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Abstract—Three-dimensional datasets from biological tissues
have increased with the evolution of confocal microscopy. Hep-
atology researchers have used confocal microscopy for investi-
gating the microanatomy of bile ducts. Bile ducts are complex
tubular tissues consisting of many juxtaposed microstructures
with distinct characteristics. Since confocal images are difficult
to segment because of the noise introduced during the specimen
preparation, traditional quantitative analyses used in medical
datasets are difficult to perform on confocal microscopy data
and require extensive user intervention. Thus, the visual explo-
ration and analysis of bile ducts pose a challenge in hepatology
research, requiring different methods. This paper investigates
the application of unsupervised machine learning to extract
relevant structures from confocal microscopy datasets repre-
senting bile ducts. Our approach consists of pre-processing,
clustering, and 3D visualization. For clustering, we explore
the density-based spatial clustering for applications with noise
(DBSCAN) algorithm, using gradient information for guiding
the clustering. We obtained a better visualization of the most
prominent vessels and internal structures.

Keywords-confocal microscopy data; image processing; DB-
SCAN clustering; volumetric visualization

I. INTRODUCTION

The confocal microscope has the ability to remove out-of-

focus light and the capability of controlling the depth of field

and collecting several aligned images of the same sample [1].

These characteristics have led to its increasing use for the

acquisition of volumetric datasets from biological samples.

In this work, we focus on the visualization of the bile ducts

structure imaged with confocal fluorescence microscopy.

Bile ducts are thin tubular structures that carry the bile,

and studying their microanatomy is a hot topic in hepatology

research [2–4]. Usually, confocal microscopy images of bile

ducts are studied by analyzing the serial slices obtained

from fluorescent samples of mice. However, despite the

effort dedicated to the samples preparation and the image

acquisition itself, it still is necessary adequate computational

support for the analysis and visualization of such confocal

microscopy datasets. Bile ducts are mainly composed of two

different groups of complex and juxtaposed microstructures

(Fig.1): Microvasculature and Peribiliary glands (PBGs).

The microvasculature refers to the network of small vessels

that surround the bile ducts [5]. PBGs are clusters of

cells that elongate to form complex epithelial networks that

course and branch within the bile duct walls [2]. The visual

inspection of these structures is decisive to understand the

development of biliary diseases associated with vascular

disorders. However, there are some challenges to understand

the characteristics of the microvasculature as well as PBGs

because of their complex morphology, induced by their

shapes and overlapping. Furthermore, confocal microscopy

images are affected by the noise introduced due to the

specimen preparation process, such as the procedure of

staining [6].

In this paper, we propose an exploratory approach to

detect, identify and visualize clusters of voxels that rep-

resent similar structures in bile ducts confocal microscopy

datasets. We adopt clustering by the Density-Based Spatial

Clustering DBSCAN algorithm, which creates clusters with

arbitrary shapes, even in the presence of noise in large spatial

databases [7]. To the best of our knowledge, there is no

reported application of this technique in the study of data

from hepatological samples. Our work aims at adapting the

DBSCAN method for extracting structures from confocal

images of bile ducts. The main challenge is to find the

appropriate similarity features between voxels that allow for

differentiating such structures. The main contributions of this

work are the use of gradient information as a feature to guide

the clustering process and the proposal of a specific pre-

processing step that can also be used in other applications

involving confocal microscopy images.

II. BACKGROUND AND RELATED WORK

Confocal microscopes produce multichannel fluorescent

datasets in which each channel is collected separately [1].

Confocal images are affected by some artifacts and noise,

and irrelevant structures may also be labeled through the

fluorescent staining process, resulting in visual occluders [8].

Regarding hepatology research, we found a few works us-

ing confocal microscopy to study the micro-anatomy of bile

ducts. DiPaola et al. [2] identified peribiliary glands (PBGs)

residing within the bile duct walls. However, the images
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(a) Red channel (b) Green channel (c) Superimposed channels

Figure 1: View of a single slice from a bile duct dataset: (a) the red channel encodes the microvasculature, while (b) the

green one encodes the peribiliary glands. The dataset has 192 slices (512 x 512 image each) ≈ 50 millions of points.

were visualized using the confocal microscopy proprietary

software, which provided limited features for image post-

processing. Hammad et al. [3] and Vartak et al. [4] used

confocal microscopy to visualize intrahepatic bile ducts that

are much smaller than the extrahepatic bile ducts we work

with.

In a previous work [9], we proposed a pipeline to enhance

and visualize the microvasculature of bile ducts. The pipeline

consists of a non-linear filtering step and direct volume

rendering. However, direct volume rendering requires the

design of transfer functions, which are difficult to create for

noisy data. In our previous work, transfer functions were

obtained by a trial and error process.

