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Abstract Models with orthogonal block structure, OBS, have variance covariance
matrices that are linear combinations

∑m
j=1 γjQj of known pairwise orthogonal–

orthogonal projection matrices that add up to In. We are interested in characterizing
such models with least square estimators that are best linear unbiased estimator
whatever the variance components, assuming that γ ∈ ∇≥, with ∇≥ the set of
vectors with nonnegative components of a subspace ∇. This is an extension of the
usual concept of OBS in which we require γ ∈ R

m≥. Thus as we shall see it is usual
when we apply our results to mixed models.

Keywords Best linear unbiased estimator · Least square estimators · Orthogonal
block structure · Uniformly minimum variance unbiased estimator

1 Introduction

If a model has the family

ν =
{

w∑

i=1

θiM i; θ ∈ Θ

}

(1)

S. S. Ferreira (�) · D. Ferreira · C. Nunes
Department of Mathematics and Center of Mathematics and Applications,
University of Beira Interior, Covilhã, Portugal
e-mail: sandraf@ubi.pt

F. Carvalho
Departmental Unit of Mathematics and Physics, Polytechnic Institute of Tomar and Center
of Mathematics and Applications, FCT/UNL, Monte da Caparica, Portugal
e-mail: fpcarvalho@ipt.pt

J. T. Mexia
Department of Mathematics and Center of Mathematics and Applications, FCT/UNL,
Monte da Caparica, Portugal

© Springer Nature Switzerland AG 2019
S. E. Ahmed et al. (eds.), Matrices, Statistics and Big Data,
Contributions to Statistics, https://doi.org/10.1007/978-3-030-17519-1_7

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17519-1_7&domain=pdf
mailto:sandraf@ubi.pt
mailto:fpcarvalho@ipt.pt
https://doi.org/10.1007/978-3-030-17519-1_7


90 S. S. Ferreira et al.

of variance–covariance matrices it suffices that T , the projector onto the column
space of matrix X0, commutes with M1, . . . ,Mw for the least square estimators,
LSE, to be best linear unbiased estimator, BLUE, whatever θ = θ1, . . . , θw.
Following [12] and [11], we say that, then, the LSE are uniformly best linear
unbiased estimator, UBLUE.

When the model has only one variance component θ, then having variance–
covariance matrix θM, T commuting with M is, see [13] and [14], a necessary
and sufficient condition for the LSE to be UBLUE. Then matrix M has the spectral
decomposition

M =
m∑

j=1

bjQj (2)

with Q1, . . . ,Qm pairwise orthogonal–orthogonal projection matrices, POOPM,
and the family of variance–covariance matrices can be written as

ν =
⎧
⎨

⎩

m∑

j=1

γjQj ; γ ∈ R(b)≥

⎫
⎬

⎭
, (3)

where R(U ) is the range space of matrix U , b [γ ] has components b1, . . . , bm

[γ1, . . . , γm] and �≥ is the family of vectors of subspace � with nonnegative
components. We say that those models have rank 1, since rank(b) = 1. We intend
to extend the necessary and sufficient conditions obtained for rank 1 models to
models with

ν =
⎧
⎨

⎩

m∑

j=1

γjQj ; γ ∈ �≥
⎫
⎬

⎭
, (4)

where dim(�) = r ≥ 1. These models will have rank r. When � = R
m all the

matrices
∑m

j=1 γjQj with nonnegative coefficients may be variance–covariance
matrices and we say the model is full rank. Moreover if

m∑

j=1

Qj = In (5)

the model will have orthogonal block structure, OBS, see [8, 9]. These models
continue to play a prominent role in the theory of randomized block designs, see
[2, 3].

An interesting case studied by [1] is the case where the family of possible
variance–covariance matrices, while still commutative, no longer forms an orthog-
onal block structure.
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In the next section we present results on commutative Jordan algebras (of
symmetric matrices), CJA, and describe the algebraic structure of the model. Finally,
in the third section, we characterize the models with OBS whose LSE are UBLUE,
this is they are BLUE whatever the variance components.

