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ABSTRACT
When applying analysis of variance, the sample sizes may not be
previously known, so it is more appropriate to consider them as
realizations of random variables. A motivating example is the collec-
tion of observations during a fixed time span in a study comparing,
for example, several pathologies of patients arriving at a hospital.
This paper extends the theory of analysis of variance to those sit-
uations considering mixed effects models. We will assume that the
occurrences of observations correspond to a counting process and
the sample dimensions have Poisson distribution. The proposed
approach is applied to a study of cancer patients.
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1. Introduction

In some applications of analysis of variance in medicine, social sciences, economic or agri-
culture, etc., it is more appropriate to regard the sample sizes as random variables. These
situations occur commonly when there is a fixed time span for collecting the observations,
other examples arise when some other resource is limited. A motivating example is the
collection of data from patients with several pathologies arriving at a hospital during a
fixed time span. The number of patients for each pathology is not known in advance and
a replication of the study during a different time period of the same length would result in
a sample of different size. Therefore, if we plan to conduct just one study to compare the
pathologies, it is more appropriate to consider the sample sizes as realizations, n1, . . . , nm,
of random variables, N1, . . . ,Nm, [15,17,20]. Another important case arises when one of
the pathologies is rare since, in that case, the desired number of patients in the sample set
may not be achieved, [19]. In the cited studies, fixed effects ANOVA was applied. Now we
extend the results to mixed effects models to deal with random sample sizes.

The current approach must be based on an adequate choice of the distribution of
N1, . . . ,Nm. In this paper, we will assume that the occurrence of observations corresponds
to independent counting processes. An illustrative example of this is the aforementioned
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case, concerning the comparison of pathologies. This leads us to consider the assump-
tion ofN1, . . . ,Nm being independent and Poisson distributedwith parametersλ1, . . . , λm,
Ni ∼ P(λi), i = 1, . . . ,m [12,15,17–20]. Since we need to have at least one observation per
treatment, we will consider the random variables N̈i, i = 1, . . . ,m, obtained truncating
the random variablesNi for Ni ≥ 1, i = 1, . . . ,m (see Appendix 1). Through the indepen-
dence of N̈i, i = 1, . . . ,m, the variable N̈ = ∑m

i=1 N̈i has truncated Poisson distribution
with parameter

λ =
m∑
i=1

λi.

For different situations, it will be more appropriate to consider other discrete distributions
for random sample sizes, such as

• the Binomial distribution, when there exists an upper bound for the sample sizes, which
however may not be attained (either owing to occurrences of failures or for some
other reason). An illustrative example of this is when a planned number of patients
are approached but only a proportion of them give consent to be included in the study
[16,17];

• the Negative Binomial distribution, which can be used as an alternative to the Pois-
son distribution in cases in which the observations are overdispersed with respect to a
Poisson distribution.

This paper is structured as follows. In Section 2, we present the formulation of themixed
models in the context of random sample sizes. The test statistics and their conditional and
unconditional distributions are obtained in Section 3. Section 4 presents an application
based on real medical data, namely on patients affected by cancer, in order to illustrate the
usefulness of our approach. Finally, some concluding remarks are made in Section 5.

2. Model

When considering in mixed models that the sample size are random variables, very likely
we will get different number of observations per treatment (combination of factor levels),
that is, we have an unbalanced design. In order to cope with unbalanced situations a more
broader class of models, designated as L extensions or Lmodels, was developed some years
ago in [3] and [14]. Using the L extensions in the formulation of the mixed models with
random sample sizes, allow us to deal the lack of orthogonality originated by unbalanced
situation.

Let us suppose that the m components of Yo correspond to the treatments of a linear
model and

L = L(n) = D(1n1 , . . . , 1nm) (1)

be the block diagonal matrix with the principal blocks 1n1 , . . . , 1nm , where 1n denotes the
vector with all n components equal to 1 and n = (n1, . . . , nm)′. Then

Y = LYo + ε (2)
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corresponds to a model with sample sizes n1, . . . , nm, where ε is the error vector with
null mean vector and variance–covariance matrix σ 2In, with In the n × n identity matrix
and

n =
m∑
i=1

ni.

