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a b s t r a c t

In this paper we present a treatment for the estimation of variance components and
estimable vectors in linearmixedmodels inwhich the relationmatricesmay not commute.
To overcome this difficulty, we partition the mixed model in sub-models using orthogonal
matrices. In addition, we obtain confidence regions and derive tests of hypothesis for the
variance components. A numerical example is included. There we illustrate the estimation
of the variance components using our treatment and compare the obtained estimates with
the ones obtained by the ANOVA method. Besides this, we also present the restricted and
unrestricted maximum likelihood estimates.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

There have been extensive studies of estimation in mixed models; see, e.g., [5,19,21–23]. In addition to a rich source of
research publications, several books/monographs have been published in more recent years, such as [9,13,15]. Apart from
that, the estimation of variance components in linear mixed models is not completely straightforward, even in the balanced
case; see [6,14]. In what follows we will consider mixed models

Y =

w∑
i=0

Xiβi, (1)

where Y is a vector of N random variables Y1, . . . ,YN , β0 is a fixed vector and the β1, . . . ,βw are random and independent
vectors, with null mean vectors, variance–covariance matrices V (βi) = θiIci for all i ∈ {1, . . . , w}, and null cross covariance
matrices, V (βi;βℓ) = 0ci×cl for all i ̸= ℓ. These models will have mean vector µ = X0β0 and variance covariance matrices

V (Y ) =

w∑
i=1

θiMi,

withMi = XiX⊤

i for each i ∈ {1, . . . , w}. SoMi is the N × N relation matrix for the sth random factor. That is, its (a, b)-entry
is equal to 1 if this factor has the same level on units a and b, and otherwise it is equal to 0; see [2,3].
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In models in which the relation matricesM1, . . . ,Mw commute, we have

∀i∈{1,...,w} Mi =

m∑
j=1

bi,jQj,

where Q1, . . . ,Qm are known orthogonal symmetric idempotent matrices of order N , summing to the identity matrix IN .
Then the models have the variance covariance matrices

V (γ) =

m∑
j=1

γ jQj,

with γ j =
∑w

i=1bi,jQj for all j ∈ {1, . . . ,m}. If thematrices B = [bi,j] are invertible, the V (γ) will be the positive semi-definite
linear combinations of Q1, . . . ,Qm and the models will have orthogonal block structure (OBS, see [16,17]) which continue
to play a very important role in the theory of randomized block designs; see [7,8]. Furthermore, there is a huge literature on
mixed models and commutativity, starting with the work of [24,25]. Researchers like [1,18] also contributed to this area. A
discussion of mixed models in which the relation matrices commute may be seen in [26]. A discussion on this assumption
may also be found in [20,27]. Moreover, in [4] is investigated the case where the family of possible variance–covariance
matrices, while still commutative, no longer forms an OBS.

The goal of this paper is to present a treatment of the estimation of variance components and estimable vectors in mixed
models in which the relation matrices do not commute, or may not commute. To overcome this difficulty we partition the
mixedmodel in sub-models using orthogonal matrices. Since V (Y ) has an additive structure we say themodels are additive,
or ADD for short.

There are several popular methods available for the estimation of variance components in mixed models based on
maximum likelihood,ML, or restrictedmaximum likelihood, REML. A review of this assumptionmay be seen in [11]. Analysis
of variance, ANOVA, estimation basedmethods are also very popular. In particular, the three variations known as Henderson
I, Henderson II, and Henderson III, suggested by [12]. Henderson I is the easiest to apply. Henderson II can be used for random
models and Henderson III is the most suitable of the three methods.

Themethodwe propose has some advantages over thosementioned above.We point out that our method can be applied
without requiring normality or any other distribution for β1, . . . ,βw . So, unlike the ML, and REML estimators, it requires
only that the distribution of β1, . . . ,βw has first and second moment. Besides this, our method is a unified method contrary
to the ANOVA estimation based methods. That is, it can be applied to balanced or unbalanced, random or mixed models,
whether or not the relation matrices commute.

In Section 2 we carry out estimation for variance components and estimable vectors in ADD models without requiring
normality. We start with the algebraic structure of the models, from which we derive estimators for variance components.
These estimators enable us to obtain generalized least squares, GLS, estimators for estimable vectors. In Section 3we assume
themodel to be normal and use inducing pivot variables to obtain confidence intervals for the variance components; see [10].
These confidence intervals may be used, through duality, to test hypotheses about them. In Section 4we present a numerical
example in which we compare our technique for estimating variance components with unbalanced ANOVA. There we
illustrate the estimation of the variance components using our treatment and compare the obtained estimates with the ones
obtained by the ANOVA method. Besides this, we also present the REML and the ML estimated values. Finally we present
some final comments in Section 5.

