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Abstract 
Computational fluid dynamics (CFD) plays an important role to quantify, understand and 

“observe” the water movements around the human body and its effects on drag (D). We 

aimed to investigate the flow effects around the swimmer and to compare the drag and 

drag coefficient (CD) values obtained from experiments (using cable velocimetry in a 

swimming pool) with those of CFD simulations for the two ventral gliding positions 

assumed during the breaststroke underwater cycle (with shoulders flexed and upper 

limbs extended above the head - GP1; with shoulders in neutral position and upper 

limbs extended along the trunk - GP2). Six well-trained breaststroke male swimmers 

(with reasonable homogeneity of body characteristics) participated in the experimental 

tests; afterwards a 3D swimmer model was created to fit within the limits of the sample 

body size profile. The standard k- turbulent model was used to simulate the fluid flow 

around the swimmer model. Velocity ranged from 1.30 to 1.70m/s for GP1 and 1.10 to 

1.50m/s for GP2. Values found for GP1 and GP2 were lower for CFD than experimental 

ones. Nevertheless, both CFD and experimental drag/drag coefficient values displayed 

a tendency to jointly increase/decrease with velocity, except for GP2 CD where CFD and 

experimental values display opposite tendencies. Results suggest that CFD values 

obtained by single model approaches should be considered with caution due to small 

body shape and dimension differences to real swimmers. For better accuracy of CFD 

studies, realistic individual 3D models of swimmers are required, and specific 

kinematics respected.  

 

Introduction 

Swimming performance is determined by the combined effect of propulsion, drag and 

skill (Chatard et al., 1990a; D’Acquisto et al., 1988). Chatard et al. (1990b) indicated 

passive drag as a reasonable predictor of swimming performance especially during the 



underwater glide phases of the starts and turns. These phases are an important 

component of the overall swimming during short distance events. Indeed, the total 

swimming event time can be divided in start, swim, turn and finish partial times (Haljand 

& Saagpakk, 1984), having the starts and turns a significant importance (Guimarães & 

Hay, 1985; Vilas-Boas & Fernandes, 2003) to reduce the time race. For the particular 

case of the 200m breaststroke event the start might be responsible for 0.5 to ~11% of 

the total time and the turns for ~39% (Tayer & Hay, 1984). Lyttle et al. (1998), 

conducted a race analysis, dividing the start section in four phases: leave the block, 

flight, underwater and above water phases. Complementarily, in breaststroke events, 

the underwater phase can be divided into four phases (Counsilman, 1986; Maglisho, 

2003): (i) ventral position with upper limbs extended above the head and shoulder 

flexed, with lower limbs together (first gliding position, GP1); (ii) upper limbs action; (iii) 

ventral position with upper limbs extended along the trunk with lower limbs stretch and 

together (second gliding position, GP2); and (iv) recovery phase followed by the lower 

limbs action toward the surface.  

In these two gliding positions drag and drag coefficient was only compared by Vilas-

Boas et al. (2010) at a common mean velocity of 1.37m/s using inverse dynamics and 

an analytic/experimental approach based on acceleration and inertia. Other drag gliding 

related studies were mostly either experimental or numerical, using towing devices 

(Kolmogorov et al., 1997; Lyttle et al., 2000; Toussaint, 2004) or CFD simulations 

(Bixler, 2007; Marinho et al., 2009, 2011; Sato and Hino, 2010; Costa et al.,2011, Popa 

et al., 2011). Experimental approaches may be affected by several drawbacks, both 

related to the experimental setup and the ability of the swimmer to maintain a stable 

gliding position throughout time (Bixler et al., 2007). On the other hand, computer 

simulations seem to rely on the appropriateness of the models and assumptions. Most 



of the CFD studies in swimming using non-realistic (geometric shapes), quasi-realistic 

(human body or segment shapes artificially created) and realistic (3D image of real body 

or segment) models, try to generalize findings to the overall swimmers population. 

Nevertheless, a question remains: are the numerical conclusions, even if extracted from 

realistic or quasi-realistic models, able to be generalised, disregarding small differences 

in body dimensions and shape? Nowadays, with the accessibility of 3D body scanners, 

CFD related researchers tend to favour realistic and personalised models to test the 

effects of detailed changes (e.g. in swimsuits). The rationale for this tendency seems 

mostly determined by scientific believes than by scientific facts as, to the best of our 

knowledge, no previous studies have analysed the issue above. 

Our purpose was to analyse whether passive drag values obtained during GP1 and 

GP2 may be accurately predicted through CFD. A quasi-realistic model with marginally 

coherent body dimensions was used throughout a range of ecologically-based selected 

velocities. It was hypothesised that the lack of personalised models and specific gliding 

kinematics may compromise the validity of the model results. In addition, we also aimed 

to compare the drag and CD values of either GP. 

 

Methods 

Experimental Approach  

Six well-trained male breaststroke swimmers volunteered to participate and freely 

signed a written informed consent. The study was approved by the host institution´s 

ethical committee. Testing sessions were conducted in a 25m pool, 1.90m deep, with 

water temperature maintained at 27.5ºC ± 0.5ºC. The characteristics of the sample are 

presented in Table 1. The body cross sectional area was determined through 

planimetry, using scaled photographs of the subjects, as described in (Vilas-Boas et al., 



2010). 