Let’s consider that

Yo =
w∑
i=0

Xiβ i, (3)

where β0 is fixed with c0 components and β1, . . . ,βw are random and independent,
with null mean vectors and variance–covariance matrices σ 2

1 Ic1 , . . . , σ
2
wIcw , where ci, i =

1, . . . ,w, denote the number of components of β i, i = 1, . . . ,w. Thus Yo has mean vector
and variance–covariance matrix given by

μo = X0β0

Vo =
w∑
i=1

σ 2
i Mi,

with Mi = XiX′
i, i = 1, . . . ,w, where matrices Xi have m rows and ci, i = 0, . . . ,w,

columns, see e.g. [5,8,23]. We point out that Yo and Y are random vectors with m and
n components, respectively, since L is an n × mmatrix.

3. Test statistics and their distributions

In this section, we obtain the test statistics and their conditional distribution and uncondi-
tional distribution, under the assumption that we have random sample sizes. We will start
by presenting some important results about L extensions.

Let us assume that Yo has orthogonal block structure, so the matrices M1, . . . ,Mw
commute and they will be linear combinations of pairwise orthogonal projection matrices
K1, . . . ,K�, see [2]. Thus we have

Mi =
�∑

j=1
bi,jK j, i = 1, . . . ,w,

and

Vo =
�∑

j=1
γjK j,

where γj = ∑w
i=1 bi,jσ

2
i , j = 1, . . . , �. With B = [bi,j], γ = (γ1, . . . , γ�)

′ and σ 2 =
(σ 2

1 , . . . , σ
2
w)′, we also have

γ = B′σ 2,

see e.g. [1,2,4,6]. Let’s consider that the row vectors of Aj, j = 1, . . . , �, constitute an
orthonormal basis for the range space of K j, R(K j), j = 1, . . . , �, then we have

K j = A′
jAj, j = 1, . . . , �
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Igj = AjA′
j, j = 1, . . . , �,

with gj = rank(K j).
Let L+ the MOORE-PENROSE inverse of matrix L, then the orthogonal projection

matrices (OPM) on � = R(L) and on its orthogonal complement �⊥ are [22]

LL+ = T

In − T.

So, with L = D(1n1 , . . . , 1nm), we have

L+ = D
(

1
n1

1′
n1 , . . . ,

1
nm

1′
nm

)
.

When Yo is independent of ε ∼ N(0, σ 2In), i.e. ε is normal with null mean vector and
variance–covariance matrix σ 2In, then Tε and (In − T)ε are also independent, since they
have normal joint distribution and null cross-covariance matrices. Therefore

TY = TLYo + Tε = LYo + Tε

and

Y
�

⊥ = (In − T)Y = (In − T)ε

are independent.
Since the column vectors of L are linearly independent we have [22]

L+L = Im.

So we can consider [3]

Yoo = L+Y = Yo + L+ε = Yo + L+Tε,

since L+T = L+LL+ = L+, independent of Y
�

⊥ , then independent of

S = ‖Y
�

⊥‖2, (4)

where (1/σ 2)S has chi-square distribution with

g(n) = n − m

degrees of freedom, S ∼ σ 2χ2
g(n).

Let us now observe that Yoo has mean vector and variance–covariance matrix given by

μoo = μo = X0β0

Voo = Vo + σ 2L+(L+)′ =
�∑

j=1
γjK j + σ 2L+(L+)′.

With L = D(1n1 , . . . , 1nm), we will have

L+(L+)′ = D(n−1
1 , . . . , n−1

m )

and

Yoo
j = AjYoo, j = 1, . . . , �,
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has mean vector and variance–covariance matrix

μoo
j = Ajμ

o = AjX0β0, j = 1, . . . , �

Voo
j = γjIgj + σ 2Aj(L+(L+)′)A′

j, j = 1, . . . , �.

