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ABSTRACT
We use chi-squared and related pivot variables to induce probability
measures for model parameters, obtaining some results that will be
useful on the induced densities. As illustration we considered mixed
models with balanced cross nesting and used the algebraic structure
to derive confidence intervals for the variance components. A
numerical application is presented.
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1. Introduction

Our main goal is to use pivot variables to induce probability measures for model
parameters. The pivot variables used in this way will be called inducing pivot variables.
Actually our approach has some similarity with that of Weerahandi (1993) and
Weerahandi (1996).
We will be mainly interested in chi-squared and related pivot variables obtaining

some results that will be useful on them, namely on the induced densities.
As a promising field of work we considered mixed models, since this type of model

is widely used, see for example Hubert and Wijekoon (2006), Njuho and Milliken
(2009), Ozkale (2009), Yang and Wu (2011) or Yang and Wu (2012).
More specifically, we considered mixed models with balanced cross nesting. The

algebraic structure of these models has been studied, see Fonseca, Mexia, and Zmy�slony
(2006), using Commutative Jordan Algebras. As we shall see that algebraic structure
leads to interesting possibilities for the use of the induced densities in deriving
confidence intervals. Namely in an application example we simulated induced densities
for variance components for which we had UMVUE estimators and there was a
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remarkable agreement between modes for these simulated induced densities and the
UMVUE estimators.
The remainder of this article is arranged as follows. In the next section we introduce the

concept of inducing pivot variable. Section 3 presents results on the inverse gamma and
related distributions. Some results on empirical distributions are presented in Section 4. In
Section 5 we have an application to mixed models. Namely we have a numerical example
applied to real and simulated data. Some final remarks are presented in Section 6.

2. Inducing pivot variables

Pivot variables are functions of statistics and parameters with known distributions. For
example, if S � cv2g , then

Z ¼ S
c

(1)

is distributed as a central chi-square with g degrees of freedom, being therefore a
pivot variable.
Now, let Br be the r-algebra of the borelian sets in R

r, see Williams (1991), and the
parameter space H 2 Br. According to Fonseca, Mexia, and Zmy�slony (2007) the pivot
variable

Z ¼ gðY , hÞ (2)

is an inducing pivot variable if, for any realization y of Y the function

lðhjyÞ ¼ gðy, hÞ (3)

has an inverse measurable function hðzjyÞ in Br.
Now, let P

�
be the probability measure associated to the distribution of the pivot vari-

able, F
�
. The measurable functions hðzjyÞ, defined in ðRr,Br,P

� Þ and taking values in
H 2 Br, define the probability measures

PyðAÞ ¼ P
�
�
lðA \HjyÞ

�
(4)

in ðR,BrÞ. Note that for any y

PyðHÞ ¼ 1 (5)

Consider now that the components Z1, :::,Zr of the inducing pivot variable Z are
independent and given by

Zi ¼ giðy, hiÞ, i ¼ 1, :::, r (6)

with h1, :::, hr the components of h. If

H ¼ �r
i¼1Hi (7)

where� denotes the Cartesian product and Hi 2 Bi, i ¼ 1, :::, r, and the functions

liðhijyÞ ¼ giðy, hiÞ, i ¼ 1, :::, r (8)

have measurable inverses hiðZijyÞ 2 Bi, i ¼ 1, :::, r, we may induce in ðRr,BrÞ the prob-
ability measures
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Py, iðAÞ ¼ P
�
i

�
liðA \HiÞjy

�
, i ¼ 1, :::, r (9)

where P
�
i , i ¼ 1, :::, r is the probability measure associated to the distribution of Zi,

i ¼ 1, :::, r. Since these components are independent, taking A1, :::,Ar 2 Br, we get

P
�
�
�r

i¼1 liðAi \HiÞjy
�
¼
Yr
i¼1

P
�
i

�
liðA \HiÞjy

�
(10)

Thus, with �Py the product measure of the Py, i, i ¼ 1, :::, r, we have

�Pyð�r
i¼1AiÞ ¼

Yr
i¼1

Py, iðAiÞ ¼
Yr
i¼1

P
�
i

�
liðAi \HiÞjy

�
¼

¼ P
�
�
�r

i¼1 liðAi \HiÞjy
�
¼

¼ P
�
lðð�r

i¼1AiÞ \HÞjy
�

(11)

since

�r
i¼1ðAi \HiÞ ¼ ð�r

i¼1AiÞ \ ð�r
i¼1HiÞ ¼

¼ ð�r
i¼1AiÞ \H

(12)

Therefore, the product measure �Py of the measures induced by the components is iden-
tical to Py.

3. Inverse gamma and related distributions

We now consider the induced distributions obtained from pivot variables distributed as
chi-squares.

