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ABSTRACT
A well-known property of cumulant generating function is used to
estimate the first four order cumulants, using least-squares estima-
tors. In the case of additive models, empirical best linear unbiased
predictors are also obtained. Pairs of independent and identically
distributed models associated with the treatments of a base design
are used to obtain unbiased estimators for the fourth-order cumu-
lants. An application to real data is presented, showing the good
behaviour of the least-squares estimators and the great flexibility of
our approach.
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1. Introduction

According to Withers et al. [21], there has been much interest in deriving expressions for
moments and cumulants using available computer technology. For example, Zheng [22]
provides an implementation of twomethods for expressingmoments in terms of cumulants
and vice versa, using theMathematica software. In [17], the same computer package is used
to derive relations between moments, cumulants, and quasi-moments. In [1], it is shown
how procedures for computingmoments and cumulantsmay themselves be derived from a
few elementary identities. An efficient method for symbolic computation of moments and
cumulants of sampling distributions is presented in [8]. For most excellent accounts of the
literature, we refer the readers to [2,14].

While formulas involving the first, second and third central moments are easy to apply,
mathematical complications arise with the fourth central moment. In this paper, we use a
well-known property of cumulant generating function to obtain unbiased estimators for
the first four order moments in additive models. These models are given by

Y = X0β0 + XL, (1)

where X0 and X are design matrices, β0 is fixed, X = [X1, . . . ,Xm], L = [L1, . . . , Lm],
where the L1, . . . , Lm are independent, with c1, . . . , cm components, with variances
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σ 2
1 , . . . , σ

2
m (and third and fourth central moments, υ1, . . . ,υm and Z1, . . . ,Zm, respec-

tively). These models are easy to implement, not requiring structural conditions to be
fulfilled, see [10]. Such conditions, such as blocks with the same size, and orthogonal block
structure, have played an important part in the study of models (see for instance [4,5]).
The fact that these conditions are no longer required makes additive models much more
comprehensive.

As stated above, we will show how to use cumulant generating function (CGF) to obtain
least-squares estimators for these moments. In order to obtain unbiased estimators for the
Z1, . . . ,Zm, we will consider a pair of models with independent and identically distributed,
i.i.d., observation vectors Y(1) and Y(2). Moreover, we will also show how to estimate
β0 and estimable vectors η = Gβ0 and how to obtain empirical best linear unbiased pre-
dictors, EBLUP, for L. So, we will show how to carry out ANOVA-like inference for the
moments and estimable vectors associated with the treatments in the base design.

The rest of the paper is organized as follows. In Section 2, we will recall certain results
on CGF and cumulants, which will be useful to show how to obtain estimators for the vari-
ances, third and fourth centralmoments. In Section 3, wewill consider additivemodels and
show how to use cumulants to carry out the estimation of the parameters in such models.
Next, in Section 4, we present further results on estimation. In Section 5, we shall see that
when we have a pair of i.i.d. models, for each treatment of a base design, we will be able to
assess the influence of the factors, in that base design, on the various second-, third- and
fourth-order central moments, as well as on estimable functions. In Section 6, we present
an application to real data illustrating our approach, with quite good results. Moreover, the
considered models have only six observations each, being therefore very small. This plays
in favour of the presented approach because, as it may be seen, the obtained estimates are
very close to the true values. The paper ends with some conclusions in Section 7.

2. Cumulants and generating functions

In statistics, the most commonly used generating functions are the moment generat-
ing function and the cumulant generating function. An excellent source about relations
between moments and cumulants is the book [9]. We begin with a definition of moment
generating function:

Definition 2.1 (Moment generating function): Given the random vectorW, with com-
ponentsW1, . . . ,Wm, its moment generating function (MGF) will be

ϕ(d |W) = E(ed
�W),

if expected value,E, exists and is finite anddefined for all real vectord. Itmust bementioned
that not all random vectors possess an MGF (see [15]). Follows

Definition 2.2 (Cumulant generating function): The cumulant generating function
(CGF) is

ψ(d |W) = log(ϕ(d |W)).

There are some advantages to using cumulants (see, e.g. [16]). The rth cumulant is a
polynomial function of the first r moments. Moreover, it is shift-invariant if r>1, which
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means that for a random variable X and constants a, the rth cumulant of the probability
distribution of X+ a is the same as the rth cumulant of the probability distribution of X,
i.e. Cr(X + a) = Cr(X), where Cr(X) refers to rth cumulant. Because of shift invariance,
one may take the rth cumulant to be a polynomial in the first r central moments.

