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Resumo 
Esta dissertação vem mostrar o processo completo para o desenvolvimento de um sensor capaz 

de medir deformações de superfícies. O trabalho passa assim pelos processos de produção e 

montagem dos transdutores, pelos circuitos eletrónicos desenhados para fazer as leituras do 

transdutor e finalmente pelos algoritmos utilizados para transformar o sinal do sensor numa 

informação que pode ser interpretada por humanos ou por outras máquinas. 

Desta forma, o trabalho inicia-se por um estudo dos métodos de produção e montagem dos 

transdutores. No final optou-se pela técnica de screen printing para produzir os transdutores e 

os elétrodos. Quanto ao método de montagem, optou-se por fazer uma sobreposição das 

camadas impressas. 

Após termos o transdutor impresso conseguimos testá-lo e assim obter informações como a 

variação da resistência. Estes são parâmetros muito importantes para o dimensionamento da 

cadeia de medida, que foi o segundo passo deste trabalho. Foi desenhada uma cadeia de medida 

capaz de fazer a leitura de diferentes sensores ao mesmo tempo. Este circuito é também capaz 

de se adaptar a diferentes sensores automaticamente. 

Como os sensores testados neste projeto apresentaram histerese, para contornar esta situação, 

um modelo de aproximação utilizado com materiais magnéticos foi adaptado para os sensores 

piezoresistivos. 

O trabalho cumpre o objetivo proposto no início deste projeto que era construir um sistema 

completo de aquisição de dados de um sensor piezoresistivo impresso. No final foi introduzido 

a adaptação do algoritmo que abre portas para futuros trabalhos. 

 

Palavras Chave 
 
Sensores piezoresistivos, sensores impressos, aquisição de dados, modelo de Preisach 
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Resumo Alargado 
Este trabalho dá continuidade aos estudos já feitos em sensores piezoresistivos nos nossos 

laboratórios, no entanto acaba por tocar nesta matéria de um ponto de vista diferente dos 

anteriores. Em vez de nos focarmos no material ou na componente eletrónica, fez-se uma 

abordagem mais do ponto de vista do teste de como ambas as componentes têm de funcionar 

entre si. 

O objetivo final do trabalho é conseguir obter o sinal de um sensor piezoresistivo construído 

por nós e quantifica-lo. Foi utilizado um transdutor constituído por um compósito de polímero 

com nanotubos de carbono. O transdutor, devido aos seus constituintes, tem uma grande 

capacidade de deformação o que o torna bom para aplicações que exijam estas caraterísticas, 

como por exemplo a medição da deformação durante o movimento de articulações ósseas. 

Um segundo transdutor foi também utilizado. Desta vez utilizou-se um transdutor que já está 

no mercado. Este transdutor serviu para comparação de resultados em relação ao transdutor 

que foi construído em laboratório. 

No que diz respeito à montagem do transdutor, optou-se pela sobreposição de camadas devido 

às condições que tínhamos, no entanto, são demonstrados outros métodos, como a deposição 

de camadas que é semelhante ao método utilizado, mas com uma diferença. As camadas são 

depositadas diretamente umas em cima das outras. 

Após a conclusão de produção e montagem do transdutor passou-se para a construção do 

sistema de aquisição de dados. Sendo assim, para controlar o sistema de aquisição utilizou-se 

o microcontrolador LPC1768 integrado na plataforma mbed. Com os componentes eletrónicos 

utilizados foi construída uma cadeia de aquisição que é capaz de se adaptar a sensores com 

valores de resistência iniciais diferentes, o que tornou esta plataforma altamente adaptável e 

útil para testes em diferentes tipos de sensores. Para conseguir esta adaptabilidade foram 

utilizados reóstatos digitais que, através de software conseguem colocar-se na melhor posição, 

dentro dos seus limites, para darem os resultados com o máximo de sensibilidade possível. 

Os dados após serem adquiridos pelo microcontrolador serão enviados para um computador que 

vai mostrar os mesmos numa forma gráfica. Estes dados são enviados por serial, através da 

porta USB, ou por ligação sem fios, utilizando o módulo wi-fi RN-171. 

Como os transdutores testados apresentam histerese, estudaram-se modelos para fazer 

aproximações mais exatas. Para este projeto foi utilizado o modelo de Preisach. Este modelo é 

utilizado para contornar a histerese caraterística dos materiais magnéticos, no entanto, foi 

adaptado o código em Matlab para funcionar com estes sensores. No final conseguiu-se ter uma 

aproximação teórica dos valores que poderão ser obtidos.  
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Abstract 
This dissertation shows us the processes to develop a sensor capable of measuring deformations 

of surfaces. The work englobes the processes of production and assemblage of the transducers, 

the electronics boards to read the signals from the transducers and, finally, the development 

of algorithms used to transform the signal of the sensor in readable information either for 

humans and other computers. 

The work starts with the study of the production and assemblage methods of the transducers. 

In this part, we used the screen printing technique to print the different layers of the 

transducer. 

After obtaining the printed transducer, we tested it, measuring only the main characteristics, 

as the variation of resistance with pressure. This gave us important information to proceed with 

the dimensioning of the measurement chain. 

The second part of this project, was focused in the design of the measurement chain. For this 

work, we projected a device that can adapt automatically to different values of sensors’ 

resistance.  

Because the transducers tested in this project have a hysteretic behavior, a mathematical 

model used to model the magnetic hysteresis was adapted to be used with piezoresistive 

sensors. 

This work meets the initial goal which was building a complete data acquisition system for a 

printed piezoresistive sensor. The proposed mathematical algorithm to model the resistance of 

piezoresistive sensors opens doors for future projects. 

 

Keywords 
Piezoresistive sensors, printed sensors, data acquisition, Preisach model 
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1. Introduction 

1.1 Motivation 

Living beings have their own sensing systems. While this dissertation is being written or while 

it’s being read there are millions of sensors informing our brain about everything around and 

inside us. Although we have the necessary sensors to live, there are a plenty of signals we can’t 

sense, for example, we cannot quantify the temperature of a room or the weight of an object. 

In the past, this was not a problem, but due to mankind evolution and with our ambition to 

measure and control everything, instruments with the capability to measure things for us has 

become fundamental. Nowadays, in a developed world, it is unthinkable to live without sensors. 

They allow us to measure parameters that before we couldn’t. 

The beauty of the sensors’ world is that we can measure almost everything we want and 

transform it into an electric signal that can be translated to control systems in the engineering, 

health or environmental fields. 

1.2 Main Goal 

The main goal of this project is to develop a prototype of a sensing device, that can be used in 

biomedical applications. This device will be based on the newest smart materials merged with 

electronics and algorithms. The outcome of the development work performed in this project, 

will be a complete data acquisition system, capable of making the right translation of the 

pressure applied in a surface, and present the information correctly to the user. 

1.3 Framework 

Mankind has developed sensors that can go from measuring body temperature, to measuring 

the electrical potentials in our heart to help people with an irregular heartbeat. Nowadays, 

sensors are used in areas as industry, agriculture, transports, domestic devices, military, 

biomedical devices, among others. Almost every machine has some kind of sensing device 

inside. With “Smart World” advent, sensors are becoming more present and important in our 

society. 

The relation between new technologies and biological systems is becoming more and more 

closed. We, humans, want to measure everything, save every single data and access it from 

wherever we are, and we don’t want to wait hours or days to have our results, we want to 

check everything in real time. In some situations, this is already a reality in our world. We can 

use smart watches that measure the heart rate while we are running, sleeping or working, or 

we can check our breath rate to detect sleep apnea, for instance. The evolution of the 

technology made all this possible and affordable to everyone. 
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Sensors’ world includes multiple areas depending on what we want to measure. Currently an 

area that is receiving increasing attention is the biomedical field. This interest brings to the 

science community new challenges, because it’s not easy to have a device or a material that 

makes what we want and, at the same time, is compatible with biological systems. Researchers 

are taking advantage of new compounds to produce sensors which have similar behaviours with 

the usual sensors and that are biocompatible, so they can be used in biologic organisms. 

Sensors alone are not enough to get signals from the environment. It’s like in our body, only 

with our eyes, we could not see, it’s necessary to take information to our brain, to be 

processed, and give us what we call the vision. So, an entire measurement chain needs to be 

constructed if we want to have a small sensor measuring the temperature somewhere and send 

this information by a wireless connection to a decision center. 

Technology usually is associated with the use of energy. This presents another issue to the 

engineers these days because there are two divergent situations. We want improved devices 

that can measure parameters with increased precision. To difficult more the situation, 

sometimes we want to make this in remote environments, with no access to the electrical 

power grid. To achieve this goals, we need to use devices as efficient as possible, in order to 

get a sustainable operation from the energy point of view. To solve this problem, we make use 

of low power devices that need low amounts of energy to work. This is not only possible because 

the devices are designed to waste less energy but also because we can program them to operate 

in an efficient way. 

1.4 Applications 

Piezoresistive sensors (PS) are still rather unknown when compared with sensors that measure 

temperature or glucose, for example. One of the first questions raised when talking about PSs 

is why we need them and what’s their function. However, there are many areas of application 

for PSs. Some of them are biomedical, industry or household. 

In household applications, PSs can be applied from washing machines, to smartphone, sensitive 

carpets, anti-rob systems and prevision of natural catastrophes, as earthquakes. Other example 

is a recent study that shows a prototype for a sensing glove that could be used with exoskeletons 

to help people during household works [1]. 