3.1. Densities

Let Sj � cjv
2
gj , j ¼ 1, :::, r. So, we have the independent pivot variables

Zj ¼
Sj
cj
� v2gj , j ¼ 1, :::, r (13)

Since the inverse functions

hjðZj, SjÞ ¼
Sj
Zj
, j ¼ 1, :::, r (14)

are measurable functions in Br, the Zj, j ¼ 1, :::, r will be inducing pivot variables. We
will now study the distributions and densities corresponding to the probability measures
induced by them.
As it may be seen, for example in Witkovsk (2001), the random variables 1

v2g
have

inverse gamma distributions and densities. Since v2g has density

f ðxjgÞ ¼ 1

2C g
2

� � x
2

� �g
2�1

e�
x
2, x > 0 (15)

making the transformation x ¼ S
Z, we get the density
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f0ðZjgÞ ¼ kgðsÞZ�gþ2
2 e�

S
2Z,Z > 0 (16)

where kgðSÞ ¼ S
g
2

2
g
2C g

2ð Þ
. This density has derivatives

f 00ðZjgÞ ¼ f0ðZjgÞ S�ðg þ 2ÞZ
2Z2

;Z > 0

f 000 ðZjgÞ ¼ f0ðZjgÞ tðZÞ4Z4
;Z > 0

8>><
>>: (17)

where tðZÞ ¼ S2�2Sðg þ 4ÞZ þ ðg þ 2Þðg þ 4ÞZ2. Therefore

Z0 ¼ S
g þ 2

> 0 (18)

will be the only local extreme of f0ðZjgÞ. Moreover, Z0 will be a mode of f0ðZjgÞ.
The zeros of t(Z), which are inflection points of f0ðZjgÞ, are

Zi ¼ S½ðg þ 4Þ þ ð�1Þi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðg þ 4Þp �

ðg þ 2Þðg þ 4Þ ; i ¼ 1, 2 (19)

This points are equidistant of Z0. If Z1 > 0 we will have the monotony Table 1,
where % ½&� indicates increasing [decreasing] and the sign of the derivatives is indi-
cated byþ and –.
As it may be seen, inverse gamma densities are unimodal. We say that such densities

belong to class M.
Due to ðv

0
ume�udu ¼ m! 1� e�v

Xm
j¼0

m j½ �

m!
v

 !
(20)

where m½j� ¼ m:::ðm�jþ 1Þ, the induced distribution for g ¼ 2m will be

F0ðZj2mÞ ¼ e�
S
2Z

Xm�1

j¼0

S
2Z

� �j
j!

,Z > 0 (21)

since, making the transformation v ¼ x�1 and u ¼ S v
2, we will have

F0ðZjgÞ ¼ 1� 1

C g
2

� � ð S
2Z

0
u

g
2�1e�udu (22)

Moreover, making the transformation x ¼ S
2y we have, for the l-th relative moment

order to the origin,

Table 1. Behavior of the function f0ðyjgÞ.
0 Z1 Z0 Z2

f0ðZjgÞ % % & &
f 00ðZjgÞ þ þ – –

f
00
0 ðZjgÞ þ – – þ
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l0lð�jgÞ ¼ kgðSÞ
ðþ1

0
x�

gþ2
2 þle�

S
2xdx ¼ Sl

2l
C g

2 � l
� �
C g

2

� � ; l <
g
2

(23)

Namely we will get

l1ð�jgÞ ¼
S

2
g
2
� 1

� � ¼ S
g � 2

, g > 2

l02ð�jgÞ ¼
S2

4
g
2
� 1

� �
g
2
� 2

� � ¼ S2

ðg � 2Þðg � 4Þ , g > 4

8>>>>>><
>>>>>>:

(24)

Therefore, if g> 4,

r2ð�jgÞ ¼ S2

ðg � 2Þðg � 4Þ�
S2

ðg � 2Þ2 ¼
2S2

ðg � 2Þ2ðg � 4Þ (25)

We will now consider joint densities, establishing the

Proposition 3.1. If X1, :::,Xm are independent variables, with unimodal densities
f1ðx1Þ, :::, fmðxmÞ and modes c1, :::, cm, their joint density f ðxmÞ will be unimodal, with
mode cm.

Proof. We have

f ðxmÞ ¼
Ym
j¼1

fjðxjÞ �
Ym
j¼1

fjðcjÞ ¼ f ðcmÞ

for any xm, which establishes the thesis. w

According to Proposition 3.1 the joint densities of the inverse gamma variables
are unimodal.
Let

mðZjgÞ ¼ ln f0ðZjgÞ
	 


(26)

Thus the first and second derivative of mðZjgÞ will be given by

m0ðZjgÞ ¼ S�ðg þ 2ÞZ
2Z2

;Z > 0

m00ðZjgÞ ¼ ðg þ 2ÞZ�2S
2Z3

;Z > 0

8>><
>>: (27)

On Table 2 we may see the behavior of mðZjgÞ, where, as before, % ½&� indicates
increasing [decreasing] and the sign of the derivatives is indicated byþ and –.

Table 2. Behavior of function mðZjgÞ.
0 Z0 2Z0

mðZjgÞ % & &
m0ðyjgÞ þ – –
m00ðyjgÞ – – þ

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5



If r> 1,

mðZrjgrÞ ¼ ln
Yr
j¼1

f ðZjjgjÞ
" #

¼
Xr
j¼1

mðZj, gjÞ (28)

and thus

@mðZrjgrÞ
@Zj

¼ m0ðZjjgjÞ ¼
Sj�ðgj þ 2ÞZj

2Z2
j

; j ¼ 1, :::, r

@2mðZrjgrÞ
@Z2

j
¼ m00ðZjjgjÞ ¼

ðgj þ 2ÞZj�2Sj
2Z3

j
; j ¼ 1, :::, r

@2mðZrjgrÞ
@Zj@Zl

¼ 0; j 6¼ l

8>>>><
>>>>:

8>>>>>>>>>>><
>>>>>>>>>>>:

(29)

Therefore we have the gradient

grad
�
mðZjgÞ

�
¼ S1�ðg1 þ 2ÞZ1

2Z2
1

, :::,
Sr�ðgr þ 2ÞZr

2Z2
r

" #0
(30)

and, representing by Dða1, :::, arÞ the diagonal matrix with principal elements a1, :::, ar,
we have the hessian matrix

Hess
�
mðZjgÞ

�
¼ D

ðg1 þ 2ÞZ1�2S1
2Z3

1
, :::,

ðgr þ 2ÞZr�2Sr
2Z3

r

 !
(31)

The only zero of the gradient, Z0, has components Z0, j ¼ Sj
gjþ2 , j ¼ 1, :::, r. If Z <

2Z0½> 2Z0� the hessian matrix will be negative [positive] defined. Therefore, see
Bazaraa, Sherali, and Shetty (1992), mðZjgÞ will be strictly concave [convex].
Now, consider

rðaÞ ¼ fZ : mðZjgÞ > ag ¼ fZ : f ðZjgÞ > eag (32)

It may be seen that when Z < 2Z0½> 2Z0� and if rðaÞ 	 �r
j¼1½0; 2Z0, j�,rðaÞ will be a

convex set. If r¼ 2, f ðZjgÞ will have the level curves presented in Figure 1.
Consider now that there are some restrictions on the parameters:

h ¼ ðh1, :::, hrÞ 2 D 	 R
r. For example, variance components must to be non negative.

In this case, taking

d ¼
ð
:::
D
ð
f ðZjgÞ

Yr
j¼1

dZj (33)

the induced density will be given by

f0ðZjg;DÞ ¼ 1
d
f ðZjgÞ;Z 2 D

f0ðZjg;DÞ ¼ 0;Z 62 D

8<
: (34)

6 D. FERREIRA ET AL.



3.2. Linear combinations

In this section we will obtain analytic expressions for the densities of linear combina-
tions of inverse gamma variables under certain conditions. Since the analytic treatment
of these densities tend to be heavy we will consider an alternative approach.
Let us consider

V ¼
Xr
j¼1

ajZj ¼
Xr
j¼1

aj
Sj
v2gj

(35)

Proposition 3.2. The linear combination of inverted gamma variables V ¼Pr
j¼1 ajZj

have continuous densities fVðvÞ > 0 whenever 0 < FVðvÞ < 1.

Proof. We may rewrite V as V ¼Pd
i¼1 bi _Zi, keeping only the non null coefficients and

taking _Zi ¼ _Si
v2gi
, i ¼ 1, :::, d. These last variables have joint density

Qd
i¼1 f ðZijgiÞ. Since

the transformation given by _Z1 ¼ 1
b1
ðV�Pd

i¼2 bi _ZiÞ and by _Zi ¼ Ui, i ¼ 2, :::, d, has

jacobian 1
b1
, the joint density of V and the Ui, i ¼ 2, :::, d will be

1
jb1j f ðv�

Xd
i¼2

biuij _g 1Þ
Yd
i¼2

f ðuij _g iÞ

So, V has density

fVðvÞ ¼
ðþ1

0
:::

ðþ1

0

1
jbj f ðv�

Xd
i¼2

biuij _g iÞ
Yd
i¼2

f ðuij _g iÞ
Yd
i¼2

dui

which will be continuous and positive, since f ðuj _g iÞ > 0, for u> 0, i ¼ 1, :::, d.
Thus, the distribution

FVðvÞ ¼
ð

:::
DðvÞ

ðYd
i¼1

f ðZij _g iÞ
Yd
i¼1

dZi

will be strictly increasing whenever 0 < FðvÞ < 1. w

Figure 1. Level curves of fðZjgÞ, when r¼ 2.
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3.3. Densities for linear combinations

Making the transformation x ¼ a
w in

f0ðxjgÞ ¼ 1

2C g
2

� � x
2

� �g
2�1

e�
x
2; x > 0 (36)

we obtain

f0ðwjg, aÞ ¼ 1

2C g
2

� � a
2w

� �g
2�1

e�
a
2w

a
w2

¼ kðg, aÞ e
� a

2w

w
g
2þ1

;w > 0 (37)

where kðg, aÞ ¼ ða2Þ
g
2

C g
2ð Þ. Representing by f ðrÞ0 the r-th order derivative of f0, we get

f ð1Þ0 ðwjg, aÞ ¼ gðg þ 2Þ
2a

�
f0ðwjg þ 4, aÞ � f0ðwjg þ 2, aÞ

�
(38)

as well as

f ðrÞ0 ðwjg, aÞ ¼
X2r
j¼r

br, jf0ðwjg þ 2j, aÞ; r ¼ 0, 1, ::: (39)

with b1, 1 ¼ b1, 2 ¼ gðgþ2Þ
2a .