2. Additive models

2.1. Algebraic structure

We start by establishing the following result.

Proposition 1. Whatever the family W = {W1, . . . ,Ww} of symmetric N × N matrices, there exists an N × N matrix
P = [A⊤

1 · · ·A⊤
m]

⊤ such that AjWiA⊤

j = bi,jIgj for all i ∈ {1, . . . , w} and j ∈ {1, . . . ,m} with gj = rank(Aj) = rank(Qj),
where Qj = A⊤

j Aj for all j ∈ {1, . . . ,m}.

Proof. We will use induction on w to establish the claim. The result is obviously true for w = 1, so let us assume that it is
true for w = ℓ. Then there will be an orthogonal matrix Pℓ = [A⊤

1 (ℓ) · · ·A
⊤
m(ℓ)]

⊤ such that Aj(ℓ)WiA⊤

j (ℓ) = bi,j(ℓ)Igj(ℓ) for all
i ∈ {1, . . . , ℓ, } and j ∈ {1, . . . ,m}. For all j ∈ {1, . . . ,m}, we also have the spectral decomposition

AjWℓ+1A⊤

j =

uj∑
h=1

bℓ+1,j,hA⊤

j,hAj,h,

where Qj,h = A⊤

j,hAj,h for all h ∈ {1, . . . , uj} and j ∈ {1, . . . ,m}, are orthogonal projection matrices that are mutually
orthogonal, with ranks gj,h, respectively. Since Qj,1 + · · · + Qj,uj = Igj , we have gj,1 + · · · + gj,uj = gj for all j ∈ {1, . . . ,m}, as
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well as N = g1 + · · · + gm. We now take Aj,h = Aj,hAj for all h ∈ {1, . . . , uj} and j ∈ {1, . . . ,m} so that, if i ≤ ℓ,

Aj,hWiA
⊤

j,h = Aj,hAjWiA⊤

j A
⊤

j,h = Aj,h(bi,j,hIgj )A
⊤

j,h = bi,j,hIgj,h ,

for all h ∈ {1, . . . , uj} and j ∈ {1, . . . ,m}. Moreover

Aj,hWℓ+1A
⊤

j,h = Aj,h(AjWℓ+1A⊤

j )A
⊤

j,h = Aj,h

mj∑
h′=1

(bℓ+1,j,h′A⊤

j,h′Aj,h′ )A⊤

j,h = bℓ+1,j,hIgj,h ,

since Aj,hA⊤

j,h′ = 0gj,h×gj,h′ , when h ̸= h′.
To complete the proof we need only point out that Aj = [Aj,1 · · ·Aj,uj ]

⊤ for all j ∈ {1, . . . ,m}. So we may take

Pℓ+1 = [A
⊤

1,1 · · ·A
⊤

m,um ]
⊤, which establishes the claim. □

The distinction between these results and those for families of commutative matrices is that in general

∀j̸=j′ Aj

(
w∑
i=1

ciWi

)
A⊤

j′ ̸= 0gj×gj′ .

We say that the matrix P = [A⊤

1 · · ·A⊤
m]

⊤, given by this proposition, is associated to the partition of the ADDmodel, with
V (θ) =

∑w

i=1θiMi, where θ = [θ1 · · · θw]
⊤. In our approach we will use, for each j ∈ {1, . . . ,m}, the sub-model

Yj = AjY (2)

withmean vectorµj = X0,jβ0, whereX0,j = AjX0, and variance–covariancematrixV (Yj) = γ jIgj , with γ j = b1,jθi+· · ·+bw,jθi,
where the bi,j are the coefficients in the statement of Proposition 1.

2.2. Estimation of variance components

For each j ∈ {1, . . . ,m}, let Pj and P c
j be the orthogonal projection matrix on Ωj = R(X0,j) and on its orthogonal

complement Ω⊥

j , respectively. Given

∀j∈{1,...,m} pj = rank(Pj), pcj = rank(P c
j ) (3)

we set C = {j : pj > 0} and D = {j : pcj > 0}. Since Y1, . . . ,Ym are homoscedastic, if j ∈ D it is well known that, for each
j ∈ D,

γ̃ j = Y⊤

j P c
j Yj/pcj (4)

is BQUE(Yj), i.e., it is the best quadratic unbiased estimators, in the family of the quadratic estimators of γ j derived from Yj.
Let γ(2) have components γ j with j ∈ D and B(2) have as column vectors the column vectors of B with indexes in D. Then
γ(2) = B(2)⊤θ. So if the row vectors of B(2) are linearly independent we get

θ = (B(2)⊤)+γ(2),

where A+ indicates the Moore–Penrose inverse of matrix A. We have (B(2)⊤)+ = (B(2)B(2)⊤)+B(2), so

θ̃ = (B(2)⊤)+γ̃(2), (5)

where the components of γ̃(2) are the γ̃(j) with j ∈ D, is a least square estimator, LSE, since θ̃ minimizes

s(v) = ∥̃γ(2) − B(2)⊤v∥
2.

