CPUs and is used in Hector to compute every Fast Fourier Transform
the program has.

3.3 cuFFT

cuFFT - CUDA Fast Fourier Transform [30] is a library designed to provide high performance on
NVIDIA GPUs. The library is an improvement from the FFTW, a library written in C language with
the same purpose: computing the Fourier Transform.

The cuFFT library offers an interface for FFTs computing, it is a highly optimised and tested
library that employs CUDA to take advantage of the parallelism of GPUs to drive fast and opti-
mized executions of the Fourier Transform.

In addition to cuFFT, there is also cuFFTW library, a porting tool to enable FFTW users to start
using NVIDIA GPUs with a minimum effort.

cuFFT data layout is compatible with FFTW and it supports the usage of multiple GPUs.

Currently, cuFFT is the library that presents the best performance to calculate Fourier Trans-
forms [31].

3.3.1 cuFFT sample

cuFFT sample

//Memory allocations on GPU
cufftDoubleReal *y_gpu;
cufftDoubleComplex *Y_cuFFT ,*Y_gpu;
cufftHandle plan_forward_cuFFT;

double *y_pinned;
int n = 1000; //FFT size

//Pinned memory allocation on CPU
//y_pinned - input array
//Y_cuFFT - stores the FFT output
cudaMallocHost((void **) &y_pinned , n*sizeof(double));
cudaMallocHost((void **) &Y_cuFFT, n*sizeof(cufftDoubleComplex));

//Fill array with dummy data
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for (int i=0;i<n;i++) y_pinned[i] = 1.0*i;

//Memory allocation on GPU
//y_gpu - FFT input Real array
//Y_gpu - FFT output Complex array
cudaMalloc((void**)&y_gpu, sizeof(cufftDoubleReal)*(n));
cudaMalloc((void**)&Y_gpu, sizeof(cufftDoubleComplex)*(n));

int batch = 1; //batch size
//FFT plan creation
//D2Z - Double Real to Double Complex
cufftPlan1d(&plan_forward_cuFFT , n, CUFFT_D2Z , batch);

//Copy FFT input array from CPU to GPU
cudaMemcpy(y_gpu,y_pinned,sizeof(double)*(n), cudaMemcpyHostToDevice);

//FFT execution
cufftExecD2Z(plan_forward_cuFFT , y_gpu, Y_gpu);
//Blocks until GPU has completed all preceding requested tasks
cudaDeviceSynchronize();

//Copies FFT output to CPU
cudaMemcpy(Y_cuFFT,Y_gpu,sizeof(cufftDoubleComplex)*(n),
cudaMemcpyDeviceToHost);

//Clean-up memory
cudaFreeHost (y_pinned);
cudaFree (y_gpu);
cudaFree (Y_gpu);
cudaFreeHost (Y_cuFFT);

3.4 FFTW vs cuFFT

Before starting to change the Hector code to make it seize the GPU capabilities, a small program
was created to evaluate the feasibility of using cuFFT.

The program is pretty straightforward, it measures the execution time of the FFT on CPU and
on GPU, and is also measured the copy time, from Host (CPU) to Device (GPU) and from Device
to Host, in the conventional CUDA way and with pinned memory.

The benchmarking took place in two different hardware, described on table 3.1.
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Laptop Server
Computer Asus P24440U DELL PowerEdge R740 Rack Server

(Virtual Machine - VMware ESXi)

CPU Intel Core i7-7500U - 3.5GHz Intel Xeon Silver 4112 - 2.60GHz
2 physical cores, 4 logical cores 4 physical cores, 8 logical cores

GPU Nvidia GeForce 940MX Nvidia Quadro P6000
OS Linux Mint 18.3 sylvia Linux Mint 18.3 sylvia
RAM 12GB 8GB
GPU Memory 2GB 24GB
Nvidia Driver Version 418.56 418.56
CUDA Version 10.1 10.1

Table 3.1: Computers Specifications

3.4.1 Pinned Memory

The data allocated by the CPU is pageable [32], so it cannot be accessed by the GPU directly,
it must be transferred from the CPU to the GPU. For this purpose, CUDA allocates a temporary
pinned host array and copies the pageable data to the pinned array and then transfers the data
to the GPU, as described in figure 3.5.

Pinned memory operates as a “staging area” for the transfers, which delays the copy. To reduce
the cost of the transfer, it is possible to allocate data directly in pinned memory.

One may think that if pinned memory makes the transfers quicker, then it should always be
used, however, pinned memory needs to be used cautiously. First, the pinned memory perfor-
mance relies on the device being used. Secondly, over-allocating pinned memory can reduce
significantly the system performance by reducing the amount of physical memory available for
the other programs and tasks. Naturally, this depends on the capabilities of the machine being
used, so as the program that uses pinned memory itself. To be sure, both uses should be tested
in order to determine which suits best for each scenario.

Figure 3.5: Pinned Memory
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3.4.2 Ordinary Laptop

The first benchmarkings were done on the laptop.

The findings are displayed on the table 3.2 below. Fast Fourier Transforms are exceptionally
fast operations, for that reason, to simplify and make the results easy to evaluate, the values
on the table 3.2 are in milliseconds. To get the total time of cuFFT, one has to add the times of
the copy to the GPU, time of cuFFT and the time to copy the result back to the main memory.

Size 1000 10000 100000 1000000 10000000
FFTW 8 91 1262 18787 261560
Copy to GPU 19 26 151 3899 46050
Pinned Copy 16 96 940 5568 46970
cuFFT 92 130 2620 5918 71646
Copy from GPU 21 59 481 4679 45727

Table 3.2: FFTW vs cuFFT benchmarking on laptop

Analysing the results, the usage of the GPU for FFT’s starts to be more advantageous for sizes
larger than around 1000000. The pinned memory copies have intriguing outcomes, it is curious
to note that pinned memory takes longer times than the pageable memory. [33] has shown that
pinned memory fits better for large amounts of data, which could partially explain the results,
however, the last test, done for a size of 10 million, can already be considered a large amount
of data. The fact that the GPU device can interfere with the performance of the pinned memory
cannot be overlooked, and the 940MX used for this benchmarking sustains a feeble performance.

3.4.3 Server with Nvidia Quadro P6000

The second benchmarking environment was the server equipped with the NVIDIA Quadro P6000
GPU and table 3.3 demonstrates the benchmarking results. The difference between both GPUs
is highly evident. Already for time series with a length of between 10000 and 100000 the GPU
outperforms the CPU. This is closer to the length of actual geodetic time series. Pinned memory,
in this GPU, is always faster than pageable memory, even for small sizes, however, one must
take into account once again the scale, that is in milliseconds. The time difference for small
sizes is just substantial and would not be noticed on a smaller precision scale, despite that,
the larger test cases, present significant time gains. In the last test, pinned copy is around 10
seconds faster than regular copy.

It is also notorious that the server, even having a CPU a little better than the laptop, presents
worse results, which might be due to the virtualisation environment.

Size 1000 10000 100000 1000000 1000013 10000000
FFTW 11 117 1531 26011 151613 393425
Copy to GPU 22 34 204 1657 1704 17081
Pinned Copy 12 20 141 700 703 7366
cuFFT 56 78 100 554 3710 4763
Copy from GPU 15 20 97 691 701 6574

Table 3.3: FFTW vs cuFFT benchmarking on server

Considering the larger test, summing the times of the pinned memory copy plus the cuFFT exe-
cution and the copy from GPU, the result is less than half of the time of the CPU FFT execution.
So, it is definitely worth to use a GPU to calculate Fast Fourier Transforms.
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3.4.4 Hardware & FFTs Comparison

Figure 3.6 shows the last columns of Tables 3.2 and 3.3. It demonstrates the importance of a
GPU to compute Fast Fourier Transforms. The results are in both cases (laptop and server with
NVIDIA Quadro P6000) much faster on GPU than on CPU, even considering that the copies to and
from GPU need to be added to the cuFFT execution time.

Another conclusion that can be drawn from the graph, is that FFTW (the CPU version) performs
better on the laptop than on the server which could be explained by virtualisation of the device
in use and processor kinds. Both processors do not have many differences, plus, adding the cost
of virtualisation, makes the server slower to run the same Fast Fourier Transforms on CPU.