If the components W1, . . . ,Wm ofW are independent, we have (see [7]) the following
property of CGF

ψ(d | a�W) =
m∑
l=1

ψ(aldl |Wl), (2)

with a = (a1, . . . , am)� and

ψ 〈r〉(d | a�W) =
m∑
l=1

arlψ
〈r〉
(dl |Wl), (3)

with 〈r〉 indicating the rth derivative in order to d1, . . . , dm. Since the rth cumulant equals
the rth derivative of the CGF at the origin we represent them by Or(a�W) and Or(Wl),
l = 1, . . . ,m, r = 1, 2, . . . , respectively. So we have the relation (see [13,19])

Or(a�W) =
m∑
l=1

arlOr(Wl). (4)

It is useful to recall that for any random variable U with mean value μ(u), [variance, third
and fourth central moments], [σ 2(u),μ3(u) and μ4(u)], according to [3,9], we have

O1(U) = μ(u),

O2(U) = σ 2(u),

O3(U) = μ3(u),

O4(U) = μ4(u)− 3(σ 2(u))2.

(5)

While estimating the Or(U), r = 1, 2, 3, presents no problem, the difficulties arise when
we want to estimateO4(U) due to the fourth and higher order cumulants not being equal
to the central moments. We overcome this difficulties considering a pair of i.i.d. models,
each providing an unbiased estimator for the σ 2(u).

3. Adjustments

Let us consider a matrix A� = [α1, . . . ,αṅ], where α1, . . . ,αṅ constitute an orthonormal
basis for the orthogonal complement �⊥, of the space � = R(X0), the range space of X0
spanned by themodel’s mean vectorμ = X0β0. If the dimension of� is k = rank(X0), the
dimension of�⊥ is ṅ = n − k. Then, with

α�
h Xl = (ah,l,1, . . . , ah,l,cl), l = 1, . . . ,m, h = 1, . . . , ṅ, (6)

we have

Ẏh = α�
h Y =

m∑
l=1

(α�
h Xl)Ll =

m∑
l=1

cl∑
v=1

ah,l,vLl,v, (7)
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with

E(Ẏh) = 0, h = 1, . . . , ṅ. (8)

Thus,

Or(Ẏh) =
m∑
l=1

cl∑
v=1

arh,l,vOr(Ll,v) =
m∑
l=1

bh,l(r)χl(r), (9)

where

bh,l(r) =
cl∑

v=1
arh,l,v, (10)

and the rth order cumulants of the Ll,v are

χl(r) = Or(Ll,v), v = 1, . . . , cl, l = 1, . . . ,m, r = 2, 3, 4. (11)

Expression (9) may be used to obtain the least square estimator (LSE) for the χl(r),
l = 1, . . . ,m, r = 2, 3, 4, since we have the unbiased estimators

Õ2(Ẏh) = Ẏ2
h ,

Õ3(Ẏh) = Ẏ3
h ,

Õ4(Ẏh) = Ẏ4
h(1)+ Ẏ4

h(2)
2

− 3Ẏh(1)2Ẏh(2)2,

(12)

h = 1, . . . , ṅ (see [3,19,22]). The estimation of the Õ2(Ẏh) and Õ3(Ẏh) requires only one
observation vector, unlike the estimation of Õ4(Ẏh) that requires a pair of i.i.d. observation
vectors, in order to have an unbiased estimator forO4(Ẏh).

Taking matrix

B(r) = [
bh,l(r)

]
, r = 2, 3, 4, (13)

we get the LSE for χ(r),

χ̃(r) = (B(r)�B(r))+B(r)�Õr(Ẏ), r = 2, 3, 4, (14)

where + indicates the Moore–Penrose inverse of a matrix and

Ẏ� = [Ẏ1, . . . , Ẏ ṅ]. (15)

In what follows, we consider estimable vectors for which we will use generalized least-
squares estimators (GLSE) according to [20]. The estimator of variance components is
given by χ̃�(2) = [χ̃1(2), . . . , χ̃m(2)]. Through LSE, the estimator for β0 is given by

β̃0 = (X�
0 � �(χ̃(2))X0)

+X�
0 � �(χ̃(2))+Y , (16)

with

� �(χ̃(2)) =
m∑
l=1

χ̃l(2)XlX�
l . (17)

WithG = AX0 and β̃0 an unbiased estimator ofβ0, such as the LSE, onemay obtain η̃ =
Gβ̃0 which will be an unbiased estimator of η. We point out that β0 is itself an estimable
vector.
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4. Further results on estimation and EBLUP

