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ABSTRACT
A model has an orthogonal block structure if it has, as covariance matrix, a linear
combination of pairwise orthogonal projection matrices, that add up to the iden-
tity matrix. The range space of these matrices are associated to hypotheses of an
orthogonal family.

In this paper we show how to obtain tests for these hypotheses when normality is
assumed and how to consider their relevance when normality is discarded. Besides
the notion of relevance, we formulate hypotheses in a general way that may be
applied to models with orthogonal block structure, whose factors may have fixed
and/or random effects. The results are applied to prime basis factorial models and
an example is presented.
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1. Introduction

Consider the linear model

YYY =

w∑
i=0

XXXiβββi, (1)

where YYY is a vector of N random variables Y1, . . . ,YN . Model (1) will be a mixed model
if βββ0 is a fixed vector and the βββ1, . . . ,βββw are random and independent, with null mean
vectors, covariance matrices VVV (βββi) = σ2

i IIIci , i = 1, ..., w, and null cross covariance
matrices, VVV (βββi;βββ`) = 000ci×cl for all i 6= `. The model has mean vector µµµ = XXX0βββ0 and
covariance matricx

VVV (YYY ) =

w∑
i=1

σ2
iMMM i,
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withMMM i = XXXiXXX
>
i , i = 1, ..., w. SoMMM i is the N×N relation matrix for the i-th random

factor. That is, its (a, b)-entry is equal to 1 if this factor has the same level on units a
and b, otherwise it is equal to 0, see [1,2].

In models in which the relation matrices MMM1, . . . ,MMMw commute, we have, see [3],

MMM i =

m∑
j=1

bi,jQQQj , (2)

i = 1, ..., w, where QQQ1, . . . ,QQQm are known orthogonal symmetric idempotent matrices
of order N , summing to the identity matrix IIIN , see [4]. Matrices QQQj , j = 1, . . . ,m, are
also known as pairwise orthogonal projection matrices. Then the covariance matrices
may be rewritten as

VVV (γγγ) =

m∑
j=1

γjQQQj , (3)

with γγγ = (γ1, ..., γm)> and γj =
∑w

i=1 bi,jQQQj , j = 1, ...,m. If matrix BBB = [bi,j ] is
invertible, VVV (γγγ) will be the positive semi-definite linear combinations of QQQ1, . . . ,QQQm

and the models will have orthogonal block structure, OBS, see [5,6].
With∇j = R(QQQj) the range space ofQQQj , j = 1, ...,m, such a model will be associated

to the orthogonal partition

RN = �m
j=1∇j , (4)

see [4], and YYY j = QQQjYYY , j = 1, ...,m, will have covariance matrix γjQQQj and mean vector

µµµj = QQQjµµµ, (5)

with µµµ the mean vector of µµµ1, ...,µµµm and non-centrality parameter

δj =
1

γj
‖µµµj‖2, (6)

j = 1, ...,m.
In the next section we show how to obtain tests for the hypotheses of the orthog-

onal family associated to ∇j , and how to consider their relevance when normality is
discarded. In Section 3 we apply the obtained results to prime basis factorials. The
used methodology will allow the study of a larger number of interactions simultane-
ously compared with the classical approach, see [7]. In Section 4 we present a concrete
example. Finally, in Section 5, we present some final remarks.

2. Tests hypotheses and relevancies

Model (1) may be written as

YYY = ZZZ + eee, (7)
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where ZZZ =
∑w−1

i=0 XXXiβββi and eee is the error vector, with null mean vector, covariance
matrix σ2IIIn and is independent of ZZZ, which has mean vector µµµ and covariance matrix∑m

j=1 δjQQQj , where δj = γj − σ2 ≥ 0, j = 1, ...,m.

We can now assume the subspaces ∇j , j = 1, ...,m, in (4), associated to the hy-
potheses

H0,j : δj = γj − σ2 = 0, (8)

j = 1, ...,m. When H0,j holds, QQQjZZZ will have null mean vector, as well as null covari-
ance matrix, so that

pr(QQQjYYY = QQQjeee) = pr(QQQjZZZ = 000) = 1. (9)

If we assume that the H0,j , with j ∈ C, hold and that eee is normal, we will have, for
the H0,j′ with j′ /∈ C, the test statistics

Fj′ =
g

gj′

Sj′

S
; j′ /∈ C, (10)

where Sj′ = ‖QQQj′YYY ‖2, gj′ = rank(QQQj′), g =
∑

j∈C gj and S is the sum of squares of eee.
These tests have a central F distribution with gj′ and g degrees of freedom. Moreover,
S is the product by σ2 of a central chi-square, with g degrees of freedom. Furthermore,

with U = S
g and sj′ =

Sj′

gj′
, j /∈ C, we have

Fj′ =
sj′

U
, j′ /∈ C. (11)

On the other hand, when H0,j′ , j
′ /∈ C, does not hold, we may have{

σ2 < γj′
0 < δj′

. (12)

While σ2 < γj′ refers to random effects models, 0 < δj′ refers to fixed effects models.
Nevertheless both may be considered in mixed models. So, this hypotheses formulation
holds for three classes of models: fixed, random and mixed. Moreover, considering the
hypotheses H0,j′ , j

′ /∈ C against H1,j′ , Fj′ =
sj′
U , j′ /∈ C, points towards using Sj′ to

measure the relevance, Rj′ of the alternative hypotheses. This leads to introducing the
ANOVA profile Sj′ , j

′ /∈ C.
We point out that if, for instance, for all n considered treatments (combination of

factor levels), we had r replications, then S would be the sum of the sums of squares
of the residuals and we would have g = n(r − 1).

