

Linear and quadratic sufficiency and commutativity

Sandra S. Ferreira, Dário Ferreira, and Célia Nunes

Citation: AIP Conference Proceedings 1479, 1694 (2012); doi: 10.1063/1.4756496
View online: http://dx.doi.org/10.1063/1.4756496
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1479?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Comparison of linear discriminant analysis and logistic regression for data classification
AIP Conf. Proc. 1522, 1159 (2013); 10.1063/1.4801262
Noise propagation in linear and nonlinear inverse scattering
J. Acoust. Soc. Am. 121, 2743 (2007); 10.1121/1.2713671

Commuting quantum traces for quadratic algebras
J. Math. Phys. 46, 083516 (2005); 10.1063/1.2007587

Magnetically linear and quadratic hexanitrocuprates
J. Appl. Phys. 50, 1825 (1979); 10.1063/1.327183

Properties of "Quadratic" Canonical Commutation Relation Representations
J. Math. Phys. 10, 1661 (1969); 10.1063/1.1665013

Linear and Quadratic Sufficiency and Commutativity

Sandra S. Ferreira, Dário Ferreira, Célia Nunes
Mathematics Department and Center of Mathematics, University of Beira Interior
6200 Covilhã, Portugal

Abstract

Given a mixed model let T be the orthogonal projection matrix on the range space spanned by the mean vector. If the model has variance- covariance matrix $\sigma^{2} V$ we use commutative Jordan algebras to show that $T y$ is both linear sufficient and linear complete and that $T y, y^{\prime} V^{+} y$ with V^{+}the Moore-Penrose inverse of V is quadratic sufficient whenever T and V commute.

Keywords: Linear sufficiency, quadratic sufficiency, orthogonal projection, linear completeness
AMS: 62H15,62J10

INTRODUCTION

Zmyślony (1978) showed that when the orthogonal projection matrix, OPM, T, on the range space Ω spanned by the mean vector $\mu=X \beta$ commutes with the variance-covariance matrix V, the least square estimators, LSE, of linear estimable functions $c^{\prime} \beta$ [or of estimable vectors] are best linear unbiased estimators, BLUE.
We now consider linear and quadratic sufficiency for models in which T and V commute. Following Mueller (1987), we say that:

- $L y$ is linearly sufficient if for every linear estimable function $c^{\prime} \beta$ the BLUE is given by $b^{\prime} L Y$;
- $\left(L Y ; y^{\prime} U y\right)$ is quadratically sufficient for the model $Y \sim Q\left(X \beta, \sigma^{2} V\right) ; \beta \in R^{p}, \sigma^{2}>0$, if $L y$ is linearly sufficiency and there exists a symmetric matrix A and a real α such that $y^{\prime} L A L y+\alpha y^{\prime} U y$ is a best quadratic unbiased estimator, BQUE, for $f \sigma^{2}$, with f known.

In the last expression, $Y \sim Q\left(X \beta, \sigma^{2} V\right)$ indicates Y to be quasi-normal, this is itt's first four order moments are related in the same way as for normal vectors, with $\mu=X \beta$ and variance-covariance matrix $\sigma^{2} V$. It is easy to see that the linear sufficiency of $L Y$ does not depend on the introduction of σ^{2} in the definitions of the variance covariance matrix of Y. Besides these notions of sufficiency we will also consider, following again Mueller (1987), the linear completeness. Thus $L y$ is linearly complete if any linear function $c^{\prime} \beta$ with null mean value for every $\beta \in R^{p}$ is almost surely null. In our study of quadratic completeness we will use commutative Jordan algebras, which we will discuss in the next section. Then we consider linear sufficiency and completeness and finally quadratic sufficiency.

