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Abstract — A pseudo real matrix representation of an octonion, which is based on two real matrix represen-
tations of a quaternion, is considered. We study how some operations defined on the octonions change the set of
eigenvalues of the matrix obtained if these operations are performed after or before the matrix representation.
The established results could be of particular interest to researchers working on estimation algorithms involving
such operations.
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1 Introduction

Due to nonassociativity, the real octonion division algebra is not algebraically isomorphic to a real matrix algebra.
Despite this fact, pseudo real matrix representations of an octonion may be introduced, as in [1], through real matrix rep-
resentations of a quaternion.

In this work, the left matrix representation of an octonion over R, as called by Tian in [1], is considered. For the sake of
completeness, some definitions and results, in particular on this pseudo representation, are recalled in Section 2.

Using the mentioned representation, results concerning eigenvalues of matrices related to the octonions are established
in Section 3. Previous research on this subject, although not explicitly applying real matrix representations of a quaternion,
can be seen in [2].

2 Real octonion division algebra

Consider the real octonion division algebra O, that is, the usual real vector space R®, with canonical basis {ey, ..., e},
equipped with the multiplication given by the relations

eiej = —0;;€ + &k €k,

where d;;is the Kronecker delta, & is a Levi-Civita symbol, i.e., a completely antisymmetric tensor with a positive value
+1 when ik = 123, 145, 167, 246, 275, 374, 365 and eq is the identity. This element will be omitted whenever it is clear
from the context.

Every element o € O can be written as

7
o=> o,e, =Re(o)+Im(0), o, €R,
/=0

where Re(0) = oy and Im(0) = 6 = Z;Zlofe/ are called the real part and the imaginary (or vector) part, respectively.

The conjugate of o is defined as © = Re(0) — 6. The norm of o is defined by |o| = Voo = Voo = \/ Y7, 02. The inverse

of a non-zero octonion o is 07! = ﬁ
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The multiplication of @ can be written in terms of the Euclidean inner product and the vector cross product in R”, here-
inafter denoted by e and x, respectively. Concretely, as in [3], we have

ab:aobo—t_i~g+aog+bot_i+5i>< B

Following [4], we recall that a,b € O are perpendicular if Re(ab) = 0. In particular, if Re(a) = Re(b) =0, then
a,bc O are perpendicular if @-b=0. Moreover, a,b€ O are parallel if Im(ab)=0. In particular, if
Re(a) = Re(b) = 0, then a, b € O are parallelif @ x b= 0.

The elements of the basis of O can also be written as

€y = 1, e = 'l:, [ :j, ez = 'L],

es=k, e =1k, es=7jk, e;=1k.

The real octonion division algebra O, of dimension 8, can be constructed from the real quaternion division algebra H, of
dimension 4, by the Cayley-Dickson doubling process where O contains H as a subalgebra. As a consequence, it is well
known that any o € Ocan be written as

0=q +q2k» (1)

where q,, ¢, € H are of the form ay + a1% + asj + asig, with ag, a1, as, a3 € R.
The real quaternion division algebra H is algebraically isomorphic to the real matrix algebra of the matrices in (2), where
¢(q) is a real matrix representation of a quaternion g¢.

Definition 1. [1] Let ¢ = gy + q,3 + q.3 + q3% € H. Then
99 —91 —92 —43
9 490 —93 942

#(q) = : (2)
9 93 9 —9

93 —492 4 90

Some important properties of the matrices in Definition 1 are recalled in Lemma 1.
Lemma 1. [1] Let a,b € H and / € R. Then

(a) a="b<+= ¢(a) = ¢(b).

(b) d(a+b)=¢(a)+¢(b), (ab) = P(a)p(b), d(1a) = id(a), $(1) = I,.

(c) ¢(a)=¢"(a).

(@) ¢p(a™)=¢ '(a),if a#0.

(e) det[¢p(a)] = |al".

The real quaternion division algebra H is algebraically anti-isomorphic to the real matrix algebra of the matrices in (3),
where 7(g) is another real matrix representation of a quaternion g.

