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DÁRIO FERREIRA1, SANDRA S. FERREIRA1, CÉLIA NUNES1
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1 Introduction

The estimation problem of variance components in the case of balanced designs in
mixed models has been extensively treated, see for example Khuri and Sahai (1985),
Searle (1971) and Searle (1995). Inference becomes less elegant when the orthogo-
nality conditions fail to hold.

Prior to the early 1990s, most applications used some version of analysis of vari-
ance (ANOVA). The sums of squares for an ANOVA table are easily calculated and
are unambiguous, see for example LaMotte (1973) and Vanleeuwen et al (1999).
The early development of ANOVA estimation of variance components for unbal-
anced data are attributed to Henderson (1953). Nowadays, with the development
of computing facilities, the use of maximum likelihood (ML) methods has sparked
considerable interest since, despite the methodology for ML estimation is simple,
its implementation is mathematically intense. The likelihood function is maximized
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over the parameter space under non-negative definite estimates of the variance ma-
trices where data is assumed to be normally distributed, see Khuri (1985). Under
certain regularity conditions, ML estimators of variance components are consistent,
asymptotically efficient and asymptotically normal, see Miller (1977).

Jennrich and Schluchter (1985) and Fairclough and Helms (1986) compared
performances of the Newton-Raphson, NR, the Fisher of Scoring method, FS, and
the EM algorithm. Lindstrom and Bates (1988) provided arguments favoring the
use of the NR method. Based on some starting values for the parameters, procedures
based on NR method iteratively update the estimates until convergence is achieved,
see Ypma (1995). The difference for the FS is that the FS replaces the observed sec-
ond derivatives with its expectation. This method was introduced by Fisher (1925).
The NR approach is usually very good if the initial estimate is close to the value of
the parameter. But if it is not close enough the iterative process may converge too
slowly, may not converge at all or may converge to parameter values on or outside the
boundary of the parameter space. This problem might be circumvented by specify-
ing better starting values or by using other numerical procedures, see Hartley and Rao
(1967) or Stern and Welsh (2000). Problems concerning the estimation of variance
components in mixed effects models were extensively discussed in the monograph
by Demidenko (2013).

In this paper we present a maximum likelihood method for the estimation of
both fixed effects and variance components in balanced and unbalanced linear mixed
models, which we call Three Step Minimization, TSM. With this approach we first
profile out the fixed parameters. Then, after a re-parametrization we switch to using
ratio parameters profiling out the variance components. Finally we use a grid search
algorithm to carry out a minimization, choosing those ratio parameters that minimize
the transformed log likelihood function.

The main advantage of our method is that the grid search is robust and can easily
identify variances that are zero or tend to zero. To the contrary, standard algorithms,
such as NR or FS, behave badly in this situation. Besides this, TSM is very easy to
implement in R software, which is free and available on the internet, and it does not
need any starting value, since the grid search will be restricted to the interval [0, 1].
Moreover, our estimates may be used as excellent starting values for the NR method.

This article is structured as follows. In the next section we make a brief pre-
sentation of linear mixed models. Then we explain how to estimate the parameters
through the TSM method. The fourth section provides a numerical comparison of
our approach with the NR and FS. Namely we present a numerical example applied
to simulated and real data. We used designs with small number of replicates and with
one variance component very close to zero, since these are the type of designs we are
interested in. Apart from the example in the application with real data this type of de-
sign may be used, for example in medicine, in which patients suffer from infrequent
pathologies. Finally in the last section we present some comments.
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2 Model

Let Y = (Y1, ..., Yn)> describe the observation vector in the linear mixed model

Y = Xβ +
k−1∑

l=1

Zlbl + e, (1)

where X and Zl are known n × m and n × cl matrices respectively, X has full
rank, β ∈ Rm is fixed and the random effects bl and e are assumed to be normally
distributed and independent. We put

bl ∼ N(0, σ2
l Icl

), (2)

l = 1, ..., k − 1 and

e ∼ N(0, σ2
kIn). (3)