In industry, for instance, in automotive industry, PSs are used in engine optimization and safety 

enhancement. In the first case, PSs are used to control the intake air pressure and barometric 

air pressure for the engine, allowing optimal engine operation. In safety enhancement, we have 

multiple areas where the use of PSs is welcomed. For example, to check the tires’ pressure or 

control the deployment of the airbags for different kinds of impacts. 
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Finally, in the biomedical field, many applications for PSs can be found. We can measure the 

air pressure in our lungs, the heartbeat strength, the movement of the body or even use them 

to control exoskeleton models. 

As we can see, PSs have a large field of applications in different areas. There are many other 

applications for PSs. However, some of these applications require specifications from the 

sensors that don’t exist in the natural form, so they should be developed. For example, if we 

want a PS that is, simultaneously able to support high levels of deformation and precise.  

1.5 Dissertation Structure 

This dissertation is divided into 5 chapters beyond the introduction. The second chapter 

presents the basic concepts that support the work developed and give a brief review about the 

concepts used in this work. The review will be made in the perspective of applications for PSs. 

On the third chapter, the materials used as transducers are characterised. The implications of 

the different characteristics for different applications is described and analysed. In this 

chapter, the procedures to development and assemble the sensor are explained. Details and 

results of tests made with sensors will be presented and analysed. 

The fourth chapter describes the measurement chain and the software used. On this chapter, 

each module of the electronic circuit is explained and the implementation options are justified. 

The final prototype is presented and its advantages and issues are described. 

On the fifth chapter, the results of the tests made with the final prototype are presented and 

discussed.  

Finally, on the sixth chapter, conclusions about the developed work are drawn. The main 

achievements are highlighted and future work is proposed. 
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2. State of Art 

2.1 Piezoresistivity 

The piezoresistive effect is the ability of a material to change its resistance when a mechanical 

deformation is applied. The first person who described the piezoresistive effect was Lord Kelvin 

in 1856 [1]. He found that some metals change their resistivity when a mechanical load is 

applied. Usually, the piezoresistive event, is characterized by two electrodes and a sample of 

piezoresistive material that closes the circuit between them, as we can see in Figure 1. The 

resistance of the piezoresistive materials change with the deformation, as we can see in 

equation (1). In consequence, according to Ohm’s law (2), current 𝑖, also changes with the 

deformation. 

 

Figure 1. Schematic of typic assembly of a piezoresistive material used as a sensor. 

(1) 

 
where R is the resistance of the material, 𝜋௟ and 𝜋௧ are the longitudinal and transversal 

piezoresistive coefficients, and 𝑇௟ and 𝑇௧ are, the mechanical stress applied longitudinal and 

transversal, respectively, to the axis of the force applied to the semiconductor material. 

(2) 

where V is the voltage in volts, R is the resistance in ohms and I is the current in ampere. 

Later, in 1954, C.S. Smith, discovered that silicon and germanium, which are semiconductors, 

have a better piezoresistive behavior than metals. After that, PSs started to be fabricated from 

these two semiconductors. Recently, new technologies are being developed and scientists are 

trying to substitute silicon by polymers with carbon nanotubes (CNT) [2]. 

2.2 The Piezoresistive Element as a Sensor 

Piezoresistive materials are used as PSs. In these sensors, the properties that make them 

piezoresistive are used to measure the variation of a parameter. There are different kinds of 

ttll TT
R

R  


RIV 
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PSs but all of them work similarly. The major difference between them are their composition 

and, consequentially, their electrical and mechanical characteristics. These differences give us 

the opportunity to apply PSs in multiple areas. 

There are materials that already have piezoresistive behavior, as it was said before. However, 

the materials that we know now, have limitations that are inherent to their constitution. One 

example of this reality is that there are not known pure materials with a good relation between 

piezoresistivity and flexibility. Due to this limitation, we need to make our own piezoresistive 

materials. It’s here that thermoplastic will have their main role. 

Piezoresistive materials, when used as sensors, are defined by their sensitivity. The sensitivity 

of a sensor is given by the calculation of the gauge factor, which represents the relation 

between the resistance variation with the mechanical deformation. The gauge factor can be 

calculated by the equation (3). 

(3) 

 
 

where R is the initial resistance, 𝛿𝑅 is the resistance variation during a deformation, l is the 

length of the sample and 𝛿l represents the deformation. 

2.3 Piezoresistive Sensors with Carbon Nanotubes 

In 1970, when CNT were discovered they didn’t win too much credibility. Twenty years after, 

in 1990, a Japanese scientist used a high-resolution transmission electron microscopy to make 

a detailed report about these filaments. Finally, in 2003, the scientific community thought that 

CNT would revolutionize our technology, because it would be possible to have better computers 

with much smaller dimensions. Efforts have been made in this direction. However, this was not 

a revolution yet, because technology development is requiring additional scientific advances 

[3], [4]. 

Some scientists developed thermoplastic elastomer based composites, with CNT and polymer 

to produce PSs [4], [5], [6]. Some of these materials are already on the market. An example is 

the Velostat®, that was produced to package electronic materials, because it is flexible enough 

and is also an electrical conductor. These characteristics protect electronic materials from 

electrostatic [7]. Velostat® is made of a polymer, doped with carbon black, and because it 

owns a piezoresistive behavior, it is used to make experiences once this is an accessible 

material. Other example is the materials used by FlexiForceTM to produce their pressure sensors 

[8]. 

l

l
R

R

GF





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Composites of styrene ethylene butylene styrene (SEBS) doped with CNT are one of the methods 

used to produce PSs. SEBS is a polymer used as a high-performance and multifunctional material 

with, already proved, potential in piezoresistive materials. The SEBS material, as any normal 

polymer, is not an electrical conductor. This means that it only works as a piezoresistive 

element when is in a form of a compound. To make this possible, conductive fillers, like CNT, 

should be incorporated to allow the crossing of electrons in a flexible film [4], [9], [6]. 

CNT can have different configurations [4], [6]. For this project, a multi-walled carbon nanotube 

was used, as shown in Figure 2, that has the configuration of cylinders inside of other cylinders. 

These CNT have electric characteristics like metals and, at the same time, are lighter and 

smaller. The biggest issue about them in these days is that they are not easy to produce. 

 

Figure 2. Illustration of a multi-walled carbon nanotube. 

In this project, besides the commercial transducer, it was used a new transducer made of the 

composite explained on the last paragraph. Composites of polymers with CNT are a new 

generation of thermoplastic elastomers that already show mechanical and piezoresistive 

properties. This makes them excellent for applications where large deformation PSs are 

required. Besides that, the production of this composite uses a green solvent, Cyclopentyl 

Methyl Ether (CPME) that was considered by Food and Drug Administration (FDA) less toxic than 

the solvent used before, toluene. This is a big step in the production of sensors and enables the 

extension of its range of applications. Now we can use them for biomedical applications, for 

example. Besides, since it is possible to control the viscosity and the concentration of each 

compound in the composite, we can produce them with screen and spray printing technologies 

and with the percentage of each compound that we want. That is the biggest advantage of this 

kind of sensors. They make easier to obtain good quality sensor films with a lower production 

cost. 

The biggest advantage of this kind of sensors is the production procedure and the materials. 

They allow us to use printing methods that make easier to obtain good quality sensor films with 

a lower production cost. 



 7 

CNT are dispersed in the polymer, usually in small agglomerates [4]. When the polymer is with 

zero deformation, the CNT have a specific area and, consequently, will be dispersed in a 

specific way. This dispersion will be different when a deformation is being applied in the 

tranducer. This difference changes the number of conductive paths in the transducer and will 

also change the resistance. An illustration, of the behavior of composites with CNT, is shown in 

Figure 3. This is an example when a compression force is being applied. From the left to the 

right, we can observe the transducer without any force applied, and the behavior when the 

force is being applied. 

 

Figure 3. Illustration of a sample of piezoresistive film with CNT. 

When a composite is used as a sensor, it’s important to understand that we do not have a 

perfect solution because, when we have a composite, some properties are lost from the original 

compounds. In the case of the material used in this project, we have a polymer that is an 

electric isolator and has a big capacity of deformation, more than 200%. When the composite 

is made, we stop having an electric isolator. The capacity of deformation remains higher than 

200%, but is also sed. The CNT, when isolated, have an excellent electrical conduction [10]. 

When they are in the composite, they are still good electrical conductors, however they are in 

low quantity and are dispersed by the polymer, what makes the composite a worse conductor, 

as the CNT are by themselves. The material obtained will be less flexible than the pure polymer, 

but has enough flexibility for most of the applications. The loss of flexibility is compensated in 

conductivity given by the CNT. 

Finally, we can say that PSs based on polymers matrixes are not good enough to make precise 

measurements. Since they have hysteresis, that can change over time, when different pressures 

are applied. 

2.4 Hysteresis 

The hysteresis concept is used in different areas and defines a system in which the past events 

affect the future behavior. This phenomenon can be observed in thermostats, in the field of 

engineering [11]; in chemistry, with some chemical reactions [12]; in materials, fatigue and 

elasticity [4]; in biology, in cells behaviors [13];  in economics, unemployment evolution [14], 

amongst others [15], [16]. 
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History about hysteresis is not completely traced yet, however in 1993, Augusto Visintin wrote 

a book where he merges some information about this topic. The term hysteresis, from ancient 

Greek, means “that which comes later”. The first time we observed this term being used was 

in 1882, however, this phenomenon was already described in plastic materials in 1864 by Tresca 

[16]. The phenomenon was studied in the ferromagnetic area by many researchers and some 

models to make its modulation were proposed, most of them without success. In 1935, Lord 

Rayleigh revised a model proposed by Weiss and Freudenreich in 1916, introducing what was 

called the Preisach model. The model makes a geometric interpretation of the ferromagnetism 

hysteresis. The Preisach model was studied by many scientists and is one of the most well-

known models, however, other models were already studied to define the ferromagnetic 

hysteresis [15]. 

