
Pré-Publicações do Departamento de Matemática
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1. Introduction

Let µ be a nontrivial positive Borel measure supported on a subset E of
the real line. There exists a unique sequence {Pn} of monic polynomials,
with degPn = n , such that

∫

E

Pn(x)Pm(x)dµ(x) = d2
nδn,m, dn 6= 0.

In this case {Pn} is said do be the sequence of monic orthogonal polynomials
associated with µ.

It is well known that {Pn} satisfies a three-term recurrence relation

xPn(x) = Pn+1(x) + bnPn(x) + cnPn−1(x), n ≥ 0, (1)

where P−1(x) = 0 and

cn+1 =

∫
E
P 2

n+1(x)dµ(x)∫
E
P 2

n(x)dµ(x)
, bn =

∫
E
xP 2

n(x)dµ(x)∫
E
P 2

n(x)dµ(x)
, n ≥ 0.
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On the other hand, if (1) holds with cn > 0, there exists the sequence of
monic polynomials defined by (1) orthogonal with respect to the measure µ.

Let (µ0, µ1) be a pair of nontrivial positive Borel measures supported on
subsets E0 and E1 of the real line. We introduce an inner product in the
linear space P of polynomials with real coefficients

(p, q) =

∫

E0

p(x)q(x)dµ0(x) + λ

∫

E1

p′(x)q′(x)dµ1(x) (2)

where p, q ∈ P and λ ≥ 0.
This kind of inner products define a sequence {Qn(x, λ)} of monic poly-

nomials that is orthogonal with respect to (2). It can be constructed using
the standard Gram-Schmidt process. But these polynomials do not satisfy a
three-term recurrence relation as (1). If {Pn} and {Rn} denote, respectively,
the sequences of monic polynomials orthogonal with respect to µ0, µ1, then
Iserles et al. introduced the concept of coherent pairs of measures (cf. [5]).

A pair of nontrivial Borel measures (µ0, µ1) supported on subsets of the
real line is said to be coherent if the corresponding sequences of of monic
orthogonal polynomials satisfy

Rn(x) =
P ′

n+1

n+ 1
(x) + αn

P ′
n

n
(x), αn 6= 0, n = 1, 2, ... (3)

From here, a relation between {Pn} and {Qn(·, λ)} follows:

Pn(x) +
n

n− 1
αn−1Pn−1(x) = Qn(x, λ) + βn−1(λ)Qn−1(x, λ)

where βn−1(λ) = γn−2(λ)/γn−1(λ), γn is a polynomial of degree n in the
variable λ, and {γn} satisfies a three term recurrence relation.

In [5] the authors ask about the description of all coherent pairs of mea-
sures. The answer was given by Meijer in [7], where he proves that at least
one of the measures must be a classical one (Laguerre or Jacobi). In par-
ticular, when the support is a compact subset of the real axis, the following
cases appear:

a) dµ0 = (1 − x)α(1 + x)βdx, α, β > −1 ;

dµ1 =
(1 − x)α+1(1 + x)β+1

|x− ξ|
dx+Mδ(x− ξ), |ξ| ≥ 1, M ≥ 0 ;

b) dµ0 = (1 − x)α(1 + x)β|x− ξ|dx,
dµ1 = (1 − x)α+1(1 + x)β+1dx, α, β > −1 ;

c) dµ0 = (1 − x)αdx+Mδ(x+ 1), dµ1 = (1 − x)α+1dx, α, β > −1 ;
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d) dµ0 = (1 + x)βdx+Mδ(x− 1), dµ1 = (1 + x)β+1dx, α, β > −1 .

The aim of this contribution is the analysis of the concept of coherent pairs of
measures supported on compact subsets of the complex plane. In particular,
we will focus our attention when the support is the unit circle.