Therefore

E(Y ) = Xβ (4)

and

V (σ2) = V ar(Y ) =
k∑

l=1

σ2
l Ml, (5)

where Ml = ZlZ>l , l = 1, ..., k− 1, Mk = In and σ2 = (σ2
1, ..., σ

2
k)
>. Thus we have

Y ∼ N(Xβ,V (σ2)) (6)

which has density

n(Y |Xβ,V (σ2)) =
e−

1
2
(Y−Xβ)>V (σ2)−1(Y−Xβ)

(2π)n/2
√
|V (σ2)| . (7)

Having thus the log-likelihood function

l(β, σ2|Y ) = −n

2
log(2π)− 1

2
log|V (σ2)| − 1

2
(Y −Xβ)>V (σ2)−1(Y −Xβ), (8)

with |A| describing the determinant of matrix A.
In the next section we will show how to estimate the parameter vector θ =

(β, σ2)> using our approach. The description of the NR method may be seen in
Demidenko (2013).



4 Ferreira et al

3 Three Step Minimization

Maximizing (8) is equivalent to minimizing

l∗(β, σ2|Y ) = log|V (σ2)|+ (Y −Xβ)>V (σ2)−1(Y −Xβ). (9)

We will minimize (9) in three steps. In the first step we will replace the goal function
by another which depends only on the variance components. In the second step we
replace the goal function depending on the variance components by another which
depends on ratio parameters. The third step consists of a numerical minimization.

• First step:
The minimum of l∗(β, σ2|Y ) for a fixed σ2 is obtained for the corresponding

least squares estimator

β̃ =
(
X>V (σ2)−1X

)−1
X>V (σ2)−1Y . (10)

Thus
Y −X β̃ = (In −X (X>V (σ2)−1X )−1X>V (σ2)−1)Y , (11)

and moreover
(Y −X β̃)>V (σ2)−1(Y −X β̃) = Y >PY , (12)

where P = V (σ2)−1 −V (σ2)−1X (X>V (σ2)−1X )−1X>V (σ2)−1.
So the minimum of l∗(β, σ2|Y ) for a fixed σ2 will be given by the profile log

likelihood

l∗∗(σ2|Y ) = log|V (σ2)|+ Y >PY , (13)

see Pinheiro and Bates (2000). We should point out that now, after profiling out the
fixed parameters, the number of variables to be estimated has been reduced substan-
tially since we only have to consider σ2.

• Second step:
In the second step we will consider ratio parameters γl, with

γl =
σ2

l

ρ
, l = 1, ..., k, (14)

where ρ =
∑k

l=1 σ2
l , profiling out the parameter corresponding to the sum of the

variance parameters.
Let us assume that γ = (γ1, ..., γk). Now

V (σ2) =
k∑

l=1

σ2
l Ml = ρ

k∑

l=1

γlMl = ρV (γ), (15)
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with

V (γ) =
k∑

l=1

γlMl, l = 1, ..., k. (16)

So l∗∗(σ2|Y ) may be rewritten as

l∗∗(ρ; γ|Y ) = log(ρn|V (γ)|) +

+ Y >[
1
ρ
V (γ)−1 − 1

ρ
V (γ)−1X (X> 1

ρ
V (γ)−1X )−1X> 1

ρ
V (γ)−1]Y

= nlogρ + log(|V (γ)|)
+

1
ρ
Y >[V (γ)−1 −V (γ)−1X (X>V (γ)−1X )−1X>V (γ)−1]Y . (17)

Thus

∂l∗∗(ρ; γ|Y )
∂ρ

=
n

ρ
− 1

ρ2
Y >[V (γ)−1

− V (γ)−1X (X>V (γ)−1X )−1X>V (γ)−1]Y . (18)

So, considering

Q = Y >[V (γ)−1 −V (γ)−1X (X>V (γ)−1X )−1X>V (γ)−1]Y , (19)

the minimum for the given γ is attained with

ρ =
Q

n
. (20)

This minimum will be

l(γ|Y ) = nlog(
Q

n
) + log(|V (γ)|) + n. (21)

• Third step:
In this step we will minimize the variance-profile log-likelihood function in (21).