Plastic hysteresis started to be studied some years earlier than ferromagnetic hysteresis, in 

1864. Like in ferromagnetic hysteresis, plastic hysteresis was a target of studies and different 

models were proposed [16]. Although all the studies and models proposed, only Bouc, , in 1966, 

proposed a functional approach for hysteresis. This approach was extended by Wen and a new 

model was presented, the Bouc-Wen model [17]. 

A good understanding of hysteresis can be obtained from Figure 4. A material with the behavior 

shown in the figure will dissipate energy every time it comes to the initial position. This happens 

because the response doesn’t take the same way back to the original point. To understand how 

the hysteresis loop works it’s important to take the following considerations. 

The variables u and w are only time dependent. They can be considered system’s input and 

output, respectively. In an example of a pressure sensor u could be the force applied and w the 

voltage read. 

Now that we know what each variable is, we define the paths during the increasing and 

decreasing of each parameter. This obviously depends on each system, but we can suppose, as 

example, that during the increase of the force u, the path that is followed is ABC and during 

the decrease of the force we follow the path CDA. 

Supposing we start with the system in A and we increase the pressure applied, we start 

following the path ABC. If we go until point C and we start decreasing the force, the voltage 

will come by the path CDA. However, if during the increase we stop between point A and C and 

we start releasing the force applied, the path will be different, as represented in Figure 5, and 

here is where the modulation algorithms are introduced. 

The center of both curves, in Figure 4, represents the energy dissipated by the material during 

the deformation process. The area of energy dissipation will be different depending on the 
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starting point. The area will also be different when the time used to apply the force changes. 

This because energy dissipation increases with the increase of the speed [16], [18]. 

 

Figure 4. Illustration of a tipic hysteresis loop for an elastomer deformation. 

 

Figure 5. Behavior of an output in hysteresis loop when the direction of the input changes while u1<u<u2. 

 
Another characteristic that the hysteresis loop should respect is that the value of the output 𝑤 

can only depend on 𝑢(𝑡). This means that 𝑤 cannot depend on input’s speed applied. This 

characteristic is called the rate independence memory effect and is directly associated with 

the hysteresis. Many hysteretic systems don’t respect this rule. This is because almost all the 

systems are affected by the speed. In these cases, what usually is observed is that the hysteretic 

behavior is better defined for slower systems [1], [18]. 

Another situation that happens in systems with hysteresis is that the “outside” bounds are not 

unbreakable. For each cycle, some variations can appear, and although this can be studied, is 

something that increases the complexity of the hysteresis analysis. 

Hysteresis can be harnessed for some applications as in cars suspensions. However, in sensors, 

its use can be problematic because this phenomenon causes big losses of information. 
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2.5 Hysteresis Models 

Some sensors can be easily implemented in practical applications if they give linear responses 

to the inputs they receive. Other sensors don’t have a linear response but can be defined with 

linearization algorithms. In the case of the transducers used in this work there’s also another 

challenge, they have hysteresis. This is probably the biggest challenge when a sensor needs to 

be calibrated. Some engineers worked on calibration models to make possible to take 

information from this kind of sensors. Preisach model is an example [18]. This model was 

developed with focus on the physical mechanisms of magnetization to assist the study of 

hysteresis in magnetic materials. Other researchers started to study this model and realized 

that it could have other applications, beyond the area of magnetic fields. Mathematicians 

started to study the model and transformed it into a mathematic tool that now can be used to 

study hysteresis in different fields, like mechanical deformations [16], [17]. 

Preisach model is usually represented with a rectangular loop, as it is shown in Figure 6. The 

loop represents the hysteresis loop that we saw in Figure 5, where the output only considers a 

binary value. This value represents the state of the system if is increasing or decreasing. One 

of these relays is called hysteron and the system will be more precise if the number of hysterons 

N that define the systems increases. However, if the number of hysterons is too high, it will 

take more computational time. So, is always necessary to find a balance between resolution 

and performance. In Figure 6, is possible to observe that the behavior is the same explained on 

the hysteresis’s section. 

 

Figure 6. Illustration of the behavior of a hysteresis loop represented by a delayed relay. 

In practice, if we define the behavior with only one hysteron, as it is shown in Figure 6, we will 

have two curves, the loading curve and the unloading curve. The first is the one defined when 

a force is being applied and the second is for when we are releasing the sensor. 
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The Preisach model is not precise when applied with only one hysteron, but if we see Figure 7, 

is easier to understand how Preisach model makes the modulation of the input signals when the 

number of hysterons increases. With the segmentation of the hysteresis loop, there is not only 

two curves but N curves to be considered [15], [16]. This lets the user decide how detailed he 

wants the system. 

 

Figure 7. Illustration of the behavior of a hysteresis loop represented by multiple delayed relays. 
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3. Data Acquisition System 
Data acquisition is the capacity of use a transducer, that converts the signal from a natural 

phenomenon into an electrical signal, and then reads, processes, analyzes and storages this 

information in a computer. On the other hand, a data acquisition system is the set of 

components that make data acquisition possible. Data acquisition systems sometimes are 

embedded with actuators, because when a phenomenon is being analyzed, usually it’s not only 

necessary to store data for further analysis, but also is necessary to take immediate action 

when a specific event is detected. 

The data acquisition system can be divided in 6 important elements. Sensors and transducers, 

field wiring, signal conditioning, data acquisition hardware and data acquisition software, see 

Figure 8 [19]. 

 

Figure 8. Diagram of a functional Personal Computer (PC)-based data acquisition system. Adapted from 
[11]. 
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3.1 Data Acquisition System Development 

3.1.1 Power Supply 

The power source provides the energy to the data acquisition chain or other system elements, 

including the transducers when they are passive transducers. The achievement of a precise 

data acquisition system requires an extremely stable and noiseless power source. This is 

important because if the signal that is being processed has noise, we will get the real value 

affected by interferences that are not controlled. This means, if we want to say the variations 

we get are from the transducer and not from other sources we do not control, we must regulate 

it. 

In this work, all the power is supplied by an Universal Serial Bus (USB) port. This source of 

energy can be noisy, so a low pass filter was used to clean the high frequencies noise, over 

5MHz, Figure 9. This filter is applied in the beginning of the circuit, just after the 5V pin of the 

mbed platform. 

After filtering the power supply to remove noise, we must regulate the voltage, because the 

measurement chain will measure voltage variations and requires a very stable power supply. 

The L78L33ABZ voltage regulator was used to regulate the voltage to 3.3V. We chose this 

voltage to maximize the resolution of the ADC, that converts input voltages from 0 to 3.3V. 

This decision allows maximum resolution. This voltage regulator can also supply the current 

need by the data acquisition system. The calculations made below are for the matrix hardware, 

where only the instrumentation amplifier and the digital potentiometers have a considerable 

current consumption: 

 Instrumentation Amplifier INA333: 50𝜇𝐴 ∗ 4 = 200𝜇𝐴; 

 Digital Rheostat MAX5391: 12𝜇𝐴 ∗ 16 = 192𝜇𝐴; 

The total current requirement is 392𝜇𝐴. The L78L33ABZ delivers until 100𝑚𝐴, what is more 

than enough to supply the entire data acquisition system [20][21]. 
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Figure 9. Illustration of the LC filter applied in the hardware of the data acquisition system. L is the 
inductor, C a capacitor and 𝑅௅is the load of the power suplly. 

 
3.1.2 Transducers 

Transducers are the components that make the interaction between the environment and the 

data acquisition system. These components convert one type of energy into another, they are 

the sensing element in a data acquisition chain. Transducers can be classified as active or 

passive depending on their characteristics. 

Active transducers convert a non-electrical energy into an electrical signal. Because of this 

they don’t need to be provided with a power source. The most known example of an active 

transducer is the thermocouple. 

Passive transducers convert a non-electrical energy in a variation of an electrical parameter, 

i.e., they change a resistance, a capacitance or an inductance, to make the transduction. 

Because of that, an external excitation circuit should be provided. The transducers used in this 

work fit in this classification. 

Transducers have specific characteristics that define the quality and the price. The most 

important are the accuracy, sensibility, repeatability and range [19]. 

3.1.3 Voltage Divider 

The transducer used in the work is nothing more than a variable resistance. Resistance variation 

measurement can be performed using one of three well known techniques. The easiest way is 

to apply the Ohm’s law (2). In this case, when a constant current circulates the resistance is 

possible to measure the variation in the voltage drop across the resistance. However, for this 

work, it is very difficult to achieve readable values because the voltage is 3,3V and the 

resistance of the transducer varies between 40𝐾Ω and 100𝐾Ω. With this range of resistance 

and with this voltage, the current should be in the 𝜇𝐴 order. 

So, because the first option is not available for this application, the second easiest method is 

to make use of the voltage divider, as shown in Figure 10. This circuit, unlike the previous one, 
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can be used in this application. With the range of values defined by the voltage and the 

resistances, it will be possible to have a voltage variation of at least 0.55V, Figure 11, the 

values were taken by the voltage divider using equation (4). 

 

Figure 10. Schematic of the voltage divider. 

 
(4) 

 

where 𝑉௢௨௧ is the voltage measured, 𝑅௦ is the sensor, 𝑅ଵ is the resistance used to tune the 

measurement and 𝑉௜௡ is the input voltage. 

 
Figure 11. Simulation of the output voltage in a voltage divider with an input voltage of 3,3V. 

