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Abstract. ANOVA is routinely used in many situations, namely in medical research, where the sample sizes may not be
previously known. This leads us to consider the samples sizes as realizations of random variables. The aim of this paper is to
extend one-way random effects ANOVA to those situations and apply our results to a Brazilian database on cancer registries.
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INTRODUCTION

In many situations, such as in medical research, sample sizes may not be previously known. This often occurs when
there is a specific time span for collecting the observations. The aim of this paper is to extend one-way random effects
models to those situations and apply our results to a Brazilian database on cancer registries.

In these situations it is more correct to consider the samples sizes as realizations n1, ...,nr of independent random
variablesN1, ...,Nr, see [2, 3, 4, 5, 6, 7]. We assume that these random variables will be independent Poisson distributed
with parameters λ1, ...,λr. Therefore n = ∑r

i=1 ni will be a realization of the random variable N = ∑r
i=1Ni which is

Poisson distributed with parameter λ = ∑r
i=1 λi, see [2, 6, 7].

When Ni = ni, i = 1, ...,r, the one-way random effects model can be written as, see e.g. [8],

Yi, j = μ +αi + ei, j, j = 1, ...,ni, i = 1, ...,r, (1)

where μ is a fixed unknown parameter and αi and ei, j, j = 1, ...,ni, i = 1, ...,r, are independent normal variables with
null mean values and variances, respectively, σ2

α and σ2, αi ∼ N(0,σ2
α), ei, j ∼ N(0,σ2), j = 1, ...,ni, i = 1, ...,r.

The model (1) can be written in matrix notation as, see e.g. [1],

YYY = μμμ +D(111n1 , ...,111nr)ααα +eee, (2)

where YYY = (Y1,1, ...,Y1,n1 ,Y2,1, ...,Y2,n2 , ...,Yr,1, ...,Yr,nr)
′, ααα = (α1, ...,αr)′ and D(111n1 , ...,111nr) denotes a block diagonal

matrix with 111n1 , ...,111nr along the blocks and 111m is the vector with all m components equal to 1. Therefore, ααα and
eee are normal distributed, with null mean vectors and variance-covariance matrices, respectively, σ2

αIIIr and σ2IIIn,
ααα ∼ N(000,σ2

αIIIr), eee∼ N(000,σ2IIIn), with IIIn the n×n identity matrix.
The vectorYYY , when N = n, will be conditionally normal with mean vector μμμ = μ111r and variance-covariance matrix

given by, see [1] and [9], � Σ = σ2
αD(JJJn1 , ...,JJJnr)+σ2IIIn, where JJJm = 111m111′m. We put

YYY ∼ N
(
μμμ ,σ2

αD(JJJn1 , ...,JJJnr)+σ2IIIn
)
.

(N = n)

We are interested in test the hypotheses
H0 : σ2

α = 0 vs H1 : σ2
α > 0. (3)

In what follows we present the test statistic for testing these hypotheses and their conditional and unconditional
distributions. We will consider the expression of the test statistic obtained in [5]. Then we present an application
based on real medical data, particulary on cancer registries from São Paulo, Brazil. Finally we conclude with some
final remarks.
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STATISTIC AND THEIR DISTRIBUTIONS

In this section we will obtain the common conditional distribution of the test statistic and also it’s unconditional
distribution, under the assumption that we have a global minimum dimension for the samples, which avoids highly
unbalanced cases.

When Ni = ni, i = 1, ...,r, we have the averages Yi,•, i = 1, ...,r, for the samples Yi,1, ...,Yi,ni , i = 1, ...,r. The sum of
squares for the error will be given by, see e.g. [9],

S =
r

∑
i=1

ni

∑
j=1

(Yi, j−Yi,•)2 =
r

∑
i=1

ni

∑
j=1

Y 2
i, j−

r

∑
i=1

T 2
i
ni

, (4)

with Ti = ∑ni
j=1Yi, j, i = 1, ...,r and S will be the product by σ2 of a central chi-square with g(n) = n− r degrees of

freedom, S∼ σ2χ2
g(n). As we can see, for instance in [9], S can be written using the matrix formulation as

S =YYY ′
(
IIIn−D

(
JJJn1
n1

, ...,
JJJnr
nr

))
YYY . (5)

When Ni = ni, the sample means Yi,• = μ +αi + ei,•, i = 1, ...,r,

have mean values μ and variances σ2
α + σ2

ni
, i = 1, ...,r. So, when the hypothesis H0 holds,

Yi,• ∼ N
(

μ, σ2

ni

)
, , i = 1, ...,r, and Y•,• = 1

n ∑r
i=1 niYi,• ∼ N

(
μ, σ2

n

)
.