Being Pj and Qj the OPM on R(AjX0) and R(AjX0)
⊥, with rank pj and fj = gj − pj,

j = 1, . . . , �, respectively and Sj and W j the matrices which the row vectors constitute an
orthonormal base to R(AjX0) and R(AjX0)

⊥, j = 1, . . . , �, we have

Pj = S′
jSj, j = 1, . . . , �

Qj = W ′
jW j, j = 1, . . . , �.

3.1. Fixed sample sizes

Let us now address the hypothesis tests for the canonical variance components [13],
γ1, . . . , γ�, assuming that, with 0 ≤ z < �,

pj < gj, j = z + 1, . . . ., �.

So, let’s consider

Y•
j = W jYoo

j = W jAjYo + W jAjL+ε, j = z + 1, . . . ., �,

which has null mean vector and variance–covariance matrix γjIfj + σ 2Bj, j > z, with

Bj = W jAjL+(L+)′A′
jW

′
j, j = z + 1, . . . , �.

We intend to test the hypothesis

H0,j : γj = 0, j = z + 1, . . . , �. (5)

When H0,j holds, we have

pr(W jAjYo = 0) = 1, j = z + 1, . . . , �,

and consequently

pr(Y•
j = W jAjL+ε) = 1, j = z + 1, . . . , �.

Therefore, when H0,j holds, Y•
j has null mean vector and variance–covariance matrix

σ 2Bj, j = z + 1, . . . , �, and (1/σ 2)(Y•
j )

′(B−1
j )Y•

j has chi-square distribution with fj
degrees of freedom, (Y•

j )
′(B−1

j )Y•
j ∼ σ 2χ2

fj , j = z + 1, . . . , � [10].
Since Yoo

j is independent of S, Y•
j is also independent of S, j = z + 1, . . . , �. Due to this,

when H0,j holds, the statistic

Fj = g(n)
fj

(Y•
j )

′(B−1
j )Y•

j

S
, j = z + 1, . . . , �, (6)

has central F distribution with fj, j = z + 1, . . . , �, and g(n) degrees of freedom,
F(· | fj, g(n)), named as conditional distribution, and Fj might be used as the test statistic
[21]. Moreover, the tests with the statistic Fj, j = z + 1, . . . , �, are unbiased, e.g. [9,10].
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3.2. Random sample sizes

Let us consider that n is the realization of a random vector N̈ = (N̈1, . . . , N̈m)′, which
means that the samples will have random dimensions. In this section, we will focus on
the case where

L(N̈) = D(1N̈1
, . . . , 1N̈m

),

for this reason the previous results need to be unconditioned in order to N̈ .
Let us now suppose that we intend to test the hypothesis

H0 : θ = 0,

where θ is a general parameter, and the test is unbiased whatever n. So, denoting by
prn,θ (Rejα) [prn,0(Rejα)] the probability of rejecting H0 for a significance level α, given
n and the parameter θ [the probability of rejecting H0, given n and θ = 0], we have

prn,θ (Rejα) > prn,0(Rejα). (7)

Unconditioning (7) in order to N̈ , we still obtain

prθ (Rejα) > pr0(Rejα),

and the test still unbiased.
So, since the tests for the hypothesis H0,j : γj = 0, j = z + 1, . . . , �, are unbiased what-

ever n, we can conclude that they still remain unbiased after unconditioning.
Let us assume that the occurrence of observations corresponds to independent counting

processes, which lead us to consider that N̈1, . . . , N̈m have truncated Poisson distribution
with parameters λi, i = 1, . . . ,m. Furthermore, to perform inference we also consider that
N̈ = ∑m

i=1 N̈i > m.
In order to avoid unbalanced cases we will assume that we have a global minimum

dimension for the samples [12,20]. Therefore, considering N̈ > m•, withm• ≥ m, we may
take the probability

p̈n,m• = pr(N̈ = n | N̈ > m•) = pr(N̈ = n)
pr(N̈ > m•)