Definition 2. [1] Let ¢ = q + ¢34+ q-3 + q3% € H. Then
9 —9 92 —93
q q q. —-q

1(q) = K/1¢T(‘])Kf1 =" ’ ’ ? ) (3)

9 —93 9o 9
9 92 —9 4

where K; = diag(1, —1, —1, —1).

Some relevant properties of the matrices in Definition 2 are recalled in Lemma 2.
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Lemma 2. [1] Let a,b € H and 2 € R. Then
(a) a=b < 1(a) = 2(b).
(b) w(a + b) = t(a) + ©(b), w(ab) = (b)x(a), 1(2a) = i1(a), 7(1) = L.
(c) ©(a) = 17 (a).
(
(

¢) det [t(a)] = |al"

Due to the non-associativity, the octonion algebra cannot be isomorphic to the real matrix algebra with the usual mul-
tiplication. With the purpose of introducing a convenient matrix multiplication, we show another way of representing the
octonions by a column matrix.

Definition 3. Let 0 = ZZ:Oo/e/ € O. The column, vectorial or ket representation of o is |0) = [0g0; - - 07]T.
Based on the previous real matrix representations of a quaternion, Tian introduced the following pseudo real matrix
representation of an octonion.

Definition 4. [1] Let a = d' + a"k € O, where d’ = ag + a1i + axj + azij,a" = aq + asi + agj + a;ij € H. Then the 8 x 8
real matriz

o(d)  —t(d")K,
Ppa)Ky  t(d) |

is called the left matriz representation of a over R, where K, = diag(1, —1, —1, —1).
The meaning of the term left matriz representation comes from the following result.

w(a) = (4)

Theorem 1. [1] Let a,z € O. Then |ax) = w(a)|x).

Tian [1] introduced also the right matriz representation of an octonion a over R, which he denoted by v(a). In this case,
Tian proved that |za) = v(a)|z).

Even though there are a, b € O such that w(a)w(b) # w(ab), there are still some properties which hold. These are
recalled in Theorem 2.

Theorem 2. [1] Let a,b € O, /. € R. Then
(a) a=b<= w(a) = w(b).
(b) w(a + b) = w(a) + w(b), w(la) = iw(a), w(1) = L.

(c) w(a)=ow'(a).

3 Main results

In this section, the left matrix representation of an octonion over R is considered. First of all, given an octonion, the
eigenvalues of its left matrix representation are computed.
Proposition 1. Let a = ag + @ € O. Then the eigenvalues of the real matriz w(a) are
A= agp + ’L| l_]’,|7
each with algebraic multiplicity 4.

Proof. Given an octonion a, it can always be uniquely represented as a = ay + @’ + "k such that a; = Re(a), and
where a',a” € H . The characteristic polynomial of w(a) is

det (M5 — w(a)) = det (Ks(Als — o(a))Ks),
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where Ky is the orthogonal matrix diag(1, —1, —1, —1, 1, 1, 1, 1) = diag(Ky, I). Hence,

K, 0}{(]&(1—%—#) 1(d")K, HK4 OD

det(Alys — w(a)) = det <|: 0 I —p(a")K, t(h—ay—a) 0 Iy

e [r(/l —ay+d) b(a”) ]
—o(a") (L —ay—d)
= det (t(4 — ag + d)1(A — ay — d') + $(@) $(a")))
— det (¢((% — ao)® + |a'[%) + p(la""))
— det (A — ay)* + @)L, + |a"['L)
= det (((4— o)’ + |@)1.)

= ((2—ap)" +1al")",

and the result follows.

The set of eigenvalues of w(ab) is equal to the set of eigenvalues of w(a)w(b) since the characteristic polynomials are
equal as can easily be seen. However, if we add an extra octonion ¢ the set of eigenvalues of w(ab + ¢) and w(a)w
(b) + w(c) may differ.

We now study the eigenvalues of the matrix w(a)w(b) + w(¢), given three octonions a, b, and c.