To do that we take the ratio parameters defined in (14) and use a stochastic or a grid
search algorithm to carry out a numerical minimization, choosing those γl, l = 1, ...k,
that minimize l(γ|Y ), and complete the adjustment. Note that the γl, l = 1, ..., k will
vary in the compact set

D = {γ1, ..., γk}, (22)

where 0 ≤ γl ≤ 1, l = 1, ..., k and
∑k

l=1 γl = 1. So this minimization is under
constraint of these conditions. In the numerical comparisons we used a grid search
algorithm. A brief description of it may be found in the next section. Moreover, the
scheme of the grid search algorithm may be seen at
http : //dar364.wix.com/dario]!algorithms/c1oi.

Finally there will be
σ̃2

l = ργ̃l, l = 1, . . . , k. (23)
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To estimate the remaining parameters we may now use σ̃2 to obtain V (σ̃2), the
estimator of V (σ2), in (5), and then use it in (10) providing

β̃ =
(
X>V (σ̃2)−1X

)−1
X>V (σ̃2)−1Y . (24)

Thus, using the TSM method we are able to estimate the variance components
and the fixed effects for an arbitrary model.

4 Numerical application

4.1 Numerical comparison using simulated data

In order to compare the estimates of the variance components obtained through the
TSM, and the ones obtained through the NR and FS, using simulated data and with
one variance component close to zero, we considered 7 unbalanced models, s =
1, ..., 7. Each model has a three level fixed effects factor, A, that crosses with a
two level fixed effects factor, B, which nests an r level random effects factor, C,
where r = s + 1. So, the 1-st model is A3 × (B2 ⊃ C2), while the 7-th model is
A3 × (B2 ⊃ C8). We used these models because they have a combination of nested
and crossed effects and are widely used, see for example Khuri et al (1998). Table
1 shows how the data are distributed in the 7-th model, that is, in the case where C
factor has 8 levels. The remaining models are obtained by removing levels of the
C factor. The table contains dots instead of values because the data were simulated
10000 times.

In Section 4.2 we will use a very similar design to the first one (s = 1) presented
in this section. We thought of using this design because so we are replicating the
design described in the application to real data. When s=1, the design is almost the
same. Thus, this design could be used for the investigation described in the applica-
tion to real data but varying the number of clones between 2 (s=1) and 8 (s=7).

The models for the observation vectors Y >
s = (Y1, ..., Yns), s = 1, ..., 7, are

given by
Ys = Xsβ + Z1,sb1,s + Z2,sb2,s + es (25)

where β is a 12× 1 fixed vector,





b1,s ∼ N(0 , σ2
1,sI6(s+1))

b2,s ∼ N(0 , σ2
2,sI2(s+1))

es ∼ N(0 , σ2
3,sIns)

, (26)

s = 1, ..., 7, are independent and Xs, Z1,s and Z2,s are known design matrices.
Let

(σ2
¦ )
> = (0.05, 0.5, 1) (27)



Estimation in mixed models through Three Step Minimization 7

Table 1: Distribution of observations by factors for the 7-th model.
B1 B2

C1C2C3C4C5C6C7C8 C1C2C3C4C5C6C7C8

• • • • • • • • • • • • • • • •
A1 • • • • • • • • • • • • • • • •

• • • • • •
• • • • • • • • • • • • • • • •

A2 • • • • • • • • • • • • • • • •
• • • • • •
• • • • • • • • • • • • • • • •

A3 • • • • • • • • • • • • • • • •
• • • •

be the vector with the assumed numbers for the variance components and

β>¦ = (β1, ..., β12), (28)

where βj = 1, j = 1, ..., 12, be the vector with the assumed numbers for the fixed
effects. Note that one of the assumed numbers for the variance components is 0.05.

Hereinafter we used the R software to proceed as follows N = 10000 times:

We simulated Ys, s = 1, ..., 7 with the above assumed numbers for the parame-
ters. Then despite the observation vectors and all parameters are known, we assumed
that we only knew Ys, Xs, Z1,s and Z2,s, s = 1, ..., 7 and used both methods to esti-
mate the parameters and compare the obtained estimates with the assumed numbers
in (27) and (28).