COMMUTATIVE JORDAN ALGEBRAS

We restrict ourselves to commutative Jordan algebras, CJA, of symmetric matrices. There will be linear spaces constituted by symmetric matrices that commute and containing the squares of this matrices.
Seely (1971) showed that each CJA \mathscr{A} has an unique basis constituted by pairwise orthogonal OPM, POOPM, the principal basis, $p b(\mathscr{A})$ of \mathscr{A}. According to Schott (1997), the matrices of a family $M=\left\{M_{1}, \ldots, M_{w}\right\}$ of symmetric matrices commute if and only if they are diagonalized by an orthogonal matrix P. Then we will have $M \subset \mathscr{V}(P)$ with $\mathscr{V}(P)$ the family of symmetric matrices diagonalized by P which is a CJA. Since intersection of CJA gives CJA (ref?), the intersection of all CJA that contain M will be a CJA, the CJA $\mathscr{A}(M)$ generated by \mathscr{A}.
With $Q=\left\{Q_{1}, \ldots, Q_{m}\right\}=p b(\mathscr{A})$, given $M \in \mathscr{A}$ we will have $M=\sum_{j=1}^{m} a_{j} Q_{j}$ it being easy to see that the MOORE-

[^0]PENROSE inverse of M is

$$
M^{+}=\sum_{j=1}^{m} a_{j}^{+} Q_{j}
$$

putting $a_{j}^{+}=a_{j}^{-1} \quad[0]$ when $a_{j} \neq 0 \quad[=0], j=1, \ldots, m$. Thus any CJA contains the MOORE-PENROSE inverse of its matrices.
If $Q \in \mathscr{A}$ is an OPM it will be idempotent then $Q=\sum_{j=1}^{m} q_{j} Q_{j}$ with the q_{1}, \ldots, q_{m} equal to 0 or 1 , since the Q_{1}, \ldots, Q_{m} are pairwise orthogonal and idempotent.
Now

$$
Q M Q=\sum_{j=1}^{m} q_{j} a_{j} q_{j} Q_{j}=\sum_{j \in C} a_{j} Q_{j}
$$

with $C=\left\{j: q_{j} a_{j} q_{j} \neq 0\right\}$, and so

$$
(Q M Q)^{+}=\sum_{j \in C} a_{j}^{-1} Q_{j}=Q M^{+} Q
$$

since we also have $C=\left\{j: q_{j} a_{j}^{+} q_{j} \neq 0\right\}$.

LINEAR SUFFICIENCY AND COMPLETENESS

Let $N(W)$ be the nullity space of matrix W, then, according to Mueller (1987), $L y$ is linearly sufficient for the model with mean vector $X \beta$ and variance covariance matrix V if and only if $x_{1} \cap x_{2} \subset \triangle_{1}$, with

$$
\left\{\begin{array}{l}
x_{1}=N(L) \\
x_{2}=\Omega \oplus \triangle_{1} \\
\triangle_{1}=\operatorname{VN}\left(X^{\prime}\right)
\end{array}\right.
$$

where \oplus indicates direct sum of subspaces and

$$
V N\left(X^{\prime}\right)=\left\{V u ; u \in N\left(X^{\prime}\right)\right\}
$$

It is well known that, $N\left(X^{\prime}\right)=R(X)^{\perp}$ where \perp indicates orthogonal complement, so we also have

$$
\triangle_{1}=V R(X)^{\perp}=\{V z ; z \perp R(X)\}
$$

Moreover, see again Mueller (1987), $L y$ is linearly complete if and only if

$$
x_{1} \cap x_{2}=\triangle_{1}
$$

We now establish

Lemma 1 We have $\triangle_{1}=R\left(V T^{c}\right)$, with $T^{c}=I_{n}-T$.
Proof: \quad The thesis follows from $V N\left(X^{\prime}\right)=V R(X)^{\perp}=V R\left(T^{c}\right)=R\left(V T^{c}\right)$ since $R(X)^{\perp}=R(T)^{\perp}=R\left(T^{c}\right)$.

Corollary 1 When V and T commute, $x_{2}=\Omega \boxplus \triangle_{1}$, where \boxplus stands for orthogonal direct sum of subspaces.
Proof: \quad Since V and $T\left[V\right.$ and $\left.T^{c}\right]$ commute, $\triangle_{1}=R\left(V T^{c}\right)=R\left(T^{c} V\right) \subset R\left(T^{c}\right)=\Omega^{\perp}$, thus $\Omega=R(T)$ and \triangle_{1} will be orthogonal.

Proposition 1 When V and T commute, Ty will be linearly sufficient and linearly complete.

Proof: We must have $x_{1}=N(T)=\Omega^{\perp}$ thus, according to Corollary 3.1 of Lemma $1 x_{1} \cap x_{2}=\triangle_{1}$, which establishes the thesis.