Up to now we have assumed the model

Y = X0β0 +
m∑
l=1

XlLl. (18)

Let us now add a term e = (e1, . . . , en) of measurement errors. These will be generated
as the sum of a great number of small ‘impacts’ in a way that resembles the probabilistic
model behind the central limit theorem. We can then assume that e is normal, with null
mean vector and covariance matrix σ 2In. Thus the (e1, . . . , en) will be i.i.d. with

O1(ei) = O3(ei) = O4(ei) = 0; O2(ei) = σ 2, i = 1, . . . , n. (19)

Throughout this section, matrix T will denote the orthogonal projection matrix on
R[(X0, . . . ,Xm)], so that, with k = rank(T), we have the unbiased estimator

σ̃ 2 = Y�(In − T)Y
n − k

, (20)

for σ 2 ( see [12]). To estimate the σ 2
l = χl(2), l = 1, . . . ,m, we have to replace the for-

mer estimators σ̃ 2
l by σ̃ 2

l − σ̃ 2, while the estimators of third and fourth orders are left
unchanged, sinceO3(ei) = O4(ei) = 0, i = 1, . . . , n.

Given a random vectorH, with mean vector η and covariance matrix V , it may be seen
that we have

E(‖H − η‖2) = tr(V), (21)

where tr(V) denotes the trace of matrix V . So, we have the model

Y = X0β0 +
m∑
l=1

XlLl + e, (22)

with the covariance matrix

� �(Y) =
m∑
l=1

χl(2)Ml + σ 2In. (23)

Therefore, for tr(V), we have the unbiased estimator

tr(Ṽ) =
m∑
l=1

χ̃l(2)tl + nσ 2, (24)

where tl = tr(Ml), l = 1, . . . ,m. Rewriting the model as

Y = X0β0 + XL + e (25)

and considering λ any known vector, we have for λ�L the EBLUP (see [6])

λ�L = (Y − X0β̃0)
� f̃ , (26)
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where

f̃ =
( m∑

l=1

χ̃l(2)Ml + σ̃ 2In

)−1

� �(Y ,λ�L) (27)

and the cross covariance matrix

� �(Y ,λ�L) =� �(X0β0 + XL + e;λ�L) = X � �(L)λ, (28)

since e and L are independent. Now, L has the blockwise diagonal covariance matrix
D(χ1(2)Ic1 , . . . ,χm(2)Icm) so that, with λ = [λ�

1 , . . . ,λ
�
m]�, we have the extended cross-

covariance matrix

� �(Y ,λ�L) = XD(χ1(2)Ic1 , . . . ,χm(2)Icm)[λ
�
1 , . . . ,λ

�
m]

� =
m∑
l=1

χ̃l(2)Xlλl. (29)

5. Pairs of models

Here we will consider pairs of i.i.d. models

Y(u) = X0β0(u)+
m∑
l=1

XlLl(u), u = 1, 2, (30)

where the vectors Ll(u), l = 1, . . . ,m, u = 1, 2, have variance–covariance matrices
χl(2)(u)Icl , l = 1, . . . ,m, with cl components, l = 1, . . . ,m and u = 1, 2.

Using the previous results, one may obtain the estimator

Ẽ(u) =
⎡
⎣ β̃0(u)
χ̃(2)(u)
μ̃3(u)

⎤
⎦ , u = 1, 2. (31)

Hence, we will use the pair (Y(1),Y(2)) to obtain

Õ4 = μ̃4 − 3χ̃ (2)(1)χ̃(2)(2), (32)

with

μ̃4 = μ̃4(1)+ μ̃4(2)
2

. (33)

Furthermore, one may combine the estimators into

Ẽ =

⎡
⎢⎢⎣

1
2 (β̃0(1)+ β̃0(2))

1
2 (χ̃(2)(1)+ χ̃ (2)(2))

1
2 (μ̃3(1)+ μ̃3(2))

μ̃4 − 3χ̃ (2)(1)χ̃(2)(2)

⎤
⎥⎥⎦

and use the pair

d0 = ‖Ẽ(1)− Ẽ(2)‖,

r0 = Ẽ(1)Ẽ(2)∏2
u=1 ‖Ẽ(u)‖

(34)
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to measure the precision of the estimation, where r0 acts like a correlation measure, to see
what is the precision obtained with the pair of models. r0 should be as small as possible,
because the smaller the better.