To estimate the parameters using the TSM method we minimized the function in
(21) with respect to γs, s = 1, ..., 7. To do that we considered γs = (γ1,s, γ2,s, γ3,s)
and used a grid search algorithm, whose scheme is presented at
http : //dar364.wix.com/dario]!algorithms/c1oi. The programmed algorithm
for s = 1 is also available. The algorithm makes vary γl,s, l = 1, 2, 3, s = 1, ..., 7,
such that 




γ1,s = 0.01× k
γ2,s = 0.01× i× (1− γ1,s)
γ3,s = 1− (γ1,s + γ2,s)

, (29)

with k = 0, ..., 100 and i = 0, ..., 100, thus having
{

0 ≤ γl,s ≤ 1, l = 1, 2, 3
γ1,s + γ2,s + γ3,s = 1

, (30)

s = 1, ..., 7. Proceeding that way it calculated the value of l(γ|Y ), in (21), for each
γs and gave us those that minimize l(γ|Y ). Next we obtained the σ̃2

s , s = 1, ..., 7,
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from (23) and the β̃s, s = 1, ..., 7, from (24). Note that there is no need to search for
a starting value, since our search is restricted to the interval [0, 1].

The idea behind the NR method is to approximate a given function in each iter-
ation by a quadratic function and then move to the minimum of this quadratic, see
Ypma (1995). The quadratic approximation in a suitable neighborhood of a given
point, θ, with components θ1, ..., θw, is given by a second order Taylor expansion

l(θ) ≈ l(θ0) + (θ − θ0)>
∂l(θ)
∂θ

|θ0
+

1
2
(θ − θ0)>

(
∂2l(θ)
∂θi∂θj

|θ0

)
(θ − θ0). (31)

So, to estimate the parameters using the NR method we minimized the func-
tion in (31). To do that we used an algorithm whose scheme is presented at http :
//dar364.wix.com/dario]!algorithms/c1oi. For the maximum difference between
two successive iterations we considered ε = 0.01. We used this ε to ensure that the
conditions were similar for both methods.

To apply the NR method we needed to consider some starting values. We could
use an algorithm to select them but as we wanted to study the behavior of the NR
with smaller and larger starting values we used the values presented in Table 2. If
the starting value is smaller than the assumed number, AN , in (27), we call the NR
method NR-L. Otherwise we call it NR-R. For example, if AN = 1, the starting
values for NR-L and NR-R methods will be 0.75 and 1.25 respectively.

Table 2: Starting values for NR-L and NR-R.
AN : 0.05 0.5 1
NR-L 0.001 0.25 0.75
NR-R 0.25 0.75 1.25

To compare the TSM with the NR let

¯̃σ2
s =

1
N

N∑

j=1

σ̃2
s,j , s = 1, ..., 7, (32)

and
¯̃
βs =

1
N

N∑

j=1

β̃s,j , s = 1, ..., 7. (33)

Moreover let

Ṽs,¦ =
1

N − 1




N∑

j=1

σ̃2
s,j(σ̃

2
s,j)

> −N ¯̃σ2
s(¯̃σ

2
s)
>


 , s = 1, ..., 7, (34)

and

Ṽs,¦¦ =
1

N − 1




N∑

j=1

β̃s,j β̃
>
s,j −N

¯̃
βs

¯̃
β>s


 , s = 1, ..., 7. (35)
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Table 3 shows the obtained values for

d1,s = ‖¯̃σ2
s − σ2

¦ ‖, s = 1, ..., 7, (36)

and Table 4 shows the obtained values for the trace of matrix Ṽs,¦, tr
(
Ṽs,¦

)
, s =

1, ..., 7, respectively.

Table 3: Obtained values for d1,s, s = 1, ..., 7.

method 1 2 3 4 5 6 7
TM 0.1534 0.3854 0.1026 0.2728 0.2003 0.1085 0.2348
NR-L 2.7087 0.4634 a) 0.2822 0.2624 0.3561 0.3557
NR-R a) 1.7649 0.3760 0.3282 0.1538 4.9909 2.2241
a) Function in (31) did not converge.

Table 4: Values of tr
(
Ṽs,¦

)
, s = 1, ..., 7.