2.3. Estimable vectors

Let ψ = Gβ0 be an estimable vector. Since we were able to estimate θ we can use the GLS estimator

β0 (̃θ) = (X⊤

0 V (̃θ)+X0)+X⊤

0 V (̃θ)+Y ,

with

V (̃θ) =

w∑
i=1

θ̃iMi,

to obtain ψ̃(̃θ) = Gβ0 (̃θ).
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3. Confidence regions and tests for variance components

If normality is assumed, we may use inducing pivot variables to obtain confidence intervals; see [10]. For each j ∈ D,
let χ2

j,1, . . . , χ
2
j,N be independent central chi-squares with gj degrees of freedom. We then get the samples {̃θi,1, . . . , θ̃i,N} for

each i ∈ {1, . . . , w} with

θ̃i,N =

∑
j∈D

ai,j
Y⊤P c

j Y

χ2
j,u

for each u ∈ {1, . . . ,N} and [ai,j] = (B(2)⊤)+.
The empirical quantiles θ∗

1,p,u, . . . , θ
∗
w,p,u of these samples strongly converge to the corresponding exact quantiles of the

distribution induced for the variance components when N → ∞; see again [10]. Then we get the induced 1 − q level
confidence intervals [θ∗

i, q2 ,N
; θ∗

i,1− q
2 ,N

], [θ∗

i,q,N ; +∞[, [0; θ∗

i,1−q,N ] for all i ∈ {1, . . . , w} for the variance components, which
enables us to test through duality the null hypothesis

H0 : ∀i∈{1,...,w} θi = θ0,i.

4. Numerical example

In this section we present an example of a mixedmodel in which the relationmatrices do not commute and illustrate the
estimation of the variance components using ADD models. In addition, we compare the estimates of variance components
obtained by our treatment with the ones obtained by the ANOVA method. As we will see, our treatment was more accurate
in more than 80% of the time. Besides this, we obtain confidence intervals for the variance components and calculate their
coverage probabilities.

We considered the linear model described in (1), with w = 3 and N = 8 simulated observations, viz.

Y = X0β0 + X1β1 + X2β2 + ε,

with β0 fixed and β1, β2 and ε = β3 independent and normally distributed, with null mean vectors and variance–covariance
matrices V (β1) = θ1I2, V (β2) = θ2I3 and V (ε) = θ3I8. Thus Y has mean vector µ = X0β0, and variance–covariance matrix
V (Y ) = θ1M1 + θ2M2 + θ3M3, with Mi = XiX⊤

i for all i ∈ {1, 2, 3}. As design matrices we considered

X0 =
[
1 1 1 1 1 1 1 1

]⊤
,

X1 =

⎡⎢⎣1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎤⎥⎦
⊤

, X2 =

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]⊤

and X3 = I8.
In order to obtain the orthogonal matrix P = [A⊤

1 · · ·A⊤
m]

⊤, defined in Proposition 1, associated to the ADD model, we
considered the orthogonal matrix Ṗ = [Ȧ⊤

1 · · · Ȧ⊤

4 ]
⊤, with

Ȧ1 =

⎡⎣ 1/
√
3 1/

√
3 1/

√
3 0 0 0 0 0

−1/
√
2 0 1/

√
2 0 0 0 0 0

1/
√
6 −2/

√
6 1/

√
6 0 0 0 0 0

⎤⎦ , Ȧ2 =
[
0 0 0 1 0 0 0 0

]
,

Ȧ3 =

[
0 0 0 0 1/

√
2 1/

√
2 0 0

0 0 0 0 −1/
√
2 1/

√
2 0 0

]
, Ȧ4 =

[
0 0 0 0 0 0 1/

√
2 1/

√
2

0 0 0 0 0 0 −1/
√
2 1/

√
2

]
.

Then, following Proposition 1, we did the spectral decomposition ȦjM1Ȧ⊤

j for j ∈ {1, . . . , 4} and obtained

Ā1,1 =
[
0.5773 0.5773 0.5773 0 0 0 0 0

]
, Ā2,1 =

[
0 0 0 0 0.5 0.5 0.5 0.5

]
,

Ā2,2 =
[
0 0 0 0 −0.5 −0.5 0.5 0.5

]
, Ā3,1 =

[
0 0 0 1 0 0 0 0

]
,

Ā4,1 =
[
0.2581 −0.5163 0.2581 0 0.3872 −0.3872 0.3872 −0.3872

]
and

Ā4,2 =

[
−0.7071 0 0.7.0710 0 0 0 0 0
−0.3162 0.6324 −0.3162 0 0.3162 −0.3162 0.3162 −0.3162

0 0 0 0 0.5 −0.5 −0.5 0.5

]
.