 
The voltage divider is a good option to measure big variations of resistance. However, because 

the voltage range goes from ≅ 1,6 to 2.2𝑉 is not possible to have a big resolution. This comes 

from the fact that the ADC has an input range that goes from 0 to 3.3V, so, amplifying the 

signal with a gain of 1.5, would give is a range of 0.9V (2.4 to 3.3V). Another problem of the 

voltage divider is that is sensible to noise. The voltage divider can be an option for many cases, 

but for situations that need more precision and better robustness to noise there is a circuit, 

Wheatstone bridge, that can provide better results. In this work, the voltage divider was used 

to in most of the experiments, because it’s easier to calibrate and doesn’t get out of range so 

easily as Wheatstone bridge. 
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3.1.1 Wheatstone Bridge 

In 1833, Samuel Hunter Christie invented a circuit that was capable of discovering the value of 

an unknown resistance using three other resistances with known values. Ten years later, Sir 

Charles Wheatstone improved the circuit and made it popular in the engineering society.  

The Wheatstone bridge, consists in a four resistances circuit, that can be represented as shown 

in Figure 12, and it’s used in multiple applications, the most well-known are in instrumentation 

devices. The Wheatstone bridge has advantages that makes it the preferred method for many 

applications.  

 

 

Figure 12. Schematic of the Wheatstone bridge. 

The bridge circuit is highly sensitive to small resistance variations, and besides that, is not 

affected by noise from the power source. This happen because the common mode of each arm 

of the bridge is cancelled, as shown in (5). That’s one of the most important advantages of 

Wheatstone bridges. 

(5) 
 

where 𝑉௢௨௧ is the output voltage, 𝑅௦ is the resistance of the sensor, 𝑅ଵ, 𝑅ଶ and 𝑅ଷ are the 

correspondent resistances in Figure 12 and 𝑉௜௡ is the input voltage. 

Another important parameter to control is the sensitivity of the measurement chain. For the 

Wheatstone bridge, the sensitivity is another important parameter and is defined by the 

relation between the variation of the output voltage and the variation of the sensor, equation 

(6). 

(6) 
 

where S is the sensibility, 𝑉௜௡ is the input voltage, 𝑅ଵ is the fixed resistance and 𝑅௦ is the sensing 

element resistance. 
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The sensibility of the bridge circuit is the same as the voltage divider, it only depends on the 

arm where the sensor is. Moreover, because there’s not offset, as we can see in Figure 13, is 

possible to apply higher gains to the signal and, thus, achieve increased resolution. 

When a gain is applied, the sensibility will be proportional to this gain, equation (7). 

 

Figure 13. Graphic representing a simulation of the output voltage in a Wheatstone bridge with an input 
voltage of 3,3V. 

(7) 
 

where A is the gain, 𝑉௜௡ is the input voltage and 𝑅ଵ and 𝑅௦ are the resistances fixed and sensor, 

respectively. 

With this circuit, for the same sensor is now possible to apply a gain of 6 and this will give a 

maximum voltage of 3,3V, this means a range from 0 to 3,3V. This is the maximum resolution 

that can be taken from the ADC. 

As shown in equation (7), the sensibility change depends on the fixed resistances. This means 

that, if the fixed resistances are changed by digital rheostats is possible optimize the signal 

acquisition for different sensors. For this work, both, the voltage divider and the Wheatstone 

bridge have rheostats instead of fixed resistances. 

Unbalanced Bridge 

While a Wheatstone bridge is operating, the sensing resistance varies, this means that in most 

of the time, the circuit is unbalanced. When this happens, the voltage V, Figure 12, is different 

from zero. The measurements of voltage during experiments is always based on this voltage 

variation. This means that there are at least two possible ways to calculate the resistance of 
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the sensor. The first one, is measuring the voltage and make the calculations, the second is 

changing one of the resistances of the arm until the voltage is zero [19]. 

3.2 Signal Conditioning 

The signal conditioning is important in data acquisition systems. It ensures the signal that is 

being collected is not affected by noise until it arrives the data processing module. This step is 

very important when a signal is being acquired in noisy environments. 

Noise it’s one of the biggest problems in instrumentation devices. It can have origin from inside 

or outside the acquisition system, the power source, other electrical devices working near or 

even by near electrical cables that are carrying different signals. 

A signal conditioning circuit performs the following operations in the signal: amplification; 

isolation; filtering; excitation and linearization. Here only the methods used in this project are 

detailed. 

3.2.1 Amplification 

Amplification main’s functions is to increase the resolution of a signal and the signal-to-noise 

ratio. When the signal is properly amplified, the magnitude of the signal acquired is increased 

to a higher level. With this, the signal can cross a noisy area because the effect of this noise 

will be irrelevant considering the difference of magnitude of both signals [19]. In this project, 

all the signals are amplified to an optimized gain that gives a maximum resolution. 

3.2.2 Filtering 

Filtering a signal is the action of removing the noise before it can be misinterpreted with the 

acquired signal. This can be made through different ways, as it is possible to see in [19]. 

However, for this work, besides the filtration that was made to the excitation voltage of the 

measurement chain, the averaging method was implemented. This method consists in the 

acquisition of more samples than necessary, and performing an average. The noise influence 

should be eliminated after the application of this method. When is not possible to make the 

filtering by software, the alternative is to do it using an analog filter. 

3.2.3 Linearization 

As it was shown in the chapter about hysteresis, some sensors don’t produce a linear output. 

However, if the non-linear variation is repeatable and predictable the linearization can be 

made before the signal storage. This requires computational capacity, so it’s only possible to 

apply with smart sensors, where a micro controller unit (MCU) can make the linearization before 

sending the data to the user. 
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3.2.4 Data Conversion 

In this section of the data acquisition system, the analogic signal is converted in a digital signal. 

We should be aware that this procedure introduces a loss of information. This loss doesn’t mean 

that the work can’t be done, if all the special details can be observed, then the digital signal 

is a good representation of the original analog signal. 

The component used to make the conversion between the analog signal to a discrete signal is 

the analog to digital converter (ADC). The ADCs can have different resolutions; this 

characteristic is defined by the minimum variation that it can detect in the input. For example, 

in this work, the ADC used was a 10-bit ADC that converts voltage from 0 to 3,3V, i.e., it will 

give us values from 0 to 2ଵ଴-1 where each increment means a difference of ≅ 3,2227 mV. In 

this case, any variation on the input lower that this value will not be detected. 

3.3 Communication 

At this point, the information to build the data acquisition system is almost described. The 

excitation power for the measurement chain was characterized and the signal conditioning was 

explained. Now, it is necessary to find a solution to gather the signals from a group of sensors 

and put all this information in the MCU. With the information, available in the MCU, data is 

processed and sent to the computer where it can be analyzed trough the user interface. This 

communication, between the different components of the data acquisition system, needs to be 

coordinated in a way that, at the end of the day, we can know what information we received 

and from where this information came from. 

3.3.1 Microcontroller to Element Sensor 

We already know that the signal is converted from analogic to digital by a 10-bit ADC. However, 

there are multiple sensors connected to the same data acquisition system. To manage this 

situation, a low voltage 8x1 multiplexer was used [22]. This multiplexer works with logic ports 

to switch between the sensors. So, to do this communication, the MCU sends the values 

depending on the sensor to read. Because the firmware in the MCU chooses the sensor, it always 

knows from where the signal comes from. 

3.3.2 Microcontroller to Digital Rheostats 

Rheostats were used to improve the sensibility as explained in chapter 3.1. The digital rheostats 

MAX5393 MAUD were selected for this project because of three main reasons. First, they are 

accessible by Serial Peripheral Interface (SPI) communication protocol, which makes it possible 

to be used with the mbed. Second, they have a resistance of 50KΩ that can be defined by an 

8-bit configuration message, what gives 256 different tap points, i.e. about 195Ω of precision. 

Finally, they have a low quiescent supply current what is always a good choice for low power 

applications [21]. 
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3.3.3 Serial Peripheral Interface Communication 

The SPI communication protocol is very used in embedded systems. This protocol has one 

master and several slaves, i.e., with one MCU we can have several devices connected at the 

same time, depending only on the number of digital ports available on the MCU. 

This communication protocol connects two devices through three or four lines. The two devices 

are called the master and the slave. The Master has two special roles. First, defines the serial 

clock frequency in the line clock that is usually denoted by SCLK. Second, chooses which slave 

will be open to communicate, using the chip select (CS) line. The other two lines are the Master 

In Slave Out (MISO) and the Master Out Slave In (MOSI) used for data exchange among the Master 

and the Slave. The MOSI is, the line used to send messages from the Master to the Slave, and 

MISO is used to send messages from the Slave to the Master. In some devices, as is the case of 

the MAX5393 used in this work, there is not MISO. This means that any information is sent from 

the rheostat to the MCU. 

As shown in Figure 14, the SPI communication starts putting low the CS line. All the 

communication is made while this line is in the low state. At the end of the communication, 

the CS line will return to the high state. The SCLK is always sending the clock signals used to 

synchronize the communication. In the example, we can see that the reading moment happens 

at the rising hedge of the clock signal, i.e., the hedge demarked with arrows on Figure 14 

Finally, the MOSI line will send the message and, each time the clock signal goes up, a new 

value is taken from this line until the CS goes low again. The Slave will interpret the message 

as it is built or programmed to. For example, the device used in this project receives a 10-bit 

message. The first two bits are to define which rheostat we want to change and the remainder 

bits store the value of the rheostat. 

 

Figure 14. Illustration of the SPI communication. 
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3.3.4 Microcontroller and Personal Computer 

To make the communication between the MCU and the computer, two versions were developed, 

one wired and another wireless. Wired communication was developed with the serial 

communication that uses the USB port from where the MCU is powered. The wireless 

communication was implemented with the module Wi-fly RN-171 as it will be explained in sub-

section 3.6. Although we have tested different ways of communication, the message structure 

is the same. 

At this point it’s important to understand how the information is processed after being 

converted by the ADC and before being sent to the computer. 