Let us consider
ZZZ =Y•Y•Y• −Y•,•Y•,•Y•,• =BBBY•Y•Y•,

whereY•Y•Y• = (Y1,•, ...,Yr,•)′,Y•,•Y•,•Y•,• = (Y•,•, ...,Y•,•)′ and

BBB = IIIr−

⎡
⎢⎣

n1
n · · · nr

n
...

. . .
...

n1
n · · · nr

n

⎤
⎥⎦ =

⎡
⎢⎣

n−n1
n · · · −nr

n
...

. . .
...

−n1
n · · · n−nr

n

⎤
⎥⎦ = IIIr− 1

n
1r1r1rnnn′.

When Ni = ni, i = 1, ...,r, ZZZ will be normal distributed with null mean vector and variance-covariance matrix σ2VVV ,
ZZZ ∼ N(000,σ2VVV ), with

VVV =BBBD
(

1
n1

, ...,
1
nr

)
BBB′ = D

(
1
n1

, ...,
1
nr

)
− 1

n
JJJr.

The sum of squares for the main effects of the factor will be given by Snum =ZZZ′VVV−ZZZ, whereVVV− denote a generalized
inverse of matrixVVV . When H0 holds, we have

Snum = ZZZ′VVV−ZZZ ∼ σ2χ2
g ,

with g = rank(VVV ) = r−1, see [5].
Therefore, when N = n and H0 holds, the common conditional distribution of the test statistic

ℑ =
Snum
S

=
ZZZ′VVV−ZZZ

S
(6)

will be F(.|g,g(n)), which is the distribution of the quotient of independent central chi-squares with g and g(n) degrees
of freedom.

For carrying out the inference we assume that N ≥ n•, which means that we assume that we have a global minimum
dimension for the samples, see [2, 5, 6, 7]. So we take

pn•(n) = pr(N = n|N ≥ n•) =
pr(N = n)
pr(N ≥ n•)

=
e−λ λ n/n!

1−
n•−1

∑
u=0

e−λ λ u/u!

=
λ n

n!

(
eλ −

n•−1

∑
u=0

λ u/u!

) , n = n•, ... (7)

and we obtain the unconditional distribution given by

F(z) =
∞

∑
n=n•

pr(N = n|N ≥ n•)pr(ℑ ≤ z|N = n) =
∞

∑
n=n•

pn•(n)F(z|g,g(n)). (8)
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AN APPLICATION

The data used in this application were provided by the National Cancer Institute (INCA) and are from city of São Paulo,
Brazil, 2010. We selected r = 6 different kinds of cancer, using simple random sampling. The Table 1 illustrates the
kinds of cancer which have been selected and the number of patients.

TABLE 1. Kinds of cancers and number of patients

Kinds of Cancer Number of patients

Body of Stomach 91
Spinal cord and other parties S.N.C. 42

Melanoma on the trunk 107
Encephalon 93

Ascending Colon 201
Upper lobe, bronchus or lung 155

As we saw, given N = n, the conditional distribution of ℑ is, when H0 holds, a central F distribution with g = 5 and
g(n) = n−6 degrees of freedom, F(.|5,n−6).

To carry out the calculations when we may assume that ∑n•−1
n=0 pn•(n) � 0, which means that, with high probability,

we have N ≥ n•, the unconditional distribution of the statistic will be given by

F(z) =
∞

∑
n=n•

pn•(n)F(z|5,n−6).