2 Algebras and Structure

A CJA is a linear space constituted by symmetric matrices that commute and
containing the squares of its matrices. Each one of these algebras, say A, has a
unique basis, the principal basis, pb(A), constituted by POOPM, see [10]. For
a family W = {W 1, . . . ,Wu} of symmetric matrices to be contained in a CJA,
see, e.g., [5], it is necessary and sufficient that its matrices commute. Moreover,
intersecting all the CJA that contain W we obtain the least CJA, A(W ), that contains
W , this will be the CJA generated by W . If the n × n matrices in pb(A) add up to
In, the CJA will be complete. For a CJA to contain invertible matrices it is necessary
and sufficient that it is complete, see [5].

Let us consider the mixed model

Y =
w∑

i=0

Xiβ i , (6)

where β0 is fixed and the β1, . . . ,βw are random, independent, with null mean
vectors and variance–covariance matrices θ1I c1, . . . , θwI cw . If the matrices M i =
XiX

 
i , i = 1, . . . , w commute, they will generate A = A(M), where M =

{M1, . . . ,Mw}. With Q = {Q1, . . . ,Qm} = pb(A), we will have

M i =
m∑

j=1

bi,jQj , i = 1, . . . , w (7)

and so we will have the variance–covariance matrices

V (θ) =
w∑

i=1

θiM i =
m∑

j=1

(
w∑

i=1

bi,j θi

)

Qj =
m∑

j=1

γjQj = V (γ ), (8)

with

γ j =
w∑

i=1

bi,j θi, j = 1, . . . ,m, (9)

and so γ ∈ R(B )≥, where B = [bi,j ].
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Let us establish

Proposition 1 If R([X1 . . .Xw]) = R
n and the matrices M i , i = 1, . . . , w,

commute, the model has OBS.

Proof Since the Q1, . . . ,Qm are POOPM we have only to show that
∑m

j=1 Qj =
In, this is that A is complete. Now

rank

(
w∑

i=1

M i

)

= rank(R[X1 . . .Xw]) = n,

so
∑w

i=1 M i , being an n× n matrix with rank n, is invertible and since
∑w

i=1 M i ∈
A, A is complete. �

We point out that V (θ1) = V (θ2) implies θ1 = θ2 if and only if the matrices
M1, . . . ,Mw are linearly independent so the row vectors of matrix B. From now
on we make this assumption of linear independence so B will be a w × m matrix
with rank w.

If the model has OBS and T commutes with M, the model will have commuta-
tive OBS and we say that it has COBS. The models with COBS were introduced in
[6]. We now have the

Proposition 2 A model with OBS has COBS if and only if T commutes with the
Q1, . . . ,Qm.

Proof We have only to establish the part of the thesis for COBS since the proof
for OBS is identical. For this, it is sufficient to show that T commutes with
M1, . . . ,Mw if and only if it commutes with Q1, . . . ,Qm. Now, if T and the
M1, . . . ,Mw commute, the matrices of M∗ = {T ,M1, . . . ,Mw} generate a CJA,
A∗, that contains A(M), since M ⊆ M∗. Namely we will have T ,Q1, . . . ,Qm ∈
A∗ so T Qj = QjT , j = 1, . . . ,m. The inverse is easy to establish since
M i = ∑m

j=1 bi,jQj , i = 1, . . . , w, thus T Qj = QjT , j = 1, . . . ,m implies
T M i = M iT , i = 1, . . . , w. �
Corollary 1 A model with OBS has COBS if and only if their matrices Q∗

j =
QjT , j = 1, . . . ,m, are orthogonal projection matrices (we point out that 0n×n

is an orthogonal projection matrix).

Proof The thesis follows directly from Proposition 2 since the Q∗
j are symmetric

and idempotent if and only if QjT = T Qj , j = 1, . . . ,m. We point out that,
see [7], pb(A∗) is constituted by the nonnull matrices T Qj and (In − T )Qj , j =
1, . . . ,m. �

Let the gj row vectors of matrix Aj constitute an orthonormal basis for ∇j =
R(Qj ). Now

ψ̃ = UY
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is an LSE estimator of its mean vector

ψ = Uμ,

if and only if

UT = U .

We now have

Theorem 1 The OBS whose LSE are UBLUE are the COBS.