= p̈n
pr(N̈ > m)

pr(N̈ > m)

pr(N̈ > m•)
= p̈n

1 − p̈m
1 − p̈m

1 −∑m•
h=m p̈h

= p̈n,m
1 − p̈m

1 −∑m•
h=m p̈h

, n = m• + 1, . . . ,

where

p̈n,m = p̈n
1 − p̈m

, n = m• + 1, . . . , (8)

as defined in (A1), Appendix 1, which is dedicated to the truncated Poisson distribution.
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Consequently, the unconditional distribution ofFj, j = z + 1, . . . , �, when the hypoth-
esis H0,j holds, will be given by, e.g. [12,20],

Fj(z) =
∞∑

n=m•+1
pr(N̈ = n | N̈ > m•)F(z | fj, g(n))

=
∞∑

n=m•+1
p̈n,m•F(z | fj, g(n)), j = z + 1, . . . , �. (9)

4. An application to real data

In this section, we apply the proposed methodology to a dataset from patients affected by
cancer. The data was collected from the U.S. Cancer StatisticsWorking Group [24] accord-
ing to official guidelines and refer to the age of disease detection in 2009. We compare the
results obtained using our approach and the common ANOVA.

We will consider a mixed model with one fixed and one random effects factors. The
fixed effects factor will be the Gender, with two levels (Male and Female). Due to the large
number of cancer types we resorted to the simple random sampling method to select three
different types of cancer from the available list. Thus the random effects factor will be the
Type of Cancer and the selected types constitute a random sample.

Table 1 illustrates the types of cancer which have been selected, the number of patients
and the mean ages at the time of disease detection. This leads to m = 2 × 3 = 6 different
treatments. The global frequencies of these three types of cancer, for males and females,
are provided in Appendix 2.

According to (3), in this particular example we have

Yo = X0β0 + X1β1 + X2β2, (10)

where β0 is fixed and β1 and β2 are random, independent, corresponding, respectively,
to the random effects factor (Type of cancer) and interaction between the two factors. We
have the design matrices

X0 = I2 ⊗ 13
X1 = 12 ⊗ I3
X2 = I2 ⊗ I3,

where ⊗ denotes the Kronecker product, and

M1 = J2 ⊗ I3

Table 1. Number of patients and sample mean ages.

Number of patients Sample means

Type of cancer Male Female Male Female

Stomach (digestive system) 44 30 70.523 68.833
Melanomas of the skin 134 99 63.791 57.303
Non-Hodgkin lymphoma 123 105 63.382 66.286
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M2 = I2 ⊗ I3.

Let’s assume that

M1 = 2K1

M2 = K1 + K2,

which means that

K1 = 1
2M1 = 1

2 J2 ⊗ I3

K2 = M2 − 1
2M1 = (

I2 − 1
2 J2
)⊗ I3

and consequently the matrices Aj, j=1,2, will be given by

A1 =

⎡
⎢⎣

1√
2

0 0 1√
2

0 0
0 1√

2
0 0 1√

2
0

0 0 1√
2

0 0 1√
2

⎤
⎥⎦

A2 =

⎡
⎢⎣

− 1√
2

0 0 1√
2

0 0
0 − 1√

2
0 0 1√

2
0

0 0 − 1√
2

0 0 1√
2

⎤
⎥⎦

and

A1X0 = 1√
2
1′
2 ⊗ 13

A2X0 =
[
− 1√

2
1√
2

]
⊗ 13.

The matrices Qj, j=1,2, which are the OPM on R(AjX0)
⊥, j=1,2, will be given by

Q1 = W ′
1W1 = I3 − 1

3 J3

Q2 = W ′
2W2 = I3 − 1

3 J3,

with Jr = 1r1′
r and

W1 = W2 =
[− 1√

2
0 1√

2
1√
6

− 2√
6

1√
6

]
.

Moreover, f1 = rank(Q1) = 3 and f2 = rank(Q2) = 3. Besides this, the OPM on R(AjX0),
j=1,2, are

P1 = A1X0(A1X0)
+ =

⎡
⎢⎢⎣

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤
⎥⎥⎦
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P2 = A2X0(A2X0)
+ =

⎡
⎢⎢⎣

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤
⎥⎥⎦ .