Up to now normality was assumed. However, if YYY has OBS, it is not needed to have
normality because, in that case, we may reason as before and measure the relevance
of the H1,j′ by the Sj′ , j

′ /∈ C, even when C = 000.
As pointed above, the H0,j′ , j

′ /∈ C, are not restricted to a class of models. So, in
the next section, we will consider prime basis factorials.
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3. Prime Basis Factorials

In what follows we will use the mod(r) arithmetic, in which the results in the usual
arithmetic are replaced by the residuals of their division by r. We denote the sum,
a+ b, and the product, ab, in mod(r) arithmetic, by a+(r) b and (ab)(r), respectively.

Consider now a model with u factors and p prime levels. Thus, there will be n = pu

treatments.
With xi = 0, ..., p − 1, i = 1, ..., u, the level of the i-th factor, the treatments may

be represented by xxx = (x1, ..., xu). So, we have the linear function

L(xxx|aaa) = a1x1 +(p) ...+(p) auxu. (13)

Note that there are pu of these functions of which

qu =
pu − 1

p− 1
(14)

are reduced, having 1 as their first non null coefficients, see [8].
Let aaai, i = 1, ..., qu, be the vector of coefficients of the i − th linear function Li(xxx).

Taking

j(xxx) = 1 +

u∑
h=1

xhp
h−1, (15)

as the index of treatments xxx, we can associate to Li(xxx) the matrices

B(i) = [bh,j(i)], (16)

i = 1, ..., qu, with elements{
bh,j(i) = 1, if Li(xxxj) = h− 1
bh,j(i) = 0, if Li(xxxj) 6= h− 1

. (17)

Let

(Li;h) = {xxx;Li(xxx) = h− 1}, (18)

h = 1, ..., p, i = 1, ..., qu. The totals for these sets of treatments will be the components
of BBB(i)YYY , i = 1, ..., qu. It may be shown, see [9], that the sum of squares associated to
Li, i = 1, ..., qu is given by

Si = pu−1‖AAA(i)YYY ‖2, (19)

where AAA(i) = CCCpBBB(i), i = 1, ..., qu, with CCCp obtained by deleting the first row, which
is equal to 1√

p111>p , of a j × p orthogonal matrix, where 111p is a vector of ones with

length p. Moreover, it may be shown that the row vectors of 1

p
u−1
2

AAA(i) constitute an

orthonormal basis to the subspace ∇(i), i = 1, ..., qu, associated to L(i).
The order of L(i) will be the number of its non null coefficients minus 1. If the order is

0, L(i) will be associated to the effects of the sole factor with one null coefficient, which
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will be 1. If the order is 1, it will be associated to a factorial interaction between the
pair of factors with m null coefficients, and so on. Usually the higher order interactions
are used to estimate the errors. So, the L(i) corresponding to these interactions will
have indexes in C and we will have

S =
∑
i∈C

S(i), (20)

as well as

g = (p− 1)]C. (21)

We will now consider recurrence relations. Let P (u) be the set of vector coefficients,
aaa, for reduced linear functions, when there are u factors. Then

P (u+ 1) = {δδδu+1} ∪
p−1⋃
h=1

P (u) + hδδδu+1, (22)

where δδδu+1 = (0, ..., 1) has as non null component the (u + 1)-th component, which
will be 1, and

P (u) + hδδδu+1 = {vvv + hδδδu+1, vvv ∈ P (u)}. (23)

To extend the ordering of the reduced linear functions with u factors to that of
when we have u+ 1 factors we put

 iu+1(aaa) = iu(aaa); aaa ∈ D(u)
iu+1(δδδu+1) = qu + 1
iu+1(aaa+ hδδδu+1) = iu(aaa) + 1 + hqu; h = 1, ..., j − 1, aaa ∈ D(u)

, (24)

with D(u) the set of vector coefficients when there are u factors.
Furthermore, it may be seen that, with i = iu(aaa) and ih = iu+1(aaa+hδδδu+1), we have

Lih(xxx+ h′δδδu+1) = Li(xxx) +(p) (hh′)(p). (25)

We thus obtain the recurrence relation for matrices BBBih(u+ 1) given by

BBBih(u+ 1) =
[
BBBi(u) BBBi(u) +(p) h111p111

>
pu . . . BBBi(u) +(p) ((p− 1)ph)111p111

>
pu

]
. (26)

When h = 0, we have ih = i and

BBBi(u+ 1) = 111>p ⊗BBBi(u). (27)

Moreover, we also have

BBBq+1(u+ 1) = 000puIIIp ⊗ 111>pu . (28)

We point out that BBBi(u) is p× pu and that BBBi(u+ 1) is p× pu+1.
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4. Example

We will now consider a 33 model, in which three factors, A, B and C, with three levels
each, cross. The data is presented in Table 1.

