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Abstract. The goal of this paper is to present what we think to be an interesting development of the concept of pivot variable.
The inducing pivot variables induce probability measures which may be used to carry out inference.

As illustration of this approach we will show how to obtain confidence intervals for the variance components of mixed
linear models
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INTRODUCTION

The goal of this paper is to present what we think to be an interesting development of the concept of pivot variable.
These variables are functions of statistics and parameters with known distributions and induce probability measures
which may be used to carry out inference.

In the next section we will show how pivot variables induce probability measures in parameter spaces. Then, in
section 3, we will show how to use Monte Carlo methods to generate distributions and how to apply these to obtain
confidence intervals and through duality, to test hypothesis, for the variance components of mixed linear models. This
approach may be used whatever the degrees of freedom of the chi-square distributions. Thus there is no need to the
degrees of freedom to be even, either in the numerator or in the denominator of generalized F statistics, see [2].

INDUCING PIVOT VARIABLES

In what follows we will use sufficient statistics to derive pivot variables. As already stated in the introduction, these
variables are functions of statistics and parameters with known distributions.

For example, if S is distributed as the product by γ of a central chi-square with g degrees of freedom, S∼ γχ2
g , then

Z =
S

γ
(1)

is distributed as a central chi-square with g degrees of freedom, being therefore a pivot variable.
Now, let Br be the σ -algebra of the borelian sets in R

r, see [1], and the parameter space Θ ∈Br. According to [4]
the pivot variable

ZZZ = g(YYY ,θθθ) (2)

is an inducing pivot variable if, for any realization yyy of YYY the function

l(θθθ |yyy) = g(yyy,θθθ) (3)

has an inverse measurable function h(zzz|yyy) in Br.
Now, let P◦ be the probability measure associated to the distribution of the pivot variable, F◦. The measurable

functions hhh(zzz|yyy), defined in (Rr,Br,P
◦) and taking values in Θ ∈Br, define the probability measures

Pyyy(C) = P◦ (lll(C∩Θ|yyy)) (4)

in (R,Br). Note that for any yyy
Pyyy(Θ) = 1 (5)
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Consider now that the components Z1, ...,Zr of the inducing pivot variable ZZZ are independent and given by

Zi = gi(yyy,θi), i = 1, ...,r (6)

with θ1, ...,θr the components of θθθ . If besides this

Θ =×r
i=1Θi, (7)

with Θi ∈Bi, i = 1, ...,r and if the functions

li(θi|yyy) = gi(yyy,θi), i = 1, ...,r (8)

have measurable inverses hi(zi|yyy) ∈B, i = 1, ...,r, we may induce in (R,B) the probability measures

Pyyy,i(C) = P◦i (li(C∩Θi)|yyy) , i = 1, ...,r, (9)

where P◦i , i = 1, ...,r is the probability measure associated to the distribution of Zi, i = 1, ...,r. Since these components
are independent, taking C1, ...,Cr ∈B, we get

P◦ (×r
i=1li(Ci∩Θi)|yyy) =

r

∏
i=1

P◦i (li(C∩Θi)|yyy) . (10)

Thus, with P̄yyy the product measure of the Pyyy,i, i = 1, ...,r, we have

P̄yyy(×r
i=1Ci) =

r

∏
i=1

Pyyy,i(Ci) =
r

∏
i=1

P◦i (li(Ci∩Θi)|yyy) =

= P◦ (×r
i=1li(Ci∩Θi|yyy)) =

= P(lll((×r
i=1Ci)∩Θ|yyy)) , (11)

since

×r
i=1(Ci∩Θi) = (×r

i=1Ci)∩ (×r
i=1Θi) =

= (×r
i=1Ci)∩Θ. (12)

Therefore, the product measure P̄yyy of the measures induced by the components is identical to Pyyy.

VARIANCE COMPONENTS

Given the mixed model

yyy =
w

∑
i=0

XXXiβββ i, (13)

where βββ 0 is fixed and the βββ 1, ...,βββ w are independent with null mean vectors and variance-covariance matrices
σ2

1 IIIc1 , ...,σ2
wIIIcw , the mean vector and variance-covariance matrix of yyy will be{

μμμ =XXX0βββ 0
VVV = ∑w

i=1 σ2
i MMMi

, (14)

with MMMi =XXXiXXX
′
i, i = 1, ...,w.

When matrices MMM1, ...,MMMw and, TTT , the orthogonal projection matrix on the range space of XXX0, commute we have,
see [5], {

TTT = ∑z
j=1 QQQ j

MMMi = ∑m
j=1 bi, jQQQ j

, (15)

where the QQQ1, ...,QQQm are pairwise orthogonal orthogonal projection matrices. Then

VVV =
m

∑
j=1

γ jQQQ j, (16)
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whith

γ j =
w

∑
i=1

bi, jσ2
i . (17)

Moreover, taking

σσσ2 =

⎡
⎢⎣

σ2
1
...