The pinned memory copy is only faster than pageable copy on the server, on the laptop, it raises
the copy time.

It is also conclusive that the distinction between CPU and GPU is tremendous, however, in this
case, FFTs were executed with large sizes and inside a loop, which makes cuFFT worthy. It would
therefore be meaningless to transform the code to CUDA for a easy single implementation of a
Fast Fourier Transform, with tiny dimensions, once the gain in time would be imperceptible.

Figure 3.6: FFTW vs cuFFT & Laptop vs Server (Nvidia Quadro P6000)

3.4.5 Prime Numbers FFT

During the experiments conducted with the FFT libraries, was detected something peculiar, two
near numbers need an extremely disparate time to execute. The FFT execution time depends
on the number of the size. If the size is a product of small prime numbers, or not. For instance,
an FFT of size 1000000 needs 26011 milliseconds to be computed on CPU and 554 on GPU, on the
server. However, 1000013 (only plus 13) needs 151613 milliseconds on CPU and 3710 on GPU,
which is about 500% slower in both cases. The reason behind is that the number 1000000 can
be written as a product of small prime numbers. 1000000 = 26 ∗ 56.
The explanation for this is due to the implementation of the FFT and cuFFT libraries. Both
libraries use the Cooley-Tukey algorithm (3.4.6.1) to reduce the number of operations needed
to optimise the performance.
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3.4.6 FFTW and cuFFT algorithms

FFTW and cuFFT are the most optimized libraries available for the computation of FFTs [31],
both libraries attempt to use the fastest existing algorithms to compute the Fast Fourier Trans-
form. The algorithms used are almost the same for both libraries. These algorithms are going
to be described in the next sections.

3.4.6.1 Cooley-Turkey algorithm

Cooley-Tukey algorithm [34] [35], named after James Cooley and John Tukey is the most common
Fast Fourier Transform algorithm. It is based in the divide and conquer principle and expresses
the DFT as a product of sparse building blocks, in other words, the Cooley-Tukey algorithm re-
writes a DTF in smaller DFTs. The libraries implement radix-2, radix-3, radix-5, and radix-7
blocks, which means that if the size of the transform can be factored as 2a ∗ 3b ∗ 5c ∗ 7d (where
a, b, c, and d are non-negative integers), the transform has enhanced performance.
The decomposition in powers of two is the one that expresses the best performance, while
greater prime numbers have worse performance, however, still O(nlogn).
When a number cannot be decomposed as product of prime powers, cuFFT uses Bluestein’s
algorithm 3.4.6.2 and FFTW uses prime-factor algorithm 3.4.6.3, Rader’s algorithm 3.4.6.4,
and a split-radix algorithm ??. These algorithms need more computations per output point than
the Cooley-Tukey, which makes the latter faster and more accurate.

3.4.6.2 Bluestein’s Algorithm

Bluestein’s algorithm [36] [37], also known as chirp-z algorithm, is a Fast Fourier Transform
algorithm that computes the Discrete Fourier Transform (and others) of arbitrary sizes by re-
expressing the DFT as a linear convolution.
Differently from Cooley-Tukey algorithm, Bluestein’s can compute FFTs of prime and non-prime
sizes, however, for prime sizes, Cooley-Tukey is much faster than Bluestein’s.

3.4.6.3 Prime-Factor Algorithm

Prime-factor algorithm [38], also called Good-Thomas algorithm is a Fast Fourier Transform algo-
rithm that re-expresses the Discrete Fourier Transform of a size N = N1N2 as a two-dimensional
N1 ∗N2 DFT only for the case where N1 and N2 are relatively prime numbers. Bear in mind that
two integers are relatively prime if the only positive integer that divides both is 1, and conse-
quently, any prime number that divides one does not divide the other [39].
The two resulting minor transformations are then computed by other FFT algorithm, that can
be Cooley-Tukey for example.
Prime-factor algorithm is slower than Cooley-Tukey once it works only for relatively prime num-
bers and so, it is useless for sizes power of two, which are the quickest computed by Cooley-
Tukey.

3.4.6.4 Rader’s Algorithm

Rader’s algorithm [40], named for Charles M. Rader, is a Fast Fourier Transform algorithm that
computes the DFT of prime sizes by re-expressing the DFT as a circular convolution.
Rader’s algorithm is typically only used for large-prime base cases of Cooley–Tukey’s recursive
decomposition of the DFT.
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3.4.6.5 Split-Radix

Split-radix [41] is a variant of the Cooley–Tukey FFT algorithm that uses a blend of radices 2 and
4. It recursively expresses a DFT of length N in one smaller DFT of length N/2 and two smaller
DFTs of length N/4.

Split-radix can only be applied when N is a number multiple of 4.

3.5 Welch’s method

In the introduction we mentioned that geodetic time series contain correlated noise and that this
need to be included in the time series analysis to ensure realistic uncertainties for the estimated
linear trend. In geophysical time series the temporal correlated noise has larger amplitude at
the long periods than at the high frequencies. Therefore, the use of FFT which decomposes the
noise into a sum of simple waves can be used to study the properties of the noise. In fact, only
the square of the amplitudes is needed while the phase of the waves is ignored. This is called
a power spectrum. A popular method to compute power spectra is the periodogram method of
Philip Welch [42]. It is a method to estimate the power of a signal at different frequencies.

Welch’s method divides the time signal into successive blocks, forming the periodogram for each
block, then, this method applies a Fourier Transform and averaging for each block.

3.6 estimatespectrum

The first Hector program being converted to CUDA was estimatespectrum. estimatespectrum is
a program to estimate the power spectral density from data or residuals (the difference between
observations minus the estimated linear trend and additional offsets and periodic signals) using
the Welch periodogram method. The program is written in C++ language and to estimate the
power spectral density, it uses the Fourier Transform.

estimatespectrum was written using the library FFTW to perform the Fourier Transforms. This
library is the most famous and among the best libraries to calculate Fourier Transforms in terms
of performance.

The first step in making estimatespectrum executing the Fourier Transform on the GPU was to
change it from using the FFTW to cuFFT, a library that came up to be the FFTW for GPUs, more
specifically, for NVIDIA GPUs, through CUDA programming.

3.6.1 Estimate Spectrum - From CPU to GPU

In the beginning, transforming the use of CPU to GPU appeared to be easy, a straightforward
shift to the API calls seemed to work at first glance, although it ended up not being the case.
GPU programming is a completely distinct way of programming, and the documentation is quite
terse. GPU programming is still not widely used, and to find information is difficult, as the CUDA
developers community remains small and under development.

estimatespectrum used a way to calculate the Fourier Transform by executing a transform of real
to complex values as many times as the number of segments given as input. This programming
procedure works perfectly for the CPU version of estimatespectrum, once it makes n calls to the
API and splits the data size for each call, making the FFTs size smaller, and consequently their
execution faster. Although, programming for GPU is completely different. Making n calls to
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cuFFT is a way far from a good solution. GPU programming has a high cost on transferring data
from/to GPU as one could perceive by analysing table 3.3, therefore, the fewer data moves the
code needs, the faster the execution will be. In this program, as depicted on figure 3.7, most of
the time spent executing the GPU code of estimatespectrum is precisely on the data transfers.

In order to shorten transfers, the code was rewritten to execute only once the real to complex
transform. Instead of smaller FFTs, CUDA code executes only a single one containing all the
data. This way, multiple CPU/GPU copies are avoided, reducing them to only 2. One to copy
from CPU to GPU, and the other to copy in an inverse way the result of the Fourier Transform.

Figure 3.7: Nvidia Visual Profiler - estimatespectrum execution with a dataset of 10.000.000 entries

NVIDIA Visual Profiler (NVVP) [43] is a cross-platform performance profiling tool that delivers
feedback for optimising CUDA C/C++ applications. This usefull tool helps to identify performance
bottlenecks, memory transfers, kernel launches and other API functions.

NVVP showed that the Fourier Transforms used on estimatespectrum do not need heavy compu-
tation power from the GPU.

