Accepted Manuscript

Title: Effects of 10 min vs. 20 min passive rest after warm-up on 100 m freestyle time-trial performance: a randomized crossover study

Author: Henrique P. Neiva Mário C. Marques Tiago M.
 Barbosa Mikel Izquierdo João L. Viana Daniel A. Marinho

PII:
S1440-2440(16)30059-7
DOI:
Reference:
http://dx.doi.org/doi:10.1016/j.jsams.2016.04.012
JSAMS 1324
To appear in: Journal of Science and Medicine in Sport
Received date: 4-6-2015
Revised date: 8-4-2016
Accepted date: 30-4-2016
Please cite this article as: Neiva HP, Marques MC, Barbosa TM, Izquierdo M, Viana JL, Marinho DA, Effects of $10<$ ce:hsp $\mathrm{sp}=0 \ddot{0} .25 / />\min$ vs. $20<$ ce:hsp $\mathrm{sp}=0 \ddot{0} .25 / \gg \mathrm{min}$ passive rest after warm-up on $100<c e: h s p ~ s p=0.25 />m$ freestyle time-trial performance: a randomized crossover study, Journal of Science and Medicine in Sport (2016), http://dx.doi.org/10.1016/j.jsams.2016.04.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Effects of 10 min vs. 20 min passive rest after warm-up on 100 m freestyle time-trial performance: a randomized crossover study

Henrique P. Neiva ${ }^{1,2}$, Mário C. Marques ${ }^{1,2}$, Tiago M. Barbosa ${ }^{2,3}$, Mikel Izquierdo ${ }^{4}$, João L. Viana ${ }^{2,5}$, Daniel A. Marinho ${ }^{1,2}$
${ }^{1}$ University of Beira Interior, Department of Sport Sciences, Covilhã, Portugal
${ }^{2}$ Research Center in Sport Sciences, Health Sciences and Human Development, CIDESD, Portugal
${ }^{3}$ National Institute of Education, Nanyang Technological University, Singapore
${ }^{4}$ Department of Health Sciences, Public University of Navarre, Navarre, Spain.
${ }^{5}$ University Institute of Maia, ISMAI, Maia, Portugal

Original Investigation

Corresponding Author and address:

Mikel Izquierdo, PhD

Department of Health Sciences

Public University of Navarra (Navarra) SPAIN

Campus of Tudela

Av. de Tarazona s/n. 31500 Tudela (Navarra) SPAIN

Tel + 34948417876
mikel.izquierdo@gmail.com

Manuscript Word count: 2981

Abstract word count: 209

Number of Tables: 2
Number of Figures: 1

Abstract

Objectives: The aim of this study was to compare the effect of 10 min vs. 20 min passive rest post warm-up on performance in a 100 m freestyle time-trial.

Design: Randomized crossover. Methods: Eleven competitive male swimmers performed two experimental trials on different days, consisting of 100 m freestyle time-trials following 10 min or 20 min passive rest after a standard 1,200 m warm-up. Performance (time-trial), biomechanical (stroke length, stroke frequency, stroke index, propelling efficiency), physiological (blood lactate concentrations, heart rate, core and tympanic temperature), and psychophysiological (perceived effort) variables were assessed during both trials.

Results: Time-trial performance was faster after 10 min as opposed to 20 min passive rest $(58.41 \pm 1.99 \mathrm{~s}$ vs. $59.06 \pm 1.86, \mathrm{p}<0.01$). This was supported by strong effect sizes $(\mathrm{d}=0.99)$ and the qualitative indication of "likely" positive effects. Heart rate before the time-trial was also higher after 10 min passive rest ($89 \pm 12 \mathrm{bpm}$ vs. $82 \pm 13 \mathrm{bpm} ; \mathrm{p}<0.01$). Furthermore, net core temperature and oxygen uptake values before the time-trial were substantially lower after 20 min passive rest.

Conclusions: These data suggest that the 10 min post warm-up passive rest enhances 100 m freestyle performance when compared to a 20 min period. An improvement that appears to be mediated by the combined effects of a shorter post warm-up period on core temperature, heart rate and oxygen uptake.

Keywords: Sports Performance; Pre-exercise; Swimming; Heart Rate; Temperature.