First, we know that the mbed platform already represents the value converted by the ADC in 

the floating-point format, with values between 0 and 1. This means that for values ≤ 0𝑉 we 

have a value of 0 and for values ≥ 3,3𝑉 we have the value 1, the intermediate values are 

discretized in 2ଵ଴ steps. 

The message sent by the serial port is sent as bytes. Information that comes from the MCU to 

the PC includes data to identify the sensor and the value of the sensor. Information that flows 

from the PC to the MCU can be, an order to start/stop the data acquisition an order to calibrate 

the data acquisition system or to tune the precision that we want on the measurements. All 

these methods, can be adapted and more functionalities can be added depending on each 

situation. 

MCU to PC protocol 

Each message sent by the MCU has the following information about the sensor: 

 ID number; 

 Voltage value. 

The protocol data structure has 4 bytes of length, as shown in Figure 15. The first byte is the 

starting byte and was defined as 0xFF, this byte notifies the receiver that a new message is 

arriving. The second byte lets the computer know which sensor was measured. Finally, the last 

two bytes are reserved for the voltage value that comes in a 16-bit format. The byte number 2 

carries the most significant 8-bits of the voltage value and the byte number 3 carries the less 

significant 8-bits. 
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Figure 15. Buffer of data sent by the MCU to the PC. 

For example, if we want to send to the PC the voltage of sensor 2, the value returned by the 

ADC is 0.49587. The first two bytes that will be sent, take the value 0xFF and 0x01. The last 

two bytes are calculated as following. 

A value of 0.49587 results from the conversion process performed by the ADC when the input 

applied is 1.636371 V. We need to send this input as an integer with the biggest resolution 

possible. To do so, we proceed as described next. 

First, we take the value 0.49587 and multiply it by 3.3 to transform it in the real value of 

voltage (8). 

(8) 
 

where v is the voltage at the ADC input, in is a value that goes from 0 to 1, received by the 

MCU, and maxv is the maximum voltage that the ADC converts on the full-scale. 

After this point, we have a value of 1.636371, that is located between 0 and 3.3V and is 

representative of the ADC input. Now, it is necessary to transform v in an integer between 0 

and 65536, that is the maximum value that we can carry in 16-bits message. To do this we need 

to multiply v in such a way it only goes until 65536, as shown in equation (9). Once v has as 

maximum value 3.3, we can multiply it by 10000. This will give us a value to send between 0 

and 33000. This doesn’t give the best resolution but already give us a good range of values.  

(9) 
 

where f is the multiplication factor. At this point, we would get the value 16363 to send. 

As we send values in 8-bit messages we must divide the voltage value by 256 (28) and then save 

this value in byte 2 (10). 

(10) 
 
 

After this calculation, we have the value 63 to put in byte 2. Then with equation (11) we 

calculate the value that will be sent in byte 3. In this case, will be the value 235. 
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(11) 
 

In the example, byte 2 and byte 3 will be 0x3F and 0xEB, respectively. Finally, the data 

structure received by the PC would be: 0xFF 0x01 0x3F 0xEB. 

PC to MCU protocol 

The information sent by the PC to the MCU has the following data: 

 Type of order; 

 Value of the order (if applied). 

The protocol used to make this communication follows the same philosophy as the 

communication from the MCU to the PC. In this case, the buffer, as shown on in Figure 16, is a 

4-bytes’ buffer too. A starting byte is also sent, followed by one second byte, that will let the 

MCU know which kind of order is being sent and, finally, the last two bytes tell which is the 

value of the order. 

 

Figure 16. Buffer of data sent by the PC to the MCU. 

The simplest example is the order to start/stop an acquisition. Supposing that the orders to 

start/stop are defined by the identifier 0x01 and inside these orders list the order to start is 

defined with 0x01 and the order to stop as 0x02. The buffer structure will hold; 0xFF 0x01 0x00 

0x01, to give a start order to the MCU. 

3.4 Reading Algorithm 

At this moment, there is a sensing element, connected to a measurement chain that is 

incorporated in a complete data acquisition system. We have a computer receiving data from 

sensors and, the computer, for its part, can send orders to the data acquisition system. If the 

project had stopped on this point, it would be possible to have a sensor that could detect 

deformations and would present the results in a graphic. However, as it was explained in 

chapter 2, the sensors used for this work are not linear and besides they also have hysteresis. 

Therefore, a reading algorithm is needed to make a better approach of the sensor’s answer. 

For this work, an adaptation of the Preisach model were implemented to improve the results 

of the sensors response. 

 

)256*( 23 bytevb 
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3.4.1 Hysteresis Modulation 

In Figure 17, is shown an example of a hysteretic behavior found in one of the sensors used in 

this project. The modulation must take in account the Preisach model. All the calculations and 

alterations to the signal have the main goal of putting the signal in a domain that fits in the 

algorithm already developed to apply in ferromagnetic hysteresis [23]. 

 

Figure 17. Graphic of force vs voltage of the non-commercial piezoresistive transducer. 

The steps that need to be followed are the definition of the maximum loop, i.e. the loop which 

has the maximum hysteresis, blue dots in Figure 18, the calculus of the weight matrixes and 

calculus of the hysteresis loops that we want to test, that are the information needed to trace 

the red dots. In the end, the algorithm will take the maximum loop and, depending on the 

maximum definition chosen by the user, it will give an approach of the output expected. A 

sample of the output expected is shown in Figure 18. 

 

Figure 18. Example of the final result of the preisach model. 
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Before starting to define the maximum loop, some samples should be taken. Afterwards, these 

samples are used to make an interpolation to define the Preisach function (maximum loop). 

After getting the function, it is necessary to calculate the triangular matrix. To accomplish 

that, we need to make use of four supporting matrixes. These matrixes, save data like the 

initial values, the markers and the final matrix. The main goal of this process is to define the 

way the output will behave. After that, it is possible to define the path of the output for a 

given input [23]. 

The algorithm will calculate the output for a given input using the matrixes that were calculated 

before. For systems with a big range of hysteresis this can reduce the error margin, since it 

takes in account, not only both curves of the hysteresis function, but also divides itself in the 

number of curves that we decide at the beginning of the algorithm. As expected, the number 

of curves used to define the model can compromise the execution time of the algorithm. We 

tested for a N between 1000 and 2000 and we could conclude that this is a good value of N for 

the way this code is implemented. 

3.5 User Interface 

For a better use of the platform, a user interface was developed in Processing. This software 

makes use of the communication protocol explained in chapter 3.3 to give us the answer of all 

the sensors in real time. For this work, we used two different styles. The first one, shown in 

Figure 19, presents in a graphic the answer of three sensors. This was used to help during the 

analyze and characterization of the behavior of the sensors. In the second graphic interface, 

we have a colored map with eight isolated squares, Figure 20. Each square represents a sensor 

element and the colors change depending on the pressure that is being applied on the sensor. 

This interface was made only to show the interaction of the sensors. Colored maps are used in 

many applications with PSs that are already on the market. This is a good option when we are 

making a qualitative measurement. 

 

Figure 19. User interface, presentation of the answer of three sensors in a line graph. 
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Figure 20. User interface, presentation of the results in a color map. 

3.6 Hardware Development 

After the development of the prototype, assembled on the breadboard, shown in Figure 21, 

three versions of the hardware platform were developed, all of them were based in the mbed 

platform. The prototype has three voltage dividers, each one can read the value of one sensor. 

It doesn’t have any protection against the noise and it is necessary to tune the rheostat 

occasionally to keep the voltage divider as sensible as possible. Although this was the first 

prototype, the results from the tests made with it were interesting. This was a good version to 

make the first tests because it is easy to calibrate and it can be calibrated directly on the 

hardware. 

The first version board, Figure 21, only allows the user to use a Wheatstone bridge. One 

improvement that this board introduced in relation to the initial prototype is that it’s less 

sensible to the noise. Other improved part is it uses of a multiplexer to measure all the 

transducers by the same data acquisition chain. Finally, we can say that this version of the 

board is not flexible and only let us use a specific transducer with a specific base resistance. 

It’s possible to see the first version of the board in Figure 22. 

The second version of the board, Figure 23, is like the first one, with three major 

improvements. First, instead of fixed resistances we have digital rheostats. This gives the 

opportunity to have a board adaptable to sensors with different rest resistances and makes it 

possible to control the resistance through a software. The second main improvement is that we 

gave the opportunity to the user to choose between a voltage divider and a Wheatstone bridge. 
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This is done manually by switching a jumper. Finally, the gain of the signal can be variable too, 

and it can also be defined by software. 

The breadboard prototype and the version 2 of the board were the ones which were used in the 

tests presented in the results chapter of this work. 

 

Figure 21. First prototype of the data acquisition system. 

 

 

Figure 22. Printed circuit board (PCB), version 1. 

 
 

Figure 23. PCB, version 2. 
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Finally, a third version of the board was designed, Figure 24. The data acquisition system, in 

this version, is like the version 2, however, this one has hardware to receive information of up 

to 32 sensors at the same time. This version has another improvement relatively to its previous 

one. Pins were reserved to make use of communication by wireless, using a RN-171 wi-fi 

module. Bugs that were detected in the older version were fixed too. 

The main goal of this version is to understand how to manage a higher number of sensors by 

software. This is the most improved version and it’s the one that shall be used in future works. 

 

Figure 24. PCB (back side), version 3. 

The mbed platform 

The mbed LPC1768, Figure 25, is a 32-bit ARM MCU and is used to rapid prototyping. The 

platform supports USB, Ethernet, CAN, Serial, I2C and SPI communication, and gives to the user 

a PwmOut, AnalogIn, AnalogOut, DigitalIn and DigitalOut pins that are enough for applications 

like this work. A built-in USB flash programmer is included to. The web platform already 

provides several libraries that give to the user the opportunity to work faster once there is an 

abstraction layer that improves the development speed [24].  
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Figure 25. Pinout of mbed LPC1768 hardware. 