3.6.2 estimatespectrum - Workflow

Once the program reaches the section to compute the Fourier Transform, it starts by allocating
memory on both CPU and GPU. On CPU, the memory is required to fill the array and to get the
result of the transform. On GPU, the allocated memory has the purpose of receiving a copy
of the data array and another array to save the transform result, the last one, is an array of
complex values.

On the CPU version of estimatespectrum, the data array was filled into portions of n size, 1 for
each of the segments. On the GPU version, the array is filled once with all the data.

After allocating the memory required for the Fourier Transform and filling the array, data has to
be copied to the GPU. When the data is in the GPU, the Fourier Transform can then be executed.
On estimatespectrum, the desired transform is from real to complex type, and all the values
have double size.

When the transform completes its execution, the resulting array of type real is copied from
GPU to another array of the same size on CPU. Then, estimatespectrum maintains its own stan-
dard execution flow, with a few fresh variations to adjust the software to the GPU variant,
which executes the Fourier Transform only only once instead of the n times on the previous
estimatespectrum version.
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Figure 3.8: Fourier Transform workflow on estimatespectrum program

3.6.3 estimatespectrum - CPU vs GPU

After altering the estimatespectrum code in order to use the capacities of the GPU, it was
essential to benchmark its results to figure out whether the implemented changes showed any
advantage. The benchmark content is on the table 4.5 and the computer used for this benchmark
was the laptop.
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Noise size Segments Output CPU Output GPU Time CPU (s) Time GPU (s)
1,000 4 40.35 40.35 0.0041 0.2419
1,000 8 41.19 41.19 0.0039 0.2343
1,000 16 41.45 41.45 0.0038 0.2311
1,000 32 39.03 39.03 0.0038 0.2345
1,000 64 38.47 38.47 0.0043 0.2308
1,000 128 36.08 36.08 0.0051 0.2318
1,000 256 31.42 31.42 0.0051 0.2356
100,000 4 74.28 74.28 0.1715 0.3458
100,000 8 71.94 71.94 0.0932 0.3304
100,000 16 71.78 71.78 0.0861 0.3195
100,000 32 71.85 71.85 0.0837 0.3163
100,000 64 71.52 71.52 0.0848 0.3222
100,000 128 71.23 71.23 0.0837 0.3213
100,000 256 71.34 71.34 0.0808 0.3146
1,000,000 4 75.84 75.84 1.0747 1.3233
1,000,000 8 74.81 74.81 0.8903 1.2031
1,000,000 16 75.32 75.32 0.8228 1.1661
1,000,000 32 74.88 74.88 0.7916 1.1559
1,000,000 64 74.91 74.91 0.7722 1.0998
1,000,000 128 74.75 74.75 0.7710 1.1494
1,000,000 256 74.79 74.79 0.7603 1.0598
10,000,000 4 110.2 110.2 10.6721 11.5416
10,000,000 8 108.5 108.5 9.4353 10.0637
10,000,000 16 106.3 106.3 8.5330 9.3756
10,000,000 32 108 108 8.2151 9.1024
10,000,000 64 108.1 108.1 7.9363 8.8207
10,000,000 128 108.3 108.3 7.8248 8.9665
10,000,000 256 108.2 error 8.3638 -
20,000,000 4 97.1 97.1 20.9583 23.2113
20,000,000 8 98.06 98.06 18.5839 20.0514
20,000,000 16 99.59 99.59 17.3342 18.8637
20,000,000 32 98.89 98.89 16.4541 18.0266
20,000,000 64 99.61 error 15.9948 -
20,000,000 128 99.96 error 15.7427 -
20,000,000 256 99.8 error 15.7068 -

Table 3.4: estimatespectrum benchmarks

The program was executed with different noise sizes as input and different segments. Segments
are no more than the blocks obtained from the division of the time signal by Welch’s method.
A best description of this method can be found in 3.5.

The output of the program is always the same for both CPU and GPU variants of estimatespec-
trum, which makes it possible to conclude that the inclusion of the CUDA code was properly
done. As one can tell by analysing the table, sometimes the GPU variant presents error as out-
put. This occurs because it is not possible to allocate the required size to execute the Fourier
Transform on the used device. Two alternative measures could be taken in order to address this
problem: split the transform execution into two or more segments or use a GPU with greater
capabilities. As the table shows, the GPU is never faster than CPU and according to the figure
3.7, most of the time needed to run the program is spent copying memory between CPU and
GPU, for this reason, the first possibility was disregarded, since splitting the transform execu-
tion into portions would require additional memory copies, which would increase the execution
time of the GPU. Therefore, there was available for this dissertation a powerful GPU for which
allocating more memory space would not be an issue.
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The difference on the time execution between the two versions is merely substantial, although,
in theory, one would expect a better performance on the GPU than on CPU. Multiple factors
may explain why that does not occur, the most obvious one being that the size of the Fourier
Transform and the number of its executions is not large enough in this program to justify the
usage of a GPU. Other factors such as the benchmarking environment can explain these results.
The experiments were conducted on a laptop which is not the ideal computer machine, and
the GPU used is a low-range one. However, the CPU is still one the best available for laptops.
Considering again the figure 3.7, it is clear that subtracting the time used on memory copies
and freeing memory to the GPU runtimes would make the GPU executions faster than CPU.

3.6.4 estimatespectrum - Conclusions

After evaluating estimatespectrum, it became clear that more than 90% of execution time is
being spent in input/output events, consequently, and considering the tiny FFT size and its
reduced number of executions, there is not much to improve for estimatespectrum. The Fast
Fourier Transform is already very fast on CPU, using a GPU, the FFT execution time is indeed
faster but the time needed to copy from CPU to GPU and then from GPU back to GPU, led to
the conclusion that the attempt to improve this program was in vain, since it is already well
optimised. A significant amount of FFT executions would be necessary for the benefits to be
noticed and estimatespectrum executes only one FFT.

estimatespectrum takes in average 2.03 milliseconds to execute the FFT on CPU, while on GPU
it requires only 0.05 milliseconds (the copies between devices are not considered) for a size of
100000 points, which in real world is already a large size, so, it does not worth to spend time
and efforts on making a program only 1.98 milliseconds faster.

Therefore, estimatespectrum was not even tested on NVIDIA Quadro P6000 GPU.

3.7 modelspectrum

Another important program for Hector that could be improved is modelspectrum. This program
works as a validation software.

estimatespectrum was used before to compute the power spectral density of the residuals from
an estimated trend and to verify if the chosen noise model for that trend is the correct.

After run the estimatespectrum, one can use the program modelspectrum to compute the power
spectral density of the estimated noise, to evaluate how well the modelled noise represents the
reality (output of estimatespectrum). To do that, is used modelspectrum.

With estimatespectrum program, one can fit a power-law noise model to the spectral density
estimates, then can construct plots like the ones on figure 3.9.
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Figure 3.9: Power spectral density and fitted noise

The three primary kinds of noise are shown on the last chart. After generating these plots, one
should manually evaluate if the chosen noise mode fits the power spectral density obtained by
estimatespectrum program. In the showed cases, it perfectly fits, but how precisely the esti-
mated noise model fits the periodogram? The answer can be obtained by using modelspectrum.

This program acts basically as a validator that computes the confidence interval of the chosen
noise for the power-spectrum obtained by estimatetrend. As input, it receives a noise model
(the one chosen before) and the noise parameters, then it generates thousands of random time
series and computes its power spectral density and fits the noise model, in order to evaluate
how well it fits for each.

To determine accurately the fitness of the noise model, the number of simulations must be
large, which will require several Fast Fourier Transforms (one per simulation). Thousands of
simulations, as well as the size of the points for them, make the program sluggish, consequently,
making it faster using the GPU, would be advantageous for Hector.

Figure 3.10: modelspectrum plot - KOSG station

The plot of a modelspectrum execution for a real case is shown on figure 3.10. It was used real
data collected by a GNSS station, KOSG station, located at Kootwijk, Netherlands. The figure
shows 3 red lines, the one in the middle represents the output of estimatetrend program 4.5 for
the given noise parameters, the upper and lower lines represent modelspectrum output. The
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blue dots are the estimated spectrum of the noise. The accuracy of modelspectrum is given by
the percentage of blue dots between the upper and lower lines. In this case, more than 90%
of the blue dots match this condition, therefore, this plot verifies that the fitted noise model
(thick red line) indeed fits the real observed spectrum (blue dots).