Besides this, see Scheffé (1959), $c^{\prime} \beta$ is estimable when and only when $c=X^{\prime} u$, so that $c^{\prime} \beta=u^{\prime} X \beta$. Now the LSE of $c^{\prime} \beta$ is $\widetilde{c^{\prime} \beta}=u^{\prime} X \widetilde{\beta}$, with $\widetilde{\beta}=\left(X^{\prime} X\right)^{+} X^{\prime} Y$. Since $T=X\left(X^{\prime} X\right)^{+} X^{\prime}$ we will have $\widetilde{c^{\prime} \beta}=u^{\prime} T y$ which emphasizes the linear sufficiency of $T y$. In this way, we relate the linear sufficiency of $T y$ with the Zmyślony (1978) result on LSE. Now if V depends on a vector σ^{2} of variance components, so that

$$
V=V\left(\sigma^{2}\right), \sigma^{2} \in \Theta
$$

For V commuting with T we must have

$$
T V\left(\sigma^{2}\right)=V\left(\sigma^{2}\right) T ; \quad \sigma^{2} \in \Theta .
$$

For instance given the mixed model

$$
y=\sum_{i=0}^{w} X_{i} \beta_{i}
$$

with β_{0} fixed and $\beta_{1}, \ldots, \beta_{w}$ independent, with null mean vectors and variance covariance matrices $\sigma_{1}^{2} I_{c_{1}}, \ldots, \sigma_{w}^{2} I_{c_{w}}, y$ will have mean vectors and variance covariance matrices given by

$$
\left\{\begin{array}{l}
\mu=X_{0} \beta_{0} \\
V=\sum_{i=1}^{w} \sigma_{i}^{2} V_{i} ; \quad \theta \in \Theta=\mathscr{X}_{i=1}^{w}[0 ;+\infty[
\end{array}\right.
$$

with \mathscr{X} indicating cartesian product and $V_{i}=X_{i} X_{i}^{\prime}, i=1, \ldots, w$, while the orthogonal projection matrix on the space spanned by μ will now be written as

$$
T=X_{0}\left(X_{0}^{\prime} X_{0}\right)^{+} X_{0}^{\prime} .
$$

For V and T to commute it is necessary and sufficient that

$$
T V_{i}=V_{i} T, i=1, \ldots, w .
$$

This conditions holds namely for models with commutative orthogonal block structure, COBS, see Fonseca et al (2007). Then in these models Ty will be linearly sufficient and linearly complete.

QUADRATIC SUFFICIENCY

Given the model

$$
Y \sim Q\left(X \beta, \sigma^{2} V\right)
$$

$\left(L y, y^{\prime} U y\right)$ enjoys quadratic sufficiency if and only if, see Mueller (1987),

$$
x_{1} \cap x_{2}=\triangle_{1} \cap \triangle_{2} \cap \triangle_{3},
$$

with x_{1}, x_{2} and \triangle_{1} defined as above and

$$
\left\{\begin{array}{l}
\triangle_{2}=N\left(X^{\prime} U\right) \\
\triangle_{3}=N\left(I_{n}-\alpha V U\right)
\end{array}\right.
$$

The equality between subspaces is assumed to hold for the α that is considered in the definition of quadratic sufficiency. When T and V commute, taking $T^{c}=I_{n}-T$, considering T^{c} the complement subspace of matrix T, the matrices of a family $M=\left\{T, T^{c}, V\right\}$ commute and generate a CJA $\mathscr{A}=\mathscr{A}(M)$ that contains $V^{+}, Q=V V^{+}, Q_{1}=T Q$ and $Q_{2}=T^{c} V$. Matrices Q, Q_{1} and Q_{2} are OPM and Q_{1} and Q_{2} are pairwise orthogonal.