1 2 3 4 5 6 7
TM 0.0341 0.0536 0.0210 0.0421 0.0209 0.0981 0.0172
NR-L 0.9760 0.0104 a) 0.0708 0.0002 0.1029 0.0772
NR-R a) 18.2697 14.4334 17.0105 0.0221 1.4981 2.0143
a) Function in (31) did not converge.

It may be seen that in general the TSM method gave more accurate values with
smaller variation. Moreover, NR-L did not converge when s = 3 and NR-R did not
converge when s = 1. Note that both algorithms may be improved. Perhaps using
typical algorithms to select starting values would provide a more realistic represen-
tation of NR implementation and performance, while for the TSM we could reduce
the net in the compact set. Or alternatively we could have used any other grid search
algorithm or even a stochastic algorithm. However our intention was to show that
TSM method finds good estimates when the ML solution is on the boundary of the
minimization domain and does not require starting values. Moreover, once we have
the estimates obtained by the TSM these could also be improved by using them as
starting values for the NR. We will see an application of this in Section 4.2.

Table 5 shows the obtained values for

d2,s = ‖¯̃βs − β¦‖, s = 1, ..., 7. (37)

and Table 4 shows the obtained values for the trace of matrix Ṽh,¦¦, tr
(
Ṽh,¦¦

)
, s =

1, ..., 7.
It may be seen that the values of d2,s and tr

(
Ṽh,¦¦

)
, s = 1, ..., 7 are very similar.

Thus, we may conclude that in this case the method used to estimate the variance
components does not influence the estimates obtained for β.

Table 7 shows the sum of the time spent (10.000 cases), in seconds, in obtaining
the estimates of the variance components and the fixed effects. It may be seen that
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Table 5: Obtained values for d2,s, s = 1, ..., 7.

method 1 2 3 4 5 6 7
TM 2.1284 2.0858 2.1344 2.0424 2.0850 2.1666 2.0855
NR-L 2.1355 2.0807 a) 2.0428 2.0844 2.1666 2.0824
NR-R a) 2.0843 2.1407 2.0449 2.0965 2.1676 2.0962
a) Function in (31) did not converge.

Table 6: Values of tr
(
Ṽs,¦¦

)
, s = 1, ..., 7.

1 2 3 4 5 6 7
TM 0.4209 0.7895 0.7967 0.6791 0.1291 0.6820 0.3265
NR-L 0.4275 0.7870 a) 0.6871 0.1133 0.6807 0.3213
NR-R a) 0.7870 0.7869 0.6786 0.1284 0.6808 0.3571
a) Function in (31) did not converge.

Table 7: Sum of the time spent, in seconds, in obtaining the values of σ̃2 and
β̃.

method 1 2 3 4 5 6 7
TM 20.05 25.43 29.72 34.97 45.20 61.79 72.07
NR-L 223.05 183.52 a) 178.35 358.72 365.75 360.63
NR-R a) 332.93 346.71 324.38 356.50 355.08 353.01
a) Function in (31) did not converge.

TSM method took less time than the NR-L and NR-R. However, as the values are all
in fractions of seconds we conclude that time is trivial.

Besides this comparison we also estimated the variance components using SPSS
software through the FS. To do that we used one of the simulated observation vectors
per model. The used observation vectors are available at
http : //dar364.wix.com/dario]!algorithms/c1oi. We used SPSS instead of R
software to compare the estimates obtained by our algorithms with estimates ob-
tained by an other software. The obtained estimates, as well as d1,s, s = 1, ..., 7, are
presented in Table 8.

Table 8: Obtained values for d1,s, s = 1, ..., 7, using SPSS software through the FS.
1 2 3 4 5 6 7

d1,s 0.3693 0.4664 0.2522 0.5178 0.3692 0.2630 0.2052

Comparing values in Table 3 and Table 8 we see that, excluding the case where
s = 2, s = 4 and s = 5, SPSS through the FS gave more accurate estimates than
the R software through our algorithms for NR-L and NR-R. But excluding the case
where s = 7, R software through the TSM gave more accurate estimates than the
SPSS through the FS.
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4.2 Application to real data

We considered an experiment in which two groups of two clones, grown side by side,
of the caste Touriga Nacional. The origins of the two groups were distinct. As before
there is a fixed effects factor (location) that crosses with another fixed effects factor
(origin) which nests a random effects factor (clone). The yields, in Kg, are presented
in Table 9. These data were presented in Fonseca et al. (2003) in an application to a
grapevine experiment. Here we introduced imbalance by deleting some observations
from the original table. The yields are presented in Table 9.