3.7.1 modelspectrum CPU vs GPU

To improve the performance of this program, it was changed the way it performs the Fourier
Transform. The GPU version of modelspectrum uses cuFFT instead of FFTW. In this program,
thousands of FFTs are done for each execution, however, only one per Monte Carlo simulation.
The benchmarks made for estimatespectrum clearly showed that cuFFT is faster than FFTW,
however it did not make any difference for that case, once only one FFT is executed and the
time gain is just a few milliseconds (and FFT on FFTW takes also a very short time, only some mil-
liseconds for a normal real data size). So, multiplying these “few milliseconds” by the thousands
of executions, the final gain can be really promising.
The following table presents the tests made for a real case, once again, the data used is the
one collected by the already mentioned KOSG station. For this station, there was available data
with a size of 6387 points. Considering the small data size, it was tested with only 4 and 8
segments. The tests were run on both computers and runtime is displayed in seconds.

M.C. Simulations Segments CPU laptop CPU server GPU laptop GPU server
5000 4 13.85 14.87 15.32 9.28
10000 4 27.19 29.85 34.75 17.90
15000 4 39.17 44.66 47.19 26.42
20000 4 56.03 60.11 75.07 34.61
5000 8 14.08 13.81 20.38 10.45
10000 8 25.65 29.22 45.46 20.37
15000 8 40.99 44.21 79.36 29.28
20000 8 53.98 58.82 71.27 40.60

Table 3.5: modelspectrum benchmarks

Even for such a small case of only 6387 points, the benefits of using a GPU are evident. It is
not worth to use the weak laptop GPU, once the CPU can have better results. On server, CPU
once again has inferior results than laptop CPU, however, GPU exhibits the best performance in
every single test. 3.11 chart helps to visualise the results.
Although not very different, the number of segments does not make a significant difference on
the execution times.
The gain increases with the number of Monte Carlo simulations, nevertheless, the gain, even
being around half of the time, does not seem to be remarkably high once the worst case takes
only more than a minute, though, this is a benchmark that uses real data, the number of points
can be either higher or even but not often, smaller. When higher, the gain becomes more
relevant, when smaller, less, naturally. The benefit of using a GPU does not mean much to
work with data from only one station, however, when Hector processes data from a network of
stations, the benefits are more evident, instead of one minute, a network of stations can take
up to hours to execute, depending on its size. Reducing the execution time by half, speeds-up
modelspectrum in double.
The advantage of the GPU usage will soon be applied in a real context at SEGAL. Normally, 4
times a year, SEGAL researchers plot the power spectral density for all EPOS stations and its
accuracy. This plots are publicly available at gnssproducts.epos.ubi.pt. Considering only the
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smaller time gain using a GPU, 4 seconds, which occurs for the 5000 simulations case (which is the
number of simulations being used by the researchers due to offering a satisfactory performance
for the time needed), a gain of only 4 seconds per modelspectrum execution will have a major
time reduction in the whole context. There are around 700 stations and for each there are
East, North and Up coordinates to compute. Every station is part of 3 networks (UGA, INGV and
BFKH). In this way, 700 ∗ 3 ∗ 3 = 6300 executions are needed. The total gain in seconds is given
by multiplying 4 seconds by 6300 executions, 4 ∗ 6300 = 25200. 25200 seconds are exactly 7
hours, which will be the gain that SEGAL researchers will benefit from upon the next creation
of plots. Soon, EPOS will have around 3000 stations, which reinforces the importance of using a
GPU.

Figure 3.11: modelspectrum comparison for 20000 simulations - KOSG station, Kootwijk, Netherlands
Orange - laptop, Green - server

3.7.2 Monte Carlo Simulation

Monte Carlo simulations, named after the gambling hot spot in Monaco, are statistic compu-
tational algorithms, usually used to predict outcomes by repeating massively simulations using
randomness to solve heuristically problems that might be deterministic.

Monte Carlo simulations are widely used in many areas, from finance to medicine and in the case
of modelspectrum they help to determine the accuracy of a noise model by generating thousands
of synthetic data using FFTs and Welch’s method 3.5 to calculate the power spectrum, which
also uses FFTs. The usage of cuFFT library instead of FFTW is the reason behind the decrease in
execution time of Monte Carlo simulations and hence, modelspectrum program.

3.8 Summary

The purpose of the events described in this chapter was to improve the performance of esti-
matespectrum and modelspectrum, even though these are not Hector’s slowest programs, a
reduction of the execution time would be very appreciated.
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This chapter showed that FFTs, even being complex calculations, execute usually in a very short
time, even for large amounts of data, due to the efficiency of the algorithms employed by the
main FFT libraries.
Were presented on this chapter two attempts to accelerate Hector execution time. The first
did not work out as expected at the beginning, being even worse to use a FFT GPU library
rather than a CPU one. The second program, modelspectrum, did improve its performance by
taking advantage of GPU computation. The execution time needed is now about half of the time
required for the CPU version of modelspectrum.
The main conclusion of this chapter is a well known fact regarding to GPU computing, programs
with a simple computation need, using small amounts of data, will not benefit from the GPUs
power. However, before the research was performed we did not know what exactly is ’small’
or what is a ’large’ time series. For a single FFT the time series needs to be longer than around
1000000 for the laptop and 1000 for the NVDIA card before the GPU becomes faster than the
CPU. When many FFT’s are performed, then the gain translates in a reduction of up to several
hours for the analysis of all the time series of a large network of GNSS stations.
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Chapter 4

MAGMA

This chapter presents the attempts to enhance the main Hector program, estimatetrend.

estimatetrend is Hector’s slower program and the one that requires more exhaustive compu-
tational power. This program, when used in real contexts, can take up to hours to estimate a
trend on the input data, due to its sluggish performance and computational needs, it was the
most important program to improve and the main goal of this dissertation.

In this chapter, one can start by getting to know the main GPU and CPU algebra libraries and how
do they perform to execute the same tasks, then is explained the way estimatetrend works and
why is this program the fastest available for GNSS time series analysis with temporal correlated
noise. In the end, one can analyse the results obtained by benchmarking the CPU and GPU
versions of estimatetrend.

4.1 MAGMA

Matrix Algebra on GPU and Multicore Architectures (MAGMA) [44] [45] is a collection of linear
algebra GPU accelerated libraries, designed by the team that developed LAPACK for heteroge-
neous/hybrid architectures. Its popularity advents from being a hybrid solution that can use
multiple CPUs and GPUs at the same time.

MAGMA is developed to be similar to LAPACK and facilitate code portability.

The part from MAGMA used in this dissertation is MAGMA BLAS which imports BLAS and LAPACK
routines that are divided into three operations levels: Level 1 implements vector operations,
Level 2 matrix-vector operations and Level 3 matrix-matrix operations.

The library is currently on version 2.5.1.

4.1.1 MAGMA sample

A simple example of how to use a daxpy function is shown below.

cuFFT sample

//Initializes the MAGMA library
//and caches information about available CUDA devices
magma_init();

magma_queue_t queue = NULL ;
magma_int_t dev = 0;

//Creates a new MAGMA queue, with associated CUDA stream
//Takes a device ID
magma_queue_create(dev, &queue);

double alpha = 0.1;
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double *A1, *A2;
A1 = new double[n];
A2 = new double[n];

//Fills arrays with dummy data
for (int i=0;i<n;i++) A1[i] = 1.0*i;
for (i=0;i<n;i++) A2[i] = 1.0*i;

double *d_A1, *d_A2;

//Memory allocation on GPU
magma_dmalloc(&d_A1, n);
magma_dmalloc(&d_A2, n);

//Copy arrays from CPU to GPU
magma_dsetvector(n, A1, 1, d_A1, 1, queue);
magma_dsetvector(n, A2, 1, d_A2, 1, queue);

//Executes the axpy function with double precision
magma_daxpy(n,alpha,d_A1,1,d_A2,1, queue);

//Copies the output from GPU to CPU
magma_dgetvector(n, d_A2, 1, A2, 1, queue);

//Clean-up memory
delete[] A1;
delete[] A2;
magma_free(d_A1);
magma_free(d_A2);

//Frees information used by the MAGMA library
magma_finalize();

4.2 LAPACK

Linear Algebra PACKage (LAPACK) [46] is a project that aims to make the widely used EISPACK
and LINPACK libraries run in parallel processors. LAPACK provides a bunch of routines for solv-
ing in an efficient way, high computational consumption algebra operations, particularly, on
matrices and taking advantage of the maximum possible CPU resources.