The structure of the manuscript is as follows. In section 2 we define coher-
ent pairs of measures supported on Jordan arcs or curves using the connection
between the corresponding sequences of orthogonal polynomials as in (3).
As a consequence, the relation between these sequences and the sequence of
monic orthogonal polynomials orthogonal with respect to the Sobolev inner
product associated with the pair of measures (µ0, µ1) is deduced. In section 3
we present the basic results concerning hermitian orthogonality on the unit
circle which will be used in the forthcoming sections. We give a sufficient
condition for a sequence of orthogonal polynomials on the unit circle satis-
fying a first order structure relation to be semi-classical (see Theorem 3).
This result is an extension to the result deduced by Branquinho and Rebo-
cho in [3]. In section 4 we present a characterization of pairs of coherent
measures on the unit circle; we prove that if (µ0, µ1) is a coherent pair of
measures on the unit circle (µ0, µ1) then µ0 is a semi-classical measure and
the linear functional associated with µ1 is a specific rational transformation
of the linear functional corresponding to µ0 (see, for example, [2]). Finally,
in section 5, we study the companion coherent measure associated with the
Bernstein-Szegő measure supported on the unit circle.

2. Coherent pairs of measures supported on Jordan arcs

and curves

Let µ0, µ1 be positive Borel measures on E0, E1, respectively, which are
Jordan curves or arcs. For λ ∈ R+, consider the inner product

〈f, g〉S = 〈f, g〉0 + λ〈f ′, g′〉1 ,

where 〈f, g〉k =

∫

Ek

f(ξ)g(ξ)dµk(ξ), k = 0, 1 .

Let us denote by {Qn(.; λ)}, {Pn}, {Rn}, the sequences of monic polynomials
orthogonal with respect to 〈., .〉S, 〈., .〉0, 〈., .〉1, respectively.
We also denote

Sm,n := 〈zm, zn〉S = c0m,n + λmnc1m−1,n−1 , m, n ∈ N
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where
{
ckm,n

}
n∈N

are the moments with respect to the measures µk for k =
0, 1, respectively.

Taking into account this expression, we obtain the following representation
in a determinantal form for the polynomials Qn:

Qn(z; λ) =

∣∣∣∣∣∣∣∣∣∣

c00,0 c01,0 . . . c0n,0

c00,1 c01,1 + λc10,0 . . . c0n,1 + λnc1n−1,0
...

... . . . ...
c00,n−1 c01,n−1 + λ(n− 1)c10,n−2 . . . c0n,n−1 + λn(n− 1)c1n−1,n−2

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

c00,0 c01,0 . . . c0n−1,0

c00,1 c01,1 + λc10,0 . . . c0n−1,1 + λ(n− 1)c1n−2,0
...

... . . . ...
c00,n−1 c01,n−1 + λ(n− 1)c10,n−2 . . . c0n−1,n−1 + λ(n− 1)2c1n−2,n−2

∣∣∣∣∣∣∣∣

or, equivalently,

Qn(z; λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

c00,0 c01,0 . . . c0n,0
c0

0,1

λ

c0

1,1

λ
+ c10,0 . . .

c0

n,1

λ
+ nc1n−1,0

...
... . . . ...

c0

0,n−1

λ(n−1)

c0

1,n−1

λ(n−1) + c10,n−2 . . .
c0

n,n−1

λ(n−1) + nc1n−1,n−2

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

c00,0 c01,0 . . . c0n−1,0
c0

0,1

λ

c0

1,1

λ
+ c10,0 . . .

c0

n−1,1

λ
+ (n− 1)c1n−2,0

...
... . . . ...

c0

0,n−1

λ(n−1)

c0

1,n−1

λ(n−1) + c10,n−2 . . .
c0

n−1,n−1

λ(n−1) + (n− 1)c1n−2,n−2

∣∣∣∣∣∣∣∣∣∣

.

Since the coefficients of the above polynomial are rational functions in λ,
when λ tends to infinity we get
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Sn(z) =

∣∣∣∣∣∣∣∣∣∣

c00,0 c01,0 . . . c0n,0

0 c10,0 . . . nc1n−1,0
...

... . . . ...
0 c10,n−2 . . . nc1n−1,n−2

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

c00,0 c01,0 . . . c0n−1,0

0 c10,0 . . . (n− 1)c1n−2,0
...

... . . . ...
0 c10,n−2 . . . (n− 1)c1n−2,n−2

∣∣∣∣∣∣∣∣

(4)

which is a monic polynomial of degree n.

Proposition 1. The polynomial Sn satisfies

(i) 〈Sn, 1〉0 = 0, n ≥ 1,
(ii) 〈S ′

n, z
k〉1 = 0, 0 ≤ k ≤ n− 2, n ≥ 2.