We will test the hypotheses

H0,j : γj = 0, j = 1, 2,

which are the hypotheses of absence of random effects and interaction between the two
factors.

Given N̈ = n, when H0,j, j=1,2 holds, the conditional distribution of

Fj = g(n)
3

(Y•
j )

′(B−1
j )Y•

j

S
, j = 1, 2

is a central F distribution with fj = rank(Qj) = 3, j=1,2, and g(n) = n − 6 degrees of
freedom, F(· | 3, n − 6).

In the calculations, we assume that

m•∑
n=0

p̈n,m• � 0,

which means that, with high probability, we have N̈ > m•, so m• + 1 is the global mini-
mum dimension for the samples. Therefore the unconditional distribution of the statistics
will be given by

Fj(z) =
∞∑

n=m•+1
p̈n,m•F(z | 3, n − 6), j = 1, 2. (11)

Besides this, due to the monotony property of the F distribution [12], when n < no, we
have

F(z | 3, n − 6) < F(z | 3, no − 6), (12)

so that

F(z | 3,m• + 1 − 6) ≤ Fj(z) ≤ 1

which gives us a lower bound for Fj(z). Thus, from F(z | 3,m• − 5), we can obtain upper
bounds for the quantiles of the unconditional distributions Fj(z), j=1,2. If we use these
upper bounds as critical values, we will have tests with sizes that do not exceed the
theoretical values.

Remarks:

• We can use these upper bounds for a preliminary test. If the test statistic exceeds the
upper bound it also exceeds the real critical value (obtained when using the uncondi-
tional distribution). For the cases when the test statistic is lower than the upper bound
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one must compute the critical value solving the equation Fj(z) = 1 − α, for z, j=1,2.
To solve it we may truncate the series in Equation (11) according to the rule established
in [11,19]. This way, restricting the sum to the termm = ∑m

i=1mi, with ni ≤ mi, where
ni are the realizations of the N̈i, i = 1, . . .m, we will have

Fj,m(z) =
m∑

n=m•+1
p̈n,m•F(z | 3, n − 6), i = 1, 2.

Considering ε small, we choose eachmi such that

mi∑
ni=0

e−λi
λ
ni
i
ni!

> 1 − ε ⇔ ε > 1 −
mi∑

ni=0
e−λi

λ
ni
i
ni!

, i = 1, . . . ,m. (13)

This inequality will be used to obtain the minimum value of m needed to Fj,m(z) be a
good approximation for the distribution Fj(z), i=1,2, [11].

• Usually the analysis starts with a test of interaction and follows with the tests to the
main effects whenever it is not significant. We do not follow this approach since we are
interested in showing how these tests could be carried out through unconditioning [20].

4.1. Random effects factor

For the second factor, we have

Y•
1 = W1A1L+Y =

[
1.1255

−1.8846

]
,

where

L+ = D
( 1
441

′
44,

1
301

′
30,

1
1341

′
134,

1
991

′
99,

1
1231

′
123,

1
1051

′
105
)
,

with L+Y the vector of the sample means with components 70.523, 68.833, 63.791, 57.303,
63.382, 66.286 and

B1 = W1A1L+(L+)′A′
1W

′
1 =

[
0.012453695 −0.002286565

−0.002286565 0.017972370

]

So, for the numerator of the statistic F1 we obtain

(Y•
1)

′(B−1
1 )Y•

1 = 262.120.

When N̈ = n, S = ‖Y
�

⊥‖ is the product by σ 2 of a central chi-square with g(n) = n − 6
degrees of freedom, σ 2χ2

n−6. In this case, we obtained S = 131250.672.
Therefore, the statistic’s value, F1,Obs, is given by

F1,Obs = 529
3

262.120
131250.672 = 0.352.

If we use the common conditional distribution of F1, which corresponds to F(z | 3, 529),
since n=535, we will obtain the quantiles given in Table 2.
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Table 2. The quantiles of the conditional distribution.

Values of α 0.1 0.05 0.01

z1−α 2.094 2.622 3.819

Table 3. Upper bounds for the quantiles.