The drag was assessed using inverse dynamics based upon inertia and acceleration, 

obtained through numerical differentiating of the velocity to time (v(t)) curve of each 

glide phase, acquired by a swim-meter (Swimsensor, Porto University, Portugal; for 

methodological details see Vilas-Boas et al., 2010). The accuracy of this swim-meter 

was previously tested for swimming speed fluctuation patterns presenting mean  SD 

correlation coefficient values of 0.96±0.028 for hip vs. image-based hip kinematics, and 

0.88±0.053 for hip vs. centre of mass (CM) kinematics (Lima et al., 2006). Each 

swimmer performed three repetitions of the breaststroke underwater cycle at maximal 

intensity, with a 2min rest interval between trials. During data processing, v(t) curve of 

each swimmer’s best trial was chosen (trial with the better definition of the different 

gliding phases and with lower noise). It was filtered with a 3Hz low-pass 4th order 

Butterworth filter and then numerically differentiated to obtain acceleration (a(t)). The 

velocities common to all swimmers were: 1.3, 1.4, 1.5, 1.6, 1.7m/s in GP1 and 1.1, 1.2, 

1.3, 1.4, 1.5m/s in GP2.  

The drag force was computed using the following expression: 

     D = m a      (1) 

where m is the swimmer’s body mass and a the swimmer’s acceleration. 

 

To quantify the drag coefficient, the following equation was used: 
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Where, CD is the drag coefficient,  the water density (998.2kg/m3), S the swimmer’s 

body cross sectional area while D and v are as referred. 

 

Computational Fluid Dynamics Approach  



 

Three-dimensional model 

To obtain the surface geometry of the human body, a 3D body scan of a swimmer within 

the limits of the sample body size profile was performed. Then, it was further processed 

in AutoCAD® and GAMBIT® (Figure 1) to finally generate the meshed model, which was 

imported into FLUENT® (ANSYS®, Hanover, USA) for performing CFD simulations. 

CFD Simulation 

The CFD simulation was performed on the model fixed in a horizontal position at an 

angle of attack of 0º (defined between a horizontal line and a line drawn from the tip of 

the middle finger or the vertex head, depending on the upper limbs position, to the ankle 

joint). The height of model was 1.87m, with head, chest and waist circumferences of 

0.57, 1.04 and 0.85m, respectively. The swimmer model was positioned at a depth of 

0.90m from the water surface in rectangular computational domains with 2.50m width, 

1.80m depth and 8.00m in pool length for GP1 and 7.55m for GP2. The remaining 

model and water conditions are presented in Table 2. 

 

 

Boundary Conditions 

The simulation was carried out on the meshed model, consisting of 1 million tetrahedral 

cells, with a uniform velocity (U0 – with only x-coordinate direction) equal to 1.30, 1.40, 

1.50, 1.60 and 1.70m/s for GP1 and 1.10, 1.20, 1.30, 1.40 and 1.50m/s for GP2. It was 

ensured that the CFD model would provide accurate results, particularly by refining the 

grid in areas of high velocity and pressure gradients. 

 

CFD Model 



The numerical simulation of the fluid flow around the 3D swimmer model was 

implemented into the ANSYS FLUENT® CFD software. As the current study focused on 

the global drag and not on the flow turbulences, the closure problem of the turbulence 

modeling was solved using k– model with appropriate wall functions (Bixler & Riewald, 

2002; Rouboa et al., 2006). This model is extensively applied and validated in various 

industrial applications (Raiesi, 2011) and is realistic for free-shear layer flows with 

relatively small pressure gradients (Bardina, 1997). A second order discretization 

scheme was applied to limit numerical dissipation. The convergence criterion of 10-6 has 

proved sufficient for this study. 

 

Statistical Analysis 

To check the level of agreement between the values of passive drag by experimental 

and CFD methods we used the Bland & Altman (1996) plots with Confidence Index (CI) 

of 95%. All statistical tests were made in MedCalc 9.3.2.0 (MedCalc Software, 

Mariakerke, Belgium). 



Results 

The results obtained in GP1 and GP2 for both drag and CD values are presented in 

Figure 2. 

By using the above-referred methods, data evidences that drag increases with velocity 

in both glide positions, displaying a very strong correlation between both drag 

determination methods in GP1 (R= 0.95, p= 0.01) and strong correlation for GP2 (R= 

0.87, p= 0.05). Drag values derived experimentally were higher than those obtained 

from the CFD method. The difference of the drag values between both methods was 

approximately constant for the whole range of studied velocities (Figures 3a and 4a). All 



points are dispersed within the limits of ±1.96SD from the mean (Figures 3b and 4b).  