We now establish

Lemma 2 When T and V commute and we take $L=T$ and $U=V^{+}$, we have

$$
\left\{\begin{array}{l}
x_{1}=N(T)=\Omega^{\perp} \\
x_{2}=\Omega \boxplus \nabla_{2} \\
\triangle_{1}=\nabla_{2} \\
\triangle_{2}=\nabla_{1}^{\perp}
\end{array}\right.
$$

and

$$
\Delta_{3}= \begin{cases}0, & \text { if } \quad \alpha \neq 1 \\ \nabla_{1}^{\prime} \boxplus \nabla_{2}, & \text { if } \quad \alpha=1\end{cases}
$$

with $\nabla_{1}=R\left(Q^{\prime}\right)$ and $\nabla_{2}=R\left(Q_{2}\right)$.
Proof: We already saw that taking $L=T$ we have $x_{1}=\Omega^{\perp}$ and that, according to Lemma 1, $\triangle_{1}=R\left(V T^{c}\right)$. Since $R(V)=R(Q)$ we also will have

$$
\triangle_{1}=R\left(V T^{c}\right)=R\left(T^{c} V\right)=T^{c} R(V)=T^{c} R(Q)=R\left(T^{c} Q\right)=R\left(Q_{2}\right)=\nabla_{2}
$$

thus Ω and $\triangle_{1}=\nabla_{2}$ are orthogonal so $x_{2}=\Omega \boxplus \nabla_{2}$. Next we have

$$
\begin{aligned}
& \triangle_{2}=N\left(X^{\prime} V^{+}\right)=R\left(V^{+} X\right)^{\perp}=\left(V^{+} R(X)\right)^{\perp}=\left(V^{+} R(T)\right)^{\perp}=R\left(V^{+} T\right)^{\perp}= \\
& =R\left(T V^{+}\right)^{\perp}=\left(T R\left(V^{+}\right)\right)^{\perp}=(T R(Q))^{\perp}=(R(T Q))^{\perp}=R\left(Q_{1}\right)^{\perp}=\nabla_{1}^{\perp} .
\end{aligned}
$$

Lastly we point out that, with $Q^{c}=I_{n}-Q$ we have

$$
I_{n}-\alpha V V^{+}=I_{n}-\alpha Q=Q^{c}+(1-\alpha) Q
$$

which is invertible when $\alpha \neq 1$. When $\alpha=1$, we have $I_{n}-Q=Q^{c}$ and $N\left(I_{n}-Q\right)=R(Q)=Q^{c}=\nabla_{1} \boxplus \nabla_{2}$, which completes the proof. \square

We now may establish the
Proposition 2 When T and V commute, taking $\alpha=1,\left(T y, y^{\prime} V^{+} y\right)$ is quadratic complete for the model $Y \sim$ $Q\left(X \beta, \sigma^{2} V\right)$.

Proof: The thesis follows from, according to Lemma 2

$$
\left\{\begin{array}{l}
x_{1} \cap x_{2}=\nabla_{2} \\
\triangle_{1} \cap \triangle_{2} \cap \triangle_{3}=\nabla_{2}
\end{array}\right.
$$

since ∇_{2} being a subspace of ∇_{1}^{\perp} and of $\left(\nabla_{1} \boxplus \nabla_{2}\right)$.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referees for their useful comments and remarks. This work was partially supported by the center of Mathematics, University of Beira Interior, under the project PEst-OE/MAT/UI0212/2011.

REFERENCES

1. M. Fonseca; J. M. Mexia and R. Zmyślony. Jordan algebras, generating pivot variables and orthogonal normal models. J. Interdiscip. Math., 10, 2, 305Ú́-326, 2007.
2. J. Mueller.Sufficiency and completeness in the linear model. Journal of Multivariate Analysis, 21 (2), 312-323, 1987.
3. J. Seely. Quadratic subspaces and completeness. Ann. Math. Statis. 42, 2, 710-721, 1971.
4. H. Scheffé. The Analysis of Variance. John Willey \& Sons. New York, 1959.
5. J. R. Schott. Matrix Analysis for Statistics. Wiley Series in Probability and Statistics. New York, 1996.
6. R. Zmyślony. A characterization of best linear unbiased estimators in the general linear model. Mathematical Statistics and Probability Theory, Proc. Sixth Internat. Conf., Wisla/Pol. 1978, Lect. Notes Stat., 2, Springer, New York-Berlin, 365-373, 1980.

[^0]: Numerical Analysis and Applied Mathematics ICNAAM 2012
 AIP Conf. Proc. 1479, 1694-1697 (2012); doi: 10.1063/1.4756496
 © 2012 American Institute of Physics 978-0-7354-1091-6/\$30.00