Proof As for Proposition 2 we have only to establish the first part of the thesis. In
COBS we have, whatever γ , T V (γ ) = V (γ )T as well as T cV (γ ) = V (γ )T c,

with T c = In − T . Putting UΩ = UT and UΩ⊥ = UT c we get

Cov(UY ) = UV (γ )U = (UΩUΩ⊥)V (γ )(U ΩU 
Ω⊥) =

= UΩV (γ )U 
Ω⊥UΩV (γ )U 

Ω⊥ ,

since UΩV (γ )U 
Ω⊥ = UT V (γ )T cU = UV (γ )T T cU = 0n×n and, likewise

UΩ⊥V (γ )U Ω = 0n×n, considering Cov the covariance matrix.
Given another linear unbiased estimator ψ∗ = LY of ψ we have Lμ = Uμ, so
(LΩ −UΩ)X0 = (L−U )T X0 = 0n×k since the row vectors of (L−U)T belong
to Ω = R(X0) and are orthogonal to Ω.

Thus LΩ = LT = UT = UΩ, so

Cov(LY ) ≥ Cov(LΩY ) = Cov(UΩY ) = Cov(ψ̃),

and the proof is complete. �
We now look for an expression to ψ̃ which exhibits the algebraic structure of

models with COBS. Let the gj row vectors of Aj constitute an orthonormal basis
for R(Qj ), so that we have

AjA
 
j = Igj , A j Aj = Qj , j = 1, . . . ,m,

we put X0,j = AjXj and represent by P j the orthogonal projection matrix on
Ωj = R(X0,j ), j = 1, . . . ,m. If, with pj = rank(P j ), the pj row vectors of W j

constitute an orthonormal basis for Ωj, we will have

W jW
 
j = Ipj , W 

j W j = P j , j = 1, . . . ,m.

When pj = 0 we assume that I 0 = [0] and that P j = 0n×n.
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We now establish

Proposition 3 In models with COBS, the Q̇j = QjT and the Q̈j = A j P jAj are
identical orthogonal projection matrices with rank pj , j = 1, . . . ,m.

Proof If pj = 0 we have Q̇j = Q̈j = 0n×n. We saw that in models with COBS
the Q̇j , j = 1, . . . ,m are orthogonal projection matrices it being straightforward

to show that the Q̈j , j = 1, . . . ,m, also are. Moreover

R(Q̇j ) = R(QjT ) = QjR(T ) = QjR(X0) = A j AjR(X0) =
A j R(AjX0) = A j R(X0,j ) = A j R(P j ) = R(A j P j ) = R((A j P j )(A

 
j P j )

 )

= R(A j P jAj ) = R(Q̈j ), thus Q̇j = Q̈j and rank(Q̈j ) = rank(Q̇j ). Now

P j = AjQ̈jA
 
j , so pj = rank(P j ) = rank(Q̈j ) = rank(Q̇j ) and the proof is

complete. �
Corollary 2 In models with COBS and matrix X0 with k linearly independent
column vectors we have k =∑m

j=1 pj .

Proof We have k = rank(X0) = rank(T ) so the thesis follows from

T = InT =
⎛

⎝
m∑

j=1

Qj

⎞

⎠T =
m∑

j=1

Q̇j

and from the Q̇1, . . . , Q̇m being pairwise orthogonal so that rank
(∑m

j=1 Q̇j

)
=

(∑m
j=1 rank(Q̇j )

)
=∑m

j=1 pj . �
Let us have pj > 0 if and only if j ≤ l, with l ≤ m, and put Y j = AjY and

Zj = W jY j , j = 1, . . . , l. Since Q̇j = 0n×n, if j > l, whenever l < m, we have

T =
l∑

j=1

QjT =
l∑

j=1

Q̇j =
l∑

j=1

Q̈j =
l∑

j=1

A j P jAj ,

as well as, since P j =W 
j W j , j = 1, . . . , l

μ̃ = T Y =
l∑

j=1

A j P jAjY =
l∑

j=1

A j P jY j =

=
l∑

j=1

A j W 
j W jY j =

l∑

j=1

A j W 
j Zj

so that μ̃ =∑l
j=1 U jZj , with U j = A j W 

j , j = 1, . . . , l.
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3 Model Characterization

We now characterize models whose LSE are UBLUE. The estimable vectors of a
model with mean vector μ = X0βo are the

ψ = Uμ.

The corresponding linear unbiased estimators are the ψ∗ = LY with

L ∈ [ψ] = {L : E(LY ) = ψ},

where E(.) indicates mean vector. We now establish

Lemma 1 We have E(L1Y ) = E(L2Y ) if and only if L1T = L2T .