Values of α 0.1 0.05 0.01

m• = 11 3.289 4.757 9.779
zu1−α m• = 15 2.728 3.708 6.552

m• = 18 2.560 3.410 5.739

Table 4. The quantiles of the truncated
unconditional distribution.

Values of α 0.1 0.05 0.01

m• = 11 3.255 4.693 9.583
zt1−α m• = 15 2.720 3.695 6.518

m• = 18 2.555 3.402 5.722

So, since F1,Obs < z1−α , we do not reject H0,1 for the usual levels of significance.
Let’s assume that we have 12 [16 and 19] observations as global minimum dimensions

for the samples, which means that we consider m• + 1 = 12 ⇔ m• = 11[m• = 15 and
m• = 18]. Table 3 shows the upper bounds for the quantiles with probability 1 − α, zu1−α ,
of the unconditional distribution F1(z).

It is to be expected that the quantiles for random sample sizes (obtained when using the
unconditional distribution) to exceed the classical ones (obtained when using common
conditional distribution), since the first ones take into account a new source of variation.
Then, since in this casewe donot reject the hypothesis using the classical quantiles the same
result is expected when using the quantiles for random sample sizes and consequently the
upper bound approach. This interpretation leads us to not reject H0,1.

The quantiles for the unconditional distribution are approximated by truncation of the
infinite series indicated in Equation (11). We obtained the minimum value m = 38 for
a truncation error not greater than 10−8 (ε ≤ 10−8). To carry out the computation, we
assumed that λi, i = 1, . . . , 6, are the daily average of occurrences per year. So we have
λ1 = 0.13, λ2 = 0.09, λ3 = 0.37, λ4 = 0.28, λ5 = 0.34, λ6 = 0.29.

The obtained quantiles with probability 1 − α, zt1−α , of the truncated unconditional
distribution

F1,m(z) =
38∑

n=m•+1
p̈n,m•F(z | 3, n − 6) (14)

are presented in Table 4.
Results in Table 4 agree with those in Table 3, i.e. H0,1 is not rejected therefore the

random factor is not significant.
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Table 5. Minimumvaluem• that leads to reject the hypothesis
H0,2.

Values of 1 − α 0.1 0.05 0.01

m• 8 9 15

4.2. Interaction

For the interaction between the fixed factor and the random one, we have

Y•
2 = W2A2L+Y =

[
7.8572
0.0512

]

and

B2 = W2A2L+(L+)′A′
2W

′
2 =

[
0.012453695 −0.002286565

−0.002286565 0.017972370

]
.

For the numerator of the statistic F2, we obtain

(Y•
2)

′(B−1
2 )Y•

2 = 5084.346.

Therefore, the statistic’s value, F2,Obs, is given by

F2,Obs = 529
3

5084.346
131250.672 = 6.831.

If we use the common conditional distribution of F2, which corresponds to F(z | 3, 529),
we obtain the quantiles given in Table 2. Since F2,Obs > z1−α , we reject H0,2 for the usual
levels of significance.

Considering the truncated unconditional distribution, F2,m, which correspond to F1,m
defined in (14), we obtained the quantiles, zt1−α , given in Table 4. The results in this table
lead us to:

• reject H0,2 for α = 0.1 and 0.05 and do not reject for α = 0.01, considering m• + 1 =
12;

• reject H0,2 for the usual level of significance, consideringm• + 1 = 16 or 19.

Table 3 shows the upper bounds for the quantiles with probability 1 − α, zu1−α , of
the unconditional distribution. These results agree with those based on the quantiles of
the truncated unconditional distribution. Assuming the values of the test statistic remain
unchanged, then we should have the total sample sizes presented in Table 5 for ensuring
rejection.

Since for higher values of m• we would get lower values for the quantiles, we have
FObs,2 > zu1−α for all m• ≥ 15. In this case, we reject H0,2 considering the usual levels of
significance, which means that the interaction between factors is significant.

4.3. Conclusion

Our discussion shows the relevance of the unconditional approach in avoiding false rejec-
tions. As we saw, the inference results for some situations depends on the approach. Since
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the unconditional approach is more secure, when testing the interaction the null hypothe-
sis is not rejectedwhenm• = 11 andα = 0.01, whereas the common conditional approach
would lead to a false rejection.