In this paper, we also adopt direct volume rendering for

displaying the clusters containing the structures of interest,

with transfer functions based on the voxel values that char-

acterize the clusters. Since the clustering method minimizes

noise points, transfer functions are easier to design.

Clustering plays an important role in the fields of knowl-

edge discovery and data mining [10]. Since our approach

is exploratory, and we do not know a priori the number

of clusters to partitioning the data, we decided to focus

on density-based algorithms. The density-based clustering

algorithm known as Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) [7] discovers clusters

of arbitrary shapes and is based on two global parameters:

eps, which is the radius around a pixel for the density

calculation, i.e., the size of the eps neighborhood, and minPts
that corresponds to the minimum number of points required

to form a cluster.

DBSCAN has been successfully applied in images

datasets obtained from different sources for application

in distinct domains [11–16], including confocal images

[17, 18]. Table I summarizes the main characteristics of these

works. Due to space constraints, we restrain ourselves to

give details about those works related to the use of density-

based clustering in images from confocal microscopy. Mu et

al. report that the density-based spatial clustering approach

is useful for image segmentation of blood thrombus [17].

Mu et al. did not use DBSCAN, but a generalized version

of the density-based clustering proposed by Chen et al.

[19]. Chan et al. also modified a different density-based

clustering method, known as DENCLUE [20], to perform

segmentation in confocal images to study gene expression

on zebrafish [18]. The original method is based on a set of

density distribution functions, which are, in fact, influence

functions that model the influence of a given data point

in its neighborhood. In Chan et al., the Density-Based

Segmentation (DBS) method the density function of each

pixel is calculated using the differences of pixel intensity

with the neighboring pixels, which is an approximation of

the gradient of each pixel like we did in our approach.

From all the surveyed papers that use the DBSCAN

method, two features are used to guide the clustering: pixel

location and intensity. In our work, in addition to the spatial

position and the size of the neighborhood of the voxel, we

also use its gradient magnitude to guide the clustering.

III. DISCOVERING STRUCTURES IN BILE DUCTS

IMAGES

In hepatology research, the a priori labels (ground truth)

on the pixels are not available. Creating labels by hand is

a hard task due to the complexity of the structures and the

high dimensionality of data. Thus, we formulate our problem

of extracting structures from these data sets as a clustering

problem.

The input datasets that we use in this work were acquired

at the Cincinnati Children’s Hospital [2]. The mice bile duct

was stained with two different fluorescent antibodies, α-

tubulin and Cytokeratin CK, to mark different tissues. The

resulting dataset consists of two channels: the first one (red

channel) represents the microvasculature or blood vessels

around the bile duct with (α-tubulin staining) (Fig.1a); the

second one (green channel) represents the bile duct wall

containing the peribiliary glands with CK staining (Fig.1b).

In the remainder of this section, we explain our approach
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Table I: Summary of papers reporting density-based clustering in image datasets.

Ref
Nr.

Year Image
Acquisition

Database Image Size 3D
Stack
?

Clustering Algorithm Clustering use Features for
clustering

[14] 2005 Dermascopy 135 color skin lesions im-
ages

256 x 256 pixels No GDBSCAN (Generalized
DBSCAN) [21]

Segmentation Color and
pixel location

[18] 2007 Confocal
Microscopy

4 images of zebrafish em-
bryos

Not mentioned No Density-Based Segmenta-
tion (DBS)

Segmentation Intensity, pixel
location

[17] 2009 Confocal
Microscopy

15 Z-stacks of thrombi
(clots) 80 2D slices per
stack

512 x 512 pixels Yes Density-Based Clustering
(DBC) algorithm [19]

Segmentation Pixel location

[15] 2011 Dermascopy 100 RGB color images From 577 x 397
to 1921 x 1285
pixels

No Boundary driven density-
based clustering (BD-
DBSCAN)

Edge detection Pixel location

[16] 2012 X-ray micro-
tomography

A synthetic 3D binary im-
age containing 144 rod-like
particles

Not mentioned Yes DBSCAN for binary 3D
images (XMT-DBSCAN)

Edge detection Pixel location

[13] 2017 CT angiography 12 datasets of coronary ar-
teries

Not mentioned Yes Original formulation of
DBSCAN [7]

Segmentation Pixel location

[11] 2017 Diffuse Scatter-
ing Spectrometer
and Tomography

1 diffuse scattering dataset
and 1 neutron tomography
dataset

701 x 701 x 701
and 1997 x 1997
x 1997 pixels

Yes Original formulation of
DBSCAN [7]

Remove noise
and Segmenta-
tion

Intensity and
pixel location

[12] 2018 Neutron
Single Crystal
Diffraction.

