
UNIVERSIDADE DA BEIRA INTERIOR
Engenharia Informática

Ray Tracing in Non-Euclidean Spaces

João Rodrigo de André e Alves Silva

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

(2o ciclo de estudos)

Supervisor: Prof. Dr. Abel João Padrão Gomes

Covilhã, Outubro 2018

Ray Tracing in Non-Euclidean Spaces

ii

Ray Tracing in Non-Euclidean Spaces

Acknowledgements

To my advisor, Professor Abel Gomes, who was enthusiastic with the ideas from the start

and guided, supported and shared substantial insights during the development of this

dissertation.

To Jouko Orava who gave me many suggestions which were pursued in this dissertation

and aided me with some of the mathematics.

And to my father who fostered my interest in science.

iii

Ray Tracing in Non-Euclidean Spaces

iv

Ray Tracing in Non-Euclidean Spaces

Resumo

Esta dissertação descreve um método para modelar, simular e renderizar aproximaçoes

lineares de espaços não Euclideanos de forma genérica e em tempo real.

A técnica de renderizaçao 3D mais comum, que multiplica a matriz de projeção 4 ×
4 por cada vértice para determinar as coordenadas do respetivo pixel no ecrã, nem

sempre funciona quando o espaço não obedece a um postulado de Euclides (espaço

não-Euclideano).

Além disso, enquanto outras ferramentas para renderizar espaços não-Euclideanos só

funcionam para certos tipos de espaços, a nossa técnica permite modelar, simular e ren-

derizar qualquer espaço não-Euclideano embebível isometricamente, bem como even-

tuais objetos nele existentes.

Antevemos pelo menos dois usos para a nossa técnica. A primeira para ajudar matemáti-

cos a compreender melhor o aspeto de espaços arbitrários (e.g., espaço hiper-cónico,

espaço hiper-esférico, etc.). A segunda para ajudar físicos a visualizar e simular os

efeitos de espaço curvo (e.g., buracos negros, buracos de minhoca, deformações Alcu-

bierra drive, etc.) em luz e objetos físicos circundantes.

Palavras-chave

Espaço não-Euclideano; buraco de minhoca; buraco negro; ray casting; ray tracing;

renderização.

v

Ray Tracing in Non-Euclidean Spaces

vi

Ray Tracing in Non-Euclidean Spaces

Abstract

This dissertation describes a method for modeling, simulating and real-time rendering

piecewise linear approximations of generic non-Euclidean 3D spaces.

The 3D rendering pipeline most commonly used, where one multiplies each vertex co-

ordinate by a 4× 4 matrix to project it on the screen does not work for all cases where

the space does not obey Euclid’s postulates (non-Euclidean space).

Furthermore, while other non-Euclidean rendering tools only work for a limited type

of spaces, our approach allows us to model, simulate, and render any isometrically

embeddable non-Euclidean space and eventual objects lying therein.

We envision at least two main applications for our approach. The first for helping math-

ematicians get a better understanding of what arbitrary spaces look like (e.g., hyper-

conical space, hyper-spherical space, and so forth). The second for assisting physicists

to visualize and simulate the effects of bent space (e.g., black holes, wormholes, Alcu-

bierre drive, and so forth) on light, and on physical objects.

Keywords

Non-Euclidean space; wormhole; blackhole; ray casting; ray tracing; rendering.

vii

Ray Tracing in Non-Euclidean Spaces

viii

Ray Tracing in Non-Euclidean Spaces

Contents

Acknowledgements iii

Resumo v

Abstract vii

List of Figures x

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 Motivation . 1

1.2 Research Hypothesis . 1

1.3 Research Plan . 1

1.4 Contributions . 2

1.5 Thesis Structure . 3

2 Rendering in Non-Euclidean Spaces: A Review 5
2.1 Introduction . 5

2.2 Euclidean Spaces . 5

2.2.1 Rasterization . 5

2.2.2 Ray tracing . 6

2.3 Mostly Euclidean, Flat, Non-Euclidean Spaces 6

2.3.1 Rasterization . 7

2.3.2 Ray tracing . 7

2.4 Curved Non-Euclidean Spaces . 8

2.4.1 Rasterization-based techniques 8

2.4.2 Ray tracing-based techniques 8

2.5 Summary . 9

3 Space-Mesh Generation 11
3.1 Introduction . 11

3.2 Theoretical Background . 11

3.2.1 Euclidean Space . 12

3.2.2 Toroidal Space . 12

3.2.3 Conical Space . 12

3.2.4 Hyperbolic Space . 13

3.2.5 Schwarzschild black-hole Space 13

3.2.6 Schwarzschild Wormhole Space 14

3.3 Geometric Data Structures . 14

ix

Ray Tracing in Non-Euclidean Spaces

3.4 Geometric Operations . 17

3.4.1 Extrusion . 17

3.4.2 Unpaired geometry removal . 17

3.4.3 Welding . 18

3.4.4 Triangulation . 18

3.4.5 Circles and Spheres . 20

3.5 Modeling the Schwarzschild black-hole 21

3.5.1 Space-Mesh for 2D black-hole embedded in E3 21

3.5.2 Space-mesh for 3D black-hole embedded in E4 22

3.6 Modeling the Schwarzschild wormhole 22

3.7 Summary . 22

4 Ray-tracing Non-Euclidean Spaces 25
4.1 Introduction . 25

4.2 Geodesic Rays on Triangle Meshes . 26

4.2.1 Door-In-Door-Out . 26

4.2.2 Coordinate conversions . 28

4.2.3 Ray-Edge Intersection . 30

4.2.4 Frame Propagation . 32

4.3 Geodesic Rays across Tetrahedral Meshes in 4D Space 34

4.3.1 Coordinate conversions . 34

4.3.2 Ray-Triangle Intersection . 36

4.3.3 Frame Propagation . 37

4.4 Tracing a single path . 40

4.5 Geodesic Ray Tracing . 42

4.6 Objects embedded in non-Euclidean spaces 43

4.6.1 Space-Mesh Aligned Objects . 43

4.6.2 Single-Cell Objects . 43

4.6.3 Multi-Cell Objects . 48

4.7 Navigating across space-meshes . 49

4.8 Summary . 50

5 Conclusions and Future Work 51
5.1 Results and Conclusions . 51

5.2 Future Work . 52

Bibliography 53

x

Ray Tracing in Non-Euclidean Spaces

List of Figures

3.1 Embedded torus space . 13

3.2 Half-edge relations . 15

3.3 A sequence of four extrusions starting with a single point 17

3.4 Extrusion of a circle . 17

3.5 Extrusion of a sphere . 18

3.6 Welding of a cylinder into a cone . 18

3.7 Possible subdivisions of a quad . 19

3.8 Prism . 19

3.9 The six possible subdivisions of a prism into tetrahedra 20

3.10 Convex regular polygons with different number of segments 21

3.11 Subdivision and normalization of a icosahedron 21

3.12 Subdivision and normalization of a icosahedron into a sphere 21

3.13 2D black-hole models with differing number of steps 23

3.14 3D black-hole models with differing number of steps 23

3.15 2D black-hole models with linear and quadratic steps 23

3.16 2D and 3D wormhole models with linear and quadratic steps 24

4.1 Geodesic path rotation onto surface 26

4.2 Possible 2D Cartesian coordinate systems for a triangle 27

4.3 Possible 2D barycentric coordinate systems for a triangle 27

4.4 Memory occupancy overview on CPU and GPU sides 30

4.5 Determining the door-out edge of a ray 30

4.6 Ray propagation step in 2D . 32

4.7 Updating coordinates to new triangle 33

4.8 Frame rotations on a tetrahedron . 38

4.9 Traces on a 2D wormhole-like space . 41

4.10 Trace on a 3D wormhole-like space . 41

4.11 A wormhole-like space with varying extrusion sizes 44

4.12 A cubic wormhole . 45

4.13 Cubic wormhole viewed from inside the tunnel 46

4.14 Cubic wormhole from outside . 47

4.15 Raytracing on a hyper-conical space 48

4.16 Navigation across space-meshes . 50

xi

Ray Tracing in Non-Euclidean Spaces

xii

Ray Tracing in Non-Euclidean Spaces

List of Tables

3.1 Possible subdivisions of a quad . 19

3.2 Possible and impossible subdivisions of a prism 20

xiii

Ray Tracing in Non-Euclidean Spaces

xiv

Ray Tracing in Non-Euclidean Spaces

List of Abbreviations

2D Two dimensional

3D Three dimensional

4D Four dimensional

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

OpenCL Open Computing Language

OpenGL Open Graphics Language

En n-dimensional Euclidean space

Hn n-dimensional hyperbolic space

Dn n-dimensional disk space

xv

Ray Tracing in Non-Euclidean Spaces

xvi

Ray Tracing in Non-Euclidean Spaces

Chapter 1

Introduction

This chapter briefly describes the rationale behind the research carried out in the con-

text of the present dissertation. This dissertation fits in the field of computer graphics

and visualization.

1.1 Motivation

Computer graphics techniques have evolved alongside advancements in hardware, al-

lowing for increasing realism of real-time rendering. However, these techniques assume

the space and objects therein are Euclidean.

Real-time rendering in non-Euclidean spaces is not so common in the computer graphics

literature, although it is an important part of geometry, as well as a fundamental topic

used in general relativity. Furthermore, the current non-Euclidean rendering techniques

are not general because they have been designed for specific non-Euclidean spaces, not

for non-Euclidean spaces in general. The motivation of the present dissertation is to

propose a general renderer for visualizing non-Euclidean spaces.

1.2 Research Hypothesis

Taking into consideration what was said above, we can place the following research

hypothesis:

Is that feasible to come up with a general renderer for non-Euclidean

spaces?

As seen further ahead, we can say right now that this hypothesis leads to a positive

statement. To achieve such a goal, we need to first discretize the space itself and find

a way to propagate light rays across such space.

1.3 Research Plan

This work started with the problem of visualizing the strange effects at a wormhole’s

event horizon. To grasp how non-Euclidean spaces look like, as well as a clear under-

standing of mathematics that describes such spaces, we opted using an induction-based

1

Ray Tracing in Non-Euclidean Spaces

methodology on the dimension of spaces. We first studied 2D non-Euclidean spaces in

3D and then we carried out the necessary generalizations to 3D non-Euclidean spaces

in 4D.

Concerning 2D non-Euclidean spaces, we elaborated the following research plan:

• Computationally describe a 2D wormhole surface. Usually, a 2D surface is repre-

sented in computer graphics as triangle mesh, which is equivalent to discretizing

the surface (or space).

• By describing straight paths on the surface, which is a common problem in game

development, we can create a ray tracer. These paths are called geodesics.

• Create the 2D wormhole surface through parametric tools so its resolution and

shape may be defined interactively, allowing at the same time its generalization

to spaces other than wormholes;

After that, we proceed to solve the problem for 3D space:

• Generalize such triangle mesh generation tools into tetrahedral mesh generation

tools.

• Generalize the straight path calculation on top of triangles into straight path cal-

culation on top of tetrahedra.

• Use the geodesic calculation to simulate photons and generate images in real-time

(ray tracing).

• Use the tools to generate spaces other than wormholes;.

• Embed objects within the generated spaces.

After these steps, we obtained a general ray tracer not only for wormholes, but for

any isometrically embeddable (and possibly non-embeddable) spaces as long as we can

discretize them.

1.4 Contributions

The contributions resulting from this dissertation’s work can be listed as follows:

• Modeling of arbitrary non-Euclidean spaces into discrete meshes.

• Algorithm for tracing geodesics in triangle meshes (2D case) and tetrahedral meshes

(3D case). At our best knowledge, there is no similar algorithm for calculating

geodesics across tetrahedral meshes.