Wifly RN-171 

The wifly module RN-171, Figure 26, was used in version 3 of the board. Besides all the 

capabilities of this model that can be found in its documentation, we only used the module to 

send the same data that was sent when the wi-fi was unavailable in the previous versions. Some 

of the characteristics that are important to give reference for this project is that it can connect 

to WPA-PSK networks and it has a low energetic consumption [25], [26]. The module was used 

only as a demonstration of the wi-fi potentialities. However, in other versions of the hardware, 

it is possible to make use of the analogic ports to read more sensors at the same time or to 

create an ad-hoc network. 

 

Figure 26. Illustration and pinout of the wi-fi module, RN-171. 
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4. Piezoresistive Transducers’ Characterization  

4.1 Materials and Methods 

Two kinds of transducers were tested, the first one is a noncommercial transducer developed 

by the Smart Material Research Group from the University of Minho, and the second one is a 

commercial transducer, FSR 400 (Interlink Electronics®). The basic process to produce this kind 

of transducers is similar for both, however there are some different assemblage methods that 

can make the difference in the final product. 

4.1.1 Noncommercial Transducer 

The noncommercial transducer was produced in the laboratory during this project. To produce 

it, the materials used were: multi-walled CNT, CPME and SEBS. All of them already explained 

in chapter 2.3. 

Beginning by the preparation of the transducer film, Figure 27, the process starts with the 

dissolution of multi-walled CNT with cyclopentyl methyl ether (CPME). To maximize the 

dispersion of the multi walled carbon nanotubes (MWCNT) it’s necessary to put the solution 

under an ultrasonic bath for at least 6 hours. During this time, the sample must be kept in cold 

water, if not the solvent will evaporate before the end of the dissolution. After the dispersion 

of MWCNT it is expected to obtain a black homogeneous solution. Then, SEBS is added to the 

solution and everything is magnetically stirred, this last step dissolves the SEBS particles giving 

a homogeneous viscous solution. Finally, the solution is spread homogeneously in a clean glass. 

For this project, we made a film with a thickness between 50 and 300𝜇𝑚. After the film is on 

the glass, it is left to dry until all the solvent evaporates. In the end, a plastic black film should 

be obtained, as is shown in Figure 27 in the 5th step [4]. 

At this point, the transducer is already prepared, now it’s necessary to make the electrodes. 

To produced them, a polymer matrix and plate ink were used. Through screen printing 

technique, the plate ink is deposited over the polymer matrix with the desired configuration. 

Then, to finish the process, the electrodes, already deposited on the polymeric matrix, stay in 

an incubator at 60ºC for half an hour. The result, is a polymer matrix with plate electrodes over 

them like it’s shown in Figure 28. 
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Figure 27. Preparation of a Transducer film sample. Step 1, add MWCNT with CPME. Step 2, ultrasonic 
dispersion. Step 3, addiction of SEBS. Step 4, magnetic stirring. Step 5, spread the solution in a glass in 
the desired width. 

 

Figure 28. Sample of the polymeric matrix with printed electrodes. 

After the last two steps, we have the electrodes on a polymeric matrix and a film of transducer. 

Now, it’s necessary to make the assemblage of both components. A good connection between 

the transducer and the electrodes is extremely important. The importance of this step can be 

explained from an electrical point of view, with Figure 29. After being assembled, the 

transducer must be the only resistance between the two terminals of the electrodes. However, 

this only happens in an ideal assemblage. As it’s possible to see in Figure 29, the equivalent 

circuit has other two associated resistances that will change depending on the method of 

assemblage. These connections between the transducer and the electrodes must have the 

lowest possible resistance. Besides that, these resistances should not change over time. If the 

electrodes are not making a good connection with the transducer, new variables are added to 

the system and new errors will be associated. 

For the assembling of the transducer it was applied a method, which consist in the deposition 

of layers, Figure 30. To accomplish this, each layer of the film was cut in the desired lengths 

and then put over the electrode layer, as shown in Figure 30.  
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Figure 29. Equivalent circuit of the connections between the transducer and the electrodes. 

 

Figure 30. Illustration of the assemblage of the transducer with the electrodes with the application of 
pressure to join each layer. 

To protect the film, a layer of polymer matrix was put over it. This polymer matrix is the same 

used in the bottom layer, where the electrodes are deposited. For this work, this polymer 

matrix is considered uncompressible. The result at this point, is a complete sensor element, 

that is made of three layers. The first layer is a polymer matrix with electrodes deposited in 

its surface, which make the second layer. Finally, a third layer contains the transducer samples. 

Figure 31 shows a photo of the final sensor transducers. 

One more assembling method was tested, Figure 32. This time, instead of making the electrodes 

separately from the transducer, the electrodes were directly deposited over the transducer 

film. This method gives more freedom and it’s easier and faster to implement. However, 

because the plate ink is not as elastic as the transducer, it brakes when a deformation is 

applied, what changes the resistance of the electrodes in a way we cannot control, Figure 33. 

Other situation that was found with this kind of assemblage is the fact that we don’t have a 

division between all the sensors, Figure 32. This could not be a problem because the resistance 

of the piezoresistive polymer is much higher that the plate ink. However, in practice this 

jeopardizes the measurement and reduces the sensibility. 

At the end, whatever method we use, the transducer and the electrodes should be assembled 

in a way that the best possible connection with each other is established. Then the electrodes 

are connected to the data acquisition platform, that will read and process the data received. 
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Figure 31. Electrodes with samples of transducer forming an array of sensor. 

 

 

Figure 32. Image of a sample of a PS array with the electrodes printed directly on the film. 

 

Figure 33. Microscopic image of the electrodes after being put under a deformation. 

4.1.2 Commercial Transducer 

Detailed information about the materials and methods of production of the commercial 

transducer aren’t available. However, the information accessible from the manufacturer, 

illustrated on Figure 34, shows that the process is similar with the one used to produce the 

noncommercial transducer. It is possible to see that there is a small difference, for example, 

there is a spacer adhesive in one of the layers. This spacer ensures that when any pressure is 

being applied to the transducer, it will not be touching the electrodes. This can be a good 
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solution because while the transducer is not being pressed energy is not being wasted, once 

the circuit is open. In Figure 35, there’s the commercial sensor element already assembled 

[27]. 

 

Figure 34. Illustration of the assembling of the commercial transducer [27]. 

 

Figure 35. Illustration of the commercial transducer assembled [27]. 

4.2 Characteristic Curves 

4.2.1 Tests 

To work as a sensor, a transducer must produce repeatable and must have a well-known long-

term drift. The first one is easy to understand, a sensor is not good enough if it doesn’t give 

consistent data, i.e., for the same input it shouldn’t change the output over the time. The long-

term drift is the variation that the sensor has in its behavior during the time is being used. 

Although the samples used in this project were already tested when developed [4], it’s 

important to test them again in this work, but now in conditions that are closer to the ones in 

real application. In [4], stretch tests were made. However, it’s necessary to do compression 

tests too. To accomplish the goals of the tests, different samples were used and characteristic 

curves were traced. We tested the commercial and the noncommercial transducers, and then 

the results were compared. 

4.2.2 Commercial Transducer 

In the case of the commercial transducer, it’s known that the repeatability is ±6% and the long 

term drift is < 5% 𝑝𝑒𝑟 logଵ଴(𝑡𝑖𝑚𝑒) [27]. 
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For this sensor, the test consisted in a force which was applied cyclically. The speed of 

response, the repeatability and the hysteresis were analyzed.  

4.2.3 Noncommercial Transducer 

In the case of the noncommercial transducer, it’s known that the sensor starts being repeatable 

after ±100 cycles but a long drift term is not specified. 

The noncommercial transducer was subject to more tests than the commercial one. The tests 

made with the noncommercial transducers had as main goal observing the behavior in three 

different situations. After the stress of cutting and manipulating, after some resting time and 

after be under a deformation. The deformation test, can also be divided in two, one where the 

force was applied in cycles and other one where the samples were submitted to discrete 

deformations. 

After the assembling, one array of three sensing elements was left resting for 19 days. Two of 

the sensors were left connected to a power supply with 3.3V, the third was left disconnected 

from any circuit. It was expected with this test to check if the handling of the samples would 

affect the resistance and if the resistance would change with the resting time. 

After that time, it was observed that, transducers which were connected to the power source, 

decreased 19% of their resistance, the transducer that was left disconnected decreased 13% of 

its resistance. An explanation for this event can be related with the temperature. Once this 

test was made at room temperature in winter season, the heat from the cross of current could 

let the sample to adjust better than the one that was disconnected. 

After the resting test, the sensors were submitted to tests of compression. In these tests, a 

force was applied cyclically, increasing and decreasing in continuous cycles using the squeezer 

that is shown in Figure 36. Tests were performed where the forces were applied in a discrete 

way too, Figure 37. 

The first deformation test applied in the sensors was with discrete weights. With metallic 

weights of 130g. By the equation 2.1 we can conclude that for one weight we have 1,27N. 

    𝐹 = 𝑚 ∗ 𝑎     2.1 
 
where F is, the force applied, m is the mass in kg and a is the gravitational force ±9,8msିଶ. 
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Figure 36. Illustration of the test made with cyclic forces. 

 

Figure 37. Illustration of the test made with discrete weight. 

 
All the tests made with the noncommercial transducer, were made with an array of 3 sensors. 