1 dataset 501 x 501 x 501
pixels

Yes Original formulation of
DBSCAN[7]

Data
Reduction and
Segmentation

Intensity and
pixel location

constituted by a pre-processing phase, the clustering to

isolate structures and visualization.

A. Pre-processing

We use two operations to normalize the image stacks and

prepare the data for the clustering process.

• Normalization: We apply contrast stretching to increase

the visibility of the structures.

• Data Reduction: We remove all points with intensity 0

(background), for eliminating unnecessary points and

reducing the amount of data that will undergo the

clustering phase.

B. Density-Based Spatial Clustering

The spatial information, i.e., the coordinates (x,y,z) are

a typical candidate clustering feature. As for images, any

kind of pixel (or voxel) attribute can be used as a clustering

feature. Confocal images have an inhomogeneous intensity

inherent to the fluorescent staining process [22], and the

gradient was investigated as a more robust candidate feature.

After experimenting with the intensity and gradient values,

we found out that the gradient was a richer source of

information for distinguishing the regions of interest. Then,

we adopted the gradient magnitude to guide the clustering

process.

1) Determining the parameters for 3D clustering: In the

original DBSCAN algorithm [7], the key idea is that, for

each point of a cluster, the neighborhood defined by a given

radius (eps) around it has to contain at least a minimum

number of points (minPts), i.e., the local density in the

neighborhood has to exceed some threshold. Based on some

heuristics we determined the appropriate eps parameter, and

set minPts empirically. In the following, we give details

about the configuration of DBSCAN for clusterizing our

dataset.

The eps-neighborhood of a point dictates the maximum

distance (radius) between two points for them to reside

in the same neighborhood. A general heuristic to establish

the value for eps is by computing the k-nearest neighbor

distances. However, in a recent application of DBSCAN

[11], a simplified calculation for eps was proposed. The

author’s idea is that the coordinates of the data points in the

case of 3D image datasets are uniformly distributed voxels.

Then, it is possible to use the Cartesian coordinate system

and Euclidean distance to obtain the neighborhood. Values

of eps in the interval [1,
√
2] includes the six first nearest

neighbors, values in [
√
2,
√
3] to include the twelve second

nearest neighbors, and so on. Based on this last approach,

we fixed the eps to 1.7 ≈ (
√
7). This value means that the

local density function uses 18 nearest neighbors of a given

point data in the clustering.

minPts denotes the minimum number of points located in

an eps-neighborhood, and is data dependent. If we select a

low minPts value, we get more clusters from noise. We have

experimented minPts values from 50 to 300, and finally set

it to 200 points for the green channel and 50 points for the

red channel.

The density in a neighborhood is just the sum of the

weights of the points inside the neighborhood. By default,

each data point has weights 1, so the density estimate for

the neighborhood is just the number of data points inside the

neighborhood. We can use the parameter weight to change

the importance of points [23]. The weight is an optional
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(a) Original Volume (b) Cluster 1 (c) Clusters 2 to 2478

Figure 2: 3D visualization of the microvasculature of a bile duct: points shown in (b) represent the most prominent vessels

extracted as cluster 1, and those shown in (c) are considered noise and were detected as clusters 2 to 2478. The color

associated to the data points maps the depth of the data points.

parameter to perform clustering based on a specific feature.
As described before, we have chosen the gradient magni-

tude as a feature to guide the clustering. We follow the model

for the weight parameter proposed by [11]. However, we use

the gradient magnitude instead of intensity. We calculate the

gradient magnitude for every point of the dataset considering

the x, y, and z dimensions. Then, we take a specific value of

gradient magnitude as a threshold. We fixed the threshold

empirically as 20 for the red and the green channel. Any

data point with gradient magnitude less than the threshold

will take the weight of 1, while the data points with gradient

magnitude greater than the threshold will have their weights

assigned to the difference between their gradient magnitude

and the threshold.
2) DBSCAN applied to 3D data points using gradient

information: We used the DBSCAN R package [23] to

perform the clustering on the 3D data points. As mentioned

before, we configured the eps and minPts parameters and

feed the algorithm with a list of data points containing their

x, y, and z coordinates and the weight obtained from the gra-

dient information. It is important to recall that background

voxels are not considered in the clustering phase (refer to

Section III-A). In this way, the clustering method uses both

information (gradient and spatial location) to obtain at least

the minPts data points for each cluster. The output is the list

of points labeled with the cluster identification of each point

as well as basic numbers about the clusters detected. Then,

we use the original volumetric dataset again, and voxels

belonging to the cluster of interest form a new volume that

is passed to the visualization module.