To simplify writing we considered the orthogonal matrix P = [A⊤

1 · · ·A⊤

6 ], with A1 = Ā1,1, A2 = Ā2,1, A3 = Ā2,2, A4 = Ā3,1,
A5 = Ā4,1 and A6 = Ā4,2.

At this point we used the software R to simulate several observation vectors as follows. We considered θ3 = 1 and
θ1 and θ2 taking values in {0.25, 0.5, 1, 2, 4, 8, 16}. All possible combinations of θ1 and θ2 were considered. So, in whole,
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Table 1
Averages of the variance components estimates obtained using the ADD method.

θ1

θ2 0.25 0.50 1 2 4 8 16

θ̃1 0.3417 0.4292 1.0483 2.0174 3.7308 8.2365 16.1967
0.25 θ̃2 0.2449 0.2626 0.2387 0.2629 0.2999 0.2578 0.2350

θ̃3 0.9701 0.9972 0.9849 0.9874 0.9557 0.9414 0.9763

θ̃1 0.1505 0.3943 1.0789 2.0489 3.8426 8.2519 16.1314
0.50 θ̃2 0.4800 0.5126 0.4502 0.5270 0.4871 0.5040 0.4630

θ̃3 1.0365 1.0630 0.9864 1.0029 0.9908 1.0227 1.0243

θ̃1 0.2481 0.4807 0.9675 2.0491 3.9157 7.5792 14.2643
1 θ̃2 0.9677 1.0165 0.9720 0.8909 1.0109 0.9829 1.0003

θ̃3 0.9985 0.9908 0.9376 0.9984 0.9940 0.9514 0.9611

θ̃1 0.2976 0.4861 1.0930 1.9224 4.1529 8.0903 16.7445
2 θ̃2 1.9503 1.8220 1.8753 1.8624 2.0218 1.9666 2.0325

θ̃3 0.9864 1.0043 0.9733 1.0028 0.9678 0.9786 0.9946

θ̃1 0.2240 0.4160 0.9611 2.0463 3.9795 8.2095 15.8604
4 θ̃2 4.2071 4.0616 3.8739 4.3060 3.9835 3.9604 4.0136

θ̃3 1.0394 0.9794 1.0276 1.0415 1.0024 0.9709 1.0496

θ̃1 0.2608 0.5117 0.8715 2.0893 3.8556 7.9237 16.9263
8 θ̃2 8.1013 7.9765 7.9948 7.7734 7.9198 7.5978 8.0849

θ̃3 1.0063 1.0170 1.0056 0.9957 0.9879 0.9972 1.0303

θ̃1 0.2407 0.5481 1.0446 2.0339 4.1406 7.8557 15.6787
16 θ̃2 16.5753 16.5058 17.0812 15.0608 15.8374 15.5055 15.7250

θ̃3 0.9842 1.0303 0.9842 1.0032 0.9710 1.0021 0.9705

we simulated 49 observation vectors. Then, for each observation vector, we randomly generated β1, β2 and ε, with β1 ∼

N (0, θ1I2), β2 ∼ N (0, θ2I3) and ε ∼ N (0, I8) and obtained the sub-models stated in (2), viz. Yj = AjY .
In addition, again for each observation vector, we obtained the orthogonal projection matrices Pj and P c

j and the pj and
pcj for all j ∈ {1, . . . , 6}, stated in (3). The results were pc1 = 0, pc2 = 0, pc3 = 1, pc4 = 0, pc5 = 1 and pc6 = 3. So in (4) we
considered pc3, p

c
5 and pc6.

Finally we obtained the estimates of the variance components using the estimator θ̃ stated in (5). We proceeded this way
1000 times and obtained the averages for each case, θADD,i for i ∈ {1, 2, 3}, which may be seen in Table 1.

As it may be seen, the obtained estimates are close to the previously considered θ1, θ2 and θ3 suggesting that ADDmodels
may be taken into account for estimating variance components in models in which the relation matrices may not commute.

In order to obtain confidence intervals for the variance components, we generated central chi-squares χ2
i,u for all i ∈

{1, 2, 3} and u ∈ {1, . . . , 1000} with g1 = pc3, g2 = pc5 and g3 = pc6 degrees of freedom, getting the samples {̃θi,1, . . . , θ̃i,1000}

for i ∈ {1, 2, 3}, with θ̃i,u. Finally, from these samples we got the 95% level confidence intervals, with lower and upper
limits presented in Tables 2 and 3, respectively. So, for example for the previously considered θ1 = 16, θ2 = 0.25 and
θ3 = 1, we have the estimates θ̃1 = 16.1967, θ̃2 = 0.2350 and θ̃3 = 9763 and the respective 95% level confidence
intervals [12.4543, 21.9397], [0.1557, 0.3654] and [0.8372, 1.1548]. Table 4 shows the number of times, in percentages, the
previously considered values were within the obtained confidence intervals. As it may be seen, the coverage probabilities
are all close to 95%.