6. An application

In order to illustrate the theory, we applied the obtained results to real data in a grapevine
study. The data were taken from [11], considering two models with two crossed factors
(Clone, which is a random factor with two levels and Location, which is a fixed-effects
factor with three levels), of length 6. All computations were performed using R software,
see [18].

The considered models may be written as

Y(u) = X0β0(u)+ X1L1(u)+ X2L2(u), u = 1, 2, (35)

where

X0 = [
1 1 1 1 1 1

]� ,

X1 =
[
1 1 1 0 0 0
0 0 0 1 1 1

]�
,

X2 =
⎡
⎣1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎤
⎦

�

,

β0 is fixed and L1(u) and L2(u), u = 1, 2, are random and uncorrelated vectors, with null
mean vectors and variance–covariance matrices χ1(2)(u)I2 and χ2(2)(u)I3, u = 1, 2, with
Ic the c × c identity matrix.

The considered observation vectors are

Y(1) = [1.85, 0.70, 1.50, 1.50, 0.65, 0.90]� ,

Y(2) = [1.45, 0.40, 1.15, 1.25, 0.90, 0.35]� .

To make the adjustments, we needed to have α1, . . . ,α5 constituting an orthonormal
basis for�⊥, the orthogonal complement of the space�. Thus, we considered

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
2 0 1

2 − 1
2 0 1

2
1√
12

− 2√
12

1√
12

1√
12

− 2√
12

1√
12

− 1√
6

− 1√
6

− 1√
6

1√
6

1√
6

1√
6

1
2 0 − 1

2 − 1
2 0 1

2
− 1√

12
− 2√

12
− 1√

12
1√
12

− 2√
12

1√
12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

being α�
h the hth row of A, h = 1, . . . , 5. So, from (7), we obtained Ẏ(1) = AY(1) and

Ẏ(2) = AY(2), obtaining

Õ2(Ẏ) = Ẏ2
(1)+ Ẏ2

(2)
2

,
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Õ3(Ẏ) = Ẏ3
(1)+ Ẏ3

(2)
2

,

Õ4(Ẏ) = Ẏ4
(1)+ Ẏ4

(2)
2

− 3Ẏ2
(1)Ẏ2

(2).

The obtained values for Õ2(Ẏ), Õ3(Ẏ) and Õ4(Ẏ) are given by

Õ2(Ẏ) = [0.29, 0.49, 0.10, 0.05, 0.20]� ,

Õ3(Ẏ) = [−0.16, 0.39,−0.03,−0, 01,−0.10]� ,

Õ4(Ẏ) = [−0.153,−0.173,−0.006,−0.00005,−0.003]� .

In order to compare our results, we also calculated O2(Ẏ), O3(Ẏ) and O4(Ẏ), using
the ‘moments’ package in software R. The results obtained are the same as those obtained
using our approach.

From (13), with r = 2, we obtain

B(2) =

⎡
⎢⎢⎢⎢⎣

0 2
0 2
3 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦ .

Note that matrix B(2) has many null elements. This happens because the orthogonal pro-
jectionmatrix on the range space ofX0 commutes withmatricesXlX�

l , l = 1, 2. This shows
the great flexibility of this approach, which allows these matrices to commute, or not.

From (14) we obtained the LSE for the variance components, χ(2),

χ̃(2) = [0.03 0.20].

We also estimated the variance components using the ‘VCA’ package in R software.
The obtained estimates are [0.04 0.23] and [0.00 0.07], using Y1 and Y2, as observa-
tion vectors, respectively. Note that when we estimated the variance components using
our approach, we obtained Õ2(Ẏ) by combining both observation vectors, while with the
‘VCA’ package we estimated the variance components, using first Y1 and Y2. Therefore,
as expected, the same values were not obtained. However, the difference between the esti-
mates obtainedwith our approach and themean of those obtained using the ‘VCA’ package
is small. Finally, from (16), we obtained the estimator of β0, given by

β̃0 = [0.79 0.16].

7. Conclusion

The paper has demonstrated two main ideas. The first one is how to avoid complications
in the calculus of the fourth-order central moment in additive models. One may consider
cumulants and use a pair of independent and identically distributedmodels, obtaining thus
unbiased estimators. The second idea is that one may use cumulants for additive models
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to carry out the estimation of the parameters of such models, for example, the variance
components. It is possible to estimate not only the second-order moments but their third-
and fourth-order central moments, besides the remaining estimable vectors.

