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Resumo

A Kleene Algebra (KA) é um sistema algébrico que tem bastantes aplicações quer no campo da
matemática como também da informática.

Foi batizada com o nome do seu inventor Stephen Cole Kleene, que ao longo da sua carreira fez
um estudo intensivo sobre expressões regulares e autómatos finitos [Kle56].

Quando há necessidade de raciocinar equacionalmente sobre programas, recorre-se frequente-
mente à Kleene Algebra, visto que esta consegue exprimir noções de escolha, composição se-
quencial e até a noção de iteração. A necessidade de raciocinar equacionalmente sobre ações
que podem ser executadas de forma concorrente levou ao aparecimento da Algebra de Kleene
Síncrona ou Synchronous Kleene Algebra (SKA). Esta última foi introduzida por Cristian Prisacariu
em 2010 no seu artigo [Pri10] como uma extensão à Kleene Algebra mas que contém uma noção
de ação concorrente.

A equivalência de linguagens é um problema perene em ciências da computação. Nesta disser-
tação iremos apresentar ao leitor uma explicação detalhada de um processo de decisão para
termos de Synchronous Kleene Algebra (SKA) bem como a sua implementação utilizando a lin-
guagem de programação OCaml.
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Álgebra de Kleene, Álgebra de Kleene Síncrona, Processo de Decisão
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Resumo Alargado

A Kleene Algebra (KA) é um sistema algébrico que tem bastantes aplicações quer no campo da
matemática como também da informática.

Foi batizada com o nome do seu inventor Stephen Cole Kleene, que ao longo da sua carreira fez
um estudo intensivo sobre expressões regulares e autómatos finitos [Kle56].

Quando há necessidade de raciocinar equacionalmente sobre programas, recorre-se frequente-
mente à Kleene Algebra, visto que esta consegue exprimir noções de escolha, composição se-
quencial e até a noção de iteração. A necessidade de raciocinar equacionalmente sobre ações
que podem ser executadas de forma concorrente levou ao aparecimento da Algebra de Kleene
Síncrona ou Synchronous Kleene Algebra (SKA). Esta última foi introduzida por Cristian Prisacariu
em 2010 no seu artigo [Pri10] como uma extensão à Kleene Algebra mas que contém uma noção
de ação concorrente.

A equivalência de linguagens é um problema perene em ciências da computação. Nesta disser-
tação iremos apresentar ao leitor uma explicação detalhada de um processo de decisão para
termos de SKA bem como a sua implementação utilizando a linguagem de programação OCaml.

Este processo de decisão é a conjunção de dois trabalhos. O primeiro desenvolvido por Broda,
S., et al. no artigo [BCFM15] onde através de derivadas parciais sobre expressões regulares
construímos um autómato que aceita a linguagem gerada por essa mesma expressão regular. O
segundo desenvolvido por Filippo Bonchi e Damien Pous no seu artigo [BP11] onde propõem uma
otimização ao algoritmo de Hopcroft e Karp [HK71] baseada em bi-simulações até à congruência
para comparação entre autómatos.
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Abstract

Kleene Algebra (KA) is an algebraic system that has many applications both in mathematics and
computer science. It was named after Stephen Cole Kleene who extensively studied regular
expressions and finite automata [Kle56].

Moreover it is often used to reason about programs, as it can represent sequential composition,
choice and finite iteration. Furthermore, the need to reason about actions which can be exe-
cuted concurrently, spawned SKA. SKA is an extension of KA introduced by Cristian Prisacariu
in [Pri10] that adopts a notion of concurrent actions.

Laguange equivalence is an imperishable problem in computer science. In this thesis we present
the reader with a detailed explanation of a decision procedure for SKA terms and an OCaml
implementation of said procedure as well.

Keywords

Kleene Algebra, Synchronous Kleene Algebra, Decision Procedure
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Chapter 1

Introduction

1.1 Context

A Kleene Algebra (KA) is an algebra that can modulate regular events. It arises both in mathe-
matics and computer science. For instance, Backhouse, R., et al. said in [BKM01], that Kleene
Algebra has been successfully applied to give a semantic description of imperative programs
with non-deterministic choice. Additionally, Cristian Prisacariu said in [Pri10] that they can be
viewed as a formalism that can be used to reason about programs. Furthermore Kleene Algebra
has been used in graph paths [BMR98] and in networking [AFG+14, FKM+15].

The need to reason about actions which can be executed concurrently, spawned Synchronous
Kleene Algebra (SKA). SKA is an extension of KA introduced by Cristian Prisacariu in [Pri10]
that adopts a notion of concurrent actions. We hope to entice the reader to further pursue this
amazing field that is Kleene Algebra.

1.2 Problem Statement

In computer science, the problem of language equivalence arises in many areas, such as Lan-
guage Theory or Compiler Theory. Deciding regular expression equivalence or Kleene Algebra
term equivalence can be viewed as part of a set of problems that is Language Equivalence.
Furthermore one can say that Kleene Algebra is often referred to as the Algebra of Regular
Expressions, since it presents an easy way to express patterns.

In this document we will focus on deciding Synchronous Kleene Algebra SKA. Moreover, we will
try to assertively answer the question: ”given two SKA terms, α, β, is α ∼ β?” where x ∼ y

means that x is language equivalent to y.

1.3 Contributions

In this thesis we present a detailed explanation of a decision procedure for SKA. This procedure
is the combination of the work of Broda, S., et al. in [BCFM15] and the work of Bonchi, F., et
al. in [BP11]. The former allows us to construct an automaton based on the partial derivatives
of a given SKA term (denoted on the sequel by TSKA) and the latter provides us a method

1
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based on bisimulation up-to congruence for automata comparison. Moreover, we provide an
implementation of said procedure using the OCaml programming language.

1.4 Structure of the thesis

For a better comprehension of this thesis, this document is structured in the following way:

1. First chapter – Introduction – Contains a brief introduction to the project, some back-
ground information one needs to know in order to fully understand it, the problem that it
aims to solve, and also the structure of the document.

2. Second chapter – Introduction to Kleene Algebra – Defines the notation used in the docu-
ment, it also introduces the reader to Kleene Algebra by explaining the formalisms involved
as well as some applications of KA.

3. Third chapter – A Decision Procedure for Synchronous Kleene Algebra – Describes thor-
oughly a decision procedure for TSKA. Additionally this chapter contains a toy example of
the aforementioned procedure.

4. Fourth chapter – Implementation and Validation – provides the reader with some of the
most important details of implementation of the decision procedure described in chapter
4. Moreover it shows some tests that were conducted in order to validate such implemen-
tation.

5. Fifth chapter – Conclusion and Future Work – summarises this project and provides the
reader with some of the most important conclusions drawn from this thesis. Finally, a
discussion of future work is given.

2
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Chapter 2

Introduction to Kleene Algebra

2.1 Introduction

This chapter will provide a background to Kleene Algebra and will also explain why KA and SKA
are promising tools in computer science. Moreover it also gives the reader some background
definitions which will be used in the remainder of this document.

This chapter is organised into the following sections:

• section 2.2 – Definitions and Notations – Presents the reader with some concepts and
terms used throughout the document.