• Ray tracer which allows for the real-time visualization of the inside view from any

discretizable non-Euclidean space.

2

Ray Tracing in Non-Euclidean Spaces

• Editing of the space (e.g., skew or change the depth of a wormhole) and visualizing

the insider’s view results in real-time.

• Visualization of spaces never seen before (e.g., tesseract wormholes, hyper-conical

spaces).

1.5 Thesis Structure

The thesis is structured as follows:

• Chapter 1: This is the present chapter, which overviews the research work behind

this dissertation.

• Chapter 2: This chapter briefly reviews the literature related to rendering in

computer graphics, with a focus on non-Euclidean spaces.

• Chapter 3: This chapter addresses non-Euclidean spaces and techniques for their

discretization.

• Chapter 4: This chapter describes the generic ray tracing algorithm for non-

Euclidean spaces using the techniques of the previous chapter.

• Chapter 5: This chapter concludes the dissertation, and points out some hints for

future work.

3

Ray Tracing in Non-Euclidean Spaces

4

Ray Tracing in Non-Euclidean Spaces

Chapter 2

Rendering in Non-Euclidean Spaces: A Review

As known, a non-Euclidean space (e.g., hyperbolic space) does not satisfy all five Eu-

clid’s postulates. Most rendering techniques were developed relying on space being

Euclidean, and do not work when that is not the case. In this chapter, we review the

most relevant rendering techniques and their limitations.

2.1 Introduction

Let us now briefly review the current rendering techniques and their most relevant

limitations for both Euclidean and non-Euclidean spaces. As shown further ahead, the

most important limitation of current rendering techniques is that they are not general

in the sense that each only applies to specific spaces.

2.2 Euclidean Spaces

2.2.1 Rasterization

The most common and efficient method for drawing 3D objects into an image comprises

the following steps: (i) to define each object as a polygon mesh; (ii) to multiply each

mesh vertex by a 4 × 4 MVP matrix (i.e., model-view-projection matrix), which yields

the position of each vertex when linearly projected onto a plane; (iii) to convert the

plane coordinates to 2D pixel coordinates of the image, so that the raster “paints” the

pixels between each vertex that compose a polygon. The rules by which the pixels are

“painted” may range from very simple to complex, including those rules to simulate

lighting that may look real. For more details about rasterization, the reader is referred

to Hughes et al. [HvDF+14].

The MVP matrix is the result of M · V −1 ·P , where M is often called the model matrix,

a matrix which describes the position, rotation and scale of the object being drawn;

V describes the position, rotation and scale of the camera (or viewer), while V −1 is

often called the view matrix; and P is the projection matrix which is defined by the

camera’s near clipping plane, far clipping plane and its field of view, and it is the matrix

responsible of projecting every single point onto the camera’s view plane.

The projection of each mesh is equivalent to tracing a straight line between each vertex

and the focal point of the simulated camera and calculating the intersection of the

5

Ray Tracing in Non-Euclidean Spaces

traced line with a plane that is at a fixed distance from the camera. Note that all rays

of light that are visible to a camera (or viewer) correspond to relatively straight paths

from the object reflecting or emitting that light to the camera’s focal point.

When drawing the objects contained in an Euclidean space, the straight path com-

putation can be performed through a simple matrix multiplication because Euclidean

geometry dictates that two straight lines either do not intersect, intersect in all points,

or only intersect at one point. Because light rays follow a relatively straight path, and

that straight path must intersect the camera’s focal point, each vertex must only have

one 2D coordinate on the projected image.

By contrast, in non-Euclidean spaces, there may be several straight paths (i.e., geodesic

paths) from a vertex to the camera’s focal point. Consequently, the same vertex may

be visible on several different locations of the drawn image. Thus, taking into con-

sideration that a projection matrix multiplication by a vertex only results in one 2D

coordinate in the image, using a single MVP matrix could never be used to draw objects

in non-Euclidean spaces.

2.2.2 Ray tracing

Rasterization assumes that photons travel in straight paths when performing linear pro-

jections. However, that is not the case in real life. Light may be reflected, refracted by

objects in the scene, not to mention its caustics effects on objects. Ray tracing tech-

niques allow to emulate the illumination of objects in real life, and unlike rasterization,

it allows for seeing the same object on different regions on the screen; for example, a

reflective sphere allows to render an object already displayed in another region of the

screen; that is, we see such an object twice on screen.

In order to see a real-life object, there must be photons traveling from that object

to viewer’s eye, which means that an illuminated object is also contributing to the

illumination of all nearby points from where the object may be seen. This is called

indirect illumination, and is something that can be approximated through ray tracing.

These ray tracing techniques contribute to the realism of 3D scenes. However, here we

are only interested in visualizing and understanding the shape and feel of non-Euclidean

spaces and their embedded objects. For further details about ray tracing algorithms and

techniques, the reader is referred to [Kaj86] [Laf96] [CNS+11] [RdSCP17] [CSK+17].

2.3 Mostly Euclidean, Flat, Non-Euclidean Spaces

Mostly Euclidean, flat non-Euclidean spaces are spaces where Euclid’s postulates hold

except on abrupt space transitions.

6

Ray Tracing in Non-Euclidean Spaces

2.3.1 Rasterization

Valve’s Portal (https://en.wikipedia.org/wiki/Portal_(video_game)) is a game that

contains flat Euclidean rooms with portals connecting different parts of the room, where

an object may be visible in two locations of the screen at the same time, which means

there are two straight paths from the camera to that object; hence, the space is con-

sidered non-Euclidean. This drawing of an object twice was achieved multiplying every

object’s vertices by an MVP relative to the camera and then drawing each object again

on the section of the screen where we find a portal. This second drawing of the object

makes use of a different MVP which is relative to the position of the camera relative

to the visible portal, and the position of the object relative to the other portal. This

means that, even though one matrix yields only a position on the screen per object, but

two matrices are used for different parts of the screen, allowing the same object to be

in principle rendered in several different places at the same time. If a portal is visible

on the second drawing, the process is repeated recursively.

Therefore, the multiple MVP-based rasterization technique behind Portal only works

because the space is mostly Euclidean, having few transitions where the Euclid’s pos-

tulates are broken. Using the same technique in a curved space would be impractical,

because it would need an infinity of different matrices for each point in the space be-

tween the camera and the objects, as there may be no two points in the space within

the same locally Euclidean zone.

2.3.2 Ray tracing

Unlike Portal, Dygra (https://github.com/rameshvarun/Dygra) is not a video game,

but only a ray-tracer demo which renders an E3 world, where there may be special

objects like spherical portals, spherical aberrations, cuboid portals and cuboid aber-

rations, each breaking Euclid’s postulates in a different way. For example, a portal

changes the ray position from one location to another, while an aberration stretches a

ray in a single direction. Concerning portals, Dygra works similarly to Portal, with the

difference that instead of using MVP raterization, its renderer is a ray tracer. In the

particular case of cuboid aberrations, the effect of stretching a ray in a single direction

inside a cuboid causes the tunnel illusion; that is, it looks shorter when seen from the

inside and longer when seen from outside.

Summing up, Dygra encodes a flat Euclidean world, which is populated with objects

where Euclid’s postulates are broken. Therefore, this type of non-Euclidean space is

considered mostly Euclidean. Curved spaces like hyperboloid spaces cannot be drawn

using this technique because even though some objects may break Euclid’s postulates,

they may only be placed in Euclidean space through 3D Cartesian coordinates, having no

way of freely (in all directions) bending or stretching the space to make more ‘space’.

7

https://en.wikipedia.org/wiki/Portal_(video_game)
https://github.com/rameshvarun/Dygra

Ray Tracing in Non-Euclidean Spaces

2.4 Curved Non-Euclidean Spaces

Unlike flat non-Euclidean spaces, where there are a few concrete boundaries where the

space abruptly breaks Euclid’s postulates, in curved non-Euclidean spaces, the transi-

tions may be between all points.

2.4.1 Rasterization-based techniques

As described below, hyperbolic spaces are curved non-Euclidean spaces for which raster-

ization techniques have been developed. Rasterization is possible in hyperbolic spaces

because any two geodesics diverging from one point do not converge into another point,

meaning that the same point does not appear on different places of the screen, which

is one of the limitations of using linear projections as mentioned in Section 2.2.1.

At our best knowledge, the animation clip called “Not Knot” produced by Gunn and

Maxwell [GM91] allowed us to visualize the inside of the hyperbolic space for the first

time. On the video, the space is tessellated with right-angled dodecahedra. This anima-

tion is based on a rasterization-based technique described by Phillips and Gunn [PG92]

and Gunn [Gun93]. Firstly, Klein or projective model is used, so that every vertex is

projected from H3 into D3 (disk-space) where the center of the disk is the point of view.

These coordinates are then fed into a renderer which generates images by conventional

methods; for example, by projecting the disk-space coordinates onto 2D screen coordi-

nates.

The projection between hyperbolic and disk coordinates is injective; a point in H3 cor-

responds to a single point in D3. The same applies to the projection from D3 onto screen

space. For a more intuitive explanation of rendering H3 the reader is referred to Weeks

[Wee02] and Hart et al. described how to render H3 [HHMS17a]. Interestingly, Hart

et al. also described how to render and H2 × E [HHMS17b] using the same technique,

allowing for an exploration of these spaces using virtual reality.

These algorithms are of course limited to rendering hyperbolic spaces, and although

interactive in what is allowed to be placed inside the space, the space itself is not

deformable.

2.4.2 Ray tracing-based techniques

By tracing individual rays of light, one can render any space for which geodesics can

be calculated. This is true because light closely follows a straight path, and an object

is visible when photons travel from its surface to an observer’s retina, crossing a focal

point. Therefore, the ability to trace the straight paths from the retina through a focal

point allows us to know what is within the line of sight of the viewer, and opens up many

possibilities for rendering non-Euclidean curved spaces.

8

Ray Tracing in Non-Euclidean Spaces

The movie Interstellar released in 2014 attempted to demonstrate what blackholes

and wormholes would look like in reality. Both these spaces cannot be rendered using

conventional methods since space around blackholes and wormholes is curved, making

it non-Euclidean. To solve this problem, James et al. developed the renderer DNGR

[JvTFT15a], which uses ray tracing in Boyer-Lindquist polar coordinates. One of the

problems with ray-tracing in curved space is that the rays are incremented in discrete

steps on a space with smooth curvature. Therefore, if the tracer is naively imple-

mented, we end up getting error accumulation that is more noticeable in locations

where the space is more curved. In order to truncate the error from each integration

step, the step size must adapt depending on the local curvature of the space. DGNR

solves this using a customized Runge-Kutta integration. This method is computation-

ally expensive, and because of the polar coordinates used, this solution only works for

the specific problem of rendering spaces blackholes and wormholes since space defor-

mations need to be symmetrical relative to the origin of the polar coordinate system.

For a better understanding of wormhole space, the reader is referred to James et al.

[JvTFT15b].

2.5 Summary

This chapter provides an overview of the state-of-art of rendering and ray tracing tech-

niques for non-Euclidean spaces. These techniques are scarce in science and engineer-

ing literature, but we can envision their applications in cosmology, physics, mathemat-

ics, and so forth. The main drawback of these techniques is that they are not general,

that is, they only apply to specific non-Euclidean spaces.