IV. RESULTS AND DISCUSSION

A. Microvasculature: Red Channel
Figure 2 shows 3D visualizations of selected regions in

the dataset that contain the microvasculature (red channel)

of the bile duct. We obtained a total of 2478 clusters from

the clustering process in the red channel. Due to the large

number of clusters detected by DBSCAN, we summarize

the results in the plot shown in Figure 4a, and use it to

select the clusters for 3D visualization. Figure 2a shows the

original dataset rendered with direct volume rendering. We

identified most of the points as belonging to clusters 0 and

1. The cluster 0 is composed by 250,081 noise points, which

can be discarded for visualization and analyses purposes. In

other words, cluster 0 contains all the points that do not

satisfy the conditions to belong to a cluster. Since clusters 1

to 2478 represent the detected objects, and cluster 1 is the

largest one among them representing a connected region, it

is the one that best represents the microvasculature (Figure

2b). Figure 4a shows that the clusters 2 to 2478 contain a

lower quantity of points, and so we can also consider these

points as noise (Figure 2c).

B. Peribiliary Glands (PBGs): Green Channel

In the case of the green channel, we obtained a total of

3,603 clusters (more clusters than in the red channel). In

this case DBSCAN detected 1,998,026 noise points. Figure

3 shows the 3D visualization of data points belonging to

clusters chosen among the ones that were detected in the

green channel dataset. As we did in the processing of the

red channel, we summarized the DBSCAN result in a plot

(Figure 4b) that allowed us to analyze and select for visu-

alization only the relevant clusters. Cluster 0 corresponds to

the noise points. For the other clusters, we find a behavior

similar to the red channel: cluster 1 is the most prominent

one, representing a connected region containing the internal

bile duct wall and the peribiliary glands. The other clusters,

i.e., clusters 2 to 3,603, contain a lower quantity of points,

and we can also consider them as noise. While Figure 3a

shows the original volume, cluster 1 representing the internal
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(a) Original Volume (b) Cluster 1 (c) Clusters 2 to 3,603

Figure 3: 3D visualization of the bile duct wall and PBGs: points shown in (b) represent mostly the PBGs identified as

cluster 1, and those shown in (c) are also considered noise and were detected as clusters 2 to 3,603.

bile duct wall and the PBGs are presented in Figure 3b.

Figure 3c present the clusters [2−3603], considered as noise.

0 500000 1000000 1500000 2000000 2500000

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Points per Cluster

C
lu

st
er

 I
n
d
ex

(a) Red channel

0 1000000 2000000 3000000 4000000

0
1
0
0
0

2
0
0
0

3
0
0
0

Points per Cluster

C
lu

st
er

 I
n
d
ex

(b) Green channel

Figure 4: Number of points detected per cluster.

C. Discussion

When comparing our work to others that adapt DBSCAN

for their application domain, we found different approaches.

For example, Celebi et al. used the original DBSCAN

method for segmenting 2D digital images of skin lesions

[14], while Tran et al. presented a version of DBSCAN

to process 3D binary images, using the coordinates of the

original image data and solving a known instability issue

of the original DBSCAN in classifying border points of

adjacent objects [16]. Our method is not limited to binary

images and also uses the original data points’ coordinates.

Regarding the use of additional features to guide cluster-

ing with DBSCAN, only two works adopt this approach. Hui

and collaborators [11, 12] use the intensity value as a feature

for selecting the points during the clustering. In our work,

besides the spatial position and the size of the neighborhood,

we use the gradient information to select the points during

the clustering.

V. FINAL COMMENTS

In this paper, we have studied the DBSCAN method

to extract relevant structures from confocal microscopy

images of bile ducts. Our images can be divided into two

different datasets, each one representing a separate channel

that encodes distinct, but hard to visualize structures: the

microvasculature, in the red channel, and the bile duct wall

and peribiliary glands, in the green channel.

Aiming at a better result from previous works, we em-

ployed some heuristics found in the literature to determine

the appropriate parameters for the clustering. We proposed

our methodology by adding some steps to be performed

before the clustering phase: one step for pre-processing

the volumetric dataset and another to analyzing candidate

features to guide the clustering. In this latter aspect, we

provide an interesting contribution: we have explored the

gradient magnitude as a feature that allowed to extract rel-

evant information from the density-based spatial clustering.

Besides the fact that DBSCAN allows easy detection of

noise points, an interesting result for both datasets was

that the first and largest cluster found as significant for the

visualization represents the structure of interest. In the red

channel, this cluster represents the most prominent vessels,

while in the green channel, the peribiliary glands were made

more evident.

As future work, we want to explore multidimensional

features to continue the search for better discriminating peri-

biliary glands from the internal bile duct wall. Also, since

we are interested in analyzing the peribiliary glands and the

more prominent vessels, we will work on quantitative and

qualitative measures for such structures.
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