Introduction

Warming-up before training or competition has become one of the most interesting topics for coaches, swimmers and researchers in the last few years. ${ }^{1-3}$ Studies have described physiological adaptations to warm-up that theoretically support a positive effect of warm-up on subsequent performance; these effects are mostly linked to an increase in body temperature. ${ }^{4,5}$ For instance, warm-up causes faster oxygen dissociation from hemoglobin, acceleration of metabolic reactions and nerve conduction rate, and reduced muscle and joint resistance. ${ }^{4}$ Besides the effects on body temperature, priming physical activities might also exert additional effects that benefit performance, such as elevated baseline oxygen uptake $\left(\mathrm{VO}_{2}\right)$ and increased amplitude of the primary VO_{2} response to subsequent exercise. ${ }^{6}$

In swimming, it was only recently that evidence of the positive effects of warm-up on performance has started to emerge. Studies found that swimmers were 1.5% faster in the 100 m freestyle ${ }^{7}$ and were able to apply 11.5% more propelling force during a 30 s all-out freestyle when warm-up was perfomed. ${ }^{8}$ However, only a few studies have focused on the warm-up structure. ${ }^{1,2,9}$ The duration of the rest interval separating the warm-up from the main high intensity task appears to be critical for subsequent performance. It might seem obvious that one should aim to maintain the increased metabolic rate achieved during warm-up, ${ }^{10}$ but in competition, a period of time is also needed to accomplish all official requirements before the race. Zochowski et al. ${ }^{9}$ reported that 200 m time-trial swim performance was 1.38% faster after 10 min passive rest compared to 45 min . Using a longer rest period, West et al. ${ }^{2}$ verified that 200 m time-trial swim performance times were 1.48% faster after a 20 min passive rest compared to 45 min . Higher core temperature (Tcore) ${ }^{2}$ and higher heart rate at the beginning of the race, which potentially increased baseline oxygen consumption, ${ }^{9}$ were the main
mechanisms associated with the improved performance following shorter passive rest intervals. A main limitation of these studies is the longer duration of the rest period used, i.e. 45 min , which might even be too long to simulate a real competition. In addition, both studies focused on 200 m time-trial performance and did not measure VO_{2} or biomechanical responses.

To the best of our knowledge, studies to date have only focused on the effects of different post warmup intervals in the 200 m race, assessing few physiological parameters and disregarding hypothetical biomechanical responses. Moreover, other racing distances might demand different passive rest periods. For instance, the 100 m freestyle involves a different use of metabolic pathways, with a lower aerobic contribution than the 200 m and perhaps less dependence on higher pre-trial $\mathrm{VO}_{2}{ }^{29}$ In addition, the majority of studies investigating the effects of warm-up on swimming performance have used a standard 10 min interval, but their findings can only be fully understood if one knows how different recovery periods could influence the results. Therefore, the aim of the present study was to compare the effects of two different post warm-up intervals (10 and 20 min rest) on 100 m freestyle performance. Performance, biomechanical, physiological and psychophysiological responses were investigated. It was hypothesized that the shorter passive rest period would result in better swimming performance.

Methods

Eleven competitive male swimmers (age 17.4 ± 1.8 years; height $176.4 \pm 5.7 \mathrm{~cm}$; body mass $65.7 \pm 9.4 \mathrm{~kg}$) took part in this study. Swimmers were eligible for the study if they had competed at the national level for the previous 6 years. In the current season, the swimmers trained with $36390 \pm 5960 \mathrm{~m}$ per week during 6 to 9 training sessions/week; the average personal best time in the 100 m freestyle was $57.92 \pm$ 2.05s (534.4 ± 56.8 FINA 2015 scoring points). After university ethics committee approval, ensuring compliance with the Helsinki declaration, participants were informed about the study procedures, and written informed consent and/or assent forms were obtained.

The study followed a repeated measures design. Each participant completed 2 time-trials of 100 m freestyle, in randomized order, separated by 48 hr . Swimmers were asked to wear the swimsuits they normally wore during competitions. All the experiments were conducted two months after the beginning of the season, at the same time of day (8:00-13:00 AM) in a 50 m indoor swimming pool with water temperature of $27.6 \pm 0.1^{\circ} \mathrm{C}$, air temperature of $27.9 \pm 0.1^{\circ} \mathrm{C}$ and $60.7 \pm 0.2 \%$ humidity. The swimmers were familiarized with the warm-up procedures 48 hr before the experiments and they were reminded to maintain the same training, recovery and diet routines, including abstaining from caffeine, during the 48 hr prior to testing.