9

Ray Tracing in Non-Euclidean Spaces

10

Ray Tracing in Non-Euclidean Spaces

Chapter 3

Space-Mesh Generation

This chapter goes over the technique and tools developed for the generation of space-

meshes which represent piecewise linear approximations of 3D non-Euclidean spaces

isometrically embeddable in 4D Euclidian space. This technique is general to any space

with a natural topology because it does not depend on whether a coordinate system has

been theorized for such space or not. For example, while a Schwarzschild black-hole

may be described using Boyer–Lindquist polar coordinates, it is a specific coordinate

system for such space. In fact, it does not apply to all spaces. Even worse, it is not

possible to describe some less well-behaved spaces through such linear systems (e.g.,

space deformations by gravitational waves by arbitrary bodies). In contrast, our tech-

nique allows us to construct a 3D non-Euclidean space from tetrahedra (i.e., building

blocks), which are Euclidean spaces. This space discretization into space-meshes is the

ground for the ray tracing algorithm described in the next chapter.

3.1 Introduction

Since we are trying to visualize non-Euclidean spaces embedded in 4D space, and since

human brains have an intuitive understanding of 3D space but not of 4D space, we

start by creating tools to work with on a lower dimension analogue which is intuitively

understood, and then we generalize such tools to higher dimensions.

Recall that our main goal is to render 3D non-Euclidean spaces by isometric embedding,

so we will first theorize on 2D non-Euclidean spaces embedded in 3D space, and then

we generalize our theory and spatial structures to 3D counterparts embedded in 4D

Euclidean space.

3.2 Theoretical Background

The most general definition of a space is a topological space, which is a set of points

whose neighborhoods satisfy a number of axioms. This definition includes manifolds,

which are topological spaces that are locally Euclidean for each small neighborhood of

each point. Metric spaces are another way of defining specific spaces through a distance

function (or metric) which defines the distance between any two points.

Because one of the goals of the dissertation is to discretize spaces, we will focus on

approximating manifold spaces with manifold simplicial complexes, here called space-

11

Ray Tracing in Non-Euclidean Spaces

meshes. For 2D spaces, the space-mesh is composed of triangles connected by their

edges, and for 3D space, the space-mesh is composed of tetrahedra connected by their

faces.

3.2.1 Euclidean Space

An Euclidean space is a topological space where the postulates of Euclidian geometry

apply:

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as

radius and one endpoint as center.

4. All right angles are congruent.

5. If two lines are drawn which intersect a third in such a way that the sum of the

inner angles on one side is less than two right angles, then the two lines inevitably

must intersect each other on that side if extended far enough. This postulate is

equivalent to what is known as the parallel postulate.

If at least one of these postulates does not apply, the space is considered non-Euclidean.

There are various types of non-Euclidean spaces, namely the hyperbolic, spherical,

toroidal spaces. Because any manifold can be used to describe a space, there is an

infinity of possible spaces.

3.2.2 Toroidal Space

A toroidal space is a space described by a torus shape. A torus has positive curvature

on its outer rim and negative curvature on its inner rim. The construction of a torus is

as follows. When traveling on a finite rectangular 2D surface, we observe that motion

is limited by the edges of rectangle. If two of the parallel ends were connected, the

space would become a cylinder, and one could travel infinitely in a circle on its surface.

Then, by connecting the two remaining circular edges, the shape becomes a torus,

which means that, in the outer rim, parallel straight lines converge like in spherical

space, and in the inner rim, parallel lines diverge.

3.2.3 Conical Space

Conical spaces have positive Gaussian curvature which increases to infinity as one aproaches

its apex, since its radius tends to zero. This means straight lines on its surface, when

seen from outside the space, seem to always curve downwards as if a force is pulling

12

Ray Tracing in Non-Euclidean Spaces

Figure 3.1: Embedded torus space

them down. Because the only edge of a conical space is in its base, all straight lines on

its surface, with the exception of the base circle itself, intersect the base circle twice.

3.2.4 Hyperbolic Space

Hyperbolic space is a space described by hyperbolic geometry, which has constant neg-

ative curvature.

Hyperbolic geometry was achieved by replacing Euclid’s fifth postulate with:

For any given line l and point P not on l, in the plane containing both line l and point

P there are at least two distinct lines through P that do not intersect l.

It has been proven that there is a global isometric embedding in 6-dimensional Euclidean

space of 2D hyperbolic space, and it has been proven that it is impossible to for a 3-

dimensional global isometric embedding to exist. Because of this, even though we

model and render negative curvature spaces which are local isometric embeddings of

hyperbolic space, a complete global embedding was not tried in this dissertation.

3.2.5 Schwarzschild black-hole Space

Gravity deforms space around mass which causes light traveling on the surface of the

space to describe paths which break Euclid’s postulates, meaning we cannot render im-

ages near large concentrations of mass using conventional rendering techniques. Black-

holes are bodies with a particular case of such deformation, where the gravitational

effect is so strong that within it, inside what is called the event horizon, nothing can

escape from it.

The simplest type of black-hole, which is the one studied in this dissertation, is called

static black-hole, or Schwarzschild black-hole, which has no electric charge and has a

spherical shape due to it having no angular momentum. The Schwarzschild radius is the

distance to the center of the black-hole at which the event horizon is found and can be

calculated as:

13

Ray Tracing in Non-Euclidean Spaces

rs =
2GM

c2
(3.1)

where G is the gravitational constant, M is the black-hole’s mass in kilograms and c is

the speed of light in meters per second.

The Schwarzschild space’s metric can be described as:

c2dr2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)−1
dr2 − r2

(
dθ2 + sin2 θdφ2

)
(3.2)

The deformed space surrounding a Schwarzschild black-hole can be isometrically em-

bedded in a higher dimension and because of the symmetry inherent in the space, one

dimension can be simplified out, so the resulting surface, called Flamm’s paraboloid,

can be visualized without losing any information. To calculate Flamm’s paraboloid, we

can go through all points of the plane (x, y) with a distance r to the center of the

black-hole, and offsetting them in z by w, because we only care about a single slice in

time, and because we are generating a 2D simplification of the space, we can solve the

Schwarzschild metric for the equatorial slice and with time as a constant (θ = π
2 , dt = 0),

convert the result to cylindrical coordinates which preserve the same distances, giving

us the following equation:

w = 2
√
rs(r − rs) (3.3)

3.2.6 Schwarzschild Wormhole Space

A wormhole, or Einstein-Rosen bridge, is a theoretical concept consistent with gen-

eral relativity, which can be imagined as a tunnel between two locations in spacetime.

Although wormholes have not been proven to exist, and they are theorized to be im-

possible to exist naturally, they are an interesting concept to visualize.

In this dissertation, the shape created for simulating a wormhole is similar to two

Schwarzchild black-holes connected by their event-horizons.

3.3 Geometric Data Structures

To represent any space and eventual objects in such a space, we use a geometric data

structure for meshes. In 3D computer graphics, a mesh is a collection of vertices, edges

and faces. Using meshes, artists can create approximations of real-life atom-based

objects and render nearly photo-realistic images of those objects. In a similar fashion,

this dissertation uses meshes. Instead of meshes being used to draw approximations

of visible objects, the work developed in this dissertation uses meshes for defining the

approximation of topology of manifold spaces.

14

Ray Tracing in Non-Euclidean Spaces

Figure 3.2: All half-edge relationships relative to an edge which is painted blue.

All meshes mentioned in this dissertation are an extension of the half-edge structure.

This extension includes half-faces and cells, and edges have an additional reference to

the cell-pair, abbreviated as cpair. Note that, given an edge e, to get its cpair, we

traverse the following sequence of relationships: (i) we first obtain the face f of e; (ii)

we obtain the pair of f which is on the adjacent cell; (iii) we obtain the edge bounding

the pair of f composed of the same vertices as e. These connectivity relationships are

illustrated in Figure 3.2, which are encoded below.

typedef struct vertex_t
{

vecN_t pos; /* euclidian position , can be a vec3 or vec4 */
vec4_t color;
int half; /* edge_t */
int tmp; /* auxiliar variable */

} vertex_t;

typedef struct edge_t /* Half edge */
{

int v; /* First vertex in edge */
vec3_t n; /* normal of v */
vec2_t t; /* texture coord of v */

int face; /* face_t */
int pair; /* edge_t */
int next; /* edge_t */
int prev; /* edge_t */

#ifdef HALF_FACE
int cpair; /* edge_t */

#endif

int tmp; /* auxiliar variable */
} edge_t;

typedef struct face_t /* Half face */
{

15

Ray Tracing in Non-Euclidean Spaces

int e_size;
int e[4]; /* edge_t[e_size] */

vec3_t n; /* flat normal, only applicable to triangles */

#ifdef HALF_FACE
int pair; /* face_t */
int cell; /* cell_t */

#endif

int tmp; /* auxiliar variable */
} face_t;

typedef struct cell_t /* Cell */
{

int f_size;
int f[5]; /* face_t[f_size] */
int tmp; /* auxiliar variable */

} cell_t;

typedef struct mesh_t
{

vector_t *verts;
vector_t *edges;
vector_t *faces;

#ifdef HALF_FACE
vector_t *cells;

#endif
mesh_selection_t selections[16];

khash_t(id) *edges_hash; /* hash-table of unpaired edges ids */
#ifdef HALF_FACE

khash_t(id) *faces_hash; /* hash-table of unpaired faces ids */
#endif

int has_texcoords; /* do edges have texture coordinates */
int triangulated; /* does it contain non-simplexes */

mat4_t transformation_stack[4]; /* only works for R3*/

int changes; /* Has changed since last update */
int update_id; /* tracks current update version */
int locked_write;
int locked_read;
void *semaphore;
ulong owner_thread; /* id of thread modifying the mesh */

char name[256];
} mesh_t;

16

Ray Tracing in Non-Euclidean Spaces

3.4 Geometric Operations

3.4.1 Extrusion

In polygonal modeling contexts, extrusion modifies a mesh by transforming all n-dimensional

primitives into their (n+ 1)-dimensional versions (Figure 3.3). Vertices become edges,

edges become faces, faces become cells. Each new vertex created from the extrusion is

then translated by a user-defined offset. Extruding a piecewise-linear circle is shown in

Figure 3.4, whereas the extrusion of a piecewise-linear sphere is depicted in Figure 3.5.

(a) (b) (c) (d) (e)

Figure 3.3: A sequence of four extrusions starting with a single point (a). In each extrusion (b) to (e), the
input geometry in black is cloned and translated into blue. The space between the black and blue

geometry is filled by green geometry. For the sake of simplicity, we omit the faces and solids generated
when extruding, showing only the edges and vertices.

Figure 3.4: Extrusion of a circle made of edges (left) into a cylinder made of triangles (right).

3.4.2 Unpaired geometry removal

Half-edges that do not belong to a face and half-faces that do not belong to a cell

need to be removed from the mesh before rendering, because to avoid time consuming

unnecessary checks, all half-edges are assumed to have a face and all half-faces are

assumed to have a cell.

17

Ray Tracing in Non-Euclidean Spaces

Figure 3.5: Extrusion of a sphere made of triangles (left) into a hyper-cylinder made of tetrahedra (right).

3.4.3 Welding

Welding the process of collapsing all selected vertices into a single one (Figure 3.6). The

tool removes each triangle and tetrahedra composed by more than one of the selected

vertices, the triangles and tetrahedra that remain need to update their pairs.

Figure 3.6: Cylinder (left) with green selected edges welded (right).

3.4.4 Triangulation

Because the space traversal algorithm only works on simplexes, and because extrusions

generate quads and prisms which are not simplexes, they have to be split into triangles

and tetrahedra respectively, so we end up obtaining a triangulation.

3.4.4.1 Quad triangulation

Triangulation in a polygonal mesh with quads is straightforward, each quad can be split in

one of two ways, but either way works. Table 3.1 represents the possible configurations

for triangulation of a quad, which are shown in Figure 3.7.

18

Ray Tracing in Non-Euclidean Spaces

Figure 3.7: Original quad and two possible configurations for subdivision.

configuration triangle 0 triangle 1

0 V0 V1 V2 V0 V2 V3
1 V0 V1 V3 V1 V2 V3

Table 3.1: The two possible configurations for subdividing a quad composed by the vertices V0 V1 and V2.