The film doesn’t have the same thickness in all its area, this will make a difference in the initial 

resistance as will be possible to see in the graphics on the results’ chapter. The sensors were 

numbered as sensor 1 (s1), sensor 2 (s2) and sensor 3 (s3). The montage is shown in Figure 38. 

 

Figure 38. Illustration of all the initial prototype. Sensors are numbered from the left to the right of the 
sensors platform. 

The initial value of each sensor was taken before each test and the value was used to tune the 

rheostats. This is an important step to get the maximum sensibility of the voltage divider. All 

the test explained below are organized, for an easier understanding, on Table 1 and Table 2. 
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Resting Test 

After being submitted to random forces, never higher than 10N, the sensors elements were left 

resting for 2 hours. After this time, they were reconnected to the measurement chain and were 

left to rest for 50 hours. The goal of this test is to observe the variation of their resistances 

over the time, when no force is being applied on them. 

Temperature Test 

The temperature test was made with the help of a domestic heater. The test took 18 hours. In 

the first two hours, the sensors were submitted to the heater. Then, the heater was turned off 

but we kept measuring the signal for 16 more hours. For this test, the main objective is to 

check if the temperature has influence in the transducers resistance and, if it does, analyze if 

it recovers the initial value when it returns to the room temperature. 

Force Test 

Before performing the force tests, there are some specifications that need to be understood. 

First, the force shall be applied in a perpendicular direction. Second, we found that if we put 

a piece of a softer material between the transducer and the cylinder, like cork, we would 

obtain a higher resistance variation with the same applied force. 

The tests made with discrete forces used the configuration that is shown on Figure 39. The 

white cylinder has a despicable mass. A rectangle of cork, with the same lengths of the 

transducer sample, is making the contact between the cylinder and the transducer.  

The force tests can be divided in two, the discrete weight test and the continuous test. The 

first one was made with the metallic weight of 130g and the second one was made with a 

squeezer Shimadzu, Figure 40. 

 

Figure 39. Configuration used to make the force tests. 
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Figure 40. Squeezer used in the cyclic tests. 

Discrete Weight Tests 

For each sensor, different cycles were defined. The cycles were designed to test the reaction 

time, the recovering time and the variation during the increase and decrease of pressure. Other 

verification that we made with this test is the influence between the different sensors on the 

array. Cycles are defined in Table 1 and Table 2. 

Continuous Cycles Tests 

Here, test runs in a different way. The squeezer was programmed to make cycles between a 

defined pressure and zero during n cycles with a frequency f. These tests were very important 

to observe how does the sensor answer to different frequencies and to trace the force/voltage 

curves. With the results of these tests, the response in frequency was analyzed and the curves 

of the hysteresis were traced. 
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5. Results and Discussion 

5.1 Resting Tests 

This test was made after assembling the transducer with the electrodes. Two hours before the 

test, the sensors were submitted to stress. In Figure 41, is possible to see the results of 50 hours 

of test. The result of this test is clear. The transducers keep the same resistance all over the 

time when they are not submitted to any stress. This means that even the variation of the room 

temperature between day and night don’t have a visible influence in the initial resistance.  

Other observation that can be made from this test is the difference between the initial 

resistance of each transducer. For example, between the sensor 1 and sensor 3 there’s a 

difference of ±16𝑘Ω. This shows the need of an adaptation of the measurement bridge when 

it’s shared with many transducers. 

 

Figure 41. Results of the rest test. 

5.2 Temperature Tests 

In temperature tests, Figure 42, is important to refer that the temperature variation is not 

completely controlled. However, it’s possible to make a general evaluation of this parameter 

so we can have an idea of how much can our measurements be affected by this parameter. As 

is possible to see in the graphic below, the temperature has a small influence in the resistance 

of the transducers, the resistance tends to increase during the increasing of temperature, ±1%. 

Moreover, the resistance starts to recover to the initial value when the temperature returns to 

the initial value. 

Temperature has some influence. However, for the applications studied in this work, we can 

consider this influence as minimal. 
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Figure 42. Results of the temperature tests. 
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5.3 Pressure Tests 

5.3.1 Discrete Weight Tests 

Discrete tests were made in two different sequences that we call test 1 and test 2. Each one is 

explained below. The weights were put and took from the transducers manually. This is 

important to refer because, a manual transference of weights can put artefacts in our signals. 

Results Test 1 

The weights that were used in each minute of this test are available in the attachments Table 

1. 

Transducer 1 

For transducer’s 1 test, Figure 43, we can see that until minute 22 no weight was put over the 

transducer. On minute 22, three weights are put over and a response is observed. In minute 23, 

one of the weights is taken, we can see that the resistance goes over the initial value, but 

quickly comes to an intermediate value (between the initial resistance and the resistance with 

3 weights). This shows what we already have concluded before. The way how we take out the 

weights has a big influence in the response of the transducer. In this case, what probably 

happened was that we took the weight in a diagonal direction. This led to the support to be 

inclined, what makes the transducer stays without any weight, for some moments. This creates 

an overreaction. On minute 25, when all the weights are taken off, it’s possible to see that the 

resistance doesn’t reach the initial value. This can be a result of the change in the contacts 

between the sensing element and the transducer, explained in the subchapter materials and 

methods. 

 

Figure 43. Result of test 1 for transducer 1. 

Transducer 2 

For transducer’s 2 test, Figure 44, there’s only one detail that should be added. In minute 2, 

when one weight is put over the transducer, we almost don’t see a response. This shows that 

there’s a limit before the sensor start giving a real response, in this case, the force applied by 

one weight is not enough to create a variation on the resistance of the sensor. 
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Figure 44. Result of test 1 for transducer 2. 

Transducer 3 

Transducer’s 3 test, Figure 45, shows that the behavior is similar for all the sensors in the array, 

but doesn’t add any extra information. 

With test 1 we observed some details as the overshoot and the recuperation. Each time the 

pressure applied on transducer changes, there’s always an overshoot. After other tests, we 

observed that this overshoot comes from the way we move the weight while placing and 

removing them. 

Another observation we can make from this test’s results is that the transducers don’t come 

back to the initial value. Besides this, we cannot take any conclusions at this moment, it’s 

necessary to analyze the test 2 to evaluate this part. 

 

Figure 45. Result of test 1 for transducer 3. 

 
Discussion of Results 

The first observation we can make is that every time we withdraw a weight we get an overshoot. 

The resistance, instead of going through the initial value, increases more than 5% of the initial 

value, in some cases, then it starts to return to the initial resistance, but takes a long time. 

For the graphics of both sensors, we can see that each time we add a weight, the response is 

exponential, i.e. if a weight is supposed to create a variation of resistance of 5𝐾Ω we observe 

that around 2𝐾Ω change in less than two seconds, however the other 3𝐾Ω take almost 24 

seconds to be reached. 
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The response of the transducers is fast and clearly visible, however, we must work more on the 

repeatability. Controlling the resting resistance is also an important step, because, until now, 

when we remove the weight we don’t have a reasonable recover of the initial value. 

Finally, we observe in this test that there are no interferences between the transducers. 

Results Test 2 

The weights that were used in each minute of this test is available in the attachments Table 2. 

This test has the same structure of test 1. However, this one is made with more cycles and for 

a longer time, since test 1 didn’t allow us to analyze the behavior for more than two variations 

of weights. With this test, we expect to understand if after many cycles the behavior becomes 

repeatable. In Figure 46, Figure 47 and Figure 48 we can observe the results of the response of 

the three transducers in test 2. 

 

Figure 46. Result of test 2 for transducer 1. 

 

Figure 47. Result of test 2 for transducer 2. 

 

Figure 48. Result of test 2 for transducer 3. 
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Discussion of Results 

To this series of tests there’s no need to analyze the transducers one by one. We can see that 

we got a better repeatability. This is congruent with the information that we have on the paper 

of the transducer used [4]. For now, we can’t evaluate the repeatability of this material. 

However, with test 2 we observe that it will be possible to manipulate the transducers from 

the assembly to get better results. Finally, we can conclude that at this point this sensor is not 

giving good quantitative results. However, we already could use them to make qualitative 

measurements. 

The long recovering time is possible to observe in transducer 2 between the minutes 8 and 14. 

Other particularity that we can observe is that the curve is not completely synchronized with 

the table values, this happens not only because of the overshoot, that happens before the 

response, but also because the user didn’t put the weight perfectly synchronized with the time. 

Like in test 1, the second test shows us an alteration of the base resistance over the time. We 

found that this can have origin in three different situations. The first one we already highlight 

in the beginning of this work, which is the connection between the transducer and the 

electrodes. The second might be the material itself, that takes a long time to recover to the 

initial value. Finally, the third situation can be the stress provoked to the transducer, i.e. if we 

apply a deformation that is bigger than the maximum the material can tolerate, the response 

can take a longer time to recover and sometimes can’t recover at all. 

It’s not possible, with the test we made, to say that we exceed the deformation value. During 

the compression, we have other materials being compressed beside the transducer, like the 

cork. 

5.3.2 Continuous Cycles Tests 

Continuous tests were made using the squeezer, shown in Figure 40. Here we used the same 

setting from the discrete tests, Figure 39. The goal in this part is to study the answer of the 

transducer for different frequencies and to study the hysteresis curve that is common in this 

kind of materials. 

Noncommercial Sensor 

With the noncommercial transducers, we have a small variation on the resistance, as we can 

see in the graphics of the discrete tests. The variation is ±4𝐾Ω. Because of this variation, we 

had to amplify the signal to the maximum range of the ADC. This solution let us see better the 

hysteresis curve, however, the noise that we get from the squeezer is amplified too. 
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We started with a test that applies a force in cycles between 0 and 45N,  Figure 49. After this 

test, we made other ones with forces changing between 0 and 25 N because we realized that 

we got more hysteresis in this range of values, Figure 50. Both tests were made with 0.1Hz (6 

cycles/min). 