Acknowledgements

In this article, we do not consider GMO versions of grapevine clones, respecting European Regula-
tions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was partially supported by the Portuguese Foundation for Science and Technology, FCT,
through the projects UIDB/00212/2020 and UIDB/00297/2020 [PEst-OE/MAT/UI0297/2013 and
PEst-OE/MAT/UI0212/2013].

ORCID

Sandra S. Ferreira http://orcid.org/0000-0002-9209-7772
Dário Ferreira http://orcid.org/0000-0001-9095-0947
Célia Nunes http://orcid.org/0000-0003-0167-4851

References

[1] D.F. Andrews, Asymptotic expansions of moments and cumulants, Stat. Comput. 11 (2001), pp.
7–16.

[2] D.F. Andrews and J.E. Stafford, Symbolic Computation for Statistical Inference, Oxford Univer-
sity Press, Oxford, 2000.

[3] N. Balakrishnan, N.L. Johnson, and S. Kotz, A note on relationships between moments, central
moments and cumulants frommultivariate distributions, Stat. Probab. Lett. 1 (1998), pp. 49–54.

[4] T. Caliński and S. Kageyama, Block Designs: A Randomization Approach. Vol. I: Analysis,
Lecture Notes in Statistics, 150, Springer-Verlag, New York, 2000.

[5] T. Caliński and S. Kageyama,Block Designs: A RandomizationApproach. Vol. II: Design, Lecture
Notes in Statistics, 170, Springer-Verlag, New York, 2003.

[6] R. Christensen, Plane Answers to Complex Questions: The Theory of Linear Models, 4th ed.,
Springer-Verlag, New York, 2002.

[7] C.C. Craig, On a property of the semi-invariants of Thiele, Ann. Math. Statist. 2 (1931), pp.
154–164.

[8] E. Di Nardo, G. Guarino, and D. Senato, Symbolic computation of moments of sampling
distributions, Comput. Statist. Data. Anal. 52 (2008), pp. 4909–4922.

[9] J.B. Douglas, Analysis with Standard Contagious Distributions, International Co-operative
Publishing House, Fairland, MD, 1980.

[10] D. Ferreira, S.S. Ferreira, C. Nunes, M. Fonseca, A. Silva, and J.T. Mexia, Estimation and
incommutativity in mixed models, J. Multivariate Anal. 161 (2017), pp. 58–67.

[11] M. Fonseca, J.T. Mexia, and R. Zmyślony, Estimating and testing of variance components: An
application to a grapevine experiment, Biom. Lett. 40 (2003), pp. 1–7.

[12] J. Johnston and J. DiNardo, Econometric Methods, 4th ed., University of California, Irvine, CA,
2001.

[13] M.G. Kendall, A. Stuart, and J.K. Ord, Kendall’s Advanced Theory of Statistics, Griffin, London,
1987.

http://orcid.org/0000-0002-9209-7772
http://orcid.org/0000-0001-9095-0947
http://orcid.org/0000-0003-0167-4851


10 P. ANTUNES ET AL.

[14] P. McCullagh, Tensor Methods in Statistics, Chapman and Hall, London, 1987.
[15] A. Mukherjea, M. Rao, and S. Suen, A note on moment generating functions, Stat. Probab. Lett.

76 (2006), pp. 1185–1189.
[16] G. Pistone and H.P. Wynn, Cumulant varieties, J. Symbolic Comput. 2 (2006), pp. 210–221.
[17] I.E. Poloskov, CAS Mathematica in random studies, Lect. Notes Comput. Sci. 2657 (2003), pp.

781–790.
[18] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for

Statistical Computing, Vienna, 2013. Available at http://www.R-project.org/.
[19] P.J. Smith, A recursive formulation of the old problem of obtaining moments from cumulants and

vice versa, Amer. Statist. 49 (2012), pp. 217–218.
[20] K.T. Takeaki and H. Kurata, Generalized Least Squares, John Wiley & Sons Ltd, Chichester,

2004.
[21] C.S. Withers, S. Nadarajah, and S.H. Shih, Moments and cumulants of a mixture, Methodol.

Comput. Appl. Probab. 17 (2015), pp. 541–564.
[22] Q. Zheng, Computing relations between moments and cumulants, Comput. Stat. 17 (2002), pp.

507–515.

http://www.R-project.org/

	1. Introduction
	2. Cumulants and generating functions
	3. Adjustments
	4. Further results on estimation and EBLUP
	5. Pairs of models
	6. An application
	7. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References