Proof : It is a straightforward consequence of (4).

Notice that from condition (ii) we deduce that S ′
n(z) = nRn−1(z). On the

other hand, from Rn−1(z) =
∑n

k=1 αn−1,k
P ′

k(z)
k

we get

S ′
n(z)

n
=

n∑

k=1

αn−1,k

P ′
k(z)

k
,

and, by integration,

Sn(z)

n
=

n∑

k=1

αn−1,k

Pk(z)

k
+ αn−1,0 .

But, according to condition (i) of Proposition 1, αn−1,0 = 0. Therefore

Sn(z)

n
=

n∑

k=1

αn−1,k

Pk(z)

k
,

or, equivalently,

Sn(z) =

n∑

k=1

an−1,kPk(z) (5)

where an−1,k = nαn−1,k/k are the connection coefficients for the polynomial
sequences {Sn} and {Pn}.
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On the other hand, from the Fourier expansion of Sn with respect to the
polynomials {Qn} we get

Sn(z) = Qn(z; λ) +

n−1∑

j=0

βn,j(λ)Qj(z; λ)

where, for 0 ≤ j ≤ n− 1,

βn,j(λ) =
〈Sn(z), Qj(z; λ)〉S

〈Qj(z; λ), Qj(z; λ)〉S
=

〈Sn(z), Qj(z; λ)〉0
〈Qj(z; λ), Qj(z; λ)〉S

.

From this we do not get more information, but nevertheless if in (5) we
assume that an−1,k = 0 for k < n − s (with s a fixed nonnegative integer
number), it follows that βn,j(λ) = 0 for j < n− s. Thus, for n ≥ s,

n∑

k=n−s

an−1,kPk(z) =

n∑

j=n−s

βn,j(λ)Qj(z; λ) . (6)

Conversely, notice that if (6) holds, and an−1,n−s 6= 0, βn,n−s(λ) 6= 0, then,
from

〈Qn(z; λ), p(z)〉S =

∫

E0

Qn(z; λ)p(z)dµ0 + λ

∫

E1

Q′
n(z; λ)p′(z)dµ1,

we get

〈
n∑

j=n−s

βn,j(λ)Qj(z; λ), p(z)〉S = 0, p ∈ Pn−s−1,

i.e., ∫

E1

n∑

j=n−s

an−1,jP
′
j(z)p

′(z)dµ1 = 0, p ∈ Pn−s−1.

From this the following relation holds

n∑

j=n−s

an−1,jP
′
j(z) =

n−1∑

j=n−s−1

bn,jRj(z).

Therefore, the following problem arises: To describe the measures µ0, µ1

such that the corresponding sequences of monic orthogonal polynomials {Pn}
and {Rn} are related by

Rn−1(z) =
P ′

n(z)

n
+ αn−1

P ′
n−1(z)

n− 1
, αn−1 6= 0 , n = 2, 3, . . . . (7)
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where for a sake of simplicity we write αn instead of αn,n, as well as an instead
of an,n.

For a coherent pair of measures we get some extra information about the
sequence (βn(λ)). Indeed,

Pn(z) + an−1Pn−1(z) = Qn(z; λ) + βn−1(λ)Qn−1(z; λ) , (8)

where

an−1 =
n

n− 1
αn−1,

βn−1(λ) = an−1
〈Pn−1, Qn−1(.; λ)〉0

〈Qn−1(.; λ), Qn−1(.; λ)〉S

= an−1
‖Pn−1‖

2
0

‖Qn−1(.; λ)‖2
S

, n = 2, 3, . . . . (9)

Therefore,

‖Qn−1(.; λ)‖2
S

= 〈Qn−1(.; λ), Pn−1〉S

= ‖Pn−1‖
2
0 + λ〈Q′

n−1(.; λ), P ′
n−1〉1

= ‖Pn−1‖
2
0 + λ〈Q′

n−1(.; λ), (n− 1)Rn−2 − an−2P
′
n−2〉1

= ‖Pn−1‖
2
0 + λ(n− 1)2‖Rn−2‖

2
1 − λān−2〈Q

′
n−1(.; λ), P ′

n−2〉1

= ‖Pn−1‖
2
0 + λ(n− 1)2‖Rn−2‖

2
1 + ān−2〈Qn−1(.; λ), Pn−2〉0

= ‖Pn−1‖
2
0 + λ(n− 1)2‖Rn−2‖

2
1

+ ān−2〈Pn−1 + an−2Pn−2 − βn−2(λ)Qn−2(., λ), Pn−2〉0

= ‖Pn−1‖
2
0 + λ(n− 1)2‖Rn−2‖

2
1 + ān−2 [an−2 − βn−2(λ)] ‖Pn−2‖

2
0 .