• Section 2.3 – Kleene Algebra and Synchronous Kleene Algebra – Describes the formalisms
used in KA and SKA

• Section 2.4 – Why use Kleene Algebra – Explains the benefits of using KA. Furthermore it
describes known KA and SKA applications.

• Section 2.5 – Related Work – Describes some of the related work done on deciding KA.

• section 2.6 – Conclusions – Contains the most important conclusions gathered from this
chapter.

2.2 Definitions and Notations

There are several definitions of the following algebraic structures in both mathematics’ and
computer science’s literature. In this document we chose to use the one given by Dexter Kozen
in his lectures [Koz04]. The next sections will show said definitions.

2.2.1 Semigroups, Monoids and Semirings

We shall start with some formal definitions before we proceed, in particular to define what is a
semigroup, as well as a monoid.

3
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A semigroup is an algebraic structure denoted (S, ·) where S is a set, · is an associative binary
operation on S such that ∀x, y, z ∈ S → x · (y · z) = (x · y) · z.

A monoid is an algebraic structure denoted (M, ·, 1) where (M, ·) is a semigroup, 1 is a distin-
guished element ofM that is both a left and right identity for ·, such that ∀x ∈ M,→ 1 · x =

x · 1 = x. For a better understanding of monoids some examples are given below:

• (Σ∗, ·, ε) where Σ∗ is the set of finite length strings over an alphabet Σ, · is concatenation
of strings, and ε is the null string.

• (2Σ
∗
,∪, ∅) where 2Σ

∗
is the powerset or set of all subsets of Σ∗, ∪ is set union, and ∅ is the

empty set.

• (N,+, 0) where N is the set of natural numbers.

• (R+ ∪ {∞},min,∞) where R+ denotes the set of non-negative real numbers, ∞ is a spe-
cial infinite element greater than all real numbers, and min gives the minimum of two
elements.

• (Rn×n, ·, I) where Rn×n denotes the set of n×nmatrices over a ring R, · is ordinary matrix
multiplication and I is the identity matrix.

• (X → X, ◦, ι) where X → X denotes the set of all functions from a set X to itself, ◦ is
function composition and ι is the identity function.

What is a semiring? A semiring is an algebraic structure denoted (S,+, ·, 0, 1) such that (S,+, 0)

is a commutative monoid, (S, ·, 1) is a monoid, · distributes over + on both left and right sides,
0 is an annihilator for · in the sense that ∀x ∈ S, 0 · x = x · 0 = 0. A semiring is idempotent if
and only if (iff) ∀x ∈ S, x+ x = x.

We can now define an idempotent semiring to be any structure (S,+, ·, 0, 1) satisfying the fol-
lowing identities for all x, y, z ∈ S:

x+ (y + z) = (x+ y) + z x+ y = y + x

x+ 0 = x x+ x = x

x(yz) = (xy)z 1x = x1 = x

x(y + z) = xy + xz (x+ y)z = xz + yz

0x = x0 = 0

2.2.2 Order

As human beings, we tend to assign a certain order to everyday objects. Such order can be
interpreted as a relation between objects. In certain sets, it is imperative that we can establish
an order as well. A partial order on a set is a binary relation that is reflexive (∀x, x ≤ x), anti-
symmetric (∀x, y, if x ≤ y∧y ≤ x =⇒ x = y) and transitive (∀x, y, z, if x ≤ y∧y ≤ z =⇒ x ≤
z). Any idempotent semiring has a naturally-defined partial order ≤ associated with it, such

4
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that

x ≤ y
def⇐⇒ x+ y = y (2.1)

The proof that ≤ is a partial order is shown in [Koz04] and goes as follows: reflexively can be
proven by the idempotence axiom (x + x = x), anti-symmetry follows from commutativity of
the operator +, (if x ≤ y ∧ y ≤ x =⇒ y = x + y = y + x = x). And finally for transitivity if
x ≤ y and y ≤ z then

x+ z = x+ (y + z) since y + z = z

= (x+ y) + z associativity of +
= y + z since x+ y = y

= z

Therefore we can conclude that x ≤ z and thus finalising the proof.

2.2.3 Automata

In this subsection we will present the reader with definitions for both Deterministic Finite Au-
tomaton (DFA), and Nondeterministic Finite Automaton (NFA). We will start with the former.

Definition 1. DFA. A Deterministic Finite Automaton (DFA) is a tuple (S,Σ, δ, I, F ) where:

• S is a finite set of states;

• Σ is a finite set of input symbols, also known as Alphabet;

• δ : Σ× S → S is the transition function;

• I is the initial state (I ⊂ S);

• F is the set of final states (F ⊆ S).

We now present a more general type of finite automaton, NFA, which has two main differences
regarding DFA. The first one is the fact that there might be more than one transition associ-
ated with the same symbol of the alphabet from the same state. The second one relies on the
possibility of performing a transition between states, without any symbol of the alphabet being
associated with said transition. Furthermore, this type of ”symbolless” transitions are usually
refered to as ε-transitions.

Definition 2. NFA. A Nondeterministic Finite Automaton NFA is a tuple (S,Σ, δ, I, F ) where:

• S is a finite set of states;

• Σ is a finite set of input symbols, also known as Alphabet;

5
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• δ : (Σ ∪ ε)× S → P(S) is the transition function;

• I is the initial state (I ⊂ S);

• F is the set of final states (F ⊆ S).

Please note that in the NFA case, δσ(x) outputs the set of states that are valid transitions from
state x associated with the symbol σ ∈ Σ. Therefore, the output of this function is in the
powerset of S. Moreover we require δ to be a total function. We consider δσ(x) = ∅ if there are
no transitions from state x associated with the symbol σ ∈ Σ.

2.2.4 Notation

This subsection contains some notations that will be used throughout the remainder of this
document. Unless explicitly said otherwise, the reader should refer to this subsection for the
meaning of some operators.

• +→ is the choice operator (usually referred to as ”or” in programming).

• · → is the concatenation operator or the sequence operator.

• × → is the synchrony operator (more details in 2.3.2).

• ∪ → is the regular union.

• L(α)→ denotes the language generated by α.

• ∂σ(α) denotes the set of partial derivatives of a term α with respect to the letter σ.

• α ∼ β denote that α is language equivalent to β (i.e. L(α) = L(β)).

2.3 Kleene Algebra and Synchronous Kleene Algebra

We hereby present the most important section of this chapter. Kleene Algebra KA was named
after Stephen Cole Kleene who extensively studied regular expressions and finite automata
[Kle56]. It was further studied by Conway in [Con12] and Dexter Kozen, some of Kozen’s work
can be found on [Koz94, Koz97, Koz03]. In this section we offer the reader some insight not only
into KA and SKA but also to Kleene Algebra with Tests (KAT).

6
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2.3.1 Kleene Algebra

There are several definitions of KA, and hereby we present a definition proposed by Broda, S.,
et al. in [BCFM15], that goes as follows:

A Kleene Algebra can be defined as a structure (K,+, ·, *, 0, 1), where * is a postfix unary op-
eration on K, 0 and 1 belong to K, such that (K,+, ·, 0, 1) is an idempotent semiring satisfying
properties (Axioms) 2.2 to 2.5, as well as all the identities shown in subsection 2.2.1. The
natural order ≤ in (K,+, ·, 0, 1) is defined by x ≤ y iff x+ y = y.