 
Figure 49. Graphic force/voltage of a cyclic test made with the squeezer. 

 

 
Figure 50. Graphic force/voltage of a cyclic test made only in the hysteresis zone. 

Discussion of Figure 49 and Figure 50 

In relation to the hysteresis, we can see in Figure 49, that the transducer is more hysteretic 

between 0 and 15 N than for more than 15 N of applied force. Other situation we can observe 

is that between 0 and 2 N we almost have a vertical response during the release of the pressure, 

however, after the curve is drawn to the Preisach model, all these situations can be considered. 

Other point that can be analyzed with these results is the drift of the responses in each cycle. 

In Figure 49, we can see that all the curves start being lower after some cycles. This probably 

happened because of some interference of the assembly. However, if we analyze the first 

curves separately we can observe that there’s a low drift coefficient, at least for that number 

of cycles. Between each half of the cycles the transducer has a good repeatability. 
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In Figure 50, we can only see the most hysteretic part of the non-commercial transducer. This 

is, the curve that can be used to trace the maximum loop used in Preisach model. We can 

highlight too what was said before about the drift. As it’s possible to see, there’s almost no 

drift between a small number of cycles. The drift will be better analyzed in Figure 51 and Figure 

52 with a test that was made for 25 cycles. 

 
Figure 51. Hysteresis curve of a piezoresistive transducer during the first 12 cycles of tests. 

 
Figure 52. Hysteresis curve of a piezoresistive transducer during the lsat 12 cycles of tests. 

 
Discussion of Figure 51 and Figure 52 
 
In the graphic in Figure 51 and Figure 52, we can see the drift of the response between the first 

and the last cycles. We can also see that the drift after 12 cycles is lower than in the beginning 

of the experiment. The result expected in a test with more cycles is that the drift will trend to 

0 after 100 cycles, as described in [4]. 

The repeatability is a characteristic of this material. Although we always have hysteresis, the 

characteristic curve behaves every time in the same way. At this point of the work is possible 

to say that for one transducer, we have repeatability and a low drift coefficient. However, the 

assemblage method must be improved because that’s the only way to reduce the number of 

variables of the system. 

Commercial Transducer 

The commercial transducer has one big difference in relation of the noncommercial transducer. 

Its resistance varies from +∞ to 1𝑘Ω. When no force is being applied, the transducer is not in 
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contact with the electrodes, this happens because of the assembling mode. If we see the Figure 

53, after two or three newtons of applied force, the transducer enters in contact with the 

electrodes and the differential voltage starts decreasing. We can see that when the force is 

near to zero we have a saturated response ±3.3𝑉. It’s possible to observe too that after the 

second cycle we have a very slow drift between 2 and 4%, that is less than 5% as the 

specifications of the product [27]. 

The curve was traced with a cyclic force that goes from 0 to 30 N, each cycle. This was the 

lowest frequency tested. However, higher frequencies were tested too. Figure 54 shows an 

example of what happen when we try to change the frequency of the applied cycles. We can 

see that the hysteresis is so high that we can’t even consider making an approach using the 

Preisach model. 

 
Figure 53. Hysteresis curve of the commercial PS used in this project. 

 

 
Figure 54. Hysteresis curve of the commercial PS used in this project. 

Discussion of Figures 51 e 52 
 
In Figure 53 we can see a good response with almost no drift. Only the first cycle has more drift 

but, that’s only the adjustment of the squeezer. This transducer doesn’t have a linear response 

and besides that, it shows a hysteretic behavior. This could be a problem if we were expecting 

to make a simple linearization before using this transducer. However, that’s a good opportunity 
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to put in practice the Preisach model. This is the curve that will be used to test the Preisach 

model in this project. 

The graphic from Figure 54 is presented to illustrate the dependence of the speed for this kind 

of transducer. We can see that the frequency in this case makes all the difference. 

For the continuous tests, we can observe that both transducers have hysteresis and a similar 

drift coefficient. Other interesting point is that, for higher frequencies, the transducers present 

lower hysteresis. 

With this we can verify the following points about the non-commercial transducer in relation 

to the commercial transducer: 

 Smaller resistance variation; 

 Longer recuperation time; 

 Better response for high frequencies; 

 Higher hysteresis area. 

There are other characteristics that can look obvious at this point, for example, the commercial 

transducer shows a higher repeatability. However, we can’t take this conclusion at this moment 

because there are factors, as the assembly method of the transducers, that are yet to be 

reviewed. 
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6. Conclusions and Future Work 
Although this is not a pioneer work in this field, even for our laboratory, it brought a new 

perspective in relation to PSs. Today, because we can produce the sensors by screen printing 

technologies using green chemicals, it’s possible to spread the areas of application of this kind 

of sensors. 

The biggest obstacle of PSs with a wide deformation capacity is their precision. Although the 

measuring of high deformations doesn’t require high precision, sometimes we can ask for more 

precisely measurements. This is a problem with PSs. They have hysteresis, drift and a nonlinear 

response. To overcome this situation, we started to adapt the Preisach model that can make a 

better approach to systems with hysteresis. The model was adapted successfully and inputs in 

offline mode were given to the system. We saw that this approach is possible. 

Now it’s necessary to give a step forward with the Preisach model. After we get the maximum 

loop function we can use it to let the system receive online voltage values calculating with this 

the force that is being applied. 

The choice of the materials used as transducers for this work was directly related with the 

partnership that we have with the Electroactive Smart Materials laboratory from University of 

Minho. They supplied us with their transducers when we needed them. We used commercial 

transducers too. They were important to make a comparison of results. The commercial sensor 

and the components to the electronic circuit were chosen by the parameters we needed and 

by their availability. 

With concern to this work, we could say that the objectives set were accomplished. We 

produced three versions of a data acquisition system. We developed and assembled our own 

transducer and then we tested it with the data acquisition system. We did all the steps behind 

the production of a wireless smart sensor. 

In the end of this work, we don’t have a product that can be put on the market. The reason is 

that some of the techniques must be improved, because we didn’t get good enough results to 

make this a commercial product. For example, the assemblage method must be improved and 

stabilized, because the way we did it doesn’t guarantee that we will always have the same 

result. 

With concern to the transducer used we can say that the material has potential and is a good 

solution for high deformation measurements. However, a plastic conductor must be developed 

to avoid the problem with broken pads. In fact, our partners are already working in this 

situation. One interesting point of the non-commercial sensors is their adaptability. With the 

existent technologies, we can create them as flexible and conductor as we want. 
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The PCB works as it supposed, but some improvements can be done. For instance, the MCU and 

the wifi module can be changed by other components that can do the same work but that are 

cheaper than the ones we used in the prototype. Another thing that can be done is the reduction 

of the dimension of the third prototype. 

The software in general doesn’t have big changes to do. However, the graphic user interface 

(GUI) should be completely redefined if we want to make it user friendly for common users. 

The Preisach model must be adapted to work online. In this project, the design of the user 

interface was not a priority since we needed the results first. Finally, and still coming back to 

the Preisach model, we can say that it has good odds to work, however, we only made the 

mathematical application. This means that, to ensure that this model can be applied with these 

sensors, we first need to make practical tests with it. 

Some more studies in this field can be considered in future works, for example, we didn’t 

consider the influence of the temperature in the variation of the resistance. We saw that the 

transducers’ resistance didn’t change too much during the temperature variation, but we didn’t 

check if the temperature changes the deformation properties of the material. 

This work required knowledge in the most diversified areas, from chemistry to physics, 

electronics, programming and mathematics. It was a great opportunity to deep in the world of 

instrumentation. In fact, more than the final product of this work, a knowledge pool was 

acquired. 
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8. Attachments 
Table 1. Table of test 1 with discrete weight. 

 Mass applied in each transducer (g) 
Time (min) Transducer 1 Transducer 2 Transducer 3 

0 0 0 0 
1 0 0 0 
2 0 130 0 
3 0 130 0 
4 0 0 0 
5 0 0 0 
6 0 260 0 
7 0 260 0 
8 0 260 0 

9 a 13 0 0 0 
14 0 0 130 
15 0 0 0 
16 0 0 130 
17 0 0 0 
18 0 0 130 
19 0 0 130 
20 0 0 0 
21 0 0 0 
22 390 0 0 
23 260 0 0 
24 260 0 0 

25 a 28 0 0 0 
29 0 260 0 
30 0 260 0 

31 a 34 0 0 0 
 
  



 54

 
Table 2. Table of test 2 with discrete weight. 

 Mass applied in each transducer (g) 
Time (min) Transducer 1 Transducer 2 Transducer 3 

0 0 0 0 
1 0 0 0 
2 130 130 260 
3 0 130 0 
4 130 0 0 
5 0 0 260 
6 130 130 0 
7 0 130 0 
8* 130 0 260 

9 a 13 0 0 0 
14 130 130 260 
15 0 130 0 
16 130 0 0 
17 0 0 260 
18 130 130 0 
19 0 130 0 
20 130 0 260 
21 0 0 0 
22* 130 130 0 
23 0 130 260 
24 130 0 0 

25 a 28 0 0 0 
29 130 130 260 
30 0 130 260 
31 130 0 0 

32 a 130 0 0 0 
148 0 0 130 
149 0 0 260 
150 0 0 390 
151 0 0 520 
152 130 0 390 
153 260 0 260 
154 390 0 130 
155 0 0 0 
156 0 0 0 
157 0 0 0 
158 0 0 0 
159 0 0 0 

160 a 400 0 0 0 
115 a 400 0 0 0 

 
*Here a perturbation happened, is possible to observe it in the correspondent graphic. 