Moreover, to the monotony property of the F distribution, see [2], we have F(z|g,n− 6) < F(z|g,no − 6), with
n < no, so

F(z|5,n• −6) ≤ F(z) ≤ 1,

which gives us a lower bound for F(z). Thus, from F(z|5,n• −6), we can obtain upper bounds for the quantiles of the
unconditional distribution F(z). If we use these upper bounds as critical values we will have tests with sizes that do
not exceed the theoretical values.

If the statistic’s value exceeds the upper bounds, also exceeds the real critical value (obtaining considering random
sample sizes) and in this case we reject the hypothesis. When the statistic’s value is lower than the upper bound we
must compute the real critical values or calculate the minimum value of n• that leads to reject the null hypothesis.

In this case we obtain

S =
91

∑
j=1

(y1, j− y1,•)2 +
42

∑
j=1

(y2, j− y2,•)2 + ...+
155

∑
j=1

(y6, j− y6,•)2 = 209006, (9)

with the sample means y1,• = 62.05;y2,• = 46.17;y3,• = 67.89;y4,• = 49.90;y5,• = 71.10;y6,• = 66.26. The general
mean obtained is equal to y•,• = 64.02.

The numerator of the ℑ statistic, when the hypothesis holds, was defined by Snum =ZZZ′VVV−ZZZ ∼ σ2χ2
5 . In this case we

obtain

ZZZ = BBBYYY• =

⎡
⎢⎢⎢⎣

−1.965375
−17.853653
3.867530

−14.988060
7.084158
2.237745

⎤
⎥⎥⎥⎦ ; VVV− =

⎡
⎢⎢⎢⎣

88.6758568 0.9076503 −4.3801736 −2.5542037 −26.409124 −13.504328
0.9076503 43.3329148 0.3069035 0.8449923 −7.814687 −2.859674
−4.3801736 0.3069035 99.9126454 −4.6868906 −34.691226 −18.684709
−2.5542037 0.8449923 −4.6868906 90.2067458 −27.384874 −14.105984
−26.4091237 −7.8146868 −34.6912261 −27.3848744 95.674453 −66.066861
−13.5043283 −2.8596742 −18.6847092 −14.1059835 −66.066861 115.739094

⎤
⎥⎥⎥⎦

and consequently Snum = ZZZ′VVV−ZZZ = 47067.08. Therefore, the statistic’s value, ℑObs, is given by

ℑObs =
47067.08
209006

= 0.2252.

If we use the common conditional distribution of ℑ, which corresponds to F(z|5,683), we will obtain the quantiles,
z1−α , given in Table 2. So, since ℑObs > z1−α , we can conclude that we reject H0 for the usual levels of significance.

Let us now assume that n• = 59, which means that we have about 10 observations per treatment. The Table 2 shows
the upper bounds for the quantiles, zu1−α , for probability 1−α of the unconditional distribution F(z).

The results in this table may lead us to take a contrary decision that we had taken using the conditional distribution
of the statistics for α = 0.05 and α = 0.01. Therefore the increase of the critical values points towards the possibility
of non-rejection when random sample sizes are considered.
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TABLE 2. The quantiles of the condi-
tional distribution of the statistics and up-
per bounds for the quantiles

Values de α 0.1 0.05 0.01

z1−α 0.0136 0.0163 0.0223

zu1−α 0.1848 0.2254 0.3193

TABLE 3. Minimum value of n• that
leads to reject the null hypothesis

Values of α 0.1 0.05 0.01

n• 51 60 79

Assuming the values of the test statistic remain unchanged, for ensuring rejection, we should have the total sample
sizes presented in Table 3. Since for higher values of n• we would get lower values for the quantiles, we have
ℑObs > zu1−α for all n• ≥ 79, which means that, in this case, we reject H0 considering the usual levels of significance.
Thus the kind of cancer has a significant random effect, so the ages of disease detection may differ significantly with
it’s kind.

FINAL REMARKS

When we cannot previously know the sample sizes it is much more correct to consider them as realizations of random
variables. Through the application on cancer registries we can prove the relevance of the unconditional approach
in order to possibly avoid false rejections. We also can conclude that when the samples dimensions increase, the
conditional and unconditional approach converge to the same decision.

During our treatment we worked with F distributions since they are more treatable and statistically equivalent. This
equivalence enabled us to consider our tests as F-tests.
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