1 + xx∗ ≤ x∗ (2.2)

1 + x∗x ≤ x∗ (2.3)

b+ ax ≤ x→ a∗b ≤ x (2.4)

b+ xa ≤ x→ ba∗ ≤ x (2.5)

The axioms for the * operator are equations 2.2 and 2.3, and two implications or Horn Formu-
las [Hor51] 2.4 and 2.5. The significance of axioms 2.2 to 2.5 concerns the solution of linear
inequalities, as well as axioms 2.2 and 2.4 provide the least solution to a certain single linear
inequality in a single variable. An example of such solution is the fact that said axioms together
say that a∗b is a solution to 2.6.

b+ aX ≤ X (2.6)

One can easily verify the veracity of the previous claim simply by using axiom 2.2. If one
takes into account the monotonicity of multiplication and distributivity 1 + aa∗ ≤ a∗ becomes
(1 + aa∗)b ≤ a∗b which in turn becomes b+ a(a∗b) ≤ a∗b.

Taking into account the information described above we can now talk about Kleene Algebra with
Tests (KAT). Informally, Kleene Algebra with Tests (KAT) is just a Kleene Algebra KA combined
with a Boolean Algebra in order to accommodate tests [Pri10]. These tests are Boolean values
of 0 and 1. Moreover one can formally define a Kleene Algebra with Tests to be variant of KA as
defined by Dexter Kozen in [Koz97], and the definition goes as follows: A KAT is a two-sorted
algebra (K,B,+, ·, *, 0, 1,− ) where B ⊆ K, and − is a unary operator defined only in B such that
(K,+, ·, *, 0, 1) is a Kleene Algebra and (B,+, ·,− , 0, 1) is a Boolean Algebra.
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2.3.2 Synchronous Kleene Algebra

Synchronous Kleene Algebra was introduced by Cristian Prisacariu in 2010 [Pri10] and it combines
Kleene Algebra with a synchrony model of concurrency from Robin Milner’s SCCS calculus [Mil83].
One of the reasons that inspired Prisacariu’s research was the need to represent and to reason
about actions that can be performed simultaneously.

As said by Prisacariu in [Pri10], SKA has three particularities. The first one is that it formalises
a notion of concurrent actions based on a synchronous model. The second one being the fact
that actions are interpreted as sets of synchronous strings. These same actions can also be
represented as a special type of finite automata which accepts the same sets of synchronous
strings that form the models of the actions. And finally, the third particularity is that SKA
incorporates a notion of conflicting actions.

The formal definition of a SKA is a structure (K,+, ·,×, *, 0, 1,Kb), where Kb is a finite set of
atomic actions, (K,+, ·, *, 0, 1) is a Kleene Algebra (KA), and × is a new operator which rep-
resents the synchronous composition of two actions. This new binary operator is associative,
commutative, distributive over + with absorvent element 0 and identity 1. Furthermore, it re-
spects axioms 2.7 - 2.14. Regarding axiom 2.14, it is referred to as the synchrony axiom, where
K×

b is the smallest subset of K that contains Kb and is closed for ×. The operator precedence
goes as follows, + < · < × < *. The set of languages over an alphabet Σ = P(Kb)\{∅} is the
standard model of SKA over Kb. These types of languages are called synchronous languages.
Every a ∈ Σ denotes a synchronous concurrent action.

a× (b× c) = (a× b)× c (2.7)

a× b = b× a (2.8)

a× 1 = 1× a = a (2.9)

a× 0 = 0× a = 0 (2.10)

a× a = a,∀a ∈ Kb (2.11)

a× (b+ c) = a× b+ a× c (2.12)

(a+ b)× c = a× c+ b× c (2.13)

(a× · a)× (b× · b) = (a× × b×) · (a× b),∀a×,b× ∈ K×
b (2.14)

We are now able to define the operations of ”×”. As described in [BCFM15], the synchronous
product of two letters in Σ is simply their union. The synchronous product of two words x =

a1 · · · am and y = b1 · · · bn where n ≥ m is given by x×y = y×x = (a1∪b1 · · · am∪bm)bm+1 · · · bn.
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Finally the synchronous product of two languages L1, L2 is given by

L1 × L2 = {x× y | x ∈ L1, y ∈ L2}

One can inductively define the language L(a) as follows:

• L(a) = {{a}}

• L(0) = ∅

• L(1) = {ε}

• L(a∗) = L(a)∗

• L(a+ b) = L(a) ∪ L(b)

• L(ab) = L(a)L(b)

• L(a× b) = L(a)× L(b)

2.4 Why use Kleene Algebra

Kleene Algebra is widely used in mathematics and computer science. For example, it is used
in relational algebras [AU79] [Pra90] as well as in Propositional Dynamic Logic [Pel85] [HTK00].
Also, Dexter Kozen showed in [Koz00] that KAT subsumes propositional Hoare logic [Hoa69].
Additionally, it can be used to reason about programs [Koz03] [AHK07], and also when reasoning
about concurrent actions is required, or in logic from complex contracts [PS12].

More recently KAT has been used to develop a formal system, namely NetKAT, to reason about
packet switching networks [Koz14]. This system was presented by Anderson, et al. in [AFG+14]
and further developed by Foster, et al. in [FKM+15] and has an important role in software-
defined networks.

These are just some of the applications of KA. As one can see, it plays a major role in several
different areas of computer science and therefore we encourage the reader to pursue more
threads of investigation, so that one can have a wider view of all the implications of KA.

2.5 Related Work

There has been a lot of work done when it comes to decision procedures for KA. For instance,
Thomas Braibant and Damien Pous implemented a new tactic in the COQ proof assistant to decide
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Kleene Algebra [BP12]. Moreover, Thierry Coquand and Vincent Siles described and formally
verified a procedure in [CS11] base on Brzozowki’s derivatives [Brz64]. Also Alexander Krauss
and Tobias Nipkow came up with a decision procedure for regular expression equivalence and
used it to prove equations in relation algebra in Isabelle/HOL [KN12]. Marco Almeida, Nelma
Moreira and Rogério Reis developed an algorithm in [AMR10] that whithout constructing the
underlying automata, decides the equivalence of regular expressions by testing the equivalence
of their partial derivatives. Moreover, this alorithm was then implemented and verified in COQ
by Nelma Moreira, David Pereira and Simão Melo de Sousa [MPMdS12]. Another example is the
work of Tobias Nipkow and Dmitriy Traytel in [NT14] that formalises an unified framework for
verified regular expression decision procedures.

When it comes to decision procedures based on bisimulations, we have the work of Rat, J., et
al. in [RBR13] which uses bisimulation up to congruence, but differs from the one presented in
[BP11] in the fact that they can deal with (quasi)-equations over arbitrary languages. Also, the
work ofMarco Almeida, Nelma Moreira and Rogério Reis in [AMR09] follows the work done by the
same authors on [AMR08] where the proposed algorithm is closely related with the coalgebraic
approach to the automata developed by Rutten in [Rut03].

2.6 Conclusions

This chapter introduced the reader to the notation used throughout this document. Additionally,
it presented the reader with some fundamental definitions that will facilitate the understanding
of the following chapters, and it also showed that Kleene Algebra plays a big role in several
different areas of computer science.