3.4.4.2 Prism triangulation

A prism is made of two triangles and three quads (Figure 3.8), while tetrahedra are only

made of four triangles. To split a prism into tetrahedra, each of its three quads has to

be split into two triangles, as stated before, each quad has two possible ways it can be

split into triangles, therefore, there are eight combinations of how the prism’s quads

may be subdivided. It is impossible to create tetrahedra out of the triangles created

from subdividing all of the quads with the exact same configuration [DLVC99], which

means two of the eight configurations do not yield tetrahedra and must be discarded.

Table 3.2 is used to generate the tetrahedra given a specific configuration. The resulting

tetrahedra for each configuration is shown in Figure 3.9.

Figure 3.8: Prism.

19

Ray Tracing in Non-Euclidean Spaces

Figure 3.9: The six possible configurations for subdivision of a prism into tetrahedra.

configuration tetrahedron 0 tetrahedron 1 tetrahedron 2

000 - - -
001 V0 V1 V2 V5 V0 V1 V5 V4 V0 V4 V5 V3
010 V0 V1 V2 V4 V0 V4 V2 V3 V3 V4 V2 V5
011 V0 V1 V2 V4 V0 V4 V5 V3 V0 V4 V2 V5
100 V0 V1 V2 V3 V1 V2 V3 V5 V1 V5 V3 V4
101 V0 V1 V2 V5 V0 V1 V5 V3 V1 V3 V4 V5
110 V0 V1 V2 V3 V1 V4 V2 V3 V2 V4 V5 V3
111 - - -

Table 3.2: The six possible and two impossible configurations for subdividing a prism composed by the
vertices V0 V1 V2 V3 V4 and V5, modified from [DLVC99]. Each bit in the configuration represents which

of the two possible configurations each quad of the prism will use in its subdivision.

3.4.4.3 Half-face pair congruence

Although triangulating a mesh of quads paired up by half-edges, each quad’s triangula-

tion does not depend on its pair faces, since the edges themselves do not get altered,

the same cannot be said for triangulating a prism mesh, because the triangulation mod-

ifies the quads of the prism, which are only half-faces that may be paired up with a

quad of a connected prism, since the resulting triangles of the triangulation of both

paired half-faces must be paired up as well, the way one quad is subdivided is going to

enforce that its paired quad must be subdivided in the inverse way.

Because a prism’s subdivision determines how one of the connected prism’s face will

subdivide, and because not all configurations of how a prism’s quads may be triangulated

are valid (since some do not yield tetrahedra), a problem emerges that if the subdivision

configuration for each prism is chosen arbitrarily, they may force other prisms into non-

valid configurations. This means the subdivision configuration for each prism must be

planned taking into account the whole mesh.

3.4.5 Circles and Spheres

Many of the spaces to be modeled in this dissertation can often be derived from the

result of applying extrusions to a circle or a sphere, because of this, some generators

with parametric fidelity were developed.

Since in two dimensions, all natural numbers are a valid number of edges to a regular

20

Ray Tracing in Non-Euclidean Spaces

convex polygon, the higher the number, the closer the polygon is to a circle as seen in

Figure 3.10.

Figure 3.10: Convex regular polygons with different number of segments.

Because in three dimensions, the number of regular polyhedra possible to create is five,

it is impossible to create a sphere with parametric precision composed by equilateral

triangles of same size. A way around this, is to start with a regular polyheron made

of triangles, commonly an icosahedron, then perform consecutive smooth subdivisions,

the higher the subdivision, the closer the solid is to a sphere. Although this technique

does not generate perfectly equal triangles, the sphere is not regular, but since it would

be impossible otherwise, the results are acceptable (Figure 3.12).

Figure 3.11: No subdivision on the left; new triangles on the middle; normalized radius of new vertices
on the right.

Figure 3.12: Icosahedron on the left followed by consecutive subdivisions.

Subdivisions are made by creating a new vertex in the middle of all edges, and replacing

each face with four new triangles using the new vertices as shown in Figure 3.11.

Because we want the subdivision to approximate spheres, the distance from each vertex

to the origin has to be normalized and scaled by the desired radius.

3.5 Modeling the Schwarzschild black-hole

3.5.1 Space-Mesh for 2D black-hole embedded in E3

To create the 2D space deformed by a Schwarzschild black-hole, we can start with a

circle made of edges. Each edge is extruded into quads. At the end of each extrusion

21

Ray Tracing in Non-Euclidean Spaces

step, the new vertices’ position is scaled down so the space gets generated towards the

center of the circle until we reach the Schwarzschild radius, depending on the distance

of each vertex to the center of the black-hole, we calculate the offset deformation

in the z dimension which is perpendicular to the starting circle, using the Flamm’s

paraboloid offset. By scaling each step of the extrusion along an equation, we get an

approximated shape of Flamm’s paraboloid, the accuracy of this shape depends on the

number of segments on the original circle and the number of steps of the extrusion

(Figure 3.13). Each quad is split into triangles (triangulation). The original edge circle

is removed since its edges are not associated with any face.

3.5.2 Space-mesh for 3D black-hole embedded in E4

Because of the spherical nature of Schwarzschild’s metric, and because of spherical

symmetry, the w offset depends only on the distance to the center of the black-hole,

which means we can use the same equation to generate a 3D black-hole as well, only

instead of starting with a circle made of edges, we start with a sphere made of triangles,

and instead of offsetting the vertices on the third dimension, we offset in the dimension

perpendicular to the sphere, which, will in this case be the fourth dimension, since the

sphere’s coordinates will all be contained in the volume (w = 0) (Figure 3.14).

By concentrating more geometry in the location with higher curvature, we get higher

fidelity, as shown in Figure 3.15. This can be achieved by allocating more extrusion

steps with lower increments where more geometry is necessary.

3.6 Modeling the Schwarzschild wormhole

If we extend the black-hole generation by applying a second extrusion with the event

horizon selected, and reverse the percentage fed to the scaling and offset function, we

can transform the blackhole into a wormhole, whose results can be seen in Figure 3.16.

3.7 Summary

In this chapter, we have introduced the theoretical background (mathematics) be-

hind non-Euclidean spaces, as well as their decomposition (discretization) into building

blocks. We use simplices as the fundamental building blocks of such decomposition or

triangulation. As shown above, we use an extended half-edge data structure to rep-

resent space decompositions. The resulting mesh is of paramount importance not only

because they apply to general non-Euclidean spaces, but also because these decom-

positions are the basis for calculating geodesics, as necessary in ray tracing (see next

chapter for further details).

22

Ray Tracing in Non-Euclidean Spaces

2D

float flamm(float radius)
{

return 2.0f * sqrtf(RS * (r - RS
));

}
mesh_t *blackhole2d()
{

mesh_t *space = mesh_new();
mesh_circle(space, 1, 20);
mesh_extrude_edges(space, 15,

vec4(0, 1, 0, 0), RS,
flamm);

mesh_remove_lone_edges(space);
mesh_triangulate(space);
return space;

}

Figure 3.13: 2D black-hole models with differing
number of steps, first one, then two, then

fifteen.

3D

float flamm(float radius)
{

return 2.0f * sqrtf(RS * (r - RS
));

}
mesh_t *blackhole3d()
{

mesh_t *space = mesh_new();
mesh_icosphere(space, 1, 2);
mesh_extrude_faces(space, 15,

vec4(0, 0, 0, 1), RS,
flamm);

mesh_remove_lone_faces(space);
mesh_triangulate(space);
return space;

}

Figure 3.14: 3D black-hole models with differing
number of steps, first one, then two, then

fifteen.

Figure 3.15: On the left, linear scale increment by step, on the right, quadratic. Same number of steps,
but on the left, the steps are more concentrated in the most vertical zone.

23

Ray Tracing in Non-Euclidean Spaces

Figure 3.16: 2D and 3D wormhole models with two steps, then four, then thirty, then thirty with
quadratic scale increment.

24

Ray Tracing in Non-Euclidean Spaces

Chapter 4

Ray-tracing Non-Euclidean Spaces

This chapter describes an algorithm to render general curved non-Euclidean spaces

(e.g., the Schwarzchild space that describes a black hole). For that purpose, a non-

Euclidean space first has to be discretized as detailed in the previous chapter. That

is, we need to generate a space into a triangulated mesh, here called space mesh.

Recall that, as seen in Chapter 2, there are algorithms to render specific curved non-

Euclidean spaces, but not to render general curved non-Euclidean spaces like the one

here proposed.

4.1 Introduction

Unlike the straight light rays used in Euclidean spaces to render 3D scenes using conven-

tional rendering techniques, including ray casting and ray tracing, the light paths in non-

Euclidean spaces are geodesics, which are considered straight inside the space, but from

outside, they might look curved depending on the curvature of the space. Intuitively,

what we are trying to do is to render scenes using curved rays (i.e., geodesics). Note

that an observer inside a non-Euclidean space sees a geodesic ray as straight. There-

fore, by calculating geodesics emanating from a surface point of a non-Euclidean space,

one can render an image of what an observer (or camera) sees when such observer is

located within the space. Each geodesic (or non-Euclidean straight line) effectively

represents a possible path taken by light until reaching the camera.

Let us now see how this geodesic-based rendering works in two cases:

• 2D non-Euclidean spaces embedded 3D space.

• 3D non-Euclidean spaces embedded 4D space.

The second case can be seen as a generalization of the first case, which helps to un-

derstand what is going on in higher-dimensional non-Euclidean spaces. Essentially, our

geodesic-based rendering algorithm generalizes the calculation of geodesics on trian-

gle meshes in 3D to tetrahedral meshes in 4D. Recall that the triangulation of each

non-Euclidean space is represented by a half-face data structure, so the connectivity

between simplices can be easily retrieved whenever necessary.

Section 4.2 describes how to calculate geodesics in 2D space-meshes. 4.3 describes how

to calculate geodesics in 3D space-meshes. Section 4.4 shows how to use geodesics to

trace light paths to the camera and render an image. Section 4.7 shows how to move

along a geodesic with a non-infinite velocity.

25

Ray Tracing in Non-Euclidean Spaces

(a) (b)

Figure 4.1: Illustrating how a geodesic path (in green) would leave the surface of the mesh if not rotated
by θ. The triangle normals appear in blue.

4.2 Geodesic Rays on Triangle Meshes

In conventional ray casting and ray tracing, a light ray is defined by a point (observer’s

eye) and a 3D directional vector that is supported by a straight line because the ren-

dering occurs in the 3D Euclidean space. Similarly, in geodesic-based ray casting and

tracing, a light ray is also defined by a 3D point and a 3D directional vector, with the

difference that we are using geodesic rays instead of straight rays. However, in this

section, we are calculating geodesics on triangle meshes, therefore, a ray’s position

and direction are 2D.

4.2.1 Door-In-Door-Out

Our algorithm uses a door-in-door-out method; that is, the ray enters at a point of

the triangle boundary and finds its way out on other boundary point. Therefore, one

possible method to calculate a geodesic path (or ray) on a triangle mesh in 3D is as

follows:

1. Find the triangle where the ray point lies in; if there is no such triangle, there is

no geodesic because the point is outside of the mesh. The directional vector is

perpendicular to triangle normal (or tangent to the triangle).

2. Calculate where the ray exits the triangle by calculating the intersection of the

ray with the three planes defined by its edges and triangle’s normal.

3. Move the point to the intersection point on the boundary of the triangle.

4. Calculate the angle θ between the current triangle and the next triangle. These

triangles share the intersection point in one of their boundary edges.