Since

f0ðwjg, aÞ !
w!61 0 (40)

we get

f ðrÞ0 ðwjg, aÞ !
w!61 0; r ¼ 0, 1, ::: (41)

Now, taking

f ðzÞ ¼
ðz
0
f0ðz�wjg2, a2Þf0ðwjg1, a1Þdw (42)

according to (39) and (40) we get

f ðrÞðzÞ ¼
ðz
0
f ðrÞ0 ðz�wjg2, a2Þf0ðwjg1, a1Þdw; r ¼ 0, 1, ::: (43)

see Taylor (1955), so that

f ðrÞð0Þ ¼ 0; r ¼ 0, 1, ::: (44)

Moreover, from (37) and (38), we also have

f ð1Þ0 ðwjg, aÞ ¼ 1

C g
2

� � a
2

� �
g
2
e�

a
2w

w
g
2þ1

a
2w2

�
g
2 þ 2

2w

� �
(45)
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Thus

f ð1Þ0 ðwjg, aÞ 
 0 if w � a
g þ 2

f ð1Þ0 ðwjg, aÞ � 0 if w 
 a
g þ 2

8><
>: (46)

If z � a2
g2þ2 and 0 � w � z there will be 0 � z�w � z � a2

g2þ2 and so

f ð1Þ0 ðz�wjg2, a2Þ > 0. Thus, according to (43)

f ð1ÞðzÞ > 0; z � a2
g2 þ 2

(47)

shifting the roles of f0ð�jg1, a1Þ and f0ð�jg2, a2Þ in expression (43) we will obtain

f ð1ÞðzÞ > 0; z � max
a1

g1 þ 2
;

a2
g2 þ 2

 �
(48)

Moreover, from the expressions (39) and (43), we get

f ðrÞðzÞ ¼
X2r
j¼r

br, j

ðz
0
f0ðz�wjg2 þ 2j, a2Þf0ðwjg1, a1Þdw, r ¼ 0, 1, ::: (49)

Since

f0ðwjg, aÞ � f0
a

g þ 2
jg, a

� �
¼ 2 g

2 þ 1
� �g

2þ1

a2C
g
2

� � e�
g
2þ1ð Þ (50)

we have, with a fixed d and z > d

jf ðrÞðzÞj �
X2r
j¼r

jbr, jj
ðz
0
f0ðz�wjg2 þ 2j, a2Þf0ðwjg1, a1Þdw �

�
X2r
j¼r

jbr, jj
� ðd

0
f0ðz � wjg2 þ 2j, a2Þf0ðwjg1, a1Þdwþ

þ f0
a2

g2 þ 2jþ 2
jg2 þ 2j, a2

� �
ð1�F0ðdjg1, a1ÞÞÞ, r ¼ 0, 1, :::

where F0ðdjg1, a1Þ is the distribution of f0ðwjg1, a1Þ.
We may take d so that

X2r
j¼r

jbr, jjf0 a2
g2 þ 2jþ 2

jg2 þ 2j, a2

� �
ð1�F0ðdjg1, a1ÞÞ < �; r ¼ 0, 1, ::: (51)

for any � > 0. Thus, for z > d,

jf ðrÞðzÞj <
X2r
j¼r

jbr, jj
ðd
0
f0ðz�wjg2 þ 2j, a2Þf0ðwjg1, a1Þdwþ �; r ¼ 0, 1, ::: (52)

Since f0ðz�wjg2 þ 2j, a2Þ�!
z!þ1 0, for any w 2 ½0, d�, we may apply, according to (50),

the dominated convergence theorem to show that

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 9



X2r
j¼r

jbr, jj
ðd
0
f0ðz�wjg2 þ 2j, a2Þf0ðwjg1, a1Þdw�!

z!þ1 0; r ¼ 0, 1, ::: (53)

and since � is arbitrary we will have

f ðrÞðzÞ�!
z!þ1 0; r ¼ 0, 1, ::: (54)

Summarizing, we have

f ðrÞð0Þ ¼ 0; r ¼ 0, 1, :::

f ð1ÞðzÞ > 0; 0 � z � max
a1

g1 þ 2
;

a2
g2 þ 2

 �

f ðrÞðzÞ�!
z!þ1 0; r ¼ 0, 1, :::

8>>>>>>><
>>>>>>>:

A class of simple densities for which this conditions hold is that of the unimodal
densities that are null at the origin and have support contained in R

þ. Let us admit
that the mode is reduced to one point b and that the density increases [decreases] to
the left [right] of that point. Then, the density is as shown in Figure 2. Let M be the
class of these densities, so that f ðrÞð0Þ ¼ 0 and f ðrÞðzÞ�!

z!þ1 0, r ¼ 0, 1, ::: and that exists

zþ so that, for z < zþ, f 1ðzÞ > 0. Then, as we saw, the densities f0ð�jg, aÞ and the one
obtained by convolution belong to class M.
Let now

f ¼ f0ð�jgmþ1, amþ1Þ � f00 (55)

where f00 is the convolution of the densities f0 given by

f00 ¼ �mj¼1f0ð�jgj, ajÞ 2 M (56)

Note that f00 has order d moments defined if, and only if, every f0ð�jgj, ajÞ, j ¼ 1, :::,m
has. That is,

m̂

j¼1

gj > 2d (57)

Figure 2. Unimodal density.
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where
Vm

j¼1 gj is the minimum of g1, :::, gm. Namely, the variance is defined for f00 if and

only if
Vm

j¼1 gj > 4.