After arriving at the pool, the swimmers remained seated for 5 min for the assessment baseline heart rate (Vantage NV; Polar, Lempele, Finland), tympanic temperature (Braun Thermoscan IRT 4520, Germany), Tcore (CorTemp, HQ Inc, Palmetto, FL) blood lactate concentration ([La]]; Accutrend Lactate ${ }^{\circledR}$ Roche, Germany) and $\mathrm{VO}_{2}\left(\mathrm{Kb4}^{2}\right.$, Cosmed, Rome, Italy). After that, the swimmers performed a standard warm-up for a total volume of $1,200 \mathrm{~m}$ (Table1), designed based on research ${ }^{7,90}$ with the help of an experienced national swimming coach.

With the main set, the aim was to increase VO_{2} to optimize the subsequent time-trial performance. It was structured based on the assumptions that i) critical velocity could be faster than lactate threshold and maximal lactate steady state, causing a progressive increase in VO_{2} and $[\mathrm{La}] ;{ }^{[11}$ and ii) the rest period should be sufficient to maintain [La^{-}] levels lower than $5 \mathrm{mmol} \cdot \mathrm{l}^{-1}$, as recommended for warmup procedures. ${ }^{13}$ The critical velocity was calculated from the slope of the regression line between distance swam and time, combining the 50 m and the 400 m best times. ${ }^{11}$ The range of critical velocity, between 98 to 102%, corresponded to $85 \pm 2 \%$ and $88 \pm 2 \%$ of the 100 m race-pace, respectively. Heart rate, VO_{2} and rating of perceived exertion ${ }^{12}$ (RPE) were monitored during warm-up to ensure the same intensity between the two trials. Once swimmers finished warming-up, they were asked to remain seated for 10 or 20 min before performing the 100 m time-trial.
-Please insert Table1.

Each swimmer was instructed to step onto the starting block and then take off after official verbal command and the starting signal. Trial times were clocked by a timing system (OMEGA S.A. Switzerland), using as backup a stopwatch held by a swimming coach and a video camera (Casio Exilim Ex-F1, $f=30 \mathrm{~Hz}$) placed at 15 m , perpendicular to lane 7. That same procedures and devices were also used to assess the 15 m time. Stroke frequency (SF), stroke length (SL) and stroke index (SI) were determined according to the procedures reported earlier by Neiva et al. ${ }^{7}$ The propelling efficiency $\left(\eta_{\rho}\right)$ was also estimated ${ }^{14}$:
$\eta_{\mathrm{p}}=[(0.9 \cdot \mathrm{v}) /(2 \pi \cdot \mathrm{SF} \cdot \mathrm{l})] \cdot 2 / \pi$
where v is the swimming velocity $\left(\mathrm{m} \mathrm{s}^{-1}\right), \mathrm{SF}$ is the stroke frequency (Hz) and l is the arm length (m). The l is computed trigonometrically by measuring arm length and considering average elbow angles during insweep of the arm pull, as reported by Zamparo et al. ${ }^{14}$ At the range of swim velocities demonstrated in these swimmers, internal mechanical work is rather low and can be neglected ${ }^{13}$ and η_{p} becomes similar to Froude efficiency. For a more detailed discussion, see Zamparo et al. ${ }^{14}$

Capillary blood samples for $\left[\mathrm{La}^{-}\right]$assessment were collected from the fingertip after the warm-up protocol (1 min), immediately before the trial, after the trial (3 and 6 min after to obtain the highest value) and 15 min after the trial. Heart rate was also assessed over the warm-up period and during recovery following the time-trial. Additionally, the RPE was recorded during and after the warm-up, and after each trial.

Tympanic temperatures were measured before the warm-up, after the warm-up (1 min), immediately before and after the trial and 15 min post-trial. Tcore was assessed by a temperature sensor that was ingested the night before (10 hr before the test). ${ }^{15}$ This pill transmitted a radio signal to an external sensor (CorTemp Data Recorder, HQ Inc., Palmetto, FL), which subsequently converted the signal into digital format. The net values of Tcore (Tcore $_{\text {net }}$) were selected to compare data and reduce error resulting from pill position.
VO_{2} was measured with a backward extrapolation technique immediately after trial. ${ }^{16}$ The first 2 s of measurement after detection were not considered due to the device's adaptation to the sudden change of respiratory cycles and to oxygen uptake. ${ }^{17}$ The peak oxygen uptake (VO_{2} peak) was considered to be the mean value of the following $6 \mathrm{~s} .{ }^{17}$ Additionally, VO_{2} was continually monitored during the post warm-up time period and after the 100 m freestyle.

