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Abstract

This is a work on an application of the real split-quaternions to Spatial
Analytic Geometry. Concretely, the intersection of a double cone and a line,
which can be the empty set, a point, two points or a line, is studied in the
real split-quaternions setting.
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1 Introduction

Among the problems that can be approached in Spatial Analytic Geometry, some
concern intersections of geometric 3D objects. For instance, the intersection of a
cone and a line is one of them. Beyond its intrinsic mathematical interest, the latter
problem is also relevant in other areas such as computer graphics, motion planning
and collision detection.

There is a series of books, called Graphics Gems, that provides tools for the
graphics community to face real programming issues. In [3], the intersection of a
line and a cylinder was treated. An extension of this work appeared in [1], where
the intersection of a line and a cone was addressed.

In the present text, we study the intersection of a double cone and a line in the
real split-quaternions context. We collect some definitions, notations and results in
section 2. Through the norm of the split-quaternion that gives the line direction,
we characterize intersection conditions in section 3. Moreover, we present explicit
formulas for computing the intersection if it is nonempty.

2 The Real Split-Quaternions

Let F be an arbitrary field and U be a finite-dimensional vector space over F.

The vector space U over F' is a semi-Euclidean (or pseudo-Euclidean) space if
F =1 and U is equipped with a non-degenerate indefinite bilinear form. As in the
positive definite case, the mentioned form is called the inner product and we denote
it by (-, ).

If U is a semi-Euclidean space, then an element x € U is said to be spacelike,
lightlike or timelike if (z,z) > 0, (xz,x) = 0 or (z,z) < 0, respectively. The light cone
is the set of all lightlike elements. As in the definite case, two elements z,y € U are
said to be orthogonal if (xz,y) = 0. So, the light cone consists of all elements that
are orthogonal to themselves.

A vector space homomorphism ¢ : U — U is called an involution of U if, for all

u,v € U, p(p(u)) = u and p(uv) = p(v)p(u).



The vector space U over F'is an algebra over F if U is equipped with a bilinear
map s : U? — U, usually called multiplication. Given an algebra U, with multi-
plication denoted by juxtaposition, we now recall a few more concepts related to
composition algebras assuming, from now on, that ch(F') # 2.

U is a composition algebra over F if it is endowed with a nondegenerate quadratic
form (the norm) n : U — F (that is, the associated symmetric bilinear form
(z,y) = 3(n(z +y) — n(z) — n(y)) is nondegenerate) which is multiplicative, i.e.,
for any z,y € U,

n(zy) = n(z)n(y).

Let U be a composition algebra over F'. An element z € U is isotropic if z # 0
and n(z) = 0. A unital composition algebra U, that is, a composition algebra
with identity e is a Hurwitz algebra. As proved in [4], the mapping defined by
x — T = (z,e)e — x is an involution of U, called the standard conjugation, that
satisfies 2% (= Tx),x +T € Fe where Fe is the subspace of fixed elements under this
involution. Furthermore, n(x) and ¢r(z) € F, respectively, the norm and the trace
of z, are given by 2T = n(z)e and = + T = tr(xz)e. An element x € U is invertible
if and only if n(z) # 0. Moreover, x~! = n(xx) if x is invertible.

By the generalized Hurwitz theorem in [4], a 4-dimensional Hurwitz algebra
over F' is a (generalized) quaternion algebra, that is, an algebra over F' with two
generators i and j satisfying the relations i> = a, j2 = b and ij = —ji, with
a,b € F\{0}. This algebra can be denoted as in [6], using the Hilbert symbol,

by (algb). Setting ij = k, we have that (“Tb) is 4-dimensional over F, with basis

{1,i, 3, k}. Moreover, k? = —ab and any two of the elements in {i, j, k} anticommute.

Taking FF = R and a = —1, b = 1, we obtain the real split-quaternion algebra
(%) In what follows, throughout the work, we denote this associative algebra
and its multiplication by H and Jjuxtaposition, respectively, and its identity 1 will
be omitted most times. Notice that, for instance, i + j is an isotropic element of H.
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Table 1: Multiplication table of H.

Let p = po+p1i+p2j+psk € H. 1f po = 0 then p is called pure split-quaternion.
The scalar part and the vector part of p are pg and V,, = p1i+p2j+psk, respectively.
The conjugate of p is p = pg — V}, and the norm of p is

n(p) = py+pi—p;—Ds

In this work, whenever convenient, the subspace ﬂo, of the pure split-quaternions,
of H is identified with the (2 + 1)-Minkowski space R?*1. This is the inner pro-
duct space consisting of the real vector space R? equipped with the Lorentz inner
product

(r,y)L = —m1y1 + Toy2 + T3Y3.