4. Empiric distributions

Let F(x) [FnðxÞ] be a continuous and strictly increasing function and xp [xn, p] the corre-

sponding quantile for probability p. Representing by !a:s: almost surely convergence we
have the

Proposition 4.1. If F(x) has a continuous density f(x) and if f(x) > 0 whenever
0 < FðxÞ < 1, then for any a 2�0; 1½ we have

Dn, a ¼ Supfjxn, p � xpj; a2 < p < 1� a
2
g !a:s:
n!1 0

Proof. A ccording to Weierstrass theorem, f has a minimum b> 0 in the interval
½xa0

2
; x1�a0

2
�. If

a0

2
< p� �

b
< pþ �

b
< 1� a0

2

we have

F xp� �

b

� �
< p�� < pþ � < F xp þ �

b

� �

So, when Dn, a < b,

Fn xp� �

b

� �
< p < Fn xp þ �

b

� �

and we get

xp� �

b
< xn, p < xp þ �

b

This establishes the thesis since from � being arbitrary we may take a ¼ a0 þ 2 �
b to

get

jxn, p�xpj < �

b

whenever a
2 < p < 1� a

2. w

Taking independent and identically distributed (iid) variables Zj ¼
ðz1, j, :::, zk, jÞ, j ¼ 1, :::, r, and a measurable function g, the Xj ¼ gðZjÞ, j ¼ 1, :::, r will
constitute a sample for which we can apply the Glivenko-Cantelli theorem, see Lo�eve
(1960), as well as the Proposition 4.1, if the necessary conditions hold.
Let

X ¼ CTZ (58)

So, the quantiles xq will correspond to hyperplanes defined in R
k and, with q1 < q2,

the section limited by the hyperplanes corresponding to xq1 and xq2 will have induced
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probability q2�q1. It may be seen that if the distribution of Z has a continuous density,
the distribution of X will have a continuous density too. If the density of Z is not null,
when the respective distribution takes values between 0 and 1, the conditions of the
Proposition 4.1 hold. So, we may estimate xq and thus estimate the respective
hyperplanes.

5. Application to mixed models

In this section we present an application of our approach considering mixed models.

5.1. Variance components

Given the mixed model

Y ¼
Xw
i¼0

Xibi (59)

where b0 is fixed and the b1, :::, bw are independent with null mean vectors and vari-
ance-covariance matrices r21Ic1 , :::, r

2
wIcw .

The mean vector and variance-covariance matrix of Y will be

l ¼ X0b0

V ¼
Xw
i¼1

r2i Mi

8><
>: (60)

with Mi ¼ XiXT
i , i ¼ 1, :::,w.

Let T be the orthogonal projection matrix on the range space of X0. When matrices
M1, :::,Mw and T commute we have, see Fonseca, Mexia, and Zmy�slony (2008),

T ¼
Xz
j¼1

Qj

Mi ¼
Xm
j¼1

bi, jQj

8>>>><
>>>>:

(61)

where the Q1, :::,Qm are pairwise orthogonal orthogonal projection matrices. Then

V ¼
Xm
j¼1

cjQj (62)

with

cj ¼
Xw
i¼1

bi, jr
2
i (63)
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Moreover, taking

r2 ¼
r21
..
.

r2w

2
664

3
775; cð1Þ ¼

c1
..
.

cz

2
64

3
75; cð2Þ ¼

czþ1

..

.

cm

2
64

3
75 (64)

and considering for matrix B ¼ ½bi, j� the partition

B ¼ ½Bð1Þ Bð2Þ� (65)

where B(1) has z columns, we have

cðlÞ ¼ BTðlÞr2, l ¼ 1, 2 (66)

When the row vectors of B(2) are linearly independent we have

r2 ¼ Ccð2Þ (67)

with C the MOORE-PENROSE inverse of BTð2Þ.
Taking C ¼ ½ci, j�, let Cþ

i and C�
i be the sets of column indexes of the positive and

negative elements of the i-th row of matrix C. Thus, with _m ¼ m�z and
_cj ¼ cjþz, j ¼ 1, :::, _m,

r2i ¼
X_m
j¼1

ci, j _cj ¼ ðr2i Þþ�ðr2i Þ�, i ¼ 1, :::,w (68)

where

ðr2i Þþ ¼Pj2Cþ
i
ci, j _cj, i ¼ 1, :::,w

ðr2i Þ� ¼Pj2C�
i
jci, jj _cj, i ¼ 1, :::,w

(
(69)

with j � j describing the determinant.
These results are interesting since, with

Sj ¼ YTQjþzY , j ¼ 1, :::, _m (70)

we have the unbiased estimators

_cj ¼
Sj
gj
, j ¼ 1, :::, _m (71)

where

gj ¼ rankðQjþzÞ, j ¼ 1, :::, _m (72)

Thus we also will have unbiased estimators for the r2i , i ¼ 1, :::,w and their positive and
negative parts.
The distribution of Sj, j ¼ 1, :::, _m, in (70) depends on the distribution of Y. For

example, if Y is distributed as a t-Student distribution with g degrees of freedom, tg,
then Sj has a non-central F distribution, Fðj1, g, dÞ, where d is the non-centrality param-
eter and 1 and g are the degrees of freedom. However, when we deal with linear models
it is usual to assume that Y is normal distributed, which means that in this case we
have
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Y � Nðl,VÞ (73)

and, consequently,

Sj � _cjv
2
gj , j ¼ 1, :::, _m (74)

This is, Sj is distributed as the product by _cj of a central chi-square with gj degrees of

freedom, j ¼ 1, :::, _m. So due to (13) and (14) the Zj ¼ Sj
_c j
, j ¼ 1, :::, _m will be inducing

pivot variables.
Now we may induce probability measures for the cj, i ¼ 1, :::, _m, using large samples

fG1, :::,Gng, with Gu, j � v2gj, pj , j ¼ 1, :::, _m, u ¼ 1, :::, n, and derive from these secondary

samples fZ1, :::,Zng in which Zu has components

Zu, j ¼
Sj
Gu, j

(75)

j ¼ 1, :::, _m, u ¼ 1, :::, n. Note that Z1, j, :::,Zn, j are iid, with distribution induced by
Zj, j ¼ 1, :::, _m.