5. Rotate the direction by θ on the axis which is the cross product of the two normals.

This process in Cartesian coordinates is illustrated in Figure 4.1. However, this process

have two main shortcomings. First, the rotation θ does not ensure that the path gets

on the surface mesh because the computation of θ involves floating-point calculations

whose errors easily sum up. This means that we need extra computations to assure

26

Ray Tracing in Non-Euclidean Spaces

Figure 4.2: 2D Cartesian coordinates of each triangle vertex depending on the edge working as the base.
The red axis is x, the green axis is y

Figure 4.3: 2D barycentric coordinates of each vertex depending on which edge serves as base. The red
axis is u, the green axis is v

the geodesic path vector always remains in each traversing triangle, yet within a given

error threshold. Second, this process is time-consuming for long paths because of the

evaluation of many multiplications and trigonometric functions (i.e., cosine and sine

functions of rotation matrix).

To solve these problems, we use the coordinate system of the surface mesh itself, that

is, 2D barycentric or Cartesian coordinates rather than 3D Cartesian coordinates. This

solution a priori guarantees that the light ray does not escape from the surface mesh.

In other words, there is no need for rotations. Therefore, a geodesic path is determined

as follows:

1. Start with a ray composed of a 2D point and 2D direction using local 2D barycentric

or Cartesian coordinate frame of a triangle in the space-mesh.

2. Determine the edge intersected by the ray.

3. Move the point to the intersection locus.

4. Convert the point coordinates and direction to a local frame of the next triangle.

This method is agnostic to normals or any global coordinates, all that matters is the

shape of the triangles, which means there are no rotations or bends to fix. In practice,

we opted by using barycentric coordinates because they make ray-edge intersection and

coordinate conversion between adjacent triangles easier to calculate than 2D Cartesian

coordinates, as illustrated in Figures 4.2 and 4.3. But, barycentric coordinates take

advantage over Cartesian coordinates because computations are confined to each tri-

angle’s interior and boundary.

In 2D barycentric coordinates, there are two axes, u and v. Each axis starts at the same

point and is aligned with one of the triangle edges. Any triangle vertex can work as the

27

Ray Tracing in Non-Euclidean Spaces

origin of the barycentric coordinates. After pinning the origin at a vertex, there are

two possible configurations for the frame of barycentric coordinates (Figure 4.3). This

means there are six possible barycentric coordinate systems per triangle.

To keep things even more simple and topologically consistent, we take advantage of the

half-edge data structure to represent not only the surface mesh but also the barycentric

coordinates of each triangle. Therefore, the u axis will always be aligned with the half-

edge whose vertex is the origin, and the v axis will always be aligned with the half-

edge whose next vertex is the origin. This means there are only three unambiguous

barycentric coordinate systems, one per half-edge (or base), for each triangle. Note

that the half-edge representation allows us to know which is the next triangle to be

travelled by the light ray; the next triangle is retrieved using the twin of the current

door-out half-edge crossed by the light ray. Summing up, to describe a point in the

surface mesh, one needs only to store its 2D barycentric coordinates and triangle’s

base, so describing not only the coordinate system being used, but also which triangle

the point is currently in.

4.2.2 Coordinate conversions

Every point in the simulated 2D space can be uniquely represented using either:

• 2D barycentric (u, v) local coordinates and a base. These coordinates are neces-

sary to determine the geodesic paths or rays.

• 2D Cartesian (x, y) local coordinates and a base. These coordinates are neces-

sary to perform orthogonal operations (e.g., ray-circle intersection). Recall that

barycentric coordinates are not orthogonal, i.e., they are skewed.

• 3D Cartesian (x, y, z) global coordinates of the Euclidean space in which the space-

mesh is embedded. For example, these coordinates are necessary to compute

edge lengths, and draw the space itself as seen from outside. These global 3D

coordinates are not sent to GPU.

In order to convert Cartesian coordinates to and from barycentric, we need to calculate

the (d, g, h) values relative to each possible base edge, as illustrated in Figure 4.2, where

d is the length of the base, or the x Cartesian coordinate of the base’s next vertex, h is

the height of the triangle or the y Cartesian coordinate of the point which is not on the

base, and g is the x Cartesian coordinate of the point which is not on the base. These

variables are stored in a new structure base_t as follows:

typedef struct
{

float d;
float g, h;
int next, prev, pair; // half-edges

} base_t;

28

Ray Tracing in Non-Euclidean Spaces

Note that the next, previous, and the pair half-edges also go with the base_t for navi-

gation across the half-edge data structure. The C functions to convert from local Carte-

sian to (local) barycentric coordinates, and vice-versa, and (local) barycentric to global

Cartesian coordinates are as follows:

void cartesian(base_t *base, vec2_t *b)
{

b->x = base->d * b->u + base->g * b->v;
b->y = base->h * b->v;

}

void barycentric(base_t *base, vec2_t *c)
{

c->u = (c->x - (c->y * base->g / base->h)) / base->d;
c->v = c->y / base->h;

}

vec3_t barycentric_to_global(vec2_t pos, edge_t *base)
{

vec3_t v0 = e_vert(base)->pos;
vec3_t v1 = e_vert(e_next(base))->pos;
vec3_t v2 = e_vert(e_prev(base))->pos;
return vec3_add(

v0,
vec3_scale(vec3_sub(v1, v0), pos.u),
vec3_scale(vec3_sub(v2, v0), pos.v));

}

Because there is one base_t (on GPU side) for each half-edge, it is possible to insert

these values directly into edge_t (on CPU side). However, this is not done because

edge_t contains much more data than needed for calculating a ray’s path, and since

the GPU needs to have access to (d, g, h) values, sending the edge_t vector directly

would be inefficient in terms of memory usage.

Figure 4.4 shows the GPU inputs (OpenCL and OpenGL inputs) and their original host

structures on CPU side. While OpenGL is used to model and draw meshes from the

outside point of view, OpenCL is used for raytracing within those spaces.

The mesh_t structure contains the list of geometrical primitives (vertices, edges, and

faces) with information needed for space modelling like half-edge relations, primitive

selections, synchronization semaphores and others, as seen in Section 3.3 of the previ-

ous chapter. On the other hand, mesh_gl_t fetches information from mesh_t, selecting

only the information (list of triangles) needed for OpenGL rendering of the mesh on

screen. mesh_cl_t contains the inputs to the raytracer, a list of edges containing only

the variables needed for calculating a ray’s path, and the color of each vertex on the

outer boundary of the mesh.

29

Ray Tracing in Non-Euclidean Spaces

Figure 4.4: Memory occupancy overview on CPU and GPU sides. In blue is the host memory, in red is GPU
device inputs.

4.2.3 Ray-Edge Intersection

A ray travelling on a triangle always crosses either a door-out edge or vertex. By calcu-

lating the distance at which a ray with position (u0, v0) and direction (u∆, v∆) intersects

any of the edges’ line equations, and checking which distance is the smallest, we know

where the ray exits the triangle.

(a) (b)

Figure 4.5: Determining the door-out edge of a ray laying on a triangle as the closest edge to point
(u0, v0) in the direction of a ray passing: (a) through an edge; (b) through a vertex.

In barycentric coordinates, we know that the base’s line equation is v = 0, the line

equation of the base’s previous edge is u = 0 and the equation of the base’s next edge

is u+ v = 1. To calculate the distance from (u, v) to each of those edge (Figure 4.5(b)),

we have the following system:

30

Ray Tracing in Non-Euclidean Spaces

v0 + tb.v∆ = 0

u0 + tp.u∆ = 0

u0 + v0 + tn.(u∆ + v∆) = 1

(4.1)

or, equivalently,

tb = − v0

v∆
, if v∆ < 0

tp = − u0
u∆

, if u∆ < 0

tn = 1−u0−v0
u∆+v∆

, if u∆ + v∆ > 0

(4.2)

As shown in Figure 4.5(a), the ray intersects with:

• the base if tb has the smallest positive value.

• the base’s previous edge if tp has the smallest positive value.

• the base’s next edge if tn has the smallest positive value.

Otherwise (see Figure 4.5(b)):

• the base’s vertex if tb = tp.

• the base’s next vertex if tb = tn.

• the base’s previous vertex if tn = tp.

The distance at which the ray exits the triangle is the smallest positive t•.

A simplified code concerning ray-edge intersection is as follows:

float tv, ta, tu;
tv = (ray.d.v < 0.0f) ? -ray.p.v / ray.d.v : INFINITY;
tu = (ray.d.u < 0.0f) ? -ray.p.u / ray.d.u : INFINITY;
ta = (ray.d.u + ray.d.v > 0.0f) ?

(1.0f - ray.p.u - ray.p.v) / (ray.d.u + ray.d.v) : INFINITY;

if(tv < tu && tv < ta)
/* ray intersects the base */

else if (tu < tv && tu < ta)
/* ray intersects the base->prev edge */

else if (ta < tv && ta < tu)
/* ray intersects the base->next edge */

else
/* ray intersects a vertex */

Note that if the ray crosses a door-out vertex (Figure 4.5(b)), meaning that the distance

to two of the edges is equal and positive, we chose one of the edges incident on the

vertex to proceed with propagation.

31

Ray Tracing in Non-Euclidean Spaces

(a) (b) (c) (d)

Figure 4.6: Red and green edges represent the u, v barycentric axes being used during propagation: (a) I
is the point of intersection (as calculated in Section 4.2.3) between the door-out edge CB and the ray R

on triangle ABC△ with AB as the base; (b) the frame is rotated to have BC as the base, while R′

represents the updated coordinates relative to the new base; (c) the ray is moved to the point of
intersection I ′, and is represented as R′′ without changing direction; (d) the frame passage is performed

by changing the base from the halfedge BC to its pair CB of triangle CBD△, and R′′′ is the ray
(position and direction) relative to the new base.

4.2.4 Frame Propagation

When a ray crosses an edge from one triangle to another, the local coordinates of the

ray have to be converted from the current coordinate system, defined by an edge of the

current triangle, to one defined by one of the three possible edges of the next triangle.

This is performed in two steps: frame rotation and frame passage.

The first step involves rotating the frame (or coordinate system) of the current triangle,

which amounts to rotating the base of the current triangle; that is, converting from one

coordinate system to another on the same triangle, as illustrated in Figure 4.6(a)-(b).

A ray is composed of a position (u, v) and a direction (u∆, v∆), each has to be updated

when rotating the coordinate system.

vec2_t position_rotate_edge(base_t *base, int crossed_id , vec2_t p)
/* convert to another base of same the face */
{

if(base->prev == crossed_id)
return vec2(1.0f - p.u - p.v, p.u);

if(base->next == crossed_id)
return vec2(p.v, 1.0f - p.u - p.v);

return p;
}
vec2_t direction_rotate_edge(base_t *base, int crossed_id , vec2_t d)
/* convert to another base of same the face */
{

if(base->prev == crossed_id)
return vec2(-d.u - d.v, d.u);

if(base->next == crossed_id)
return vec2(d.v, -d.u - d.v);

return d;
}

Frame passage consists in moving the frame of the current triangle across its door-out

32

Ray Tracing in Non-Euclidean Spaces

(a) (b)

Figure 4.7: Updating position (u, v) and direction (u∆, v∆) to (u′, v′) and direction (u′
∆, v′∆) during frame

passage from a triangle to another across the door-out edge of the first (or door-in of the second).
Because the ray is already positioned on the base, v = 0 and v′ = 0.

edge to the corresponding adjacent triangle (Figure 4.6(c)-(d)); that is, the door-out

edge of current triangle becomes the door-in edge of the next triangle. Therefore, this

operation amounts to convert the frame base of the current triangle to frame base of

the next triangle, as detailed in Figure 4.7. The ray position (u′, v′) in the new frame is

given by u′ = 1− u and v′ = v = 0; the value of v′ is 0 because the ray is positioned on

the u-axis (frame base). Furthermore, since the new base is pair of the previous base

(paired half-edges), and because the base of each frame works as the u-axis, and taking

into consideration that both bases have length 1, we conclude that u′ = 1− u.