Standard statistical procedures were selected for the calculation of means, standard deviations (SD) and confidence limits. The normality of all distributions was verified by the Shapiro-Wilks test, and parametric statistical analysis was adopted. To compare data between two trials, Student's paired ttests were used, followed by Cohen's d effect size for repeated measures ($\mathrm{p} \leq 0.05$). The effect size was calculated using G-Power 3.1.3 for Windows (University of Kiel, Germany) and 0.2 was deemed small, 0.5 medium, and 0.8 large. An Excel spreadsheet for crossovers was used to calculate the smallest worthwhile effects and to determine the likelihood that the true effect was substantially harmful, trivial, or beneficial (positive, trivial or negative for non-performance variables). ${ }^{18}$ The threshold value for the smallest worthwhile change was set at 0.8% for performance, whereas the other variables were set at 0.2 (Cohen's smallest effect size). ${ }^{18}$ Suggested default probabilities for declaring an effect clinically beneficial were $<0.5 \%$ (most unlikely to harm) and $>25 \%$ (possible benefit). ${ }^{19}$ The effect was deemed unclear if it was possibly beneficial ($>25 \%$) with an unacceptable risk of harm $(>0.5 \%)$. Where clear interpretation could be made, chances of benefit or harm were assessed as follows: $<0.5 \%$, most unlikely, almost certainly not; $0.5-5 \%$, very unlikely; $5-25 \%$, unlikely, probably not; $25-75 \%$, possibly; $75-95 \%$, likely, probably; $95-99.5 \%$, very likely; and $>99.5 \%$, most likely, almost certainly. ${ }^{19}$

Results

Performance was improved moderately in the 10 min compared to the 20 min rest condition (Table 2), resulting from a large effect on the first 50 m lap and a moderate effect on the second 50 m lap. The swimmers categorised their effort as being between very hard and exhaustive in both trials ($\mathrm{p}=0.18$;
$\mathrm{d}=0.55$; mean difference $1.0 \% ; 90 \%$ confidence limits ± 2.9; clinical inferences unclear). Regarding the biomechanical analysis (Table 2), the swimmers showed higher SF after 10min passive rest during the first 50 m lap, with small effect sizes seen in the second 50 m . Despite the unclear implications of SL and η_{p} in the first 50 m , there were clear decreases in SI, SL and η_{p} during the second 50 m lap.
-Please insert Table2.

Figure 1 depicts the physiological responses to the different conditions. Baseline measures of Tcore (1A) were similar between conditions ($\mathrm{p}=0.27 ; \mathrm{d}=0.46 ; 0.8 \% ; \pm 1.2$; unclear). The highest Tcore values were recorded after warm-up ($10 \mathrm{~min} 37.67 \pm 0.48^{\circ} \mathrm{C} ; 20 \mathrm{~min} 37.76 \pm 0.57^{\circ} \mathrm{C}$). There was a small additional decrease in Tcore in the 20 min compared to the 10 min passive rest $(\mathrm{p}=0.78 ; \mathrm{d}=0.11 ;-0.1 \%$; ± 0.9; possibly negative), corroborated by pre-trial Tcore $_{\text {net }}$ differences ($\mathrm{p}=0.31 ; \mathrm{d}=0.32 ;-55.3 \%$; ± 19.1; possibly negative). Those differences in $\operatorname{Tcore}_{\text {net }}$ (1B) were increased after the trial ($\mathrm{p}=0.16$; $\mathrm{d}=0.59 ;-66.2 \% ; \pm 12.0$; likely negative). The 15 min of recovery were not sufficient to return to baseline values $\left(37.46 \pm 0.33^{\circ} \mathrm{C} ; 37.36 \pm 0.39^{\circ} \mathrm{C}\right)$. The tympanic temperature (1 C) recorded no clear differences between conditions until the end of trial, when medium differences were found ($\mathfrak{p}=0.06$; $\mathrm{d}=0.49 ;-1.4 \% ; \pm 1.5$; likely negative), and after recovery $(\mathrm{p}=0.06 ; \mathrm{d}=0.70 ;-0.9 \% ; \pm 0.8$; likely negative).