Now, substituting in (9), and using the preceding notation we have for n =
3, 4, . . .

βn−1(λ) =
An

Bn − βn−2(λ)
, (10)

where

An =
an−1

ān−2

‖Pn−1‖
2
0

‖Pn−2‖
2
0

Bn = an−2 +
‖Pn−1‖

2
0 + λ(n− 1)2‖Rn−2‖

2
1

ān−2‖Pn−2‖2
0

,
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with β1(λ) =
‖P1‖

2
0a1

λ‖R0‖2
1 + ‖P1‖2

0

.

Notice that Bn is a polynomial of degree one in λ. In this way, once
we obtain the coherent pairs we can deduce a representation for βn−1(λ),
which are rational functions of λ and, eventually, from (8) we get an explicit
expression for Qn(.; λ) in terms of {Pn}.

Theorem 1. The sequence (βn(λ)) is given by

βn−1(λ) =
γn−2(λ)

γn−1(λ)
, n = 2, 3, . . . (11)

where {γn} is a sequence of orthogonal polynomials associated with a positive
Borel measure supported on R .

Proof : Taking into account β1 is a rational function in λ such that the degree
of the numerator is zero and the degree of the denominator is one, by induc-
tion we get (11) where γn is a polynomial of degree n. Moreover, from (10),

γn−1(λ)

γn(λ)
=

An+1

Bn+1 − γn−2(λ)/γn−1(λ)
, n = 2, 3, . . .

i.e.

γn(λ) =
Bn+1

An+1
γn−1(λ) −

1

An+1
γn−2(λ) . (12)

Taking into account that Bn is a polynomial of degree one in λ, we get
that {γn} is a sequence of polynomials orthogonal with respect to a linear
functional. This is a straightforward consequence of the Favard Theorem,
see [4], since they satisfy a three-term recurrence relation.

Indeed, if γn(λ) = snλ
n + lower degree terms, then (12) becomes

snγ̃n(λ) =
Bn+1

An+1
sn−1γ̃n−1(λ) −

sn−2

An+1
γ̃n−2(λ) ,

or, equivalently, for n = 2, 3, . . .

γ̃n(λ) = (λ+ cn−1)γ̃n−1(λ) − dn−1γ̃n−2(λ)

where

cn−1 =
|an−1|

2‖Pn−1‖
2
0 + ‖Pn‖

2
0

n2‖Rn−1‖
2
1

,

dn−1 =
‖Pn−1‖

4
0|an−1|

2

n2(n− 1)2‖Rn−1‖2
1‖Rn−2‖2

1

> 0 ,
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and initial conditions γ̃0(λ) = 1 , γ̃1(λ) = λ + ‖P1‖
2
0/‖R0‖

2
0 . Notice that,

according to the Favard Theorem, {γ̃n} is a sequence of monic polynomials
orthogonal with respect to a finite positive Borel measure supported on R .

3. Quasi-Orthogonality on the Unit Circle

Let T = {z ∈ C : |z| = 1}, and Λ = span {zk : k ∈ Z} be the linear space
of Laurent polynomials with complex coefficients. Given a linear functional
u : Λ → C, and the sequence of moments (cn)n∈Z of u, cn = 〈u, ξn〉, n ∈ Z,
c0 = 1, define the minors of the Toeplitz matrix ∆ = (cn)n∈N, by

∆k =

∣∣∣∣∣∣∣∣

c0 c1 . . . ck
c−1 c0 . . . ck−1

. . . . . . . . . . . .
c−k c−k+1 . . . c0

∣∣∣∣∣∣∣∣
, ∆0 = c0, ∆−1 = 1, k ∈ N.

u is said to be hermitian if c−n = cn, ∀n ∈ N, and quasi-definite (respectively,
positive definite) if ∆n 6= 0 (respectively,∆n > 0), ∀n ∈ N. We will denote
by H the set of hermitian linear functionals defined on Λ.