Concerning the computation of direction of the ray in the frame, we have to be aware

that barycentric coordinate systems are not orthogonal, so it is not enough to simply

negate such direction. Doing so, the resulting ray’s direction would get skewed. To solve

this problem, the direction (u∆, v∆) (barycentric coordinates) has to be converted into

Cartesian coordinates of the current frame, which are converted into Cartesian coor-

dinates of the next frame by negation, and then converted to barycentric coordinates.

Note that in the process of frame passage, the position updating does not depend on

the shape of both triangles, but the direction updating does.

vec2_t position_cross_edge(vec2_t p)
{

return vec2(1.0f - p.u, 0);
}
vec2_t direction_cross_edge(base_t *crossed, base_t *next_base , vec2_t d)
{

cartesian2D(crossed, &d);
d = vec2(-d.u, -d.v);
barycentric2D(next_base , &d);
return d;

}

The frame passage from one triangle to the next one is then as follows:

ray_t ray_cross_edge(base_t *bases, base_t *crossed, ray_t ray)
{

base_t *next_base = &bases[crossed->pair];
ray.p = position_cross_edge(ray.p);
ray.d = direction_cross_edge(crossed, next_base , ray.d);

33

Ray Tracing in Non-Euclidean Spaces

ray.base = crossed->pair;
return ray;

}

4.3 Geodesic Rays across Tetrahedral Meshes in 4D Space

This section generalizes the ray tracing algorithm described in Section 4.2 to 4D, so that

we can render images of 3D non-Euclidean spaces embedded in the 4D Euclidean space.

The method is similar and can be broadly described by the following steps:

• Start with a ray composed of a 3D point and 3D direction using barycentric coor-

dinates relative to one tetrahedron of the space-mesh.

• Determine which face is intersected by the ray.

• Move the point to the intersection.

• Convert the point coordinates and direction to a local frame of the next tetrahe-

dron.

As noted in the previous section, this method is agnostic to normals or any global coordi-

nates, so we do not need to calculate any 4D normals for tetrahedra. Also, a tetrahedron

has four barycentric axes, but only independent 3D barycentric coordinates, labeled u,

v and w. Each axis starts at the same apex and is aligned with one of the edges incident

on that point. Taking into account that a tetrahedron has four triangles, each with tri-

angle defined by three vertices, we end up having twelve possible coordinate systems

or frames. Therefore, a triangle is not enough to describe one particular coordinate

system. To do that, in principle, we need to store one tetrahedron, one triangle and

one edge. Fortunately, because we are using the half-edge data structure, we only

use a half-edge to unambiguously specify the coordinate system, because the half-edge

refers to a single half-face, which in turn refers to a single tetrahedron. Note that the

number of half-edges of a tetrahedron is equal to the number of possible coordinate

systems or frames, specifically twelve frames. Bear in mind that a ray may enter a

tetrahedron coming from any triangle, and using any of the three possible coordinate

systems of such triangle, so we cannot discard any of those twelve coordinate systems.

4.3.1 Coordinate conversions

Every point in the discretized 3D non-Euclidean space (i.e., space-mesh) can be uniquely

represented by either:

• 3D local barycentric (u, v, w) coordinates and a base;

• 3D local Cartesian (x, y, z) coordinates and a base;

34

Ray Tracing in Non-Euclidean Spaces

• 4D global Cartesian (x, y, z, w) coordinates of the 4D Euclidean space where the

space-mesh is embedded.

Recall that 3D barycentric coordinates are needed when comes the time of computing

geodesic paths or rays; 3D local Cartesians are instrumental in orthogonal operations

(e.g., ray-line intersection); and 4D global Cartesians are important to determine, for

example, edge lengths, and draw the space itself from the outside point of view.

To convert Cartesian coordinates to and from barycentric coordinates, we first calculate

(d, g, h) values for all edges of each triangle of the tetrahedron, as illustrated in Fig. 4.2.

In addition, we calculate (i, j, k)which are the Cartesian coordinates of the fourth corner

of the tetrahedron that lays outside the base triangle relative to each of those edges

which are used as a base for the twelve coordinate systems of the tetrahedron. Hence,

we extended the structure base_t as follows:

typedef struct
{

float d; /* x of the second vert of the base edge */
float g, h; /* x,y of the third vert of the base triangle */
float i, j, k; /* x,y,z of the fourth vert of the base tetrahedron */
int next, prev, pair, cpair; /* (pair, cpair) are matching half-edges

belonging to superimposed triangles of adjacent tetrahedra*/
} base_t;

Note that k is the height of the tetrahedron relative to the half-edge’s triangle. Instead

of including the same k on all three edges of that triangle, we could store a per-triangle

structure and include an integer index of the triangle in base_t. However, this is not

done in this way because it would spend more memory space since the index would oc-

cupy the same number of bytes as the k variable in each base_t. Besides, the execution

would be slower because of the added pointer indirection, where instead of accessing

k as base → k we would need to fetch it as faces[base → face] → k. The relationship

(pair,cpair) between half-edges of adjacent tetrahedra is shown in Figure 3.2. This

topological relationship is necessary to move from a tetrahedron to the next one; that

is, to navigate through the space-mesh.

The following code snippets concern the conversion from barycentric to local Cartesian

coordinates, and vice-versa, as well as from barycentric to global Cartesian coordinates,

respectively:

void cartesian(base_t *base, vec3_t *b)
{

b->x = base->d * b->u + base->g * b->v + b->w * base->i;
b->y = base->h * b->v + b->w * base->j;
b->z = b->w * base->k;

}
void barycentric(base_t *base, vec3_t *c)
{

float hk = base->h * base->k;

35

Ray Tracing in Non-Euclidean Spaces

c->u = c->x / base->d - (c->y * base->g) / (base->d * base->h)
- c->z * (base->h * base->i - base->g * base->j) / (base->d * hk);

c->v = c->y / base->h - c->z * base->j / hk;
c->w = c->z / base->k;

}

vec4_t barycentric_to_global(vec3_t pos, edge_t *base)
{

vec4_t v0 = e_vert(base)->pos;
vec4_t v1 = e_vert(e_next(base), mesh)->pos;
vec4_t v2 = e_vert(e_prev(base), mesh)->pos;
vec4_t v3 = e_vert(e_prev(e_pair(base)), mesh)->pos;
vec4_t result = vec4_add(

v0,
vec4_scale(vec4_sub(v1, v0), pos.u),
vec4_scale(vec4_sub(v2, v0), pos.v),
vec4_scale(vec4_sub(v3, v0), pos.w));

return result;
}

4.3.2 Ray-Triangle Intersection

A ray going through a tetrahedron always crosses either a face, an edge or a vertex. If

no face is crossed, that is, only either a single vertex or an edge is on the way of the ray,

one chooses any triangle incident on such vertex or edge to proceed, which simplifies

the number of rules for propagation from fourteen (four triangles, six edges, and four

vertices) to four because the intersection test will only return one out of four triangles.

Assuming that a ray with position (u, v, w) and direction (u∆, v∆, w∆) inside a tetrahe-

dron, we need to calculate the distance from (u, v, w) to each triangle’s plane in the

direction (u∆, v∆, w∆), checking then which distance is smallest to decide which triangle

the ray exits the tetrahedron from. This distance is calculated as follows:

tb = − w
w∆

, if w∆ < 0

tbp = − v
v∆

, if v∆ < 0

tpp = − u
u∆

, if u∆ < 0

tnp = − 1−u−v−w
u∆+v∆+w∆

, if u∆ + v∆ + w∆ > 0

(4.3)

So, the ray intersects with:

• the base→ face if tb has the smallest positive value.

• the base→ pair → face edge if tbp has the smallest positive value.

36

Ray Tracing in Non-Euclidean Spaces

• the base→ prev → pair → face if tpp has the smallest positive value.

• the base→ next→ pair → face if tnp has the smallest positive value.

• otherwise, the ray intersects an edge or a vertex.

Note, if w∆ >= 0 it means the ray is either moving away or stationary relative to the

base, meaning w∆ has to be negative in order to intersect the base.

The distance at which the ray exits the triangle is the smallest t•. The following code

snippet illustrates one inefficient way of implementing the intersection test:

float tbp, tnp, tpp, tb;
tb = (ray.d.w < 0.0f) ? -ray.p.w / ray.d.w : INFINITY;
tbp = (ray.d.v < 0.0f) ? -ray.p.v / ray.d.v : INFINITY;
tpp = (ray.d.u < 0.0f) ? -ray.p.u / ray.d.u : INFINITY;
tnp = (ray.d.u + ray.d.v + ray.d.w > 0.0f) ? (1.0f - ray.p.u - ray.p.v - ray.p.

w) / (ray.d.u + ray.d.v + ray.d.w) : INFINITY;

if (tb < tnp && tb < tpp && tb < tbp)
/* ray intersects with base->face */

else if (tbp < tpp && tbp < tnp && tbp < tb)
/* ray intersects with base->pair->face */

else if (tpp < tnp && tpp < tb && tpp < tbp)
/* ray intersects with base->prev->pair->face */

else if (tnp < tb && tnp < tpp && tnp < tbp)
/* ray intersects with base->next->pair->face */

else
/* ray intersects an edge or vertex */

Since we always need a triangle to move to the next tetrahedron, and not an edge or

vertex, we can decide which triangles will be chosen by simplifying the above conditions

as follows:

if (tb <= tnp && tb < tpp && tb < tbp)
/* ray intersects with base->face */

else if (tbp <= tpp && tbp < tnp)
/* ray intersects with base->pair->face */

else if (tpp <= tnp)
/* ray intersects with base->prev->pair->face */

else
/* ray intersects with base->next->pair->face */

4.3.3 Frame Propagation

When a ray crosses a triangle from one tetrahedron to another, its local coordinates

have to be converted from the coordinate system (or frame) of the current tetrahe-

dron, defined by an half-edge of the current tetrahedron, to the coordinate system (or

frame) of the next tetrahedron, defined by one of its twelve half-edges (see Fig.3.2).

37

Ray Tracing in Non-Euclidean Spaces

(a) (b) (c) (d)

Figure 4.8: Frame rotations on the same tetrahedron applied to one of its interior points, starting on a
base half-edge (in red) and ending on another half-edge labeled as goal; the changing base triangle
appears in light blue: (a) → (b) by counterclockwise rotating the base to its prev half-edge, the prev
becomes the base, though the base triangle stays the same; (b) → (c) by flipping the current base (or

prev in (b)), we get the new base (pair in (c)), so that triangle base changes; (c) → (d) the final rotation
is performed from the current base (in (c)) to its next half-edge (the new base in (d)), so now the point

coordinates are relative to the goal’s coordinate system;

As before, the problem of frame propagation from one coordinate system to another

can be subdivided into two steps: frame rotation and frame passage.