Proof Since E(LlY ) = Llμ = LlT μ, l = 1, 2, the sufficient condition
is established. Inversely, if E(L1Y ) = E(L2Y ) we will have, whatever β0,

L1T X0β0 = L2T X0β0 so that L1T X0 = L2T X0 and that (L1T −L2T )X0 = 0,

where 0 denotes a null matrix. Thus the row vectors of W = L1T − L2T =
(L1 −L2)T have to be orthogonal to Ω = R(X0), but these vectors also belong to
Ω so they are null which gives L1T −L2T = 0 and so L1T = L2T as we wanted
to established. �

Now the LSE for ψ = Uμ is

ψ̃ = L(ψ)Y

with L(ψ) = UT and μ̃ = T Y . We see that L(ψ) ∈ [ψ], since

E(ψ̃) = L(ψ)μ = UT X0β0 = Uμ = ψ,

besides this, according to Lemma 1, L ∈ [ψ] if and only if

LT = L(ψ)T = UT T = UT = L(ψ).

Putting T c = In − T we have, with L ∈ [ψ],

L = LT +LT c = L(ψ)+ rB,

with −∞ < r < +∞ and B = 1
r
LT c. Thus,

Covθ (LY ) = Covθ (L(ψ)Y )+ 2rCovθ(L(ψ)Y ,BY )+ r2Covθ (BY )

it being easy to see that we have, whatever r ∈] −∞;+∞[,

Covθ (ψ̃) = Covθ (L(ψ)Y ) ≤ Covθ (LY )
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if and only if Covθ (L(ψ)Y ,BY ) = 0. Since B = 1
r
LT c we get

Covθ (LT Y ,LT cY ) = 0,

whenever

Covθ (L(ψ)Y ,BY ) = 0.

Now

Covθ (LT Y ,LT cY ) = LT V (θ)T cL =

L[T V (θ)(In − T )]L = L[T V (θ)− T V (θ)T )]L ,

so that to have

Covθ (ψ̃) ≤ Covθ (LY )

for every θ , if and only if T V (θ) − T V (θ)T = T V (θ)T c = 0, which gives
T V (θ) = T V (θ)T and

V (θ)T = (T V (θ)) = (T V (θ)T ) = T V (θ)T = T V (θ),

also for every θ .

We now establish

Theorem 2 The LSE are UBLUE if and only if, for every θ , T commutes with V (θ),

Proof The preceding discussion establishes the necessary condition. To complete
the proof we point out that, when T commutes with V (θ) we have

Covθ (LT Y ,BY ) = rCovθ (LT Y ,
1

r
LT cY ) = LT V (θ)T cL = 0n×n,

and so

Covθ (LY ) = Covθ (L(ψ)Y )+ r2Covθ (BY ) ≥ CovθL(ψ) = Covθ (ψ̃).

�
Now the models with OBS where T commutes with the M1, . . . ,Mw and so

with V (θ), whatever θ , are those with COBS so these are the models with OBS
whose LSE are UBLUE.

Corollary 3 Models with OBS have LSE that are UBLUE if and only if they have
COBS.
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In establishing Theorem 2, we did not require that

V (θ) =
w∑

i=1

θiM i

in order to widen the class of models to which our results applies. Moreover, as we
stated in the introduction, when we restrict ourselves to OBS, assuming that

V (γ ) =
m∑

j=1

γjQj

with γ ∈ ∇≥, our result holds whatever the dimension (≤ m) of ∇.

4 Final Remarks

The models we considered have variance–covariance matrices V (γ ) =∑m
j=1 γjQj

where the Q1, . . . ,Qm are POOPM that add up to In, and γ ∈ ∇ with dim(∇) =
r ≥ 1. We discussed the role played by T , the orthogonal projection matrix on the
space spanned by the mean vector, commuting with the Q1, . . . ,Qm in the LSE
of estimable vectors being UBLUE, this is, being BLUE whatever γ . Namely we
showed that commutativity characterizes the models, in the class we consider, whose
LSE are UBLUE. We point out that in our mixed models we had γ ∈ R(B )≥. To
have, as required in [8, 9], the γ ∈ R

m≥, matrix B would have to have rank m and
thus being invertible. This condition holds when M is a basis for M , we then say,
see [4], that the family M is perfect.
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