5.2. Numerical application

5.2.1. Application to real data

We considered an experiment in which two groups of two clones, grown side by side,
of the caste Touriga Nacional. The origins of the two groups were distinct. In this case
there is a fixed effects factor (location) that crosses with another fixed effects factor (ori-
gin) which nests a random effects factor (clone). The yields, in Kg, are presented in
Table 3. These data were presented in Fonseca, Mexia, and Zmy�slony (2003) in an
application to a grapevine experiment.
The model for the observations vector

Y ¼
Y1

..

.

Y90

2
64

3
75 (76)

is given by

Y ¼ Xb0 þ X1b1 þ X2b2 þ e (77)

where b0 is a fixed vector, rank(X) ¼ 12 and b1 � Nð0, r21I18Þ, b2 � Nð0, r22I6Þ and e �
Nð0, r2I90Þ are independent.
Following Fonseca, Mexia, and Zmy�slony (2003) we obtained the statistics Sj,

j ¼ 1, :::, 6, given by

S1 ¼ 0:6748

S2 ¼ 9:6105

S3 ¼ 6:2590

S4 ¼ 3:4464

S5 ¼ 3:4158

S6 ¼ 26:4333

8>>>>>>>><
>>>>>>>>:

(78)
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where the indexes j¼ 1, 2, 3 correspond to the 1st, 2nd and 3rd factors, j¼ 4, 5 corres-
pond to the interactions between the 1st and 2nd factor and the 1st and 3rd factor and
j¼ 6 corresponds to the error.
Assuming normality, from (74), we have Sj � _cjv

2
gj , j ¼ 1, :::, 6, where g1 ¼ 2, g2 ¼

1, g3 ¼ 4, g4 ¼ 2, g5 ¼ 8 and g6 ¼ 72. Following Fonseca, Mexia, and Zmy�slony (2003)
again, we obtained the UMVUE for the variance components given by

~r2
1 ¼ 0:07585

~r2
2 ¼ 0:01197

(
(79)

Now, from (68) and (69) we may write

~r2
1 ¼ ð~r2

1Þþ�ð~r2
1Þ�

~r2
2 ¼ ð~r2

2Þþ�ð~r2
2Þ�

(
(80)

where

ð~r2
1Þþ ¼ 1

15
~_c3; ð~r2

1Þ� ¼ 1
15

~_c5

ð~r2
2Þþ ¼ 1

5
~_c5; ð~r2

2Þ� ¼ 1
5
~_c6

8><
>: (81)

and thus have

ð~r2
1Þþ ¼ 0:10432; ð~r2

1Þ� ¼ 0:02847

ð~r2
2Þþ ¼ 0:08540; ð~r2

2Þ� ¼ 0:07343

(
(82)

Then, we used the mathematical software Maple 12 to generate sets Gu, u¼ 1, 2, 3,
with components Gi, u � v2gu , u¼ 1, 2, 3, i ¼ 1, :::, 10000, with g1 ¼ 4, g2 ¼ 8, g3 ¼ 72,

and derived from these samples Wk, k¼ 1, 2, with components

Wi, 1
þ ¼ 1

15
Zi, 1;Wi, 1

� ¼ 1
15

Zi, 2; i ¼ 1, :::, 10000

Wi, 2
þ ¼ 1

5
Zi, 2�Zi, 3;Wi, 2

� ¼ 1
5
Zi, 3; i ¼ 1, :::, 10000

8>>><
>>>:

(83)

where Zi, u ¼ Su
Gi, u

, u¼ 1, 2, 3, i ¼ 1, :::, 10000.

The densities corresponding to the probability measures induced by W1 and W2 are
presented in Figures 3 and 4, respectively, as well as the corresponding UMVUE, which
is represented by a black dot with coordinates ð~r2

k, 0Þ, k¼ 1, 2.
These graphs were built from histograms. The breadths of the classes are 0.025544,

for Figure 3 and 0.018950 for Figure 4. The central point of the modal class for ~r2
1 and

~r2
2 are 0.0336 and 0.0065, respectively.
As it may be seen in (80), the estimators of the variance components have a positive

and a negative part. The empirical joint densities induced for both parts are represented
in Figures 5 and 6, as well as the black point, which coordinates in the xoy plane are
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ðð~r2
kÞþ, ð~r2

kÞ�, hÞ, k¼ 1, 2, where the value of h varies from chart to chart, so that it is
visible on top of the bars.
It can be seen that, using the real data presented in Table 3, the densities presented

in Figures 3 and 4 and the joint densities in Figures 5 and 6 are all unimodal with the
UMVUE near the mode.

5.2.2. Application to simulated data

After using real data we repeated the study with simulated data. We simulated five
times the components, Yr, r ¼ 1, :::, 90, of the observations vector in (76) obtaining new
observation vectors

_Ys ¼
_Y 1, s

..