In the positive-definite case, u has an integral representation given in terms
of a nontrivial probability measure µ with infinite support on the unit circle T,

〈
u, einθ

〉
=

1

2π

∫ 2π

0

einθdµ(θ), n ∈ Z .

The corresponding sequence of orthogonal polynomials, called orthogonal
polynomials on the unit circle, OPUC in short, is then defined by

1

2π

∫ 2π

0

Pn(e
iθ)Pm(e−iθ)dµ(θ) = enδn,m, en > 0, n,m = 0, 1, ....

If Pn(z) = zn+lower degree terms, {Pn} will be called a sequence of monic
orthogonal polynomials, and we will denote it by MOPS. It is well known that
MOPS on the unit circle satisfy the following recurrence relations, known as
Szegő recurrence relations, for n ≥ 1:

Pn(z) = zPn−1(z) + anP
∗
n−1(z), P ∗

n(z) = P ∗
n−1(z) + anzPn−1(z)

with an = Pn(0), P0(z) = 1, and P ∗
n(z) = znP n(1/z).

{P ∗
n} satisfies, for n ∈ N,

〈u, P ∗
n(z) z−k〉 = 0, k = 1, ..., n, 〈u, P ∗

n(z)〉 = en. (13)
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The following relation holds (see [6])

(P ′
n)

∗n−1(z) = nP ∗
n(z) − z(P ∗

n)′(z), n ≥ 1 . (14)

For u ∈ H and A ∈ P, we define

〈Au, f〉 = 〈u,A(z)f(z)〉, f ∈ Λ

〈(A+ A)u, f〉 = 〈u,
(
A(z) + A(1/z)

)
f(z)〉, f ∈ Λ .

Notice that (A+A)u is a hermitian linear functional. We will use the notation
uA = (A(z) + A(1/z))u.

Definition 1 (cf. [1]). Let v ∈ H, p ∈ N, and let {Pn} be a sequence of
monic polynomials. {Pn} is said to be T-quasi-orthogonal of order p with
respect to v if

i) 〈v, Pn(z) z
−k〉 = 0, for every k with p ≤ k ≤ n − p − 1 and for every

n ≥ 2p+ 1;
ii) There exists n0 ≥ 2p such that 〈v, Pn0

(z) z−n0+p〉 6= 0.

Theorem 2 (cf. [1]). Let u ∈ H be quasi-definite and let {Pn} be the MOPS
with respect to u. Then {Pn} is T-quasi-orthogonal of order p with respect
to v ∈ H − {0} if and only if there exists only one polynomial B (B 6= 0)
with deg(B) = p, such that v = uB.

Taking into account Theorem 4.1 of [1] we give the following definition.

Definition 2. Let u ∈ H be quasi-definite and let {Pn} be the MOPS as-
sociated with u. u is said to be semiclassical if there exists û ∈ H − {0}

such that the sequence {P̃n} given by P̃n(z) = 1
n
zP ′

n(z), n ≥ 1, P̃0(z) = 1, is
T-quasi-orthogonal with respect to û. In such a situation {Pn} is said to be
a semiclassical sequence of orthogonal polynomials.

In the sequel we define fn(z) = Pn(z)/P
∗
n(z), ∀n ∈ N, and we study the

conditions in order to {fn} satisfies a Riccati differential equation. This
result will be useful to the following theorem. Using the Szegő recurrence
relations we get

zfn(z) =
fn+1(z) − an+1

1 − an+1fn+1(z)
, n = 1, ... (15)

Lemma 1. Let {Pn} be a sequence of monic orthogonal polynomials on the
unit circle and {P ∗

n} the sequence of reversed polynomials. If {fn} satisfies a
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Riccati differential equation with bounded degree polynomial coefficients, i.e.,

Anf
′
n(z) = Bn(z)f

2
n(z) + Cn(z)fn(z) + En(z) , ∀n ∈ N (16)

then, for every n ∈ N, the following relations hold,

An+1 = An , (17)

zBn+1 = λ−1
n

{
Bn − an+1(zCn + An) + a2

n+1z
2En

}
, (18)

zCn+1 = λ−1
n {(−2an+1Bn + (zCn + An)(1 + |an+1|

2) − 2an+1z
2En},(19)

zEn+1 = λ−1
n

{
a2

n+1Bn − an+1(zCn + An) + z2En

}
, (20)

with λn = (1 − |an+1|
2).