In the next chapter we will discuss a decision procedure for SKA.

10
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Chapter 3

A Decision Procedure for Synchronous Kleene
Algebra

3.1 Introduction

This chapter is one of me most important ones in this document, since it guides the reader
through the detail of the decision procedures for deciding Synchronous Kleene Algebra SKA.
This decision procedure is a combination of two existing procedures, namely, an automaton
construction from partial derivatives of a given regular expression [BCFM15], and the second
one is an automata comparison using bisimulation up-to congruence [BP11].

This chapter comprises two more sections. Section 3.2 contains a detailed explanation of the de-
cision procedure. The most important conclusions gathered from this chapter will be presented
in section 3.4. The details regarding the implementation of this procedure will be discussed in
chapter 4.

3.2 Decision Procedure

In a brief way, this procedure can be explained in the following way: given two regular expres-
sions, we use the partial derivatives method to build two NFAs (one for each regular expression)
that accept the languages generated by said regular expressions. Afterwards we use the bisimu-
lation up-to congruence to compare both NFAs. In the next subsections we will cover the details
of this procedure.

3.2.1 Regular Expression Processing

In order for one to build the NFA, it is needed to perform some operations on the regular expres-
sions. In [BCFM15], Broda, S., et al. defined a formal product (see equation 3.1) and formal
concatenation (see equation 3.2) between two SKA expressions. Moreover, they have some pe-
culiarities, namely, products by ”0” are not considered, and ”1” remains as the identity function
on both sides. Furthermore we refrained from writing α⊗ 1 = 1⊗ α = α (α⊗ 1 = 1⊙ α = α) in
the cases that β = 1 on definition 3.
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Definition 3. Formal Product (⊗) and Formal Concatenation (⊙)

α⊗ β =

{
α× β if β ̸= 1

α if β = 1
(3.1)

α⊙ β =

{
α · β if β ̸= 1

α if β = 1
(3.2)

As shown in [BCFM15], one can now define the same operations over sets of SKA expressions.
Let A,B be sets such that A,B ⊆ TSKA, the concatenation and product operations are defined
by A ⊙ B = {α ⊙ β | α ∈ A\{0}, β ∈ B\{0}} and A ⊗ B = {α ⊗ β | α ∈ A\{0}, β ∈ B\{0}},
respectively.

The construction of the NFA is divided in two steps. For the first step, one needs to find the
support set of a given regular expression. Furthermore, this support set is given by the function
π(α) (see definition 4). The result set of this function becomes the set of states of the NFA.

Definition 4. The function π(α) is inductively defined as follows:

π(0) = π(1) = ∅ π(x) = {1} , x ∈ Kb

π(α∗) = π(α)⊙ α∗ π(α+ β) = π(α) ∪ π(β)

π(αβ) = π(α)⊙ β ∪ π(β) π(α× β) = π(α)⊗ π(β) ∪ π(α) ∪ π(β)

Before we can perform derivatives over a regular expression, we still need to define a function
that checks for the existence of the empty string in the language generated by the given regular
expression, returning ⊤ in the case of its presence, or ⊥ otherwise. Since ε denotes the empty
string in a language, the function name, ε(α), chosen by Broda, S., et al. in [BCM14], is quite
formidable. For the formal definition of this function please refer to definition 5.

Definition 5. Empty String Checking Function.

ε(a) = ε(0) = ⊥ ε(α∗) = ε(1) = ⊤
ε(α+ β) = ε(α) + ε(β) ε(αβ) = ε(α)ε(β)

ε(α× β) = ε(α)ε(β)

The notion of partial derivatives of regular expressions was introduced by Valentin Antimirov
in [Ant96], which elaborates on the work of Brzozowski in [Brz64]. At this point, the reader
now possesses all the necessary knowledge to fully understand the partial derivative function.
This function (see definition 6) returns the set of all partial derivatives of a SKA term α with
respect to the letter σ ∈ Σ, denoted ∂σ(α) by the original authors [BCM14],[BCFM15]. Please
note that Σ is the powerset construction of all the symbols in Kb without the empty set, i.e.
Σ = P(K)\{∅}.
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Definition 6. Partial Derivative Function.

∂σ(0) = ∂σ(1) = ∅

∂σ(a) =

{
{1} if σ = {a}
∅ otherwise

∂σ(α
∗) = ∂σ(α)⊙ α∗

∂σ(α+ β) = ∂σ(α) ∪ ∂σ(β)

∂σ(αβ) = ∂σ(α)⊙ β ∪ ε(α)⊙ ∂σ(β)

∂σ(α× β) = (
∪

σ1×σ2=σ ∂σ1(α)⊗ ∂σ2(β)) ∪ ε(α)⊗ ∂σ(β) ∪ ε(β)⊗ ∂σ(α)

The function presented on definition 6 will give us the set of transitions from a given state α

with respect to the letter σ ∈ Σ.

3.2.2 Bisimulations and Coinduction

This subsection will give the reader with some background information on bisimulations and
coinduction, in order to provide a better understanding of the bisimulation up-to congruence
shown by Filippo Bonchi and Damien Pous on [BP11].

A bisimulation is nothing more than a way to define when two systems have the same behaviour
with no regard for their internal structures. According to [BP11], a formal definition of bisimu-
lation on states with a notion of progression is given by definition 7, where the notation δσ(x)

represents the transition function, where given the letter σ ∈ Σ and the state x as inputs, yields
the next state. Moreover, Final(x) is the function that outputs ⊤ or ⊥ if the given state is either
final or not final, respectively.

Definition 7. Bisimulation. Given S a finite set of states and to relations R,R′ over states such
that R,R′ ⊆ S × S, R progresses to R′ denoted R→ R′ if whenever x R y then

Final(x) = Final(y) ∧ ∀σ ∈ Σ, δσ(x) R
′ δσ(y)

A bisimulation is a relation R such that R→ R.
Proposition 1. Coinduction. Two states X and Y are language equivalent iff there exists a
bisimulation that relates them, i.e. X ∼ Y .

With this concept in mind, we are now able to define a bisimulation up-to a given function on
relations on S. For further insights into the following definitions we refer the reader to the
original author’s work [BP11] and [BP13].
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Definition 8. Bisimulation up-to f. Given a function f : P(S × S)→ P(S × S) A relation R is
a bisimulation up to f if R→ f(R) if whenever x R y then

Final(x) = Final(y) ∧ ∀σ ∈ Σ, δσ(x) f(R) δσ(y)

The reflexive (r), symmetric (s) and transitive (t) closure of a relation R, denoted e(R) is in-
ductively defined by rules 3.3 – 3.6, where id is the identity rule.

x e(R) x
r (3.3)

x e(R) y

y e(R) x
s (3.4)

x e(R) y y e(R) z

x e(R) z
t (3.5)

x R y

x e(R) y
id (3.6)

In order to facilitate the understanding of bisimulations up-to congruence the reader must first
interiorise the concept of congruence closure (see definition 9). We ask the reader to regard
the operation + as the set theoretic union of sets of states X and Y in P(S).

Definition 9. Congruence Closure. Let u : P(P(S)×P(S))→ P(P(S)×P(S)) be a function on
relations on sets of states defined as:

u(R)→ {(X1 +X2, Y1 + Y2) | X1 R Y1 ∧ X2 R Y2}

The function c = (r ∪ s ∪ t ∪ u ∪ id)ω is called the congruence closure function.