σ2
w

⎤
⎥⎦ ; γγγ(1) =

⎡
⎢⎣

γ1
...
γz

⎤
⎥⎦ ; γγγ(2) =

⎡
⎢⎣

γz+1
...

γm

⎤
⎥⎦ , (18)

and considering for matrix BBB = [bi, j] the partition

BBB = [BBB(1) BBB(2)] , (19)

where BBB(1) has z columns, we have
γγγ(l) =BBB′(l)σσσ2, l = 1,2. (20)

When the row vectors of BBB(2) are linearly independent we have

σσσ2 =CCCγγγ(2), (21)

with CCC the MOORE-PENROSE inverse of BBB′(2).
Taking CCC = [ci, j], let C+

i and C−i be the sets of column indexes of the positive and negative elements of the i-th row
of matrix CCC. Thus, with ṁ = m− z and γ̇ j = γ j−z

σ2
i =

ṁ

∑
j=1

ci, j γ̇ j = (σ2
i )

+− (σ2
i )
−, i = 1, ...,w, (22)

where {
(σ2

i )
+ = ∑ j∈C+

i
ci, jγ j, i = 1, ...,w

(σ2
i )
− = ∑ j∈C−i

|ci, j|γ j, i = 1, ...,w
. (23)

These results are interesting since, with

S j = yyy′QQQ j+zyyy, j = 1, ..., ṁ (24)

we have the unbiased estimators
γ̇ j =

S j

g j
, j = 1, ..., ṁ, (25)

where
g j = rank(QQQ j+z) , j = 1, ..., ṁ. (26)

Thus we also will have unbiased estimators for the σ2
i , i = 1, ...,w and their positive and negative parts. When

normality is assumed,
S j ∼ γ̇ jχ2

g
j
, j = 1, ..., ṁ, (27)

this is, S j is distributed as the product by γ̇ j of a central chi-square with g j degrees of freedom, j = 1, ..., ṁ.
So, we have the independent pivot variables

Z j =
S j

γ j
∼ χ2

g j
, j = 1, ..., ṁ. (28)

Since the inverse functions
h j(Z j,S j) =

S j

Z j
, j = 1, ..., ṁ. (29)

are mensurable functions in B, the Z j, j = 1, ..., ṁ will be inducing pivot variables.
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Now, we may induce probability measures for the γ j, i = 1, ..., ṁ, using large samples {GGG1, ...,GGGn}, with Gu, j ∼ χ2
g j

,
j = 1, ..., ṁ, u = 1, ...,n, and derive from these secondary samples {ZZZ1, ...,ZZZn} in which ZZZu has components

ZZZu, j =
S j

Gu, j
, (30)

j = 1, ..., ṁ, u = 1, ...,n. Note that Z1, j, ...,Zn, j are independent and identically distributed, with distribution Ḟ j

associated to the probability measure induced by Z j, j = 1, ..., ṁ.
Let Fn, j, j = 1, ..., ṁ be the empirical distribution of the sample {Z1, j, ...,Zn, j} and xn,p the Fn quantile for probability

p.
Representing by a.s.−−→ almost surely convergence and by xp the quantile for probability p, we have the

Proposition 1

If F(x) has a continuous density f (x) and if f (x)> 0 whenever 0 < F(x)< 1, then for any α ∈]0;1[ we have

Dn,α = Sup
{
|xn,p− xp|; α

2
< p < 1− α

2

}
a.s.−−−→

n→∞
0

Proof. According to Weierstrass theorem, f has a minimum b > 0 in the interval [x α ′
2

;x 1−α ′
2

]. If α ′
2 < p− ε

b < p+ ε
b <

1− α ′
2 we have F(xp− ε

b ) < p− ε < p+ ε < F(xp +
ε
b ). So, when Dn,α < b, Fn(xp− ε

b ) < p < Fn(xp +
ε
b ) we get

(xp− ε
b ) < xn,p < xp +

ε
b ). This establishes the thesis since from ε being arbitrary we may take α = α ′+ 2 ε

b to get
|xn,p− xp|< ε

b whenever α
2 < p < 1− α

2 . �

Now, using Proposition 1, we may estimate the quantiles x j,p of Fj from the quantiles xn, j,q of Fn, j, j = 1, ..., ṁ.
Therefore, we may construct confidence intervals [ẋn, j, α

2
; ẋn, j,1− α

2
]; [0; ẋn, j,1−α ] and [ẋn, j,α ;+∞[ for the γ j, j = 1, ..., ṁ,

with (estimated) confidence level 1−α . These confidence intervals allow us to test hypothesis

H0, j : γ j = γ j,0 (31)

against
H1, j : γ j �= γ j,0; γ j > γ j,0 and γ j < γ j,0. (32)

We reject the test hypothesis if γ j,0 is not contained in the corresponding confidence interval. Thus, by duality, we
obtain tests with (approximate) confidence level α .
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