The results in Tables 3 and 4 show that for higher minimum sample sizes, we get smaller
upper bounds and quantiles of the unconditional distribution. Due to this, we may con-
clude that with the increase of the minimum sample sizes, the decision based on both
approaches is similar.

To finish we would like to note that all the computations were performed using the R
software.

5. Final remarks

The approach followed in this paper ismore realistic than the usual F tests for the situations
where it is not possible to known in advance the sample sizes. To do that, we have to make
assumptions regarding the distribution of the sample sizes based on previous knowledge
of the sample collection and incorporate this source of variation into the mixed model.
We choose the Poisson distribution since it would correspond to Poisson processes for
observation collection and the underlying assumption for these (independent and stable
increments and not clustering) seems realist. Moreover, the L extensions fit easily in the
assumption of random sample sizes. These model formulation have been used to solve the
unbalance originated by different number of observations per treatment, which cause non-
orthogonality in fixed and mixed effects models. We included an application with cancer
data to illustrate how straightforward it is to apply our approach in a medical context. The
comparative results show that when random sample sizes are considered the critical values
may exceed those of classical ANOVA (obtained when using the common F conditional
distribution). So, we can conclude that this approach avoids working with incorrect critical
values and thus carrying out tests without the proper level. We would like also to highlight
that our methodology is not restricted to the medical domain and yet may be applied to
several other research areas.
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Appendices

Appendix 1. Truncated Poisson distributions

This appendix presents some results about the truncated Poisson distribution, which are useful in
obtaining the unconditional distribution of the test statistics.

Since we need to have at least one observation per treatment, we will consider the common form
of truncated Poisson distribution, which corresponds to the omission of the zero class, e.g. [7]. So we
haveNi ≥ 1, i = 1, . . . ,m. To perform inference, we also consider thatN > m, whereN = ∑m

i=1 Ni.
As previously mentioned, we assumed that Ni ∼ P(λi), i = 1, . . . ,m and N ∼ P(λ). So we have

pr,i = pr(Ni = r |Ni ≥ 1) = pr(Ni = r)
pr(Ni ≥ 1)

= e−λiλri /r!
1 − e−λi

= e−λi

1 − e−λi

λri
r!
, r ≥ 1, i = 1, . . . ,m.

Therefore, the moment generating function of Ni, when Ni ≥ 1, i = 1, . . . ,m, will be

ϕi(u) =
∞∑
r=1

e−λi

1 − e−λi

λri e
ru

r!
= e−λi

1 − e−λi
(eλi e

u − 1), i = 1, . . . ,m,

and the probability generating functions

χi(z) = ϕi(ln z) = e−λi

1 − e−λi
(eλiz − 1), i = 1, . . . ,m.

With N̈i, i = 1, . . . ,m, the truncated variables Ni, i = 1, . . . ,m, when Ni ≥ 1, and considering

N̈ =
m∑
i=1

N̈i,

we will obtain the probability generating function

χ̈(z) =
m∏
i=1

χi(z) =
( m∏
i=1

e−λi

1 − e−λi

) m∏
i=1

(eλiz − 1)

=
( m∏
i=1

e−λi

1 − e−λi

)∑
C⊆m

(−1)m−�(C) e(
∑

i∈C λi)z , i = 1, . . . ,m,

wherem = {1, . . . ,m} and �(C) denotes the cardinal of C, any subset ofm.
Therefore we will have

p̈r = pr(N̈ = r) = 1
r!

( m∏
i=1

e−λi

1 − e−λi

)∑
C⊆m

(−1)m−�(C)

(∑
i∈C

λi

)r

, r = m, . . . .