Table 5 shows the obtained averages of the variance components estimates using the ANOVA method, θANOVA,i for i ∈

{1, 2, 3}. This estimateswere obtained following [23]. To simplify the comparisonwith the estimates in Table 1we calculated
∥θi − θANOVA,i∥ and ∥θi − θADD,i∥ for i ∈ {1, 2, 3}, for each case. The results for the difference ∥θi − θANOVA,i∥−∥θi − θADD,i∥ for
i ∈ {1, 2, 3}, for each case, are presented in Table 6. The negative values are presented in bold. As we can see, more than 80%
of the values are positive which means that the ADD method produced more accurate estimates than the ANOVA method
in more than 80% of the time (122 in 147 times). Besides this, we calculated the root-mean-square-error, RMSE, for the two
methods, obtaining

RMSEADD =

√ 7∑
r=1

7∑
s=1

3∑
i=1

(θ̃ADD,i,s,r − θi,s,r )2

147
= 0.34

and

RMSEANOVA =

√ 7∑
r=1

7∑
s=1

3∑
i=1

(θ̃ANOVA,i,s,r − θi,s,r )2

147
= 0.80.
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Table 2
Lower limits of the 95% level confidence intervals for the variance components.

θ1

θ2 0.25 0.50 1 2 4 8 16

θ̃1 0.2217 0.2887 0.7667 1.5137 2.8345 6.3122 12.4543
0.25 θ̃2 0.1638 0.1769 0.1584 0.1782 0.2063 0.1746 0.1557

θ̃3 0.8314 0.8546 0.8442 0.8458 0.8190 0.8070 0.8372

θ̃1 0.0715 0.2579 0.7888 1.5381 2.9226 6.3167 12.3999
0.50 θ̃2 0.3429 0.3678 0.3220 0.3797 0.3500 0.3614 0.3309

θ̃3 0.8883 0.9116 0.8453 0.8597 0.8489 0.8763 0.8783

θ̃1 0.1491 0.3284 0.7052 1.5366 2.9762 5.8055 10.9707
1 θ̃2 0.7211 0.7581 0.7256 0.6614 0.7543 0.7340 0.7461

θ̃3 0.8559 0.8489 0.8036 0.8551 0.8520 0.8155 0.8237

θ̃1 0.1873 0.3316 0.8006 1.4390 3.1593 6.2023 12.8774
2 θ̃2 1.4787 1.3790 1.4213 1.4109 1.5335 1.4945 1.5419

θ̃3 0.8457 0.8607 0.8346 0.8592 0.8289 0.8389 0.8518

θ̃1 0.1280 0.2793 0.6967 1.5333 3.0241 6.2921 12.1941
4 θ̃2 3.2158 3.1065 2.9632 3.2937 3.0459 3.0340 3.0696

θ̃3 0.8907 0.8391 0.8806 0.8925 0.8591 0.8323 0.8996

θ̃1 0.1580 0.3505 0.6286 1.5700 2.9320 6.0704 13.0205
8 θ̃2 6.2119 6.1245 6.1284 5.9710 6.0795 5.8357 6.2077

θ̃3 0.8621 0.8714 0.8618 0.8535 0.8466 0.8543 0.8832

θ̃1 0.1437 0.3783 0.7640 1.5256 3.1519 6.0202 12.0434
16 θ̃2 12.7644 12.6943 13.1490 11.5940 12.1797 11.9081 12.1013

θ̃3 0.8436 0.8828 0.8433 0.8598 0.8323 0.8588 0.8315

Table 3
Upper limits of the 95% level confidence intervals for the variance components.

θ1

θ2 0.25 0.50 1 2 4 8 16

θ̃1 0.5418 0.6610 1.4981 2.8047 5.5343 11.1904 21.9397
0.25 θ̃2 0.3790 0.4040 0.3717 0.4044 0.3754 0.3955 0.3654

θ̃3 1.1469 1.1790 1.1642 1.1672 1.1475 1.1131 1.1548

θ̃1 0.2900 0.6210 1.5407 2.8488 5.4234 11.2166 21.8475
0.50 θ̃2 0.6990 0.7461 0.6572 0.7605 0.6553 0.7322 0.6753