A1 A2 A3

B1 B2 B3 B1 B2 B3 B1 B2 B3

C1 0,33 0,67 0,33 2,67 2,67 1,33 2,00 1,00 2,00
C2 0,50 0,50 1,00 4,00 4,00 4,00 3,00 3,00 1,50
C3 0,67 1,33 1,33 2,67 5,33 5,33 4,00 2,00 2,00

Table 1. Data

The observations vector is the corresponding vec. Matrices BBB are easy to obtain,
using the results in the previous section. We indicate the reduced factors, corresponding
to each matrix, writing it as BBBLi

(h), instead of BBBi. So, with JJJ3×3 = 1113111
>
3 and using

mod(3) arithmetic, we get

BBBx1
(1) = III3, (29)


BBBx1

(2) = 111>3 ⊗ 111>3 ⊗ III3

BBBx2
(2) = 111>3 ⊗ III3 ⊗ 111>3

BBBx1+x2
(2) = 111>3 ⊗

[
III3 III3 +(3) JJJ3×3 III3 +(3) 2JJJ3×3

]
BBBx1+2x2

(2) = 111>3 ⊗
[
III3 III3 +(3) 2JJJ3×3 III3 +(3) JJJ3×3

] , (30)

and

BBBx1
(3) = 111>3 ⊗BBBx1

(2)
BBBx2

(3) = 111>3 ⊗BBBx2
(2)

BBBx1+x2
(3) = 111>3 ⊗BBBx1+(3)x2

(2)
BBBx1+2x2

(3) = 111>3 ⊗BBBx1+(3)2x2
(2)

BBBx3
(3) = III3 ⊗ 111>9

BBBx1+x3
(3) = [BBBx1

(2) BBBx1
(2) +(3) JJJ3×9 BBBx1

(2) +(3) 2JJJ3×9]
BBBx2+x3

(3) = [BBBx2
(2) BBBx2

(2) +(3) JJJ3×9 BBBx2
(2) +(3) 2JJJ3×9]

BBBx1+x2+x3
(3) = [BBBx1+x2

(2) BBBx1+x2
(2) +(3) JJJ3×9 BBBx1+2x2

(2) +(3) 2JJJ3×9]
BBBx1+2x2+x3

(3) = [BBBx1+2x2
(2) BBBx1+2x2

(2) +(3) JJJ3×9 BBBx1+2x2
(2) +(3) 2JJJ3×9]

BBBx1+2x3
(3) = [BBBx1

(2) BBBx1
(2) +(3) 2JJJ3×9 BBBx1

(2) +(3) JJJ3×9]
BBBx2+2x3

(3) = [BBBx2
(2) BBBx2

(2) +(3) 2JJJ3×9 BBBx2
(2) +(3) JJJ3×9]

BBBx1+x2+2x3
(3) = [BBBx1+x2

(2) BBBx1+x2
(2) +(3) 2JJJ3×9 BBBx1+x2

(2) +(3) JJJ3×9]
BBBx1+2x2+x3

(3) = [BBBx1+2x2
(2) BBBx1+2x2

(2) +(3) 2JJJ3×9 BBBx1+2x2
(2) +(3) JJJ3×9]

.

(31)
Now, considering the orthogonal matrix

CCC∗ =


1√
3

1√
3

1√
3

− 1√
2

0 1√
2

− 1√
6
− 2√

6
1√
6

 ,
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we obtain

CCC3 =

[
− 1√

2
0 1√

2

− 1√
6
− 2√

6
1√
6

]
,

removing the first row to CCC∗.
The sum of squares associated to Li, i = 1, ..., 13, indicated in (19), are, approxi-

mately, S1 = 654, S2 = 13, S3 = 67, S4 = 8, S5 = 2898, S6 = 32, S7 = 550, S8 = 155,
S9 = 339, S10 = 378, S11 = 252, S12 = 385, S13 = 439. Now, the relevance of the
several alternative hypotheses may be measured by

Ri =
Si∑13
i=1 Si

.

It may be seen that there are great differences in the relevance of several hypotheses,
with, for example, R2 = 0.0021 and R5 = 0.4697.

5. Final remarks

Testing null hypotheses significance may not be sufficient, because some of these may
be of little relevance. In this paper we showed how to measure the relevance of the
several null significant hypotheses, in models with orthogonal block structure. To do
that we estimated the part of the total variation that corresponds to the projection
of the mean vector on the range space of known orthogonal symmetric idempotent
matrices of order N , summing to the identity matrix. We point out that normality is
not needed and that the method is not restricted to a class of models. We presented
a concrete example considering prime basis factorials.
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