Baseline measures of [La] (1D) were low and similar between conditions ($\mathrm{p}=0.16 ; \mathrm{d}=0.46 ; 8.1 \%$; ± 9.7; likely trivial). [La^{-}] responded in the same way to warm-up ($\mathrm{p}=0.20 ; \mathrm{d}=0.44 ; 5.5 \% ; \pm 8.8$; most likely trivial). [La] attained the highest values after trial, but no clear differences were observed $\left(11.91 \pm 3.82 \mathrm{mmol} \cdot \mathrm{l}^{-1}\right.$ vs. $11.32 \pm 3.71 \mathrm{mmol} \cdot \mathrm{l}^{-1} ; \mathrm{p}=0.36 ; \mathrm{d}=0.29 ;-4.9 \% ; \pm 12.2$; unclear), and this was maintained during recovery $(\mathrm{p}=0.18, \mathrm{~d}=0.43 ;-10.9 \% ; \pm 13.6$; possibly negative $)$.

There was a small difference in baseline heart rate (1E) between the two protocols ($\mathrm{p}=0.13$; $\mathrm{d}=0.49$;$3.3 \% ; \pm 3.6$; possibly negative) but similar $\mathrm{VO}_{2}(1 \mathrm{~F})(\mathrm{p}=0.78 ; \mathrm{d}=0.11 ;-0.4 \% ; \pm 2.3$; very likely trivial). The response to warm-up was identical between conditions for both heart rate $(\mathrm{p}=0.73, \mathrm{~d}=0.40 ;-0.8 \%$;
$\pm 3.6 \%$; likely trivial) and $\mathrm{VO}_{2}(\mathrm{p}=0.82, \mathrm{~d}=0.09 ; 4.0 \% ; \pm 21.7$; unclear). This data corroborates the similarity between the warm-up intensities and procedures, as evidenced by the perceived effort after warm-up (10.00 ± 1.48 vs. $9.55 \pm 1.63 ; \mathrm{p}=0.45 ; \mathrm{d}=0.25 ; 6.7 \% ; \pm 14.8$; unclear). However, pre-trial values showed lower heart rates in the 20 min condition ($89 \pm 12 \mathrm{bpm}$ vs. $82 \pm 13 \mathrm{bpm} ; \mathrm{p}<0.01 ; \mathrm{d}=1.07 ;-7.8 \%$; $\pm 4.0 \%$; very likely negative). This may somehow reflect the near statistically significant difference between VO_{2} pre-trial, but with a high effect size $\left(8.58 \pm 1.67 \mathrm{ml} \cdot \mathrm{kg}^{-1} \mathrm{~min}^{-1}\right.$ vs. $7.54 \pm 2.45 \mathrm{ml} \cdot \mathrm{kg}^{-1} \mathrm{~min}^{-1}$; $\mathrm{p}=0.07 ; \mathrm{d}=0.81 ;-14.1 \% ; \pm 10.5$; likely negative). After the trial, no clear differences were seen in VO_{2} peak $\left(55.23 \pm 7.03 \mathrm{ml} \cdot \mathrm{kg}^{-1} \mathrm{~min}^{-1}\right.$ vs. $53.67 \pm 9.46 \mathrm{ml} \cdot \mathrm{kg}^{-1} \mathrm{~min}^{-1} ; \mathrm{p}=0.39 ; \mathrm{d}=0.35 ;-3.4 \% ; \pm 5.9 ;$ possibly negative), while lower heart rates were found in the 20 min passive rest condition ($173 \pm 6 \mathrm{bpm}$ vs. $165 \pm 11 \mathrm{bpm} ; \mathrm{p}=0.10 ; \mathrm{d}=0.75 ;-4.7 \% ; \pm 4.5$; likely negative). A greater additional decrease in heart rates for the 20 min condition was found during recovery ($\mathrm{p}=0.004 ; \mathrm{d}=1.11 ;-9.0 \% ; \pm 4.3$; very likely negative).
-Please insert Figure1.

Discussion

The aim of this study was to compare the effects of 10 min or 20 min post warm-up passive rest on 100 m freestyle performance in competitive swimmers. The main finding was a "likely" positive effect on swimming performance when the shorter passive rest period was used (1.12% faster time-trial performance with 10 min vs. 20 min). This supported the hypothesis that a shorter time-lag between the warm-up and the race benefits time-trial performance. The physiological response may partially explain this finding. Although acute adaptations in body temperature did not seem enough to justify the difference in performance, the combined effects of the shorter post warm-up interval on Tcore, heart rate, and VO_{2} appeared to be associated with the faster performance observed.