LAPACK is the main base for MAGMA GPU library.
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4.3 BLAS

Basic Linear Algebra Subprograms (BLAS) [47] are routines that provide standard building blocks
for performing basic vector and matrix operations.

BLAS is one of the most popular and efficient Linear Algebra software. It is portable and due to
its reputation, there is even a BLAS version for NVIDIA GPUs, named cuBLAS. Also because of its
efficiency, part of MAGMA consists of a ported version of BLAS for GPUs.

BLAS possess a C/C++ interface that is the one used in Hector.

4.4 Comparison between BLAS and MAGMA

Before starting the estimatetrend code improvements, the first step was to evaluate the per-
formance of BLAS, in this case, CBLAS, the BLAS version for C language, against MAGMA. To do
so, a small program was created with the purpose of benchmarking both libraries.

The program is pretty simple, it creates 2 arrays and executes a daxpy operation. axpy (4.1)
consists on constant times a vector plus a vector, the letter d before axpy means that it is a
double precision operation.

The daxpy operation is done inside a loop. The size of the arrays and the size of the loop is
variable.

After executing the program, the execution time for the loop containing the daxpy operation as
well as the copies from CPU to GPU and from GPU to CPU are evaluated.

The benchmarking environment is remembered on table 4.1.

y = αx+ y (4.1)

Laptop Server
Computer Asus P24440U DELL PowerEdge R740 Rack Server

(Virtual Machine - VMware ESXi)

CPU Intel Core i7-7500U - 3.5GHz Intel Xeon Silver 4112 - 2.60GHz
2 physical cores, 4 logical cores 4 physical cores, 8 logical cores

GPU Nvidia GeForce 940MX Nvidia Quadro P6000
OS Linux Mint 18.3 sylvia Linux Mint 18.3 sylvia
RAM 12GB 8GB
GPU Memory 2GB 24GB
Nvidia Driver Version 418.56 418.56
CUDA Version 10.1

Table 4.1: Computers Specifications

4.4.1 Ordinary Laptop

The first benchmarking was conducted on the laptop, the results can be seen in the next table.
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Loop size Array size Copy to GPU CBLAS MAGMA Copy from GPU
100 100000 0.001193 0.003012 0.00022 0.012226
1000 100000 0.001168 0.038924 0.002113 0.15553
10000 100000 0.001157 0.292767 1.14616 0.185634
100 1000000 0.009678 0.120357 0.000238 0.206012
1000 1000000 0.009679 1.24542 0.001928 2.02176
10000 1000000 0.009665 12.9971 17.0702 1.95104
100 10000000 0.093963 1.40547 0.000232 1.9072
1000 10000000 0.093922 13.9013 0.001933 18.4235
10000 10000000 0.138461 139.51 224.524 19.9458

Table 4.2: CBLAS vs MAGMA - simple benchmarking - ordinary laptop

As can be analysed from table 4.2, the MAGMA version deals better with larger array sizes and
smaller loops. The GPU in use is a very basic device that has difficulty in handling large loops.

Another important information one can take from it is the time required for copies. Those copies
are being executed a single time, outside the loops, notwithstanding, they take a significant
amount of time. In fact, the execution of the daxpy function takes less time than the copies
between CPU and GPU.

4.4.2 Server with Nvidia P6000

The results of the benchmarking on server with the Nvidia Quadro P6000 GPU are on the next
table.

Loop size Array size Copy to GPU CBLAS MAGMA Copy from GPU
100 100000 0.000508 0.006336 0.000401 0.000407
1000 100000 0.000411 0.029541 0.00366 0.000359
10000 100000 0.000503 0.193919 0.041965 0.000397
100 1000000 0.002909 0.049906 0.000625 0.007846
1000 1000000 0.002813 0.439288 0.004517 0.061896
10000 1000000 0.003195 4.45156 0.570481 0.066446
100 10000000 0.029392 0.668348 0.000556 0.077094
1000 10000000 0.026879 6.46747 0.004548 0.626065
10000 10000000 0.033545 63.6426 5.51345 0.64211

Table 4.3: CBLAS vs MAGMA - simple benchmarking - Server (Nvidia P6000)

As can be seen on the table, MAGMA is always faster than CBLAS, being around 1150% faster on
the last and heaviest test.

4.4.3 Laptop vs Server (Nvidia P6000)

The next chart shows the results of the last test on both computers. The relevance of the
GPU Nvidia P6000 is here highlighted. While the NVIDIA GeForce 940MX GPU was using all its
capabilities and gave sluggish results, even slower than the CPU, the server, alongside its GPU
showed an extraordinary performance, with the GPU code on server being 40 times faster than
on the laptop.
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Figure 4.1: CBLAS vs MAGMA & Laptop vs Server (NVIDIA Quadro P6000)

4.5 estimatetrend

estimatetrend is the main part of Hector software. It is constituted from a group of programs
and its purpose is to estimate a trend in time series with temporal co-related noise.

Trend estimation is a common task in geophysical research where one is interested in phenomena
such as the increase in temperature, sea level or GNSS derived station position over time.

To estimate a trend, this software uses a maximum likelihood estimation from the recursion
method developed by Levinson–Durbin [3]. This is by far, the most consuming part of estimate-
trend software, so the most important one to run on GPU.

4.6 estimatetrend - From CPU to GPU

An estimatetrend analysis made clear that it has plenty of Fast Fourier Transforms that could
be improved to run on GPU. However, this was not done. Despite the fact that estimatetrend
has many FFTs, they are not the most time consuming part of the code. Moreover, as it was
mentioned in chapter 3, FFTs on GPU actually execute faster than on CPU, however, they take
only a few milliseconds even on CPU. To notice the gain of a FFT using cuFFT against FFTW, the
FFT should be executed multiple times, e.g. within a loop. In estimatetrend only some FFTs are
indeed within loops, which multiplies the time gained by the number of loop runs. However,
most of the transforms would also require copies from CPU to GPU and from GPU to CPU inside
the loop, which would also multiply the losses.

The gains already accomplished with FFTs were excellent for a program such as modelspectrum,
however, estimatetrend is the heaviest program of Hector bundle, and it often takes hours, days
or even weeks to execute its tasks, so those gains are not enough. For that reason, it was decided
to leave out cuFFT on estimatetrend to focus on MAGMA.

The algorithm is divided into steps. The last one, the step where are computed least squares,
from a quick look, seems to be highly suitable to be parellelised, since it does not have any loops,
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and so, does not require copies within them, and performs multiple matrix and vector operations
that only need two copies between CPU and GPU, one at the beginning of the algorithm, and
another one at the end, copying the results back to CPU.

This part of the code is one of the main differences between Hector and other similar software.
Instead of using Maximum Likelihood Estimation to create a Covariance Matrix and then compute
the Weighted Least Squares, Hector uses Levinson–Durbin recursion.

4.6.1 Covariance Matrix

Covariance matrix [48] is a matrix, symmetric and whose element in the i, j position is the
covariance between the i-th and j-th elements of a random vector.

4.6.2 Weighted Least Squares

Least squares is a regression method that attempts to approximate the solution of overdeter-
mined systems, trying to minimize the sum of the squares of the residuals between the estimated
value and the real data.

Weighted Least Squares is a generalisation of the Least Squares used when the standard deviation
of the error term is not constant over all values of the predictor variables.

In a weighted fit, less weight is given to the less precise measurements and more weight to more
precise measurements when estimating the unknown parameters.