Considering that a ray may exit a tetrahedron through any of its four triangles, we need

to convert its current frame to one out of the three frames of its door-out triangle

that is intersected by the ray. This operation of changing the coordinate frame of a

tetrahedron is called frame rotation, which affects both the barycentric coordinates

of position and direction of each ray, though the global coordinates of the ray are the

same (Figure 4.8). Therefore, the frame rotation involves the following operations:

vec3_t position_rotate(base_t *from_base , int to_base_id , vec3_t p)
/* convert to another base of same the tetrahedron */
{

if(from_base ->prev == to_base_id)
return vec3(1.0f - p.u - p.v - p.w, p.u, p.w);

if(from_base ->next == to_base_id)
return vec3(p.v, 1.0f - p.u - p.v - p.w, p.w);

if(from_base ->pair == to_base_id)
return vec3(1.0f - p.w - p.u - p.v, p.w, p.v);

return p;
}

vec3_t direction_rotate(base_t *base, int to_base_id , vec3_t d)
/* convert to another base of same the tetrahedron */
{

if(from_base ->prev == to_base_id)
return vec3(-d.u - d.v - d.w, d.u, d.w);

if(from_base ->next == to_base_id)
return vec3(d.v, -d.u - d.v - d.w, d.w);

if(from_base ->pair == to_base_id)
return vec3(-d.w - d.u - d.v, d.w, d.v);

38

Ray Tracing in Non-Euclidean Spaces

return d;
}

Note that these two operations of frame rotation take place on the same tetrahedron.

Moreover, in spite of using rotations to perform the frame rotation, no angles and

trigonometric operations are required, as shown in the code snippets above.

On the other hand, frame passage consists in transforming the frame of the current

tetrahedron across its door-out triangle into the frame of its adjacent tetrahedron;

that is, the door-out triangle of current triangle is congruent with the door-in triangle

of the next triangle. This operation reduces to convert the frame base (i.e., the base
half-edge) of the current tetrahedron to frame base (i.e., the cpair half-edge) of the

next tetrahedron, as illustrated in Fig. 3.2.

Similar to ray moving shown in Fig. 4.7, we assume now that the ray is already positioned

at the door-out triangle. The frame passage of barycentric position (u, v, w) (door-out

triangle) into (u′, v′, w′) (door-in triangle) can be done in one step. In this case, w′ = 0

because the distance to the base is zero, that is, it is already on the base triangle.

Also, v′ = v because the barycentric distance of the point to u-axis is the same as the

barycentric distance to u′-axis. Finally, u′ = 1 − u − v because u′-axis is symmetric to

u-axis. This is encoded by the following snippet:

vec3_t position_passage(vec3_t p)
{

return vec3(1.0f - p.u - p.v, p.v, 0.0f);
}

As before, because the barycentric coordinate system is not orthogonal, directions get

skewed if the shape of both tetrahedra are not taken into account. To solve this prob-

lem, directions have to be converted to (local) Cartesian coordinates of the current

tetrahedron, converted into (local) Cartesian coordinates of the next tetrahedron by

negating u∆ and w∆, then converted to the barycentric coordinates of the next tetra-

hedron. Note that v∆ does not get inverted because the v-axis and v′-axis point in

the same barycentric direction (away from the base half-edge). This direction passage

process is encoded as follows:

vec3_t direction_passage(base_t *crossed, base_t *cpair, vec3_t d)
{

cartesian(crossed, &d);
d = vec3(-d.u, d.v, -d.w);
barycentric(cpair, &d);
return d;

}

Since the current base face represents w = 0 and the ray reached it, w∆ is negative,

once it crosses into the new coordinate system, it will be pointing away from the base

triangle, not toward it, that is, w′
∆ = −w∆. Once again, recall that while position

39

Ray Tracing in Non-Euclidean Spaces

passage does not depend on the shape of the triangles, direction passage depends on

the shape of both triangles.

Summing up, the ray passage from one tetrahedron to the next one can then described

as follows:

ray_t ray_passage(base_t *base, ray_t ray)
{

ray.p = position_cross_face(ray.p);
ray.d = direction_cross_face(base, cpair(base), ray.d);
ray.base = base->cpair;
return ray;

}

4.4 Tracing a single path

Now that we know how to propagate a point along a direction on the interior of a mesh.

We can draw a geodesic by propagating a ray on the mesh until reaching a boundary

of the mesh (i.e., when a door-out simplex has no pair connected to it). For example,

in Fig. 4.9, the boundary of the 2D wormhole-like space consists of two discretized

circles (i.e., 1D spheres) made of 1D simplices; also, in Fig. 4.10, the boundary of the

3D wormhole-like space consists of two discretized 2D spheres made of triangles.

If we want to draw any geodesic path, it suffices to calculate the global Cartesian

coordinates of each intersection point on door-out simplices and appending such point

to a line mesh, as described by the following code snippet:

ray_t trace_path(base_t *bases, ray_t ray, mesh_t *line, mesh_t *mesh)
{

int i;
int e = mesh_add_vert(line, barycentric_to_global(ray.pos, mesh));
mesh_add_edge(line, e, -1);
for(i = 0; i < MAX_ITERATIONS; i++)
{

if(i == 0)
ray = intersect(bases, ray);

else
ray = intersect_from_border(bases, ray);

mesh_append_edge(line, barycentric_to_global(ray.pos, mesh));
base_t *crossed = &bases[ray.base];
if(crossed->pair < 0) break; /* end of mesh */
/* coordinates relative to the new base */
ray = ray_passage(bases, crossed, ray);

}
return ray;

}

40

Ray Tracing in Non-Euclidean Spaces

Figure 4.9: Two traces from different camera positions and angles on a 2D wormhole-like space.

Figure 4.10: A trace on a 3D wormhole-like space. Although hard to see, the blue rays are traveling
inside the volume composed of tetrahedra.

The function intersect calculates the door-out simplex the ray intersects, and returns

the updated ray at the intersection point relative to one of the coordinate systems of

the door-out simplex. This function is only used in the first iteration. For subsequent

iterations, we use the function intersect_from_border. While the function intersect

checks for an intersection on all door-out simplices, the function intersect_from_border

does not check for an intersection with the door-in simplex because, after the first

iteration, the ray will be moving away from such simplex.

The trace_path function only traces a single geodesic ray. To simulate a camera’s view,

we need to emit many rays from the camera’s position and with a direction within its

field of view, as seen in Fig. 4.9.

41

Ray Tracing in Non-Euclidean Spaces

4.5 Geodesic Ray Tracing

In the previous section, we show how to trace a path along a geodesic ray. These

geodesic rays in non-Euclidean spaces are homologous to straight rays in conventional

ray tracing in Euclidean spaces. In either case, Euclidean or non-Euclidean, the ray

travels in a straight manner, i.e., it does not bend on any direction inside the space.

Let us now describe how the geodesic ray tracer works.

As seen in the previous section, the rays stop on the space boundary, i.e., when they

hit the space boundary. Here, we assume backward ray tracing, so the rays travel from

the camera to the light source. However, in a non-Euclidean space, it does not suffice

to find geodesic path from the hit (boundary) point to the light because there may be

several geodesic rays to the light, each contributing to the illumination of the hit point.

Because our main purpose was to see how a non-Euclidean space looks like, we opt by

automatically assigning a unique color to each boundary vertex representing its global

position.

A camera has an horizontal field of view FoV , a position P in local barycentric coordi-

nates relative to half-edge base B, and an orientation. This orientation is defined by

two vectors F (front) and S (sideways) which point respectively in the camera’s forward

and sideways direction in local Cartesian coordinates. As illustrated in pseudocode of

the ray caster below, these vectors are important to not only calculate the up vector

of the camera, but more importantly to define the direction of emission of rays.

In practice, the ray tracer works as usual by emitting rays from the camera position

within a frustum. The difference is that the rays are geodesic. For that purpose, the

ray tracer calls the function trace, which is similar to the trace_path described in the

previous section. However, instead of drawing a line, it only returns the ray’s final hit

point.

Given a grid of W by H pixels, for each pixel, we calculate its RGBA color by the

following method:

if W > H then
ratiox ← tan(FoV) ∗ 2 ∗ (W/H)

ratioy ← tan(FoV) ∗ 2
else
ratiox ← tan(FoV) ∗ 2
ratioy ← tan(FoV) ∗ 2 ∗ (H/W)

end if
up← F × S

for all (x, y) ∈ pixels do
Dside ← S ∗ (x/W − 0.5) ∗ ratiox
Dup ← up ∗ (y/H − 0.5) ∗ ratioy
Dfront ← F ∗ 1

42

Ray Tracing in Non-Euclidean Spaces

D ← Dside +Dup +Dfront

D ← barycentric(B,D)

(base, U, V,W)← trace(D,B, P)

(r, g, b, a)← base.color ∗ (1− U − V) + base.next.color ∗ U + base.prev.color ∗ V
end for

This tracer allows for real-time rendering and interaction. The rationale behind this

efficiency is twofold. Firstly, the ray traversal is quite efficient using barycentric co-

ordinates. Secondly, we use GPU multi-threading to process each ray independently

of other rays. Taking into consideration that the algorithm discretizes the space into a

mesh, we can thus edit such mesh in real time. For example, in Fig. 4.11, we can ob-

serve the results of interactively changing the height of the extrusion of a wormhole-like

space; this amounts to stretching the space in the fourth dimension. In Figs. 4.12-4.13,

we see several ray-tracing images of a cubic wormhole.

As a post-processing step, because each color on the output of the raytracing step

describes an unique position, we can use it as the coordinates on a texture lookup.

Texturing is illustrated in Fig. 4.15, where the four channels of the color represent the

4D global coordinates of the end of each ray; these coordinates are then transformed

into spherical coordinates to be used to sample from two sphere-map textures, one is

the milky-way, the second is the planet earth.

4.6 Objects embedded in non-Euclidean spaces

So far, the only visible elements are the boundary faces of the space. We have not

considered objects embedded in the space. Let us now see how to render such objects.

4.6.1 Space-Mesh Aligned Objects

A space-mesh aligned object is described by triangles already existent in the space-

mesh’s geometry. In this case, it is trivial to render it, since we know when triangles

of the space-mesh are intersected by the rays. This requires to identify the building

blocks of the mesh that fit the object. However, we cannot move the object because

that would require deforming the space-mesh itself. That is, there is no independence

between the space the objects within such space.

4.6.2 Single-Cell Objects

Since the space within a single cell is Euclidean, any object contained within a single cell

can be rendered by Euclidean ray-tracing techniques. This means we can render triangle

meshes as well as implicitly-defined objects (e.g. spheres, planes, boxes). However,

43

Ray Tracing in Non-Euclidean Spaces

Figure 4.11: A wormhole-like space with varying extrusion sizes. The longer the wormhole, the more
rings appear; each repeated color in the rings represent the same position but different paths to such

position. On the left-hand side, we see ray-traced images (internal view) of the space; on the right-hand
side, we observe the mesh in which the rays are traced, which corresponds to the external view of the

space. The cyan lines indicate the camera’s position and field of view.

44

Ray Tracing in Non-Euclidean Spaces

Figure 4.12: A cubic wormhole, where instead of extruding a sphere, we extrude a cube; the center
tunnel is a tesseract (i.e., hypercube) without two caps. Also, each image represents a different size in

the extrusion step as seen from outside the tunnel, but within the space.

45

Ray Tracing in Non-Euclidean Spaces

Figure 4.13: Cubic wormhole viewed from inside the tunnel. Because the tesseract’s cubes are
connected, the light loops through them, giving an impression that the tunnel is infinite.

46

Ray Tracing in Non-Euclidean Spaces

Figure 4.14: As the tunnel gets deeper, rings start to be noticeable similar to spherical wormhole.

47

Ray Tracing in Non-Euclidean Spaces

Figure 4.15: Raytracing on a hyper-conical space. On the left, raytracing step, on the right, post
processing step.

because each cell has twelve possible coordinate systems, when creating an object

within a cell, its coordinates must be converted and registered to all possible coordinate

systems of that cell. Recall that we can convert from barycentric to Cartesian and vice-

versa.