The new rule u is defined as

X1 c(R) Y1 X2 c(R) Y2

X1 +X2 c(R) Y1 + Y2
u (3.7)

As proven by Filippo Bonchi and Damien Pous on [BP11], any bisimulation up to c is contained
in a bisimulation.

We will now present a variation of the Hopcroft and Karp’s algorithm [HK71] presented by Filippo
Bonchi and Damien Pous on [BP11], for checking the equivalence of sets of states X and Y of a
NFA on the fly.

On step 3b of the following algorithm, one has to check if some pair (X ′, Y ′) belongs to the con-
gruence closure of the relation. Bonchi and Pous proposed that we look at each pair (X,Y ) ∈ R

as a pair of rewriting rules such that X → X + Y and Y → X + Y . These rules can be used to
compute the normal forms for sets of states since by idempotence X R Y entails X c(R) X+Y .
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Algorithm 1 Up-to Congruence Equivalence Checking Algorithm.
1. R, todo← ∅
2. insert pair (X,Y ) in todo
3. while todo is not empty

(a) extract (X ′, Y ′) from todo
(b) if (X ′, Y ′) ∈ c(R ∪ todo) then skip
(c) else

if final(X ′) ̸= final(Y ′) then return false
else

for all σ ∈ Σ
insert (δσ(X ′), δσ(Y

′)) in todo
insert (X ′, Y ′) in R

4. return true

Moreover, the normal form of a set is just the largest set of its equivalence class. Furthermore,
Bonchi and Pous defined these concepts as shown in definitions 10 and 11.

Definition 10. Let R ⊆ P(S) × P(S) be a relation on sets of states. The smallest irreflexive
relation ⇝R, such that ⇝R⊆ P(S)× P(S) satisfies the following rules:

X R Y

X ⇝R X + Y
(3.8)

X R Y

Y ⇝R X + Y
(3.9)

Z ⇝R Z ′

U + Z ⇝R U + Z ′ (3.10)

X ↓R denotes the normal form of a set X with respect to ⇝R

Definition 11. For all relations R, and for all states X,Y ∈ P(S) we have X ↓R= Y ↓R iff
(X,Y ) ∈ c(R) .

With this information, step 3b becomes the computation of the normal forms of X ′ and Y ′ w.r.t.
R ∪ todo. Another way to look at it is by rewriting X,Y ⇝R X + Y whenever (X,Y ) ∈ R.

3.2.3 Decision Procedure

With the information provided in the previous subsections 3.2.1 and 3.2.2, the decision pro-
cedure is very simple to understand. One starts by constructing the automaton based on the
partial derivatives (see definition 6) and the π(α) function (see definition 4) with respect to
each regular expression given. Afterwards, one uses the algorithm 1 to check the equivalence
of the resulting NFAs.

Due to lack of time, we did not perform a complexity analysis of this procedure, or provided
a proof of correctness. However the complexity analysis for the automata comparison (i.e.
algorithm 1) is provided in [BP13]. Furthermore we intend to conduct such analysis of the
overall procedure as well as provide a proof of correctness in the near future.
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3.3 Toy Example

For a better understanding of this decision procedure, we present the reader with a visual toy
example. Let α = a∗ · b ·a∗ · b · (a+ b)∗ and let β = (a+ b)∗ · b · (a+ b)∗ · b · (a+ b)∗. From this point
it is obvious to see that Kb = {a, b}, and therefore Σ = {{a}, {b}, {a, b}}. We start by computing
the support set of each expression, obtaining the results depicted on figure 3.1.

π(α) = {((((a∗ · b) · a∗) · b) · (a+ b)∗), ((a∗ · b) · (a+ b)∗), (a+ b)∗}

π(β) = {(((((a+ b)∗ · b) · (a+ b)∗) · b) · (a+ b)∗), (((a+ b)∗ · b) · (a+ b)∗), (a+ b)∗}

Figure 3.1: Result of functions π(α) and π(β).

Now that one has the states for our automaton, one needs to find which transitions are valid,
and for that we compute the partial derivatives. The partial derivatives of α and β with respect
to every σ ∈ Σ are shown in figure 3.2. Additionally, we compute the partial derivatives on
the rest of the states (see figure 3.3). In order to facilitate the presentation, we say that
γ = ((a∗ · b) · (a+ b)∗), λ = (((a+ b)∗ · b) · (a+ b)∗) and µ = (a+ b)∗.

∂a(α) = {((((a∗ · b) · a∗) · b) · (a+ b)∗)}
∂b(α) = {((a∗ · b) · (a+ b)∗)}
∂{a,b}(α) = ∅
∂a(β) = {(((((a+ b)∗ · b) · (a+ b)∗) · b) · (a+ b)∗)}
∂b(β) = {(((((a+ b)∗ · b) · (a+ b)∗) · b) · (a+ b)∗), (((a+ b)∗ · b) · (a+ b)∗)}
∂{a,b}(β) = ∅

Figure 3.2: Partial Derivitaves of α and β w.r.t. every σ ∈ Σ.

∂a(γ) = {γ}
∂b(γ) = {µ}
∂{a,b}(γ) = ∅
∂a(λ) = {λ}
∂b(λ) = {λ, µ}
∂{a,b}(λ) = ∅
∂a(µ) = {µ}
∂b(µ) = {µ}
∂{a,b}(µ) = ∅

Figure 3.3: Partial Derivitaves of γ, λ and µ w.r.t. every σ ∈ Σ.

After performing all the computations above, we obtain the resulting automaton depicted in
figure 3.4.

At this point, we just have to execute the algorithm shown in 1. As depicted by figure 3.5, one
starts by extracting (α, β) from todo, afterwards, since Final(α) = Final(β) = ⊥, one inserts
(γ, β + λ) in todo and (α, β) in R. After step 3 the algorithm stops, yielding true.
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((((a* . b) . a*) . b) . (a + b)*)

{ a }

((a* . b) . (a + b)*){ b }

(((((a + b)* . b) . (a + b)*) . b) . (a + b)*)

{ a }
{ b }

(((a + b)* . b) . (a + b)*){ b }

{ a }

(a + b)*

{ b }

{ a }
{ b }

{ b }

{ a }
{ b }

Figure 3.4: Automaton Generated from α and β.

Step 0 → todo = ∅ R = ∅ R ∪ todo = ∅
Step 1 → todo = {(α, β)} R = ∅ R ∪ todo = {(α, β)}
Step 1.1 → processing {(α, β)}
Step 2 → todo = {(γ, β + λ)} R = {(α, β)} R ∪ todo = {(α, β), (γ, β + λ)}
Step 2.1 → processing {(γ, β + λ)}
Step 3 → todo = {(µ, β + γ + µ)} R = {(α, β), (γ, β + λ} R ∪ todo = {(α, β), (γ, β + λ), (µ, β + γ + µ)}

(3.11)

Figure 3.5: Computation of Algorithm 1 for α and β.