θ̃3 1.2253 1.2568 1.1660 1.1855 1.2132 1.2088 1.2109

θ̃1 0.4183 0.7309 1.3826 2.8469 5.6413 10.3243 19.2892
1 θ̃2 1.3548 1.4206 1.3582 1.2542 1.4241 1.3749 1.3970

θ̃3 1.1804 1.1710 1.1083 1.1803 1.1987 1.1253 1.1371

θ̃1 0.4833 0.7377 1.5562 2.6761 5.5953 10.9946 22.6971
2 θ̃2 2.6840 2.5061 2.5769 2.5651 2.6519 2.7031 2.7883

θ̃3 1.1662 1.1879 1.1508 1.1849 1.1852 1.1565 1.1763

θ̃1 0.3886 0.6432 1.3823 2.8490 5.2841 11.1483 21.4513
4 θ̃2 5.7178 5.5230 5.2773 5.8688 5.2884 5.3910 5.4636

θ̃3 1.2287 1.1586 1.2150 1.2311 1.1791 1.1478 1.2412

θ̃1 0.4346 0.7738 1.2590 2.9035 5.5772 10.7623 22.9245
8 θ̃2 10.9705 10.7992 10.8343 10.5388 10.9112 10.2996 10.9586

θ̃3 1.1894 1.2020 1.1890 1.1775 1.1511 1.1793 1.2178

θ̃1 0.4061 0.8262 1.4925 2.8269 5.6296 10.6861 21.2215
16 θ̃2 22.4124 22.3199 23.1048 20.3581 23.4361 20.9614 21.2756

θ̃3 1.1636 1.2183 1.1637 1.1854 1.1687 1.1849 1.1479

Due to the data being obtained assuming normality, we also present, in Tables 7 and 8, the obtained averages of
the variance components estimates, using the REML and ML method, respectively. As it may be seen, while the REML
method gave quite good estimates except for 0.25, the ML method gave not so good ones, especially when θ1 = 16 or
θ2 = 16.
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Table 4
Number of times, in percentages, the previously considered value was within
the obtained confidence interval.

θ1

θ2 0.25 0.50 1 2 4 8 16

θ̃1 92.8 94.0 93.7 96.3 96.9 97.2 96.5
0.25 θ̃2 93.9 93.3 93.1 92.0 92.1 95.0 93.1

θ̃3 96.9 96.3 96.7 96.8 95.7 96.8 97.0

θ̃1 93.2 93.7 94.7 94.9 97.3 97.0 96.8
0.50 θ̃2 94.1 93.8 94.2 96.1 94.2 93.7 94.7

θ̃3 96.9 97.2 96.6 96.9 96.3 97.0 97.0

θ̃1 91.0 94.6 95.5 96.2 97.2 96.4 96.9
1 θ̃2 94.3 95.3 95.6 95.9 96.0 94.6 94.7

θ̃3 96.7 96.7 96.8 97.0 96.6 97.1 95.9

θ̃1 92.9 93.6 94.0 94.9 95.7 97.1 97.5
2 θ̃2 95.5 96.3 95.0 95.4 96.0 95.9 96.7

θ̃3 97.1 96.9 96.2 95.8 96.3 96.8 96.6

θ̃1 93.2 94.3 94.0 94.8 95.0 97.1 97.4
4 θ̃2 95.7 96.6 96.1 96.9 96.2 96.4 96.1

θ̃3 96.2 97.1 96.8 97.2 96.7 96.3 97.3

θ̃1 93.7 94.3 95.2 95.4 95.5 95.8 96.7
8 θ̃2 96.0 95.8 95.7 95.9 95.7 96.2 97.6

θ̃3 96.2 95.1 95.9 96.0 96.7 96.8 97.4

θ̃1 92.7 93.1 94.8 96.6 96.3 97.0 97.6
16 θ̃2 96.5 96.0 95.9 95.6 96.4 96.9 96.6

θ̃3 96.2 97.2 96.3 95.7 96.8 97.7 96.8

Table 5
Obtained averages of the variance components estimates using the ANOVA method.

θ1

θ2 0.25 0.50 1 2 4 8 16

θ̃1 0.2471 0.4872 0.9682 2.2342 4.3115 8.1144 15.1655
0.25 θ̃2 0.2719 0.2786 0.2666 0.3144 0.2370 0.2596 0.2730

θ̃3 0.9826 0.9812 0.9604 0.9568 0.9495 1.0255 0.9560

θ̃1 0.3517 0.5479 1.1170 2.0733 4.2713 6.3503 17.7927
0.50 θ̃2 0.5887 0.6017 0.6890 0.5759 0.5254 0.1110 0.7434

θ̃3 0.8109 0.8439 0.8957 1.0267 0.8510 1.5620 0.8488

θ̃1 0.2515 0.5391 1.0701 1.6647 4.1256 7.2296 19.3257
1 θ̃2 1.0948 1.0569 0.9143 0.9416 1.0094 0.7707 0.8007