Active warm-up in swimming seems to improve performance after rest periods of $10 \mathrm{~min}^{9}$ and $20 \mathrm{~min} .^{2}$ However, it remains to be seen which duration is the most effective for optimizing performance and
which type of rest (active or passive) should be used. ${ }^{20}$ It has been suggested that increases in muscle and core temperature caused by priming exercises are the major factors influencing performance. ${ }^{4}$ At least for land-based activity, an increase in the athlete's temperature results in lower time required to achieve peak tension and relaxation, ${ }^{21}$ reduced viscous resistance of the muscles and joints, ${ }^{22}$ increased muscle blood flow, ${ }^{23}$ improved efficiency of muscle glycolysis and high-energy phosphate degradation, ${ }^{24}$ and increased nerve conduction rate. ${ }^{5}$ Therefore, we implemented a recommended warm-up volume,,14 including a near race-pace velocity set ${ }^{14}$ (approximately 90% of the 100 m racepace velocity), that resulted in increased VO_{2} and body temperature.

In the present study, as expected, Tcore increased during the warm-up, eventually reaching its maximum value, and then started to drop, decreasing up until the beginning of the time-trial. Before the race, the 20 min rest interval had a very "likely" negative effect on Tcore ${ }_{\text {net }}$ values. Therefore, the lower Tcore $_{\text {net }}$ in the 20 min condition could have influenced the swimmers' performance, as a decrease in performance could be related to muscle and core temperature decline after exercitation. ${ }^{25}$ Despite not being significant, tympanic temperature recorded a trend towards higher values in the 10 min condition, supporting the Tcore $_{\text {net }}$ data. West et al. ${ }^{2}$ noted that 45 min was an excessive rest period for the Tcore, explaining its negative effect on 200 m freestyle performance. In this study, the abovementioned effects on Tcore cannot by themselves explain the 1.12% performance improvement; the pre-trial heart rate and VO_{2} data can provide complementary support, as the 10 min of extra rest in the 20 min condition lowered these variables by $\sim 8 \%$ and $\sim 14 \%$, respectively. Thus, the strong effect verified in these two variables could influence the race, notably during the first few meters.

After verifying a higher heart rate before the 200 m trial in the 10 min rest compared with the 45 min rest, Zochowski et al. ${ }^{9}$ hypothesized that the swimmers started the trial at a high baseline VO_{2}. The authors did not measure the VO_{2}, but our data confirmed their speculation for both heart rate and VO_{2}. Before their study, warm-up was already believed to increase VO_{2} and oxygen kinetics. ${ }^{6}$ Yet, our study was the first to provide evidence of such. Higher baseline VO_{2} might have influenced the energy provision from anaerobic sources in the first part of the race by increasing the aerobic contribution and
preserving the high-energy subtracts for later use in the task. ${ }^{26}$ This might explain the $\sim 0.7 \%$ faster times in the second lap in the 10 min condition compared to the 20 min condition.

The better performance seen in the first 50 m lap after a 10 min post warm-up period could be the result of higher SF. The swimmers were able to reach higher SF due to an effect on motor neuron excitability that remained after the shorter post warm-up rest. ${ }^{27}$ Also, it could point to a post-activation potentiation effect that should happen by the $8^{\text {th }}$ min of recovery, ${ }^{28}$ enabling an optimized SF . Thus, increased SF for the same efficiency (monitored by the SI and η_{p}) resulted in a faster 50 m lap.

The different post warm-up periods were not enough to cause differences in the [La^{-}] after the trial. Some authors may suggest that a shorter rest induces increased lactate production due to glycolytic stimulation over the trial. However, the increased VO_{2} at the beginning of the trial could have stimulated the aerobic contribution, which has been shown to reach approximately 50% of the energy expenditure in a 100 m maximal bout. ${ }^{29}$ Moreover, this could hinder the glycolytic pathway. Although we failed to observe differences in $\left[\mathrm{La}^{-}\right], \mathrm{VO}_{2}$ peak and RPE, the increased heart rate seen after the trial might suggest a higher spike in such variables at the beginning of the trial. An increased primary response would increase the oxidative metabolic contribution early in the exercise and increase anaerobic metabolism in the final meters. ${ }^{26}$ This could augment the heart rate response such that the swimmers can easily recover their homeostasis.