3.4 Conclusions

This chapter described a decision procedure for SKA based on the work of Broda, S., et al. in
[BCFM15] and Bonchi, F., et al. in [BP11]. Furthermore we showed a toy example in order
to facilitate the reader’s comprehension of said procedure. In the next chapter we will dis-
cuss the implementation details of the aforementioned procedure using the OCaml programming
language.
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Chapter 4

Implementation and Validation

4.1 Introduction

In this chapter we will discuss the details regarding the implementation of the decision proce-
dure explained in chapter 3. This chapter has the following organisation:

• Section 4.2 – Technologies Used – Explains in detail the most important technologies used
throughout the implementation.

• Section 4.3 – OCaml Implementation – Presents the reader with the details of the OCaml
implementation of this decision procedure.

• Section 4.4 – Tests and Benchmarks – Shows some performance and validation tests con-
ducted under numerous conditions.

• Section 4.5 – Conclusions – Contains the most important conclusions drawn from this chap-
ter.

4.2 Technologies Used

This section provides an insight into the technologies used throughout the implementations of
the decision procedure explained in 3. The most important technologies used were OCaml which
is described in subsection 4.2.1; OCamlgraph explained in subsection 4.2.2; and finally Menhir
that can be seen in subsection 4.2.3.

4.2.1 OCaml

OCaml [XLR96] is a fully fledged, strongly typed functional programming language written in
1996 by Xavier Leroy, Jérôme Vouillon, Damien Doligez, and Didier Rémy, at INRIA in France
[HMM14], [LDF+18]. OCaml is also an imperative language, and also an object-oriented lan-
guage. Moreover, it has a lot of useful libraries and features such as type inference and pattern
matching for inductively defined types.
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4.2.2 OCamlgraph

OCamlgraph is a generic graph library for the OCaml language [CFS07]. It provides the user
with a set of graph data structures and generic implementations of common graph algorithms,
written in way that is independent of the underlying graph data structure thanks to the use of
functors.

4.2.3 Menhir

Menhir is a parser generator for the OCaml language [LDF+18]. It takes LR(1) grammars as
input and turns them into OCaml expressed parsers [PRG18b]. Furthermore, Menhir [PRG18a]
was written by François Pottier and Yann Régis-Gianas, based on the LR(1) parser construction
technique by Donald E.Knuth [Knu65].

4.3 OCaml Implementation

In this section we will discuss how the decision procedure was implemented using the OCaml
programming language. For a visual representation of the of the system, we ask the reader to
look at figure 4.1. In order to process the desired regular expressions, we decided to implement
a small parser which is discussed in subsection 4.3.1. Furthermore, constructing the automaton
requires some operations over regular expressions, said functions are explained in subsection
4.3.2; subsection 4.3.3 contains the details of how we defined an automaton in OCaml. More-
over, the equivalence checker is explained in subsection 4.3.4. Please note that due to its
extension, some of the OCaml code is located in appendix A.

Input Parser Automata
Construction

Equiv.
Checker

Output

Figure 4.1: Visual Structure of the Implementation.

4.3.1 Regular Expression Parser

As most parsers, the one we implemented is divided in two stages, being the first one a lexi-
cal analyser (lexer) which asserts that we only read regular expressions containing the correct
characters. The second one is a syntactical analyser (parser) which enforces us to read only
expressions that are in accordance with the grammar rules. If any of these two fail, the user
will be presented with an error message. This facilitates the fact that only correctly written
regular expressions are given as input to the program.
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We started this implementation by inductively defining what a regular expression can be i.e. its
OCaml type, this definition can be seen on figure 4.2.

1 type regexp_t =
2 | Epsilon
3 | Empty
4 | Char of char
5 | Concat of regexp_t * regexp_t
6 | Choice of regexp_t * regexp_t
7 | Sync of regexp_t * regexp_t
8 | Star of regexp_t

Figure 4.2: Regular Expression Type in OCaml.

The lexical rules were defined using all the regular operators seen in previous chapters of this
document with the exception of the synchrony operator, which is now defined as ”:”. The
complete definition can be seen in figure A.1.

The lexing stage splits the input into tokens, which are then transferred into the parsing stage.
The latter is where one transforms these tokens into OCaml code. The syntactic rules for our
regular expressions were defined as figure A.2 suggests. These rules are defined in a grammar
style way, since this is the way Menhir accepts its rules.

For a better understanding of figure A.2, in line 1 we specify that our programs entry point will
be ”main” rule. This rule is then defined on line 6 which tells Menhir that our program consists
of nothing more than a list of regular expressions followed by two characters, namely an End
Of Line (EOL) character and an End Of File (EOF). Furthermore, on line 8 we define what a list
of regular expressions is, and finally on line 13 we specify the syntactic rule for a well formed
regular expression.

This parser is then invoked by the main function of our program which triggers the parsing
process.

4.3.2 Operations over Regular Expressions

There are several operations over regular expressions defined by Broda, S., et al. in [BCFM15],
and as they are an important part of the decision procedure, we had to implement such oper-
ations in OCaml. We shall start by defining the formal synchronous product and concatenation.
The formal synchronous product (please refer to equation 3.1 on definition 3) is defined by the
code shown in figure 4.3. In order to facilitate computations of such a product, we decided to
implement an infix operator, namely <:>, such that α⊗ β ⇐⇒ α <:> β.

The same formal synchronous product was defined for operations over sets, and its code is as
shown in figure 4.4. This operation already makes use of the infix operator defined in figure
4.3, but for the set operations, we defined yet again other infix operator. To differentiate it
from the previous one we added another ”:” such that <::> is new infix operator.
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1 let (<:>) a b =
2 match a,b with
3 | Epsilon, Epsilon -> Set.singleton(Epsilon)
4 | Epsilon, _ -> Set.singleton(b)
5 | _, Epsilon -> Set.singleton(a)
6 | _ -> Set.singleton(Sync(a,b))

Figure 4.3: Formal Synchronous Product in OCaml.

1 let (<::>) a b =
2 Set.fold (fun a' acc -> match a' with
3 Empty -> acc
4 | _ -> Set.fold (fun b' acc2 -> match b' with
5 Empty -> acc2
6 | _ -> Set.union (a' <:> b') acc2) b acc) a Set.empty

Figure 4.4: Formal Synchronous Product for sets in OCaml.

The formal concatenation (see equation 3.2 on definition 3) was also defined both for single SKA
terms as well as sets of terms. The operation for single SKA terms is shown in figure 4.5, which
defines < ∗ > as the infix operator for this operation such that α ⊙ β ⇐⇒ α < ∗ > β. This
same operation over sets defines < ∗∗ > as its operator and can be seen in figure 4.6.

1 let (<*>) a b =
2 match a,b with
3 Epsilon, Epsilon -> Set.singleton(Epsilon)
4 | Epsilon, _ -> Set.singleton(b)
5 | _, Epsilon -> Set.singleton(a)
6 | _ -> Set.singleton(Concat(a,b))

Figure 4.5: Formal Concatenation in OCaml.

1 let (<**>) a b =
2 Set.fold (fun a' acc -> match a' with
3 Empty -> acc
4 | _ -> Set.fold (fun b' acc2 -> match b' with
5 Empty -> acc2
6 | _ -> Set.union (a' <*> b') acc2) b acc) a Set.empty

Figure 4.6: Formal Concatenation for sets in OCaml.

The implementation of the function that checks for the existence of the empty string in the
language generated by a given regular expression (see definition 5) is given on figure A.3.