Notice that (x,2z);, = —n(x). The vector space may be regarded as a semi-normed
vector space, provided that the (semi-) norm is given by

2l = VI{z, 2)cl.

The Lorentz cross product of z,y € R? is defined as follows, [2]:

—1 J k
TALY = xr1 T T3
Yt Y2 Y3

In the cited reference, it is proved that the identity

(z,2)r, {(x,w)y,

T Ap Y,z N\, w I
< Ly o >L <y7 z>L <y7 w>L

holds in R3. In particular, taking z = « and w = y leads to the identity

(1) n(zALy) = n@n(y) - (,y)7.

The multiplication of two split-quaternions p = py + V,, and ¢ = qo + V; can be
related to the Lorentz inner product and to the Lorentz cross product as follows:
pq = pogo + (Vp, Vg) . + poVy + @oVp + Vi AL V. In particular, if p and ¢ are pure
then

pq = (Vp, Vo) + Vo AL V.

Lastly but importantly, for computational purposes, the algebra M can be iden-
tified with the real algebra IMs,o(IR), this one equipped with the usual matrix mul-
tiplication. The identification is due to the known isomorphism 1 : H — My 5(R)
defined by, [6]:

. . a+d b+c
a+bi+cj+dk— [ c—b a—d}

3 Intersection of a Double Cone and a Line

In this section, we consider a line and a double cone, being the latter one a geometric
figure made up of two right circular infinite cones placed apex to apex such that
both share the same axis of symmetry. Of course, this double cone could be in any
place of the 3-dimensional space, but, for the sake of convenience, we assume that
the cone apexes are at the origin of the coordinates and that the axis of symmetry
is the vertical axis. If this was not the case, we could always translate and /or rotate
the cone such that these conditions are met. In order to study the intersection of
the mentioned objects, we use the pure split-quaternions and find out that they
form a convenient framework.

Consider the (2 + 1)-Minkowski space with the two horizontal axis chosen to be
spatial dimensions while the vertical axis is time. The split-quaternions ¢, j, k are
the unit vectors in the ¢, x, y axis, respectively (Figure 1). For the sake of simplicity,
in what follows, we write (-,-) and A instead of (-,-);, and Ay, respectively.

Each point in the Minkowski space is usually called an event. In what follows,
through a vectorization of the affine Minkowski space, the end-point of a position
vector (with respect to the origin of the coordinates) is identified with that vector.

Definition 3.1. Let a,b € Iﬁo with b # 0. A line is the set of events (pure split-
quaternions) {a + Ab : A € R}, where b gives the line direction and a is an event
in the Minkowski space.



Figure 1: The (2 + 1)-Minkowski space with the unit vectors 4, j, k represented.

Definition 3.2. The double cone is the set of events (pure split-quaternions)
{ti+aj+yk : 22 +y?> =12 x,9y,t € R}.

Observe that any double cone can fit this definition after an appropriate scaling.
For this reason, we only consider this double cone and an arbitrary line.

The upper cone is known as the future light cone and the lower one as the past
light cone. If an event is inside the future light cone, we will call it a future event
and if it is inside the past light cone, we will call it a past event (Figure 2). Thus,
if a is a future event, then tr(a) > 0 and n(a) > 0. Likewise, if it is a past event,
then tr(a) < 0 but still n(a) > 0. In any case, if a line passes through a future or
past event, then it must intersect the double cone.
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Figure 2: A light cone diagram.

Given a vector b, the set of all events orthogonal to b will form a plane known
as a separation plane. Given an event a, if b is timelike, lightlike or spacelike, then
the Lorentz inner product of a with b is negative, zero or positive when «a is above,
over or below the separation plane of b, respectively. Moreover, if b is spacelike,
then the Lorentz inner product of a with b is negative if a and b are on the same
side with respect to the separation plane of b, zero if a is over the separation plane
of b, and positive otherwise.

If a line is timelike, i.e., with a timelike vector direction, its separation plane
contains no lightlike event, [5]. In other words, a timelike vector will never be



orthogonal to a lightlike one.

Lemma 3.3. Let u € ]ﬁo be timelike. If u; # 0 is orthogonal to u, then wu, is
spacelike.

Proof. Let u € Iﬁg be timelike and u  belong to the separation plane of u. Then
n(u) > 0 and (u,u,) = 0.

For each u considered, there exists an a such that v = v + au is lightlike, i.e,
n(v) = 0.

Figure 3: Representation of u, u; and the lightlike vector v.