.

_Y 90, s

2
664

3
775 (84)

s ¼ 1, :::, 5

In a first approach we used the Normal distribution, with

_Yr, 1 � N Yr,
Yr

3

� �
(85)

r ¼ 1, :::90. In a second and third approach, we simulated the components of Y using
the non-central Student’s t distribution, tp, d, where p is the number of degrees of free-
dom and d the non-centrality parameter. In the second approach we considered p¼ 5
and dr ¼ 10� Yr, r ¼ 1, :::, 90, whereas in the third approach we considered p¼ 50 and
again dr ¼ 10� Yr, r ¼ 1, :::, 90. So

_Yr, 2 � t5, 10�Yr

_Yr, 3 � t50, 10�Yr


(86)

Table 3. Yields in Kg.
Origin 1 Origin 2

Location Clone 1 Clone 2 Clone 2 Clone 1 Clone 2 Clone 3

1 3.00 1.00 1.10 1.75 1.10 1.05
1.85 1.10 1.50 3.50 1.05 1.25
0.75 1.00 1.80 2.50 0.50 2.00
1.35 1.60 1.45 2.00 1.05 1.50
1.45 1.50 1.25 0.65 1.25 2.10

2 1.80 1.60 0.85 2.00 1.20 1.00
0.70 1.75 0.65 3.00 1.35 2.70
2.50 0.50 0.55 2.55 1.20 2.15
1.70 1.35 0.90 3.00 0.30 2.10
0.40 1.10 0.90 2.65 2.50 2.70

3 1.05 0.75 0.90 1.60 1.05 1.60
1.50 0.65 0.90 3.05 1.95 1.10
1.15 0.90 0.55 0.25 2.00 2.05
0.85 0.85 0.70 1.66 2.20 1.50
1.15 1.05 0.35 2.65 2.35 3.00
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r ¼ 1, :::90. In a fourth approach we used the non-central Chi-square distribution,
v2p, d, where p is the number of degrees of freedom and d the non-centrality parameter,

with

_Yr, 4 � v25,Yr
(87)

r ¼ 1, :::90. Finally, in a fifth approach we used the Cauchy distribution Cauchy(t, s),
with location parameter t ¼ 3� Yr and scale parameter s¼ 0.3. So

_Yr, 5 � Cauchyð3� Yr, 0:3Þ (88)

Figure 3. Location of the UMVUE on the empirical density of the 3rd factor.

Figure 4. Location of the UMVUE on the empirical density of the interaction 1st � 3rd factor.
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r ¼ 1, :::90. The data is presented in Table A1, in the Appendix. In Table 4 are pre-
sented the corresponding sum of squares and the UMVUE for the variance components,
for the five simulations.
As above, we used the mathematical software Maple 12 to generate sets Gu, u¼ 1, 2,

3, with components Gi, u � v2gu , u¼ 1, 2, 3, i ¼ 1, :::, 10000, with g1 ¼ 4, g2 ¼ 8, g3 ¼ 72,

and derived from these samples Wk, k¼ 1, 2, with components as in (83), for each
simulation. The densities corresponding to the probability measures induced by Wk,
k¼ 1, 2, and the empirical joint densities induced for the positive and negative parts,
Wi, 1

þ and Wi, 1
�, are presented in the next figures. The figures also contain the corre-

sponding UMVUE, which is represented by a black dot. As before, the coordinates of
the black dot are ð~r2

k, 0Þ, k¼ 1, 2, for the two-dimensional charts and ðð~r2
kÞþ, ð~r2

kÞ�, hÞ,
k¼ 1, 2, for the three-dimensional charts. The value of h varies from chart to chart, so
that it is visible on top of the bars.

Figure 5. Location of the UMVUE on the bidimensional empirical density of the 3rd factor.

Figure 6. Location of the UMVUE on the bidimensional empirical density of the interaction
1st � 3rd factor.
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Simulation 1:

Simulation 2:

Simulation 3:

Table 4. Sums of squares and UMVUE for the variance components.
Simulations: 1st 2nd 3rt 4th 5th

S1 4.491 442.383 629.271 174.755 72.965
S2 5.019 760.097 602.456 351.899 29.410
S3 41.671 4188.057 3347.747 1860.036 273.154
~r2
1 0.03303 1.03891 5.46738 �0.01991 0,97100

~r2
2 0.00972 7.36894 5.76210 3.63071 �0,02351
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Simulation 4:

Simulation 5:

It can be seen that the densities and the joint densities are all unimodal with the
UMVUE near the mode, as already noted for the real data presented in Table 3. These
results clearly point to the robustness of the method we presented, since we obtained
similar results to those of the normal case with observations generated from the t-distri-
bution, Chi-square distribution and Cauchy distribution.