Although muscle temperature could be an important complementary variable with which to better understand our findings, we should not disregard Tcore as having a great influence on performance. ${ }^{4}$ Recent findings about passive post warm-up heating strategies showed that some exercitation was also needed for better performance. ${ }^{10,30}$ Accordingly, our results suggested that temperature alone could not be responsible for the performance optimization. Therefore, researchers should consider analysing the in-water swimming sets so that the abovementioned effects can be extended. The lower values of VO_{2} before the race in both trials lead us to speculate that some physiological adaptation mechanism may occur to change the motor unit recruitment patterns, thus optimizing the immediate VO_{2} response
during trial. We should also be aware of possible differences in the physiological measurements between time-trials compared to competition. For instance, heart rates could be higher during pre-race build-up due to increased anxiety from the competition itself. Nevertheless, we aimed to ensure that the swimmers performed the two maximal trials in the same conditions.

Conclusion

The swimmers were faster in the 100 m freestyle following 10 min vs. 20 min post warm-up passive rest. Despite the expected influence of body temperature in this improvement, our data suggests that temperature is not the only influencing factor. Heart rate and VO_{2} seem to be positively influenced by the shorter rest, notably influencing the first meters of the race. This may increase the aerobic contribution to this initial phase of the race, stimulating different metabolic energy pathways and resulting in improved performance. Further research should focus on the passive or active methods of rest for maintaining the benefits of warm-up (i.e. elevated temperature, heart rate and VO_{2}) during the time frame between warm-up and the swimming race.

Practical implications

-The beneficial effects of in-pool warm-up may decrease over time and influence the subsequent swimming race. It is suggested to conduct the warm-up close to the race to benefit from all of its positive effects.
-The time-lag between warm-up and race should be long enough to allow a post potentiation effect, but not so long that oxygen consumption, heart rate and core temperature effects disappear.
-Coaches should develop methods to maintain the swimmers' warm-up temperature (e.g. passive warm-up) and perhaps some light activities to maintain heart rate and VO_{2} above resting values before the swimming race.

Acknowledgements

The authors would like to acknowledge the help of the swimmers who participated in the current study, and also that of the Varzim Lazer EEM in making available the swimming-pool facilities. This work was supported by a grant from the Science and Technology Foundation (SFRH/BD/74950/2010) and by University of Beira Interior and Santander Totta bank (UBI/FCSH/Santander/2010).