To compute the Weighted Least Squares in a quicker way, Hector uses a Toeplitz Solver.

4.6.3 Toeplitz Solver

Hector Toeplitz Solver, introduced by Levinson and Durbin and detailed in [3], simplifies the
Weighted Least Squares equation by using Cholesky decomposition, back substitution and a
Toeplitz matrix.

As Toeplitz matrices are diagonal-constant matrices, it reduces significantly the amount of com-
putation needed, saving memory and speeding-up the process.

Figure 4.2: Toeplitz Matrix. Source:wikipedia.org/wiki/Toeplitz_matrix
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4.7 estimatetrend - CPU vs GPU

4.7.1 Ordinary Laptop

Once MAGMA GPU effectively substituted BLAS and LAPACK routines, it was then necessary to
benchmark and evaluate its results. The benchmark environment took place on an ordinary
laptop. Its specifications were already described on 4.4.1. In the next table can be seen the
experienced results.

Noise Size Output CPU Output GPU Time CPU Time GPU Difference (secs)
5000 4.82579 4.82579 4,15 7,80 3.64
25000 4.81491 4.81491 90,76 97,48 6.72
50000 4.78279 4.78279 358,37 363,25 4.89
100000 4.78070 4.78070 1383,74 1428,20 44.46
250000 4.78889 4.78889 9292,19 9317,31 25.12
300000 4.80540 4.80540 14479,82 14378,80 -101.02
400000 4.79490 4.79490 26162,87 25822,11 -340,76

Table 4.4: estimatetrend benchmarks

By analysing the results, one can immediately understand the pertinence of making this software
run faster. The last test performed, using 400000 points took longer than 7 hours. Indubitably
a laptop is far from being the best hardware to run such software, even though the processor
used is still one of the best available for laptops, with a high-end performance.

When the input size rises, the GPU starts to have better results over CPU, however, the gain is
not significant.

It should be noted that just by compiling estimatetrend software using MAGMA libraries without
changing anything in the code, the software execution time automatically increased by about 3
seconds. This is one of the reasons why GPU cannot be faster than CPU using very small datasets.

Another explanation to the poor performance, and the most relevant regarding to GPU program-
ming is about GPU insignificance for small data. For a human, counting from one until 10000
is a very lengthy task. An array of 10000 size also seems pretty big, however, that array, with
double precision values, takes 78KiB which is so small that can perfectly be stored in CPU cache.
For such a small data, even the best GPU can be useless. This explains exactly why GPU version
of estimatetrend starts to be faster only after using significant higher datasets.

340 seconds are 5 minutes and 40 seconds. In a program that takes more than 7 hours to execute,
5 minutes does not seem to be a big improvement. In a real context, if one is estimating trends
for a network of GNSS stations, which can be hundreds of stations, a gain of 5 minutes for each,
at the end, can easily add up to multiple hours, however, these results are far from being good
enough to justify the usage of a GPU, so, the benchmarks need to be repeated on the Nvidia
Quadro P6000 in order to determine if the reason of the feeble improvements using GPU are
caused by the low capabilities of the device.

4.7.2 Nvidia Quadro P6000

SEGAL received a GPU Nvidia Quadro P6000, this is one of the best GPUs currently available.
Anyone working with GPU computing would be pleased to have one of these. So, there was an
obvious curiosity of trying estimatetrend on such a powerful hardware.

The benchmarking environment took place on a server of which its specifications were already
described on 4.4.2.
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As the previous benchmark took many hours, for this one, the number of timeseries used was
reduced to speed up the tests. The results of this benchmark can be seen on the table bellow:

Points Output CPU Output GPU Time CPU Time GPU Difference (secs)
5000 4.82579 4.82579 6,18 8,61 2,43
50000 4.78279 4.78279 500,72 508,87 8,15
400000 4.79490 4.79490 33052,99 33448,70 395,71

Table 4.5: estimatetrend benchmarks with Quadro P6000

As shown on the table, the results are worse than the ones on laptop. Even the CPU version of
the code exhibits worse results.

Trying to figure out what could explain this, led to two conclusions: Hector is a parellelised soft-
ware, it takes advantage of all the cores on a CPU, however, Hector is not highly parellelisable.
Most of its code is sequential and cannot have much benefits from the multi-core processing.
Thus, the fact that this benchmarking took place on a machine with more cores, does not ben-
efit significantly Hector, furthermore, the clock speed of this CPU is slower than the one in
the laptop. The other reason, and clearly the most evident is due to the virtualisation. This
benchmarking environment, ran on a virtual machine, which lowers the performance, since the
access to the computer hardware is not direct, existing a layer between the operating system
and the host machine, the hypervisor, in this case VMware ESXi. The last point might explain
the slower performance when compared with the laptop.

The obtained results were not the kind of results one would expect, especially from a so powerful
GPU. The smaller differences between both CPUs, and in addition, the virtualisation, can be a
reason for the slower performance of server’s GPU, however, the difference between GPUs is
massive, even with the virtualisation interfering, the results should be positively different.

4.7.2.1 Performance Reduction by Virtualisation

It is well known that virtualisation is not a good candidate for applications that demand a high us-
age of Input/Output (I/O), Random Access Memory (RAM), or CPU. Virtualisation creates a layer
in between the virtual machine and the host machine. Also, when multiple virtual machines are
running on the same host, the resources need to be shared by all the virtual machines, which
decreases the performance. For example, if each machine runs at the same time a program
that needs high usage of the CPU, the machines will decelerate themselves. Hector, especially
when working with large timeseries, needs all the referred resources. That explains why the
CPU performance is slower than on a laptop.

The negative effects of virtualisation can be reduced by using hypervisors. The used virtual
machine runs on a VMware ESXi hypervisor, an advanced solution of virtualisation, even though,
and as one could probe by analysing the table above, the performance never accomplishes the
same level as on a real host. Furthermore, [49] showed that VMware ESXi, although the most
renowned, is far from being the hypervisor that offers the best performance.

4.8 Valgrind

The previous results indicated that the new version of estimatetrend was probably not taking
advantage of such a powerful GPU. It was necessary to profile estimatetrend and figure out what
is causing this. To do so, Valgrind was used.

38



Use of GPU for time series analysis

Valgrind [50] is an instrumentation framework for building dynamic analysis tools that can detect
many memory management, profile a program, among many other functionalities.

Valgrind quickly helped to locate the root of the problem.

Figure 4.3: estimatetrend - time distribution of an execution

As can be seen on figure 4.3, the most consuming function of estimatetrend is a call to a daxpy
function. axpy is function that multiplies a constant by a vector plus a vector. The d before
axpy means that in this case is used double precision. This function, consumes about 33% of
whole execution of estimatetrend.

Right after daxpy, two ddot functions and memory allocations are the next instructions occupy-
ing the prime places on the execution times table. All these functions combined, are responsible
for above 90% of the whole execution time of estimatetrend. Is also shown that each of these
functions is called almost 400 thousands times.

Finding out where these functions are being called and why they are being used so many times
might help to reduce the execution duration of estimatetrend. The answer to this comes on
figure 4.4.
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Figure 4.4: daxpy hierarchy calls

This figure shows the travelled path from the begging of the program execution until daxpy
function call. At distance 3, appears the function step1 of Levinson–Durbin recursion algorithm.
Why is daxpy called so many times? Looking at the code one can easily find the reason. The
most consuming time calls are inside a loop, this answers why they are called so many times,
and this Valgrind profiling was made for a dataset of only 5000 points.
The conclusions of this Valgrind analysis point to the existence of a bottleneck in step1 function.
Another conclusion that one could take from this analysis is that the part of the algorithm
”converted” to use GPU, became actually faster, however, the execution of the function com-
pute_LeastSquares of AmmarGrag is so fast on CPU that it almost does not need any improve-
ment. This function can take less than a second to execute. So, the most promising part that
could benefit from GPU use actually improved by getting faster, but since it cannot improve
much more, use the GPU here is almost useless. This is the reason why the GPU version of
estimatetrend could only start to have better results on GPU when compared to CPU after the
usage of time series with many thousands of points. Due to the fact that it takes a lot of calls
upon the function and a significantly big data for it to get a number that can be noted after
summing the improvement of all executions, the gain itself will not be remarkably important
because the gain was only 5 and a half minutes in a program that takes around 7 hours to finish
its execution.