4.6.3 Multi-Cell Objects

Because there may be no global coordinate system inside a Non-Euclidean space, there

is no single method for positioning vertices of a mesh on that space in a way in which all

properties of the object hold (e.g. volume, edge lengths, face areas). Because of this,

rigid, nondeformable meshes may not be directly positioned on arbitrary non-Euclidean

space. To understand the previous assertion, let us imagine a deformable body moving

in a non-Euclidean space. The soft body deforms in conformity with the local Gaussian

curvature of the space. On the contrary, imagine trying to position a rigid body on any

non-Euclidean space, the body would need to already have the same curvature as the

space, and it could not freely move to different positions on that space with differing

curvature.

A way of approximating a solution is with soft-body physics. A soft-body spring-damper

system allows us to try to get as close to the original properties of the object in a

weighted manner, by applying a force to correct edges which are longer or shorter than

they should, and a force to try to maintain the same volume the original mesh had in

Euclidean space.

A spring-damper system relies on calculating the distance between vertices, which is

not trivial in non-Euclidean space since there may be several straight lines (geodesics)

between two points. Consequently, one needs to compute the geodesics between every

two connected vertices.

To trace multi-cell objects embedded in the space-meshes we need to be able to per-

48

Ray Tracing in Non-Euclidean Spaces

form the following tasks:

• To trace a point inside a cell.

• To a straight line inside a cell.

• To trace a polygon inside a cell; with this task, we can already trace an entire

mesh as long as it does not overflow the cell.

• To calculate geodesics between any two points spanning multiple cells. This may

involve path-finding or string pulling. Moreover, this task allows us to visualize

distorted the wireframe of a given object.

• To calculate all single-cell polygons of the object that fill the empty space between

the three geodesics (edges) that delimit triangles of such object.

• Taking into account the shape deformations in non-Euclidean space (i.e., a straight

triangle may look curved in non-Euclidean space), we need to a spring-damper sys-

tem (including motion integration) that applies forces that satisfy physical con-

straints and approximate the shape of the object in Euclidean space.

4.7 Navigating across space-meshes

Navigation across space-meshes is performed by moving the camera (or observer), as

usual in 3D graphics. To allow interactive and smooth positioning of the camera in the

tetrahedral space-mesh, its 3D barycentric velocity V is stored.

On each graphics frame inside an update loop, if the user is pressing any directional

key, the velocity is incremented by an acceleration in the direction programmed for

the key (e.g., wasd combination of keyboard keys). To keep interaction under control,

the velocity is multiplied by a dampening factor to prevent the camera from slipping

indefinitely.

Although not physically accurate, we calculate the new position of the camera P ′ ←
P + P∆ with P∆ ← V (Fig.4.16). If P ′ is inside the coordinate system of the current

tetrahedron (P ′
u ≥ 0∧P ′

u ≤ 1∧P ′
v ≥ 0∧P ′

v ≤ 1∧P ′
u+P ′

v ≤ 1) we set P ← P ′; otherwise,

we calculate the vector I so that P +I is the position where the ray defined by position

P and direction V intersects the boundary of the current tetrahedron. We then move

the camera to the start of the new tetrahedron, updating its position, velocity, and

direction vectors to the new coordinate frame. We then repeat the process but for

P∆ ← (P∆ − I) to account for the velocity not yet added to the camera’s position.

49

Ray Tracing in Non-Euclidean Spaces

Figure 4.16: Steps in moving a point P by velocity V if there is a cell crossing in the path.

4.8 Summary

This chapter describes the geodesic ray tracing of non-Euclidean spaces and eventual

objects inside them. As usual in ray tracing, a bunch of rays are triggered from the ob-

server’s position (i.e., camera), with the difference the rays are geodesic rays. When

compared to the Euclidean ray tracing, we see that geodesic ray tracing presents the

same difficulties in finding the hit points on the boundaries of space and objects. Nev-

ertheless, the grand difficulty was to generalize 2-dimensional to 3-dimensional non-

Euclidean.

50

Ray Tracing in Non-Euclidean Spaces

Chapter 5

Conclusions and Future Work

This dissertation focuses on the modeling and visualization of non-Euclidean spaces

through ray tracing. This chapter presents the main conclusions resulting from the

research work described above. Also, some hints are put forward for future work.

5.1 Results and Conclusions

As seen in Chapter 2, the literature is scarce in terms of rendering techniques for non-

Euclidean spaces. These techniques are mostly based on rasterization, and only apply

to specific spaces like, for example, the hyperbolic space. That is, rendering a specific

space requires a specific solution.

On the contrary, the main contribution of this dissertation is a general ray tracer for

non-Euclidean spaces, no matter if they curved on not. What makes this ray tracer gen-

eral is that it uses simplicial building blocks. These simplices allow for the interactive

modeling of the space without the need for a specific formula or algorithm for testing

how the space looks like. The resulting tool (ray tracer and tetrahedral modeler) is es-

pecially useful for physicists and mathematicians that may have imagined the shape of

an arbitrary space but did not have the means to visualize it. The tool may also be used

to by students and teachers, to give a better and intuitive understanding of geometry.

So, recalling the research hypothesis:

Is that feasible to come up with a general renderer for non-Euclidean

spaces?

we have to conclude that the main goal of the research has been attained. In the con-

text general non-Euclidean spaces, it is not feasible to have a one-to-map between a

non-Euclidean space and the 2D screen space. This is equivalent to say that we can-

not rasterize general curved spaces. To circumvent this difficulty, we need to take

advantage of ray tracing. This fact end up being the main conclusion of the present

dissertation.

51

Ray Tracing in Non-Euclidean Spaces

5.2 Future Work

Looking at the work we have done, we can envision the following improvements:

• To include more modeling operations; for example, automatic tetrahedrization of

the space between two surfaces.

• To visualize the effects of non-Euclidean space on multi-cell objects.

• Optimize real-time modelling further; for example, by migrating the calculation

of the per-base variables (d, h, g, i, j, k) —used to convert from barycentric to local

Cartesian coordinates— to the GPU.

• Calculate smooth geodesics. Much like rasterizers use smooth interpolated nor-

mals on triangle meshes to make the geometry seem smoother, perhaps it is pos-

sible to smooth out the geodesics, making the resulting space look more curved

without the need for further subdivisions.

• Calculate the global illumination on non-Euclidean space using path-tracing.

• Simulate sound deformations in non-Euclidean space such as, for example, echo

and reverberations.

52

Ray Tracing in Non-Euclidean Spaces

Bibliography

[CNS+11] Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eise-

mann. Interactive indirect illumination using voxel cone tracing. Computer

Graphics Forum, 30(7):1921–1930, September 2011. 6

[CSK+17] Alessandro Dal Corso, Marco Salvi, Craig Kolb, Jeppe Revall Frisvad, Aaron

Lefohn, and David Luebke. Interactive stable ray tracing. In Proceedings of

High Performance Graphics (HPG’17), pages 1:1–1:10, New York, NY, USA,

2017. ACM Press. 6

[DLVC99] Julien Dompierre, Paul Labbé, Marie-Gabrielle Vallet, and Ricardo Ca-

marero. How to subdivide pyramids, prisms and hexahedra into tetrahedra.

Technical Report CERCA R99–78, Centre de Recherche en Calcul Appliqué

(CERCA), October 1999. 19, 20

[GM91] Charlie Gunn and Delle Maxwell. Not knot, 1991. 8

[Gun93] Charlie Gunn. Discrete groups and visualization of three-dimensional mani-

folds. In Proceedings of the 20th Annual Conference on Computer Graphics

and Interactive Techniques SIGGRAPH’93, pages 255–262, New York, NY,

USA, 1993. ACM Press. 8

[HHMS17a] Vi Hart, Andrea Hawksley, Elisabetta A. Matsumoto, and Henry Segerman.

Non-euclidean virtual reality i: explorations of H3, February 2017. 8

[HHMS17b] Vi Hart, Andrea Hawksley, Elisabetta A. Matsumoto, and Henry Segerman.

Non-euclidean virtual reality ii: explorations of H2 × E, February 2017. 8

[HvDF+14] John F. Hughes, Andries van Dam, James D. Foley, Morgan McGuire,

Steven K. Feiner, David F. Sklar, and Kurt Akeley. Computer Graphics:

Principles and Practice. Addison-Wesley, 2014. 5

[JvTFT15a] Oliver James, Eugénie von Tunzelmann, Paul Franklin, and Kip Thorne.

Gravitational lensing by spinning black holes in astrophysics, and in the

movie Interstellar. Classical and Quantum Gravity, 32(6):065001:1–41,

February 2015. 9

[JvTFT15b] Oliver James, Eugénie von Tunzelmann, Paul Franklin, and Kip Thorne. Vi-

sualizing Interstellar’s wormhole. American Journal of Physics, 83(6):486–

499, June 2015. 9

[Kaj86] James T. Kajiya. The rendering equation. In Proceedings of the 13th An-

nual Conference on Computer Graphics and Interactive Techniques (SIG-

GRAPH’86), Dallas, Texas, pages 143–150, New York, NY, USA, August 1986.

ACM Press. 6

53

Ray Tracing in Non-Euclidean Spaces

[Laf96] Eric Lafortune. Mathematical Models and Monte Carlo Algorithms for Phys-

ically Based Rendering. PhD thesis, Department of Computer Science, Fac-

ulty of Engineering Katholieke, Universiteit Leuven, February 1996. 6

[PG92] Mark Phillips and Charlie Gunn. Visualizing hyperbolic space: Unusual uses

of 4x4 matrices. In Proceedings of the 1992 Symposium on Interactive 3D

Graphics I3D’92, pages 209–214, New York, NY, USA, 1992. ACM Press. 8

[RdSCP17] Nuno T. Reis, Vasco Alexandre da Silva Costa, and João António Madeiras

Pereira. Coherent ray-space hierarchy via ray hashing and sorting. In Pro-

ceedings of the 12th International Joint Conference on Computer Vision,

Imaging and Computer Graphics Theory and Applications. INSTICC Press,

January 2017. 6

[Wee02] Jeff Weeks. Real-time rendering in curved spaces. IEEE Computer Graphics

and Applications, 22(6):90–99, November/December 2002. 8

54

	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Research Hypothesis
	Research Plan
	Contributions
	Thesis Structure

	Rendering in Non-Euclidean Spaces: A Review
	Introduction
	Euclidean Spaces
	Rasterization
	Ray tracing

	Mostly Euclidean, Flat, Non-Euclidean Spaces
	Rasterization
	Ray tracing

	Curved Non-Euclidean Spaces
	Rasterization-based techniques
	Ray tracing-based techniques

	Summary

	Space-Mesh Generation
	Introduction
	Theoretical Background
	Euclidean Space
	Toroidal Space
	Conical Space
	Hyperbolic Space
	Schwarzschild black-hole Space
	Schwarzschild Wormhole Space

	Geometric Data Structures
	Geometric Operations
	Extrusion
	Unpaired geometry removal
	Welding
	Triangulation
	Circles and Spheres

	Modeling the Schwarzschild black-hole
	Space-Mesh for 2D black-hole embedded in E3
	Space-mesh for 3D black-hole embedded in E4

	Modeling the Schwarzschild wormhole
	Summary

	Ray-tracing Non-Euclidean Spaces
	Introduction
	Geodesic Rays on Triangle Meshes
	Door-In-Door-Out
	Coordinate conversions
	Ray-Edge Intersection
	Frame Propagation

	Geodesic Rays across Tetrahedral Meshes in 4D Space
	Coordinate conversions
	Ray-Triangle Intersection
	Frame Propagation

	Tracing a single path
	Geodesic Ray Tracing
	Objects embedded in non-Euclidean spaces
	Space-Mesh Aligned Objects
	Single-Cell Objects
	Multi-Cell Objects

	Navigating across space-meshes
	Summary

	Conclusions and Future Work
	Results and Conclusions
	Future Work

	Bibliography