Table 9: Yields in Kg.
Location Origin 1 Origin 2

Clone 1 Clone 2 Clone 1 Clone 2
1 3.00 1.00 1.75 1.05

1.85 1.10 2.00 1.25

2 1.80 1.60 2.00 2.70
0.70 1.75 2.55 2.15
2.50 2.65 2.10

3 1.05 0.75 1.60 1.60
1.50 0.65 1.66 1.10

0.90

The model for the observation vector Y is

Y = Xβ + Z1b1 + Z2b2 + e

where β is a 12× 1 fixed vector,





b1 ∼ N(0 , σ2
1I12)

b2 ∼ N(0 , σ2
2I4)

e ∼ N(0 , σ2
3I28)

,

are independent and X , Z1 and Z2 are known design matrices.
Using again the R software we obtained the estimates for the variance compo-

nents applying the TSM method which are





σ̃2
1 = 0.025120

σ̃2
2 = 0.000129

σ̃2
3 = 0.185249

.

Then we used these values as starting values for The NR and obtained the esti-
mates presented in Table 10. We used ε = 10−3, ε = 10−4, ε = 10−5 and ε = 10−6.
The number of iterations is represented by n.
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Table 10: Obtained estimates for the variance components using the TSM estimates
as starting values for the NR.

ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

σ̃2
1 0.025120 0.025120 0.025120 0.025120

σ̃2
2 0.000129 0.000129 0.000129 0.000129

σ̃2
3 0.184498 0.185326 0.185248 0.185249

n 112 964 27045 105971

Comparing these results from those obtained through the TSM method we see
that the estimates for σ2

1 and σ2
2 obtained using the NR were identical to those ob-

tained through the TSM, irrespective of the number of iterations. Besides this the es-
timate for σ2

3 obtained using the NR started by diverging from that obtained through
the TSM, but with the increase of iterations these approached. Thus we may conclude
that the estimates obtained through the TSM were validated by the NR.

We also obtained the variance components estimates through the NR and FS,
using SPSS software, which are presented in Table 11. We used ε = 10−8.

Table 11: Obtained estimates for the variance components through the NR and FS
using SPSS software.

NR FS
σ̃2

1 0.027759 0.027759
σ̃2

2 0 0
σ̃2

3 0.183873 0.183873

It may be seen that the estimates obtained by SPSS through the NR and FS are
very close to the ones obtained by the TSM and the NR with the TSM estimates as
starting values. So, once again, we may conclude that the estimates obtained by our
algorithms were validated by SPSS through the NR and FS.

5 Final Comments

We proposed a maximum likelihood method, the TSM method, for the estimation
of both fixed effects and variance components in balanced and unbalanced mixed
models.

A numerical comparison with the NR and FS was provided. In general the TSM
method gave more accurate values than the NR. As stated before, we could use an
algorithm to select the starting values for the NR but as we wanted to study the be-
havior of the NR with smaller and larger starting values we used the values presented
in Table 2. These are for sure not the best starting values for the NR but note that the
TSM method can also be improved by making the net narrower in step 3. Comparing
with the FS method, the TSM method obtained more accurate results than the FS
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in six of seven cases. The FS method was more accurate than the TSM for s = 7,
obtaining d1,2 = 0.2052, while with the TSM method the result was d1,2 = 0.2348.
Despite the added value of this comparison, we think that the major contribution of
the TSM method is that when variances tend to be null, i.e. the ML solution is on
the boundary of the minimization domain, standard algorithms, such as NR or FS,
behave badly, unlike the TSM method, which uses a grid search in the compact set
[0, 1]. In addition, TSM does not need a starting value. So, in this sense, this method
proves easier and faster to apply than the Newton Raphson. Besides this, TSM is
very easy to implement in R software, which is free and available on the internet.
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