Hence,

nv) = —(v,v)
= —(ui,u))—2c{us,u) —a*{u,u)
= n(ur)+ o?n(u).
But n(v) = 0. Thus, n(u, )+ a?n(u) = 0 which implies that n(u, ) = —a?n(u).
Since n(u) > 0, we conclude that n(uy) < 0 and u, is spacelike. O

Lemma 3.4. Let u € ﬁo\{O} be lightlike. If uy # 0 is orthogonal to u, then u_
will never be timelike, i.e., n(uy) < 0.

Proof. Let us demonstrate by contradiction. Suppose that given u € ]ﬁo lightlike
there exists a timelike u orthogonal to u. If this is the case, then u is orthogonal
to u and, by Lemma 3.3, v must be spacelike, which is a contradiction since u is,
by hypothesis, lightlike. O

Observe that if u is spacelike, then an orthogonal vector u; may be spacelike,
lightlike or timelight. For example, given the spacelike vector v = (1,1,1), any
orthogonal vector uy = (z,y,t) must satisfy the equation ¢ = x + y. The vectors
vy = (1,1,2), vo = (1,—1,0) and vs = (1,0, 1) satisfy the referred equation but
n(vy) > 0, n(ve2) < 0 and n(vs) = 0, which implies that vq,vs and v3 is timelike,
spacelike and lightlike, respectively.

Proposition 3.5. Let u,v be two events such that at least one of them is timelike.
Then n(u Av) < 0.

Proof. Let us suppose, without loss of generality, that « is timelike. We can decom-
pose v such that v = au + Bu,, where u  is a convenient vector belonging to the
separation plane of u. Hence,

’rL('U) = _<U7 U>
= —a2<u,u> *52<UL7UL>
= o’n(u) + B*n(uy),



and

(u,v)y = afu,u)
= —an(u).
From (1), we obtain
nfuAv) = n(u)n)— (u,v)?
= o®n®(u) + B*n(u)n(ur) — o®n®(u)
= B*n(u)n(ul).

As, by hypothesis, n(u) > 0 and, from Lemma 3.3, n(u_y) < 0, then n(uAv) < 0. O
Theorem 3.6. Let £ be a line passing at an event a and with direction b # 0.

1) Ifn(b) # 0, then the line £ intersects the double cone at 0, 1 or 2 points whenever
n(a A b) is positive, zero or negative, respectively. The intersection points are

given by
n <a,b> :I:\/fn(a/\b)b
n(b) '

S=a

2) If n(b) = 0, then the line £ intersects the double cone at 0, 1 or an infinite
number of points.

(i) If a belongs to the separation plane of b

(a) and n(a) = 0, then the line £ intersects the double cone at an infinite
number of points, i.e., all the points of the line belong to the double
cone;

(B) and n(a) # 0, then the line £ does not intersect the double cone.

(i) If a doesn’t belong to the separation plane of b, then the line £ intersects
the double cone at 1 point given by

n(a)

sza+2<a,b> '

Proof. Consider the line £ that passes through an event a and has direction b # 0.
The generic point of £ can be represented by X = a + Ab, with A € R. The
intersection of £ with the double cone consists of the points of this line that belong
to the double cone. But all the points of the double cone are lightlike. Hence, if s
is such a point, then (s, s) = 0. But

(s,5) = (a,a)+2X\(a,b) + N\ (b,b).
Since (a,a) = —n(a) and (b, b) = —n(b), we obtain
(2) An(b) — 2\ (a,b) +n(a) = 0.

If n(b) # 0, then, by (1),

>\ =

(a,b) £ \/(a,b)° — n(a)n(b)
n(b)

(a,by £ \/—n(a AD)

n(b)




From here we conclude that £ intersects the double cone at 0, 1 or 2 points whenever
n(a A b) is positive, zero or negative, respectively. In the two latter cases, the
intersection points of £ with the double cone are given by

B (a,by £ /—n(a A D)
s = a+ () b.

If n(b) = 0, then, from (2), we obtain
(3) —2X{a,b) + n(a) = 0.

If the event a belongs to the separation plane of b, then (a, b) = 0. Hence, the points
of £ belong to the double cone if, and only if, n(a) = 0. In this case, all points of
the line belong to the double cone. If this is not the case, then the intersection is
the empty set.

If the event a does not belong to the separation plane of b, then (a,b) # 0 and
the solution of equation (3) is

n(a)
2{a,b)’

In this case, the intersection point of £ with the double cone is given by

O

Observe that if the event a or the direction b are timelike, then, by Proposition
3.5, n(a A b) < 0 and the line intersects the double cone at least at one point.
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