Remark 1. Leta =ay + d € O and b = by + beO. Notice that b can be decomposed into two parts: a part parallel to @,
denoted by b,; and a part perpendicular to @, denoted by b, . The parallel part is the projection of b onto a, which is defined
as

QU
S

= =

b, = proj;b=—-—ad.

QU
U

The perpendicular part is given by BL =b-— Ba. .
Besides the projection of b onto @ we will also consider the projection of € over Span(d, b), i.e., the linear space gener-
ated by all linear combinations of @ and b.

Remark 2. As b, € Span(a) and b, b, = 0, then
a,b = (ao —+ &)(bg —+ Ba —+ BL> = aobo =+ ﬁga + boa:+ aoga +GOBL + BBL,

where agby, @b, € R and bya, aoba € Span(a). Hence, it suffices to consider only the product @b, since the remaining
terms can be added to c. .

The pure octonion ¢ can be decomposed in two parts, one in Span(d, b) and the other perpendicular to it. In this case, we
can write €¢ = €| + ¢,, where é| € Span(a, b) and ¢ - ¢, = 0. The parallel part is the projection of ¢ onto Span(ad, b) and is
given by

¢ = proj; ¢ + projy, ¢,
and the perpendicular part is naturally é, = ¢ — ¢.

Proposition 2. Let a, b, ¢ € O such that Re(a) = Re(b) = 0, and the imaginary part of a and b are perpendicular. Then
the eigenvalues of the real matriz w(a)w(b) + w(c) are

Re(c) £ iy/(lallb] = [e. ) + |/, (5)

where ¢ is the projection of ¢ onto Span(a, b) and ¢, = ¢ — ¢, each with algebraic multiplicity 2.
Proof. Without loss of generality, we consider @ = ai and b = bj. Hence,
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_ [#lai) O ¢(bj) 0
o(a)o(b) = ) .
0 7(at) 0 7(bj)
. {¢<ai)¢><bj) o1
0 1(ai)t(bj) |
By Lemmas 1 and 2, we have
¢ (abij) 0
b) = . 6
alapote) = | "] ©)
Let ¢ = ¢y + c1i+ ¢ + c34f + 'k, where ¢’ € H. Then
¢(co + c1i+ cof + c3if) —1(c")K,4
o(c) = ) . . R (7)
P(c")Ky ©(co + c1i + eoF + c3)
Taking into account (6) and (7), we obtain
co+cit+ cog + (c3 + ab)ij —1(c"K
w(a)a)(b) +(,O(c) _ |:¢( 0 1 23 ( 3 ) J) ] ( ‘) 4 § :|.
¢(")K, T(co + 11+ 2§ + (c3 — ab) )
The characteristic polynomial of w(a)w(b) + w(c) is
p(A) = det (w(a)w(b) + w(c) — Als) = det (Ks(w(a)w(b) + o(c) — M5)Ks),
where Ky is the orthogonal matrix diag(1, —1, —1, —1, 1, 1, 1, 1) = diag(K4, I;). Hence,
p(2) = det t(co — A — 18— coj — (c3 + ab)ij) _¢(F) L,
o(") (co — A+ 11+ 23 + (¢35 — ab)ij)
which results in
p(A) = det (r((co - /1)2 +cl i+ — (ab)2 + 2ab(cat — 15 — (co — })zj)) + (1)(|c"|2))7
and, since ¢(|¢"]*) = ©(|¢"[*), gives
p(/l) = det (T((C() — i)Z + |CH|2 + ‘CL|2 — (ab)2 =+ 2ab(czi — Clj — (C() — )u)'LJ))),
where ¢| = ¢;i+ ¢oj and ¢, = c34j + ¢’k. By Lemma 2, we have
p(2) = [((eo = 2 + ey + [e.* = (@b)*)” + 4(ab)* (e + (co — 2)°)]
= [((co = 2 + leyP)* + 2((eo — 2)* + ey ) (lew — (@b)®) + (leLf — (ab)*)* + 4(ab) Iy * + (co — 2)%)]
2
= [((co= 2" + ey ") + 2((co + ) + ey (leL* = (ab)?) + (e [*(ab)*)* —4(ab)’[c.|"]
= [((co = 2 + ley + lc.” + (ab)*)* — d(ab)’c.["]”
= [((co = 2" + & + (@b)")” = 4(ab)’[e. '],
and the result follows. O

The following corollary may be useful to improve the localization of eigenvalues of octonionic matrices and zeros of octo-
nionic polynomials whenever such products occur.