One of the most important functions in this implementation is the derivate exp x (see figure
4.7) which returns the set o all partial derivatives of a regular expression (exp) with respect
to the letter ”x”. Furthermore, this function implements the partial derivatives defined in the
previous chapter (see definition 6).
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1 let rec derivate exp (x : char Set.t) =
2 match exp with
3 Char a when Set.singleton a = x -> Set.singleton (Epsilon)
4 | Empty | Epsilon | Char _ -> Set.empty
5 | Choice (f,g) -> (derivate f x) ||. (derivate g x)
6 | Concat (f,g) -> ((derivate f x) <**> Set.singleton(g))
7 ||. (Set.singleton(emptyWord f) <**> (derivate g x))
8 | Star s -> (derivate s x) <**> Set.singleton(Star s)
9 | Sync(f,g) when Set.cardinal x = 1 -> ((derivate f x) <::> (derivate g x))

10 ||. (Set.singleton(emptyWord f) <::> (derivate g x))
11 ||. (Set.singleton(emptyWord g) <::> (derivate f x))
12 | Sync(f,g) -> let ps = ((powerset x) |> Set.remove Set.empty |> Set.remove x) in
13 (Set.fold (fun c1 acc -> let c2 = x -. c1 in
14 ((derivate f c1) <::> (derivate g c2)) ||. acc) ps Set.empty )
15 ||. (Set.singleton(emptyWord f) <::> (derivate g x))
16 ||. (Set.singleton(emptyWord g) <::> (derivate f x))

Figure 4.7: Set of partial derivatives of a SKA term w.r.t. to a letter ”x” in OCaml.

4.3.3 Automata

The first step into automata implementation in OCaml was the creation of two modules. The
first one would represent the Vertices, and the second one would represent the Edges (see figure
4.8).

1 (* representation of a vertex *)
2 module Node = struct
3 type t = regexp_t
4 let compare = Pervasives.compare
5 let hash = Hashtbl.hash
6 let equal = (=)
7 end
8

9 (* representation of an edge *)
10 module Edge = struct
11 type t = string
12 let compare = Pervasives.compare
13 let equal = (=)
14 let default = ""
15 end

Figure 4.8: Modules for Vertex and Edge Representation.

In order to take advantage of some pre-defined functions over graphs, we decided to use OCaml-
graph as a representation for our NFA. Adittionally we defined two more modules. Module G
defines the type of graph we want to use, namely a bidirectional directed graph with labeled
transitions (line 1 on figure A.4). Module NFA depicted by figure A.4, defines type nft where
size represents the size of the automaton, delta specifies the transition function (which in fact
is the NFA itself), and finally accept is the set of accepting states (i.e. final states).

Now that we have the NFA defined in OCaml, we have to build it according to a given regular
expression. Moreover, we need to generate the set of states (vertices) and their transitions
(edges). As explained in the previous chapter, the set of states is given by the π(α) (see definition
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4) function which was implemented as shown in figure 4.9. For the edge generation, one first
needs to determine which alphabet is used in the regular expression at hand. Furthermore, that
alphabet is determined by the function getSymbols exp depicted on figure A.5. We are now
able to fully understand the function that builds the automaton given a regular expression. This
function is called buildAutomata exp g which accepts an expression and a graph. We refer the
reader to figure 4.10 for its implementation.

1 (* Function that creates a support set for a given regular expression *)
2 let rec piFun exp =
3 match exp with
4 Empty | Epsilon -> Set.empty
5 | Char _ -> Set.singleton(Epsilon)
6 | Star s -> (piFun s) <**> (Set.singleton(Star s))
7 | Choice(a,b) -> (piFun a) ||. (piFun b)
8 | Concat(a,b) -> (piFun a) <**> Set.singleton(b) ||. (piFun b)
9 | Sync(a,b) -> (piFun a) <::> (piFun b) ||. (piFun a) ||. (piFun b)

Figure 4.9: OCaml Implementation of π(α).

1 let rec getEdges exp src l g =
2 if Set.is_empty exp then g
3 else let e,s = pop exp in getEdges s src l (G.add_edge_e g (G.E.create src l e))
4

5 let buildAutomata exp g =
6 (* let g = G.empty in *)
7 let sigma = (powerset (getSymbols exp)) |> Set.remove Set.empty in
8 let states = Set.singleton(exp) ||. piFun exp in
9 Set.fold (fun x acc ->

10 Set.fold (fun y acc2 ->
11 Set.fold (fun z acc3 -> G.add_vertex acc3 (G.V.create z) ) (*Create Nodes *)
12 states (getEdges (derivate y x) y (sprint_set ~first:"{" ~sep:", " ~last:"}"

x) acc2) ) (*Create Edges*)↪→

13 states acc)
14 sigma g

Figure 4.10: OCaml Function for Automaton Construction.

4.3.4 Equivalence Checker

The equivalence checking function is depicted in figure 4.11. In line 5 we check if both states
x and y from automaton t are simultaneously final or not, i.e. if Final(x) = Final(y). On
line 6 we check if (x, y) belong to c(R) and if so, we can skip it, otherwise we insert all pairs
(δσ(x), δσ(y)) ∀σ ∈ Σ in todo.

4.4 Tests and Benchmarks

As a way of validating the implementation, some tests were conducted. For all tests we start
with two inputs A and B, and an expected output. Afterwards we register the given output and
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1 let rec loop todo =
2 match R.Q.pop todo with
3 | None -> true
4 | Some ((x,y),todo) ->
5 if not (R.check t x y) then raise CE;
6 if unify x y todo then loop todo
7 else loop (push_span x y todo)

Figure 4.11: OCaml Function for Equivalence Checking.

match it against the expected output. Table 4.1 shows the results obtained.

Test
Number

Input A Input B Output
Expected
Output

Passed

1 a+ (b+ c) (a+ b) + c ⊤ ⊤ ✓
2 a+ b b+ a ⊤ ⊤ ✓
3 a+ 0 a ⊤ ⊤ ✓
4 a+ a a ⊤ ⊤ ✓
5 a.(b.c) (a.b).c ⊤ ⊤ ✓
6 1.a a ⊤ ⊤ ✓
7 a.1 a ⊤ ⊤ ✓
8 a.(b+ c) a.b+ a.c ⊤ ⊤ ✓
9 (b+ a)∗ (a+ (b.b))∗ ⊥ ⊥ ✓
10 (a.(b+ a)∗)× (a+ (b.b))∗) (c+ a)∗ ⊥ ⊥ ✓
11 a∗.b.a∗.b.(a+ b)∗ (a+ b)∗.b.(a+ b)∗.b.(a+ b)∗ ⊤ ⊤ ✓
12 (a+ b)∗.(a.a+ b.b) (a+ b)∗.a.a+ (a+ b)∗.b.b ⊤ ⊤ ✓
13 a.b∗ + a.c∗ a.(b∗ + c∗) ⊤ ⊤ ✓
14 (a+ b).c (b+ a).d ⊥ ⊥ ✓
15 (a+ b) + c (b+ a) + d ⊥ ⊥ ✓
16 (a+ b) + c (b+ a) + c ⊤ ⊤ ✓
17 (a+ b).c (b+ a).c ⊤ ⊤ ✓
18 a× (b× c) (a× b)× c ⊤ ⊤ ✓
19 a× b b× a ⊤ ⊤ ✓
20 a× 0 0× a ⊤ ⊤ ✓
21 a× 1 1× a ⊤ ⊤ ✓
22 a× a a ⊤ ⊤ ✓
23 a× (b+ c) a× b+ a× c ⊤ ⊤ ✓
24 (a+ b)× c a× c+ b× c ⊤ ⊤ ✓
25 a∗ × b× a∗ × b× (a+ b)∗ (a+ b)∗ × b× (a+ b)∗ × b× (a+ b)∗ ⊥ ⊥ ✓

Table 4.1: List of Tests Performed and their results.