4.9 Overcoming the bottleneck

It was imperative to overcome the bottleneck caused by the for loop in step1. The obvious choice
would be to replace all the BLAS calls to MAGMA. However, it needed to be done carefully,
because a few copies between CPU and GPU would be needed inside the loop, which could
increase the execution time instead of reducing it.
Due to the complexity of Levinson–Durbin recursion algorithm, it is not possible to avoid the for
loop, so, the only way, is to reduce the number of CPU to/from GPU copies needed.

4.9.0.1 AmmarGrag step1 - Magma

Step 1 is the step that computes the inverse of the covariance matrix.
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After passing the code to MAGMA, it could be done with only one memory allocation on GPU and
one copy from CPU to GPU. However, both allocation and copy, occur inside a for loop, which
might damage the performance.

After changing the code, it needed to be tested. The benchmarking environments were the
ones already mentioned. Starting with the laptop, only one call the function step1 became from
about 2 seconds on CPU for 50000 points to about 50 seconds on GPU. It seemed disappointing,
however, it became clear that the GPU was using 100% of its capabilities, therefore, the test
was stopped on the laptop and estimatetrend was then tried on the server GPU. The results
on the server were really positive. The results obtained were the expected results for such a
powerful and expensive GPU.

The results are detailed on table 4.6.

Points Output CPU Output GPU Time CPU Time GPU Difference (secs)
5000 4,82579 4,82579 5,85 24,55 18,7
25000 4,81491 4,81491 120,74 128,71 7,97
50000 4,78279 4,78279 489,59 249,45 -240,14
100000 4,7807 4,7807 1953,01 589,13 -1363,88
250000 4,78889 4,78889 11754,72 2053,71 -9701,01
400000 4,7949 4,7949 33709,61 4586,03 -29123,58

Table 4.6: Benchmarking of AmmarGrag step1 with Nvidia P6000 GPU

As can be seen on table 4.6 and more easily on the following charts, when the amount of points
increases to higher values, the difference on execution times between CPU and GPU is enormous.

Figure 4.5: Time execution evolution for different sizes
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Figure 4.6: Logarithmic Scale - Time execution evolution for different sizes

For 400 thousand points, the execution time is around 8 hours faster. It was not even included
here the portion of the code to compute least squares, however, it saves only around 5 minutes
for 400 thousand points.
It can be concluded that while it is not useful to use a GPU for small time series, however, after
50 thousand points, the usage of a GPU makes a great difference. And for larger time series,
the GPU can be a really helpful ally for a researcher.
Bellow there is the loop that was changed to used MAGMA and its explanation.
Step1 Loop

for (i=0;i<m-1;i++) {
if (i==0) {

gamma = -gamma_x[i+1]/delta;
} else {

//ddot call, the seconds most time consuming function
//of the whole program
gamma = -(gamma_x[i+1] +
magma_ddot(i,&d_gamma_x[1],1,&(d_l2)[1],1, queue))/delta;

magma_dcopy(i,&(d_l2)[1],1,&(d_l1)[2],1, queue);

//daxpy call, the most time consuming part of the program
magma_daxpy(i,gamma ,&(d_l2)[1],-1,&(d_l1)[2],1, queue);

magma_dswap(ny, d_l1, 1, d_l2, 1, queue);
}
magma_dsetvector(sizeof(double), &gamma, 1, d_gamma, 1, queue);
magma_dcopy(1, d_gamma, 1, &(d_l2)[1], 1, queue);

//ddot call, the third most time consuming function
//of the program
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delta = gamma_x[0] +
magma_ddot(i+1,&d_gamma_x[1],1,&(d_l2)[1],-1, queue);

ln_determinant_C += log(delta);
}

4.9.0.2 AmmarGrag step1 - Magma and CUDA kernel

To avoid the need of one allocation on the previously described approach, a new procedure was
carried out using a CUDA Kernel.

CUDA Kernels were already described on 2.2.3.

The results can be seen in table 4.7. One allocation was reduced, however, the call to the
kernel inside the loop slightly increased the time, but it is then proved that only MAGMA is the
fastest way to avoid the step1 bottleneck.

In this case, CUDA kernel could not take advantage of parallelisation, which explains why the
code does not benefit on using it instead of MAGMA.

Points Output Magma Output Kernel Time Magma Time Kernel Difference (secs)
5000 4,82579 4,82579 24,55 27,76 3,21
25000 4,81491 4,81491 128,71 131,77 3,06
50000 4,78279 4,78279 249,45 259,43 9,98
100000 4,7807 4,7807 589,13 591,05 1,92
250000 4,78889 4,78889 2053,71 2091,21 37,5
400000 4,7949 4,7949 4586,03 4668,04 82,01

Table 4.7: Magma vs CUDA Kernel

4.10 Real Case Usage Test

An outstanding reduction of the time needed to execute the program estimatetrend through the
use of the GPU was already obtained. The experiments carried out, however, were conducted
solely using synthetic random time series. In order to have a better understanding of how the
significant time reduction will be crucial in the real world, new tests were carried out using real
data.

The time series used to conduct this benchmark were gathered from a station located in Ab-
erdeen, on the eastern coast of Scotland provided by the British Oceanographic Data Centre.
The station, that measures sea level for tide gauges, is gathering data over more than 25 years,
with a periodicity of 15 minutes. The time series file used for these tests contains 911616
measurements and is shown in Figure 4.10.

For the tests, to get an insight about the GPU behaviour when working with different sizes, and
to compare with the randomly generated time series previously benchmarked, the file content
was reduced into smaller files. Each of them containing the first 50000, 100000, 250000 and
400000 readings.

Table 4.8 exhibits the performed tests on the server. Due to the large size of the time series
and the prior obtained results, the benchmark was not conducted on the laptop.
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Figure 4.7: Sea level observed at Aberdeen, United Kingdom (blue dots). These observations have
already been corrected for the effect of tides. Estimated trend plus seasonal signal is shown by red line.

The black crosses are outliers.

Size Output CPU Output GPU
Time CPU
(seconds)

Time GPU
(seconds)

50000 0.13252 0.13252
783.31
∼13 minutes

396.53
∼7 minutes

100000 0.15513 0.15513
3170.23
∼53 minutes

934.63
∼16 minutes

250000 0.16697 0.16697
16865.66
∼4.7 hours

2707.33
∼45 minutes

400000 0.16766 0.16766
43716.94
∼12.1 hours

5924.46
∼1.7 hours

911616 0.16858 0.16858
279121.59
∼77.5 hours

27743.65
∼7.7 hours

Table 4.8: Aberdeen station benchmark

The results obtained are exceedingly positive, the last test, containing all the Aberdeen data
obtained, took more than 3 days on the CPU, whereas on GPU, it took less than 8 hours to obtain
the same result. This colossal reduction is only for one station, estimating a trend for a network
of similar stations could take years, however, with the addition of GPU computing to Hector,
the time needed can be reduced in about 90%.

As a side note, the common method to deal with these large data sets of sea level observations
is to average them to monthly data. This pragmatic approach works well in most cases but
reduces the changes of detecting offsets in the time series. Therefore, analysing the whole
time series in a single analysis has the advantage that there offsets are captured as well as a
better removal of outliers.
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Figure 4.8: Aberdeen station - Time execution evolution for different sizes

Figure 4.9: Aberdeen station - Logarithmic Scale - Time execution evolution for different sizes

The previous charts assist to comprehend the huge distinction between CPU and GPU. The last
graph, in logarithmic scale, allows to notice that with the increase of the data size, the differ-
ence between the two devices, CPU and GPU also increases, however, the magnitude of this
growth tends to reduce.