θ̃3 0.9264 0.9097 0.7965 1.1934 0.8746 1.2121 1.2071

θ̃1 0.2355 0.5199 0.9740 2.1166 3.7247 8.4104 16.5201
2 θ̃2 2.1137 2.2072 1.9391 1.4614 2.2688 2.1558 2.3242

θ̃3 0.9714 1.1932 1.0179 1.2992 0.7752 1.1844 0.5927

θ̃1 0.1503 0.6923 0.8323 2.4440 3.6073 7.8223 17.6324
4 θ̃2 3.4113 4.2655 3.3875 4.2446 3.7503 3.3424 4.6038

θ̃3 1.1041 0.8257 1.0476 0.8915 1.2818 1.0561 0.2838

θ̃1 0.8507 0.8346 0.7432 2.0681 3.7691 9.9474 16.5953
8 θ̃2 8.3085 9.0133 8.5894 8.0086 8.7245 11.6922 8.5680

θ̃3 0.5280 0.7308 1.6159 0.8827 0.7658 − 0.1228 0.7241

θ̃1 0.4042 0.8716 0.6665 2.2103 4.1267 8.3139 15.9530
16 θ̃2 19.5547 17.4413 17.3099 16.2097 19.6381 12.6995 15.8605

θ̃3 0.7731 0.7554 1.2919 0.8285 0.4472 1.0528 1.8509

5. Final comments

Mixed models in which the relation matrices commute have interesting properties but imply requirements that are not
met, for instance when there are missing observations. Thus it is interesting to study models where that may not happen.
This is the case of ADD models.
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Table 6
Results for the difference ∥θi − θANOVA,i∥ − ∥θi − θADD,i∥ for i ∈ {1, 2, 3}.

θ1

θ2 0.25 0.50 1 2 4 8 16

θ̃1 −0.0888 −0.0580 −0.0166 0.2168 0.0423 −40.1221 0.6378
θ̃2 0.0168 0.0160 0.0054 0.0515 −0.0370 0.0017 0.0080
θ̃3 −0.0125 0.0160 0.0245 0.0306 0.0062 −0.0331 0.0204

θ̃1 0.0023 −0.0578 0.0380 0.0244 0.1139 1.3978 1.6613
θ̃2 0.0687 0.0891 0.1392 0.0489 0.0124 0.3850 0.2064
θ̃3 0.1526 0.0931 0.0907 0.0237 0.1398 0.5393 0.1269

θ̃1 −0.0004 0.0198 0.0376 0.2862 0.0413 0.3496 1.5900
θ̃2 0.0625 0.0404 0.0577 −0.0507 −0.0015 0.2121 0.1990
θ̃3 0.0721 0.0811 0.1411 0.1918 0.1194 0.1635 0.1682

θ̃1 −0.0331 0.0061 −0.0670 0.0390 0.1224 0.3200 −0.2244
θ̃2 0.0640 0.0292 −0.0638 0.4010 0.2470 0.1225 0.2916
θ̃3 0.0150 0.1889 −0.0088 0.2964 0.1926 0.1630 0.4019

θ̃1 0.0737 0.1084 0.1288 0.3977 0.3722 −0.0317 1.4928
θ̃2 0.3816 0.2039 0.4864 −0.0614 0.2332 0.6180 0.5902
θ̃3 0.0648 0.1537 0.0200 0.0669 0.2794 0.0270 0.6666

θ̃1 0.5899 0.3229 0.1283 −0.0212 0.0865 1.8711 −0.3310
θ̃2 0.2072 0.9898 0.5842 −0.2180 0.6444 3.2900 0.4830
θ̃3 0.4657 0.2522 0.6103 0.1130 0.2222 1.1200 0.2456

θ̃1 0.1449 0.3235 0.2889 0.1764 −0.0139 0.1696 −0.2743
θ̃2 2.9794 0.9355 0.2288 −0.7295 3.4755 2.8060 −0.1355
θ̃3 0.2111 0.2143 0.2761 0.1683 0.5238 0.0507 0.8215

Table 7
Obtained averages of the variance components estimates using REML method.