Corollary 2.1. Let a, b, c € O. Then
p(w(ab+ ) < p(w(a)o(b) + o(c)), (8)

where p(e) stands for the spectral radius.
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Proof. By Proposition 2, we obtain
P (w(a)o(b) +o(c) = ¢ + (|lal|bl + |e])” + e
= co + |al’|b]" + 2lallbl[c.| +[eLl + |ey* = |e]’ + |af[b]* + 2] al|bl]|c.|.
Furthermore, the eigenvalues of w(ab + ¢) are all equal in modulus and satisfy
p*(w(ab+ ¢)) = (ab+ c)(ab+ ¢) = |a]’|b]° + |c|* + 2Re((ab)e).

Without loss of generality, we can consider a = ai and b = bj. If ¢ = ¢y + 11+ cof + 38 + cuk + csik + cogk + crijgk.
Hence, we arrive at

p*(w(ab + ¢)) = |a]’|b]* + |¢|* + 2Re ((ab)€) = (ab)* + |c|” + 2abcs

< (ab)" + lef’ + 2labl\/cF+ T+ + g+ ¢
= (ab)* + |¢|” + 2labllc. | = p*(w(a)o(b) + w(c)),
and the result follows. O
Example 3.1. Let
a=1+1i+k+ gk, b= —-1424 — tk+ 39k, c =2+ i+ j + 2k — 51k + jk — 124jk.
To apply (5), we have to take into account Remarks 1 and 2, and rewrite a, b and ¢ as
a:a[)—&—&,b:bg—i—z,c:co+&',

where a, b and ¢ are the imaginary parts of a, b and c, respectively. .
. Computing b,, the projection of b onto d, we obtain b, = @. Thus, the orthogonal part b, is equal to
b—b,=—1+ 24— k—ik+2qk._ .

The projections of € onto @ and b are, respectively ¢, = —3d and &,, = —2b, . Hence, the projection of ¢ on the space of
@ and b, is Cup, = Cq+ Gy, = —t— 44 — k+ 2tk — Tigk. This implies that for the orthogonal part we have
€, =¢— Cup, =21+ J+ 41+ 3k — Tik + jk — bijk.

Taking all together, we have

ab+ ¢ = (ag+ @)(bo + ba+ b.) + o + Cap, + €1

= &BL —+ (CO + a()b() —+ 66,1) —+ (EGJM + aOBa + bo& + aoi)l) —+ EL,

where ¢y + agby + @b, is real and Cop, + aoau + byd + aOBL € Span(d, b, ). So

ab+C:abJ_+C0+_C'H+EJ_, (9)
where Cy = ¢y + agby + @ba = —2, & = Cap, + toba + bo@ + a0, = —2i — 2ij — 2k + ik — bigk, and &, = 23+ j+
4ij + 3k — Tik + jk — 5ijk.

We are now in condition to apply Proposition 2, from which we obtain the eigenvalues of

[ —2 1 0 -5 -4 6 -4 127

o(a)o(b) + w(c) =

4 8§ -2 -6 2 1 -2 1
L—12 4 6 -2 5 4 -1 =2
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The eigenvalues are Ay =—2% z\/(\/ﬁ + v 105)2 +38 =—-24+14/176 + 6385 and = —

2+ 7,\/ (v/33 — v/105)" + 38 = —2 + i1/176 — 61/385, while the eigenvalues of w(ab + c) are 4 = —2 + iy/238.
As predicted by Corollary 2.1, p(w(ab+c)) < p(w(a)w(b) +w(c)), since p(w(ab+c))=|i =11v/2 and

p(o(a)w(d) + w(c)) = |A+] = V180 + 6+/385. O
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