It is interesting to observe that we have

χ̈ 〈s〉(0) = 0, s = 1, . . . ,m − 1,

where 〈s〉 denotes the derivative of order s, which results from

j1 + · · · + jm = s; s = 1, . . . ,m − 1,

j = (j1, . . . , jm)′ have one or more null components and χi(0) = 0, i = 1, . . . ,m.
Indeed, with P (m)

s the family of partitions of s with cardinalm, we have

χ̈ 〈s〉(0) =
∑

j∈P(m)
s

(
∑m

i=1 ji)!∏m
i=1 ji!

m∏
i=1

χ
<ji>
i (0), s = 1, . . .
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and, if s<m, whatever j ∈ P (m)
s ,

m∏
i=1

χ
〈ji〉
i (0) = 0

since j has at least one null component. So, since χ̈<s>(0) = s!p̈s, we obtain

p̈s = 1
s!

χ̈<s>(0) = 0, s ≤ m − 1.

Furthermore, the only non-null term of χ̈<m>(0) corresponds to j = 1m, so

p̈m = pr(N̈ = m) = 1
m!

χ̈<m>(0) =
m∏
i=1

χ<1>
i (0) =

m∏
i=1

e−λiλi

1 − e−λi

and

pr(N̈ > m) = 1 − p̈m = 1 −
m∏
i=1

e−λiλi

1 − e−λi
.

Considering N̈ the randomvectorwith components N̈1, . . . , N̈m, we have N̈ > m, whichmeans there
exists at least one N̈i > 1, i = 1, . . . ,m, if and only if N̈ > 1m so

pr(N̈ > 1m) = 1 − p̈m.

We also have

p̈r,m = pr(N̈ = r | N̈ > m) = p̈r
1 − p̈m

, r = m + 1, . . . . (A1)

Appendix 2. Frequency tables of types of cancer

Table A1. Males with stomach (digestive system) cancer.

Age 1–4 5–9 10–14 15–19 20–24 25–29 30–34 35–39 40–44

Mean age 2 7 12 17 22 27 32 37 42
Patients 0 0 0 0 0 0 0 0 1

Age 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85+
Mean age 47 52 57 62 67 72 77 82 87
Patients 1 2 4 5 6 7 7 6 5

Table A2. Females with stomach (digestive system) cancer.

Age 1–4 5–9 10–14 15–19 20–24 25–29 30–34 35–39 40–44

Mean age 2 7 12 17 22 27 32 37 42
Patients 0 0 0 0 0 0 0 1 1

Age 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85+
Mean age 47 52 57 62 67 72 77 82 87
Patients 2 2 2 3 3 3 4 4 5

Table A3. Males with melanomas of the skin.

Age 1–4 5–9 10–14 15–19 20–24 25–29 30–34 35–39 40–44

Mean age 2 7 12 17 22 27 32 37 42
Patients 0 0 0 0 1 2 2 4 6

Age 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85+
Mean age 47 52 57 62 67 72 77 82 87
Patients 8 12 14 17 16 16 14 12 10



JOURNAL OF APPLIED STATISTICS 17

Table A4. Females with melanomas of the skin.

Age 1–4 5–9 10–14 15–19 20–24 25–29 30–34 35–39 40–44

Mean age 2 7 12 17 22 27 32 37 42
Patients 0 0 0 1 2 4 4 6 7

Age 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85+
Mean age 47 52 57 62 67 72 77 82 87
Patients 10 10 10 10 8 7 7 6 7

Table A5. Males with non-Hodgkin lymphoma.

Age 1–4 5–9 10–14 15–19 20–24 25–29 30–34 35–39 40–44

Mean age 2 7 12 17 22 27 32 37 42
Patients 0 0 1 1 1 2 2 3 5

Age 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85+
Mean age 47 52 57 62 67 72 77 82 87
Patients 8 10 12 14 15 14 14 12 9

Table A6. Males with non-Hodgkin lymphoma.

Age 1–4 5–9 10–14 15–19 20–24 25–29 30–34 35–39 40–44

Mean age 2 7 12 17 22 27 32 37 42
Patients 0 0 0 1 1 1 2 2 3

Age 45–49 50–54 55–59 60–64 65–69 70–74 75–79 80–84 85+
Mean age 47 52 57 62 67 72 77 82 87
Patients 5 7 9 11 13 13 13 12 12
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