θ1

θ2 0.25 0.50 1 2 4 8 16

θ̃1 0.4615 0.6147 1.1511 2.0927 4.0977 8.0963 15.9047
0.25 θ̃2 0.3815 0.4126 0.3543 0.3529 0.3905 0.3482 0.3608

θ̃3 0.7623 0.8097 0.8222 0.8663 0.9355 0.8338 0.8706

θ̃1 0.4441 0.5696 1.2147 2.0838 4.2347 8.0603 17.1273
0.50 θ̃2 0.6478 0.5540 0.6181 0.6704 0.5331 0.5968 0.6410

θ̃3 0.7632 0.8931 0.8093 0.8648 0.9407 0.9562 0.9069

θ̃1 0.3884 0.6578 1.1744 2.2547 3.9207 7.9048 15.9257
1 θ̃2 0.9971 1.0199 1.2463 1.1512 1.1396 1.1340 1.2073

θ̃3 0.8010 0.8451 0.8807 0.9124 0.8472 0.8424 0.9287

θ̃1 0.4192 0.6788 1.1603 2.0397 3.6760 8.2923 16.3108
2 θ̃2 1.9677 1.9178 2.1376 2.0122 2.3089 1.9768 1.7288

θ̃3 0.8231 0.8249 0.8930 0.9040 0.9730 0.9611 0.9425

θ̃1 0.4077 0.6724 1.0714 2.0400 4.5518 8.5700 16.1926
4 θ̃2 3.9178 4.4286 3.9299 3.8472 3.9149 4.3336 4.1029

θ̃3 0.8153 0.8564 0.8386 0.9538 0.9187 0.9821 0.9283

θ̃1 0.4347 0.6652 0.9908 2.2400 3.8770 7.7192 16.0680
8 θ̃2 7.7689 7.8151 8.6458 7.9055 7.7903 8.0347 9.4192

θ̃3 0.8103 0.8560 0.9335 0.9344 0.9720 0.9791 0.9956

θ̃1 0.4244 0.6114 1.0301 1.8961 4.2420 8.4242 15.4403
16 θ̃2 16.4998 16.9996 15.0907 16.7635 16.0125 16.1999 15.9348

θ̃3 0.8357 0.8648 0.9354 0.9708 0.9644 1.0229 0.9845

In this paper we presented a treatment for the estimation of variance components and estimable vectors in linear mixed
models in which the relationmatrices may not commute. Besides this we also obtained confidence regions and derived tests
for hypothesis on variance components. We illustrated the theory with a numerical example, where the obtained results
were quite good. We compared the estimates of variance components obtained with our treatment with the ones obtained
using the ANOVA method in an unbalanced mixed model and our treatment produced more accurate results in more than
80% of the time. The REML andML estimates were also obtained. As we have seen, the performance of our method was quite
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Table 8
Obtained averages of the variance components estimates using ML method.

θ1

θ2 0.25 0.50 1 2 4 8 16

θ̃1 0.2808 0.4364 0.8519 1.5558 3.0986 6.1459 12.8539
0.25 θ̃2 0.2931 0.2460 0.2047 0.2195 0.2041 0.2501 0.2734

θ̃3 0.7728 0.8928 0.8349 0.9287 0.9978 1.0107 0.9277

θ̃1 0.2515 0.5351 0.8919 1.6472 3.5298 6.2326 12.5241
0.50 θ̃2 0.4572 0.4847 0.6243 0.5985 0.3859 0.3992 0.4267

θ̃3 0.8880 0.9210 0.8999 0.9619 0.9158 0.9420 0.9471

θ̃1 0.2982 0.5005 0.8702 1.5418 3.0969 6.3442 12.8077
1 θ̃2 0.9450 0.9358 1.0730 1.0409 0.7933 1.2113 1.0980

θ̃3 0.8221 0.9072 0.9168 0.9394 1.0339 0.9993 0.9890

θ̃1 0.3007 0.5066 0.8660 1.7114 3.6039 6.7655 12.6275
2 θ̃2 1.9238 2.1981 1.9759 1.9803 2.1818 2.5245 1.4850

θ̃3 0.8178 0.9233 1.0522 1.0100 0.9999 1.0100 0.9810

θ̃1 0.2642 0.4849 0.9107 1.8073 3.1637 6.9428 13.8888
4 θ̃2 3.8506 3.9155 4.3264 4.0651 4.1555 4.4530 3.0252

θ̃3 0.8482 0.9168 0.9809 0.9888 0.9871 1.0141 0.9904

θ̃1 0.3335 0.5179 0.9050 1.7350 3.5722 7.3558 13.4083
8 θ̃2 8.2176 8.4727 7.5814 8.5236 8.3920 8.7828 9.0678

θ̃3 0.8401 0.8787 0.9558 1.0075 1.0045 1.0209 1.0311

θ̃1 0.3386 0.4801 0.9276 1.8596 3.2791 7.2631 13.5366
16 θ̃2 13.2895 13.1011 13.2192 13.7911 13.8238 13.6894 13.0934

θ̃3 0.8773 0.9453 0.9932 1.0442 0.9697 1.0225 1.0348

good and it has the advantage over the ML and REMLmethods of not requiring normality. Moreover, our method is a unified
method contrary to the ANOVA methods.
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