4.11 Mid-range GPU

Before in this dissertation, was undoubtedly proved the power of the NVIDIA Quadro P6000 GPU
and the positive effects of its usage on Hector. However, this GPU is not affordable for everyone,
which can lead one wondering if only a 6000USD GPU can achieve a significant time reduction
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on Hector’s execution.
Could be concluded from the benchmarks earlier presented, that a low-range GPU, such as
the NVIDIA GeForce 940MX definitively cannot make Hector any faster, being always preferable
to use the CPU code instead. Nevertheless, the GPUs tested so far, have completely distinct
purposes, capabilities and prices, and for that reason, estimatetrend was tested on mid-range
GPU. The aim of this experiment was to assess whether only the most strong GPU available could
enhance Hector, or whether a more affordable one could also show significant improvements.
For this benchmark was used a GPU NVIDIA GeForce GTX 1080. This device is geared towards
gaming and features 8GB of RAM, 2560 cores and Pascal architecture for a launch price of 599USD
in 2016.
The comparison between NVIDIA GeForce GTX 1080 and NVIDIA Quadro P6000 is detailed on the
following table and chart. Once again, the data used was the one gathered by the Aberdeen
station. The case with all the station data has not been tested due to the large amount of time
required to run it.

Size NVIDIA Quadro P6000 NVIDIA GeForce GTX 1080
50000 396.53 359.29
100000 934.63 950.80
250000 2707.33 3546.31
400000 5924.46 8256.73

Table 4.9: Comparison between a NVIDIA Quadro P6000 and mid-range GPU

Figure 4.10: Aberdeen station - NVIDIA Quadro P6000 vs mid-range GPU

On the first test, for 50000 points, the mid-range GPU is faster than the Quadro P6000, however,
for larger sizes, the most powerful GPU clearly leads to better. Here has to be considered that
GeForce GTX 1080 is accessed directly by the operating system without any virtualisation in-
between, which might explain the better performance for 50000 points, and for larger sizes, the
barriers of virtualisation are probably mitigated by the Quadro P6000 vast capacity. However,
this is just an assumption that would require a test of the P6000 without virtualisation to be
proven, nevertheless, this test could not be performed owing to hardware absence.
Regarding to the aim of this test, the conclusion obtained is that a top-of-range GPU is not
essential to have a significant time saving on estimatespectrum execution. A 600USD GPU can
also obtain very satisfactory results.
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In this benchmark, the CPU was just informally tested for the 2 first sizes and presented results
very close to the obtained using the laptop CPU, therefore, due to the long time required for
its execution, the CPU tests were not continued.

4.12 Conclusions

This chapter, started by showing the abrupt difference on using a CPU or a GPU for algebra com-
putation and the enormous gap between a basic GPU and a high-end one. Algebraic operations,
often use matrices, as in this case, which are quite heavy to compute on CPU. In the other hand,
GPUs present an exceptional performance for algebraic applications.
The main goal of this dissertation was achieved with the work previously described in this chap-
ter. estimatetrend works with large amounts of data and requires many computational re-
sources. The usage of a high-end GPU increased drastically the performance of estimatetrend.
The computation times for a real usage case were reduced from 77.5 hours to 7.7, which means
that with the new GPU version of estimatetrend, can be estimated the trend for 10 stations in
the same time that was required before for only 1 station.
It was also demonstrated that NVIDIA Quadro P6000 has an undoubtedly great performance,
however, with a cheaper GPU is also possible to accomplish a satisfactory time saving for esti-
matetrend.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation aimed to improve the performance of Hector software, currently one of the
most advanced software available for time series analysis, by taking advantage of a GPU. There
are nowadays thousands of permanent GNSS stations around the world, and every day, the
amount of data collected by them increases and enables scientists to get to know deeper the
motions of points on Earth’s surface and their geophysical implications. GNSS time series analysis
software play an important role to determine the accuracy of these motions. This complex
task requires a lot of computational hard processes that combined with large volumes of data
(and the bigger the better), demand significant time. Hector, due to its implementation of
Levinson–Durbin recursion algorithm [3], is currently the fastest software available. However,
a reduction of the computation time is still needed and would be of great relevance for the
scientific community.

None of the GNSS time series analysis software uses GPU for its computation, this dissertation
is the first project attempting to do that.

Once the goal of this dissertation was to reduce Hector computation time by doing the most
complex tasks on a GPU, we can conclude that the goal was achieved.

The Hector software packages consists out of several separate programs. First, experiments
with small tasks were done with the Fast Fourier Transform to ascertain the superior power
of the GPUs. After proving that, the estimatespectrum code was adapted to work with GPU.
This attempt did not result in a faster program but gave a clear precept about GPU computa-
tion: there is not a single success formula and not every single code can benefit from the GPU
higher capacities. Large amount of copies between the memory of the CPU and GPU, small
amount of data to compute and simple executions imply that there are many situations where
the performance of a software is not improved by using a GPU.

The first positive adaptation of Hector to GPU came when we focused on the modelspectrum
program, which runs thousands of Monte Carlo simulations, and for each one, a Fast Fourier
Transform. Here, the performance was improved to about the double. modelspectrum work
almost with half of the CPU time when using the GPU.

Last, the main and heaviest program from the Hector bundle, estimatetrend, was the one that
showed the most positive results. This program easily takes hours or days to estimate the trend
of the data collected by only one station. In the end, for a real world test of 911616 points,
estimatetrend on GPU became 70 hours faster than the CPU version. This demonstrates that
GPUs are normally insuperable, when large amounts of data and complex computation is needed.

Hector, which was already the fastest software on its segment, is now even faster, and the only
software using GPU computation.
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5.2 Hector Future Applications

The accomplishments obtained by changing Hector to use GPU will be implemented in a real-
world context in the near future. In the scope of the EPOS project, SEGAL is responsible for
creating plots from GNSS time series requiring the usage of modelspectrum program. This pro-
gram became around 4 seconds faster using GPU, for one station, which means that for all the
current 700 EPOS stations, SEGAL researchers can save around 7 hours for each time they gen-
erate the plots. Each of the stations contains data from East, North and Up coordinates and
is part of 3 networks of stations, so 700 ∗ 3 ∗ 3 ∗ 4 = 25200 seconds, or 7 hours. However, the
gains can be increased. Soon, EPOS will make available data from about 3 thousand stations,
which raises the time saving to 3000 ∗ 3 ∗ 3 ∗ 4 = 108000 seconds. Thus, in the future, the plots
will be generated approximately 30 hours faster than they would be by using the CPU version of
modelspectrum.
Concerning estimatetrend, the heaviest from the Hector bundle, the use of GPU will not be a
major benefit for the SEGAL researchers. Most of the use of this program in SEGAL is related to
GNSS time series, which usually uses daily solutions, so, the average size of these time series is
not significantly large to have many benefits from the inclusion of GPU computing by estimate-
trend (20 years is about 7300 data points). Nevertheless, SEGAL is not the only research group
using Hector, the program is being used by several researchers all over the world and the ones
that will have more benefits from the GPU version of the program are the ones working with sea
level data for tide gauges. This analysis requires a short temporal spacing gathering, normally
15 minutes, which leads that to estimate a trend in such data, is necessary an analysis of many
thousands of entry points like in the benchmarked case of Aberdeen, where to analyse all the
existing data on the CPU was necessary more than 3 days, whereas, on GPU, it took less than 8
hours.

5.3 Future Work

The future work was already defined and it was just waiting for the results of Hector’s trans-
formation to include GPU processing.
Hector considers only temporal correlation, other GNSS analysis software only consider spatial
correlation. The next step of Hector development consists of making it perform full spatio-
temporal analysis of the tectonic motion estimation. This is part of an already approved project
between Universidade da Beira Interior (UBI) and Budapest Főváros Kormányhivatala (BFKH)
(Hungary), named Updated Statistical Analysis of GNSS time-series Estimates for Tectonic En-
dangerment Assessment (USAGE4TEA), and which development was dependent on the success
of this dissertation.
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Glossary

Back-substitution The process of solving a linear system of equations that has been
transformed into a row-echelon form or reduced row-echelon
form. The last equation is solved first, then the next-to-last, etc.

Convolution In mathematics, convolution is a mathematical operation on two
functions to produce a third function that expresses how the
shape of one is modified by the other.
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