6. Final remarks

In this work we have combined two lines of inference based on the use of complete suf-
ficient statistics for orthogonal mixed linear models. The first of these lines, initiated by
Seely (1970), Seely (1971), Seely and Zyskind (1971), Seely (1972) and Seely (1977),
leads to obtaining UMVUE. The second line, where the inducing pivot variables may be
included, see Weerahandi (1993) and Weerahandi (1996), uses sufficient statistics to
induce densities in the parametric space.
The combination of the two lines was based on the use of UMVUE to validate the

simulations based on the induced densities. Note that this validation was based on a
qualitative study of these densities, which has highlighted its unimodality. Moreover,
the bidimensional graphs of the empiric densities are in accordance with the qualitative
study of these densities. Furthermore, the observed proximity between the point whose
coordinates are the UMVUE and the mode validates the numerical results. This valid-
ation is important because it allows the safe use of induced densities, through methods
of Monte-Carlo, to obtain confidence regions, and by duality to carry out tests.
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Note that these techniques are applicable whatever the degrees of freedom of the chi-
squares. Thus, it is not necessary to have even degrees of freedom in the denominator
or the numerator of the generalized F statistics, see Fonseca, Mexia, and Zmy�slony
(2002). Moreover, the problem of disturbing parameters is automatically overcome
through the use of induced densities.
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Appendix

Table A1. Simulated yields in Kg.
1st simulation 2nd simulation 3rd simulation 4th simulation 5th simulation

3.56 2.13 21.98 26.32 32.98 16.95 17.09 8.76 8.90 3.64
1.15 3.30 25.75 32.77 17.51 42.82 32.51 3.63 5.59 10.56
0.72 1.42 6.65 27.28 6.56 28.06 3.90 5.96 2.52 7.63
1.87 2.24 16.27 9.53 10.83 18.31 5.11 12.21 4.59 5.59
1.39 0.41 19.56 5.26 12.21 6.37 5.19 8.77 3.65 2.03
1.15 1.34 17.88 28.05 18.15 24.07 11.36 19.87 5.89 6.02
1.36 3.51 9.72 23.90 6.49 35.48 3.06 6.20 2.12 9.37
2.02 2.51 32.76 27.80 23.69 23.18 3.54 2.28 10.17 7.37
1.89 3.20 9.24 18.92 20.07 36.52 2.07 4.27 4.61 8.80
0.55 1.72 5.61 21.58 3.69 23.60 2.27 3.58 1.09 7.51
1.38 1.90 7.30 16.92 8.72 17.57 1.29 8.91 3.34 5.98
1.27 4.27 10.69 27.53 15.86 23.75 17.83 2.04 3.94 9.14
1.39 0.21 18.51 3.26 12.24 2.27 2.88 2.22 3.67 0.83
0.81 0.84 9.76 9.16 8.06 14.71 4.12 4.92 2.17 4.80
1.32 1.81 11.99 23.54 13.55 27.04 7.26 2.95 3.44 7.94
1.06 0.54 5.13 10.06 8.25 10.89 3.02 1.94 3.37 0.83
1.41 0.28 9.55 12.49 11.96 11.33 10.19 3.46 6.15 3.10
1.07 0.26 11.97 3.87 11.74 5.83 1.73 5.24 3.05 1.23
1.60 0.92 16.92 26.33 18.05 8.07 4.26 2.02 4.92 2.85
1.55 1.35 14.89 11.46 15.21 14.23 1.29 4.33 4.09 3.91
2.48 1.71 15.98 9.23 14.76 12.44 2.74 2.99 4.31 3.79
1.37 1.19 19.57 14.32 20.77 15.59 6.73 9.26 1.78 3.44
0.41 0.97 4.36 8.25 3.98 10.86 2.49 13.64 1.75 3.96
0.96 0.44 16.66 2.34 15.58 1.76 2.80 5.44 4.50 0.35
1.24 2.26 8.87 21.84 9.70 23.06 1.90 12.52 3.96 6.65
0.97 1.17 11.58 13.90 8.21 11.60 4.55 9.11 4.31 3.06
0.90 2.71 5.97 20.18 6.77 21.81 4.02 14.67 3.23 5.71
0.95 2.27 9.45 23.25 10.44 21.96 4.73 12.96 2.70 6.11
1.37 2.99 4.35 25.62 7.44 25.27 3.24 2.76 2.33 6.57
1.28 2.30 10.28 16.85 8.66 21.82 1.59 12.73 3.25 6.92
0.76 0.82 10.18 17.08 11.50 9.35 6.45 3.30 2.48 2.29
0.79 0.86 27.17 15.60 18.85 13.91 5.89 5.84 4.23 3.01
1.84 1.97 42.32 27.82 16.10 17.29 9.72 15.37 5.11 6.01
2.05 1.18 16.77 8.67 15.22 13.53 1.79 3.67 4.21 4.44
1.42 1.79 13.74 22.20 15.84 21.24 6.30 3.60 2.99 6.22
1.45 1.18 11.01 21.86 12.65 9.42 10.72 7.85 2.51 3.86
0.78 3.53 7.74 27.84 7.27 31.17 5.96 8.81 2.33 8.13
0.66 1.07 3.34 26.15 6.75 18.84 18.52 2.75 1.65 6.33
0.78 2.07 18.98 28.32 9.73 22.63 4.72 16.85 2.85 6.52
1.71 2.58 5.39 23.84 8.10 23.17 9.52 13.88 3.04 8.43
0.65 2.39 9.41 21.64 8.62 17.29 7.51 13.01 2.72 5.19
1.33 1.40 9.89 8.24 8.92 10.65 3.70 5.20 3.02 3.56
0.45 2.77 4.07 13.76 3.62 23.14 8.51 2.36 0.53 6.20
0.49 1.76 12.01 12.11 6.10 14.58 9.46 7.54 1.82 4.49
0.52 3.10 6.86 34.56 3.80 30.84 1.68 4.99 0.72 8.57
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