References

1. Balilionis G, Nepocatych S, Ellis CM et al. Effects of different types of warm-up on swimming performance, reaction time, and dive distance. J Strength Cond Res 2012; 26(12):3297-3303.
2. West DJ, Dietzig BM, Bracken RM et al. Influence of postwarm-up recovery time on swim performance in international swimmers. J Sci Med Sport 2013; 16(2):172-176.
3. Neiva HP, Marques MC, Barbosa TM et al. Warm-up and performance in competitive swimming. Sports Med 2014; 44(3):319-330.
4. Bishop D. Warm up II: performance changes following active warm up and how to structure the warm up. Sports Med 2003; 33(7):483-498.
5. Racinais S, Oksa J. Temperature and neuromuscular function. Scand J Med Sci Sports 2010; 20(Suppl 3):1-18.
6. Burnley M, Davison G, Baker JR. Effects of priming exercise on VO2 kinetics and the powerduration relationship. Med Sci Sports Exerc. 2011; 43(11):2171-2179.
7. Neiva HP, Marques MC, Fernandes RJ et al. Does warm-up have a beneficial effect on $100-\mathrm{m}$ freestyle? Int J Sports Physiol Perform 2014; 9(1):145-150.
8. Neiva H, Morouco P, Silva AJ et al. The effect of warm up on tethered front crawl swimming forces. J Hum Kinet 2011; 29A(Spec Iss):113-119.
9. Zochowski T, Johnson E, Sleivert GG. Effects of varying postwarm-up recovery time on 200-m time-trial swim performance. Int J Sports Physiol Perform 2007; 2(2):201-211.
10.McGowan CJ, Thompson KG, Pyne DB et al. Heated jackets and dryland-based activation exercises used as additional warm-ups during transition enhance sprint swimming performance. J Sci Med Sport 2015; doi: 10.1016/j.jsams.2015.04.012.
11.Toubekis AG, Tokmakidis SP. Metabolic responses at various intensities relative to critical swimming velocity. J Strength Cond Res 2013; 27(6):1731-1741.
12.Borg G. Borg's perceived exertion and pain scales. Champaign, IL, Human Kinetics, 1998.
13.Jones AM, Wilkerson DP, Burnley M, et al. Prior heavy exercise enhances performance during subsequent perimaximal exercise. Med Sci Sports Exerc 2003; 35(12): 2085-2092.
14.Zamparo P, Pendergast D, Mollendorf J et al. An energy balance of front crawl. Eur J Appl Physiol 2005; 94:134-144.
15.Byrne C, Lim CL. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications. Br J Sports Med 2006; 41(3):126-133.
10. Costa MJ, Bragada JA, Mejias JE et al. Effects of swim training on energetics and performance. Int J Sports Med 2013; 34(6):507-513.
17.Laffite LP, Vilas-Boas JP, Demarle A et al. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can J Appl Physiol 2004; 29:S17-S31.
18.Hopkins WG. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sportscience 2006; 10:46-50.
19.Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p value. Sportscience 2007; 11:16-20.
20.Toubekis AG, Tsolaki A, Smilios I et al. Swimming performance after passive and active recovery of various durations. Int J Sports Physiol Perform 2008; 3(3):375-386.
11. Segal SS, Faulkner JA, White TP. Skeletal muscle fatigue in vitro is temperature dependent. J Appl Physiol 1986; 61(2):660-665.
12. Wright V. Stiffness: a review of its measurement and physiological importance. Physiotherapy 1973; 59(4):107-111.
13. Pearson J, Low DA, Stöhr E et al. Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow. Am J Phys Regul Integr Comp Phys 2011; 300(3):R663-R673.
24.Febbraio MA, Carey MF, Snow RJ et al. Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am J Physiol 1996; 271(5 Pt 2):R1251-R1255.
14. Mohr M, Krustrup P, Nybo L et al. Muscle temperature and sprint performance during soccer matches-beneficial effect of re-warm-up at half-time. Scand J Med Sci Sports 2004; 14(3):156-162.
15. Burnley M, Jones AM. Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci 2007; 7(2):63-79.
16. Saez Saez de Villarreal E, González-Badillo JJ, Izquierdo M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur J Appl Physiol 2007; 100(4):393-401.
17. Kilduff LP, Cunningham DJ, Owen NJ et al. Effect of postactivation potentiation on swimming starts in international sprint swimmers. J Strength Cond Res 2011; 25(9):2418-2423.
18. Ribeiro J, Figueiredo P, Sousa A et al. VO2 kinetics and metabolic contributions during full and upper body extreme swimming intensity. Eur J Appl Physiol 2015; 115(5):1117-1124.
19. West DJ, Russell M, Bracken RM et al. Post-warmup strategies to maintain body temperature and physical performance in professional rugby union players. J Sports Sci 2015; 30:1-6.

Figure Legends

Figure 1. Physiological variables responses throughout the procedures: core temperature (A), net values of core temperature (B), tympanic temperature (C), blood lactate concentrations ([La]]; D), heart rate (E), Oxygen uptake $\left(\mathrm{VO}_{2} ; \mathrm{F}\right)$. * Indicates difference between the two conditions assessed (p $<0.01)$. Data presented as mean $\pm \operatorname{SD}(\mathrm{n}=11)$.

WU	Task description
300 m	100 m usual breathing, 100m breathing in the $5^{\text {th }}$ stroke, 100 m usual breathing $4 \times 100 \mathrm{~m} @ 1: 50$
$2 \mathrm{x}(25 \mathrm{~m}$ kick - 25 m increased stroke length) $8 \times 50 \mathrm{~m} @ 1: 00$ $98 \%-102 \%$ of critical velocity (or $85-90 \%$ of 100 m pace) 100 m Easy swim	

Table 1 - Standard warm-up (WU) protocol.

Table $2-$ Mean \pm SD values of the 100 and 50 m lap times, stroke frequency (SF), stroke length (SL), stroke index (SI), and propelling efficiency (η_{p}) with 10 min and 20 min post warm-up passive rest. Effect sizes (d), p-values, and inferences for percent change of means are presented ($\mathrm{n}=11$).

$90 \% \mathrm{CL}=90 \%$ confidence limits. + ive, -ive = positive and negative changes, respectively.

* where a positive $\%$ change equates to an increase in 20 min condition
** presented as harmful/trivial/beneficial for performance (time) and positive/trivial/negative for other variables

$\frac{1}{\text { Baseline Post-WU Pre-Trial Post-Trial } 15 \mathrm{~min}}$