For GP1 the CD results showed a very strong correlation between both methods (R = 

0.93, p = 0.018, Figure 3c). All points are dispersed within the limits of ±1.96SD around 

the mean (Figure 3d) and the difference between these limits is 0.10. However, for GP2, 

the correlation between methods is negative and moderate (Figure 4c) and showed a 

difference between the ±1.96SD limits around mean of 0.67 (Figure 4d). This difference 

is not acceptable from a biomechanical point of view. It is possible to conclude that the 

methods should not be considered consistent for CD results in GP2. 

 

Discussion 

The aim of the present study was to compare experimental and CFD methods by the 

analysis of drag and CD for GP1 and GP2 of the breaststroke underwater cycle, 

verifying if a single-model CFD simulation allows to generalize the results to a sample of 

swimmers. In this work was found a good and positive correlation of drag and CD values 

between numerical and experimental methods for GP1. In GP2 we observed the same 

trend for drag, however CD values were not positively correlated between methods. This 

difference can be attributed to constraints during the experiment, measurement errors 

and/or errors in the CFD model characteristics. In the current study, the head position 

and the shoulders elevation varied during the experimental tests, while, the CFD model 

maintained the best streamline position throughout. It is well known that drag depends 

on body position (e.g. Karpovich, 1933; Marinho et al. 2009; Vilas-Boas et al., 2010), 

especially the position of the limbs and the head (Zaidi et al., 2008, Popa et al., 2011).  

The drag underestimation produced by CFD is most likely due to a lack of precise 

control of the swimmer’s body position during experimental situations. The current study 

presents similar variation characteristics as observed in past studies (Lima et al., 2006; 



Vilas-Boas et al., 2010; Costa et al., 2010, Marinho et al., 2009-2011). Also, the 

swimmer had to position himself in a more restrictive position in GP2 than in GP1, 

leading to areas of high pressure gradients, particularly close to the head and shoulders 

(Marinho et al., 2009; Costa et al., 2010; Vilas-Boas et al. 2010; Costa et al., 2011).  

Nevertheless, since the difference between drag determination by the two methods is 

approximately constant (as shown by the similar line slopes in Figure 2a and 2c) the 

CFD results can still be used to predict passive drag values for a given swimmer at a 

given velocity by adding a suitable constant (16.6N for GP1, Figure 3b; 15.6N for GP2, 

Figure 4b). 

For CD values the predictive potential of CFD single model approach is not adequate, 

particularly for GP2. This may be caused mainly by the referred “misalignment” of the 

swimmers and consequent change in S which directly implicates on the computation of 

CD (Eq. 2) while the CFD swimmer model is always the same, although being compared 

against several swimmers. 

Therefore, we conclude that the one to one correlation of swimmer body position during 

experiment and CFD simulations is essential. In particular, for the experimental side, the 

head, limbs and body alignment affect the angle of attack and the depth of glide. 

Therefore, to have the CFD simulations as close as possible to the actual experimental 

conditions, it is necessary: 1) to control the position, alignment and orientation of the 

swimmer during the experimental situation; 2) or to feed the experimental position and 

attitude of the swimmer to the CFD simulations which is not straightforward and poses 

severe constraints.  

It is evident from the current study that CFD method might be a good tool choice due to 

the offered precision, accuracy and flexibility. However, it is necessary to use 

individualized models and specific kinematics for the simulations. 
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Tables Legends 

Table 1. Characteristics of the sample (mean; n=6). 

Table 2. Characteristics for the model surface, turbulence and water.  

 

Tables 

 Body cross sectional area (cm
2
) 

Age (years old) Height (m) Body mass (kg) GP1 GP2 

18.2 ± 4.0 1.78 ± 0.09 64.4 ± 11.4 759.95±124.12 814.46±111.23 

Table 1. Characteristics of the sample (mean; n=6) 



 

Model’s roughness 0 Water Temperature 28ºC 

Surface model´s 
viscosity 

0.5 Water Density 998.2 kg m
-3

 

Turbulence 1% Water Viscosity 0.001 kg m s
-1 

Scale of turbulence 0.10 m   

 
Table 2. Characteristics for the model surface, turbulence and water.  

 

 

Figure Captions 

Figure 1: Swimmer’s model after its formation through surfacing and meshing software's 

in two respective glide positions: (a) GP1 (b) GP2. 

 

Figure 2: Drag and drag coefficient values for GP1 (a and b, respectively) and GP2 (c 

and d, respectively) obtained through experimental method (mean; n= 6) and CFD for 

all velocities tested. 

 

Figure 3: Correlation between Experimental method and CFD in GP1 for passive drag 

(a), and drag coefficient values (c) for 1.30, 1.40, 1.50, 1.60 and 1.7m/s flow velocities; 

Bland & Altman plot: comparing the passive drag (b) and drag coefficient values (d) 

obtained by inverse dynamic and CFD, in GP1 for all velocities tested. 

 

Figure 4: Correlation between Experimental method and CFD in GP2 for passive drag 

(a) and drag coefficient values (c) for 1.10, 1.20, 1.30, 1.40 and 1.50m/s flow velocities; 

Bland & Altman plot: comparing the passive drag (b) and drag coefficient values (d) 

obtained by inverse dynamic and CFD, for GP2 for all velocities tested. 
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