As a pure illustrative exercise we ran non SKA tests (1− 9, 13− 19) on a Python implementation
by Ferreira, M., et al., using the FAdo library [RM18] by Reis, R. and Moreira, N.. Moreover we
did not run the tests involving the synchrony operator because we could not find the notation
for its use. The time comparison is shown in table 4.2, where all times are in seconds.

Real User System
OCaml 0.540 0.063 0.438
Python 0.960 0.422 0.500

Table 4.2: Ilustrative Time Comparison Between Implementations.
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4.5 Conclusions

As seen in this chapter, the decision procedure described in chapter 3 was successfully imple-
mented in OCaml. To summarise, we feed two inputs α and β to the parser, which transforms
the given regular expressions into OCaml code. Afterwards we compute the support set and the
partial derivatives for both expressions. The resulting automaton is given to the equivalence
checker which outputs ⊤ when α ∼ β or ⊥ otherwise.

Input α

Input β

Parser
π(α) δσ(α)

π(β) δσ(β)

automata construction

equivalence checker Output {⊤,⊥}

Figure 4.12: Visual Details of the Implementation.

Additionally some tests were performed in order to validate the implementation. Finally an
illustrative comparison was made between a Python implementation and our OCaml implemen-
tation.
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Chapter 5

Conclusions and Future Work

In this thesis it was presented a detailed explanation of a decision procedure for Synchronous
Kleene Algebra SKA. This chapter contains the main conclusions drawn from the project, as
well as it refers to some of the improvements and future work that the developer intends to
complete in a near-future.

5.1 Main Conclusions

As it can be seen in this document, I successfully studied and implemented a decision procedure
for Synchronous Kleene Algebra using OCaml. Additionally some tests were conducted in order
to validate the implementation.

Some difficulties came up during the development of this thesis, however it is accurate to say
that it was a very interesting and challenging assignment. For instance, due to the fact that
there were a lot of new concepts to interiorise (e.g. bisimulation, coinduction), the time spent
to investigate all of them was longer than expected. Familiarisation with OCamlgraph was also
time consuming. Overcoming these issues was quite fulfilling and rewarding because it con-
tributed to a deeper understanding of the concepts involved. This project not only introduced
me to promising technologies such as OCamlgraph but also to the very fascinating field that is
Synchronous Kleene Algebra.

To summarise, the main goals of this thesis were successfully achieved, and its development
dazzled me into continuing to study and investigate further in this astonishing field that is
Kleene Algebra.

5.2 Future Work

This thesis could be extended in the future in several different but complementary ways. When
it comes to deciding SKA there is always room for improvement, and this thesis is no exception,
and further decision procedures should be studied and implemented. Additionally, we would like
to perform a complexity analysis on this procedure and provide a proof of correctness. Also,
in the near-future it would be interesting to extend this project by extracting code generated
from a constructive proof using the COQ proof assistant (see https://coq.inria.fr/).
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Appendix A

OCaml Source Code

A.1 OCaml Source Code

1 let space = [' ' '\t']
2 rule token = parse
3 | space { token lexbuf }
4 | '\n' { new_line lexbuf; EOL }
5 | ['a'-'z'] as c { CHAR c }
6 | '0' { EMPTY }
7 | '1' { EPSILON }
8 | '*' { STAR } (* the Kleene star operator *)
9 | '+' { CHOICE } (* the union operator *)

10 | '.' { CONCAT } (* the concatenation operator *)
11 | ':' { SYNC } (* the synchronous operator *)
12 | '(' { LPAR }
13 | ')' { RPAR }
14 | eof { EOF }
15 | _ as st { lex_error lexbuf (String.make 1 st)}

Figure A.1: Lexer rules for Regular Expressions in OCaml.

1 %start main
2 %type <RegExp.regexp_t list> main
3

4 %%
5

6 main: r = regexlist EOL* EOF { List.rev r }
7

8 regexlist:
9 r = regex {[r]}

10 | rl = regexlist EOL+ r = regex {r::rl}
11 | rl = regexlist EOL+ error { print_syntax_error ($startpos($3)) ; rl }
12

13 regex:
14 | EPSILON { Epsilon }
15 | EMPTY { Empty }
16 | c = CHAR { Char c }
17 | LPAR r = regex RPAR { r }
18 | a = regex CHOICE b = regex { Choice(a, b) }
19 | a = regex CONCAT b = regex { Concat(a, b) }
20 | r = regex STAR { Star r }
21 | a = regex SYNC b = regex { Sync(a,b)}

Figure A.2: Parser rules for Regular Expressions in OCaml.
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1 let rec emptyWord w =
2 match w with
3 Empty | Char _ -> Empty
4 | Epsilon | Star _ -> Epsilon
5 | Choice (f,g) -> (match (emptyWord f) with
6 Empty -> emptyWord g
7 | Epsilon -> Epsilon
8 | _ -> assert false)
9 | Concat (f,g) | Sync(f,g) -> (match (emptyWord f) with

10 Empty -> Empty
11 | Epsilon -> emptyWord g
12 | _ -> assert false)

Figure A.3: Nullable SKA term in OCaml.

1 module G = Graph.Persistent.Digraph.ConcreteBidirectionalLabeled(Node)(Edge)
2 module NFA = struct
3 include G
4 type nft = {
5 size: int;
6 delta: G.t;
7 accept: regexp_t Set.t; }
8 let size a = G.nb_vertex a.delta
9 let accept a = fold_vertex (fun x acc ->

10 if emptyWord x = Epsilon then Set.add x acc else acc) a.delta Set.empty
11 let vars a = let r =
12 fold_edges_e (fun x acc -> Set.add (G.E.label x) acc) a.delta Set.empty in r
13 let delta a v x =
14 try
15 fold_succ_e (fun y acc -> if G.E.label y = v then Set.add (G.E.src y) acc
16 else acc ) a.delta x Set.empty
17 with Invalid_argument _ -> Set.empty
18 let delta_set a v x = Set.fold (Set.union % delta a v) x Set.empty
19 end
20 type nfa = NFA.nft

Figure A.4: OCaml NFA Implementation Module.

1 (* Function that returns a set of symbols in a given regular expression *)
2 let rec getSymbols exp =
3 match exp with
4 Empty | Epsilon-> Set.empty
5 | Char c -> Set.singleton(c)
6 | Choice (f,g) | Concat (f,g) | Sync (f,g) -> (getSymbols f) ||. (getSymbols g)
7 | Star s -> getSymbols s

Figure A.5: Function that Exctracts the Symbols used in a Regular Expression.
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