Proof : If fn satisfies (16), then

zAn(zfn)
′ = Bn(zfn)

2 + (zCn + An)zfn + z2En.

Using (15) in previous equation we get

zAn

(
fn+1 − an+1

1 − an+1fn+1

)′

= Bn

(
fn+1 − an+1

1 − an+1fn+1

)2

+ (zCn +An)

(
fn+1 − an+1

1 − an+1fn+1

)
+ z2En .

Since
(
fn+1 − an+1

1 − an+1fn+1

)′

=
λnf

′
n+1

(1 − an+1fn+1)2
with λn = 1 − |an+1|

2,

from the previous equations we get

zAn

λnf
′
n+1

(1 − an+1fn+1)2
= Bn

(
f 2

n+1 + a2
n+1 − 2an+1fn+1

(1 − an+1fn+1)2

)

+ (zCn + An)

(
fn+1 − an+1

1 − an+1fn+1

)
+ z2En

as well as

λn zAnf
′
n+1 =

{
Bn − an+1(zCn +An) + a2

n+1z
2En

}
f 2

n+1

+
{
(−2an+1Bn + (zCn + An)(1 + |an+1|

2) − 2an+1z
2En

}
fn+1

+ a2
n+1Bn − an+1(zCn + An) + z2En
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If we divide by λn = (1 − |an|
2) then

zAnf
′
n+1 = λ−1

n

{
Bn − an+1(zCn + An) + a2

n+1z
2En

}
f 2

n+1

+λ−1
n

{
(−2an+1Bn + (zCn + An)(1 + |an+1|

2) − 2an+1z
2En

}
fn+1

+λ−1
n

{
a2

n+1Bn − an+1(zCn +An) + z2En

}

Now, comparing the previous equation with (16) to n+1 and multiplied by z,
i.e., with

zAn+1f
′
n+1 = zBn+1f

2
n+1 + zCn+1fn+1 + zEn+1,

we get (17)-(20).

Theorem 3. Let {Pn} be a MOPS and {P ∗
n} be the sequence of reversed

polynomials. If {Pn} satisfies a structure relation with bounded degree poly-
nomials, n ≥ 1,

zΠn(z)P
′
n(z) = Gn(z)Pn(z) +Hn(z)P

∗
n(z) (21)

zΠn(z)(P
∗
n)′(z) = Sn(z)Pn(z) + Tn(z)P

∗
n(z) (22)

then Πn doesn’t depend on n.
Let p = max{deg(Gn), deg(Hn) + 1, deg(Sn), deg(Π1 − Tn)}, ∀n ∈ N. If

there exists n0 ≥ 2p such that deg(Π1−Tn0
) = p, then {Pn} is semi-classical.

Proof : If we multiply (21) by P ∗
n , (22) by Pn, and divide the resulting equa-

tions by (P ∗
n)2, we get, after subtracting the corresponding equations,

zΠn

(
P ′

nP
∗
n − Pn(P

∗
n)′

(P ∗
n)2

)
=

(Gn − Tn)PnP
∗
n +Hn(P

∗
n)2 − Sn(Pn)

2

(P ∗
n)2

⇔ zΠn

(
Pn

P ∗
n

)′

= −Sn

(
Pn

P ∗
n

)2

+ (Gn − Tn)
Pn

P ∗
n

+Hn

Thus,

zΠnf
′
n = −Snf

2
n + (Gn − Tn)fn +Hn.

From the previous lemma, Πn = Πn−1, ∀n ∈ N. Thus, Πn = Π1, ∀n ∈ N.
Let us write (21) and (22) in the form

A
zP ′

n

n
= G̃nPn + H̃nP

∗
n (23)

A
z(P ∗

n)′

n
= S̃nPn + T̃nP

∗
n , n ≥ 1 , (24)
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with A = Π1, G̃n = Gn/n, , H̃n = Hn/n, S̃n = Sn/n, T̃n = Tn/n. Furthermore,
if we use (14) in (24) then

A

(
zP ′

n

n

)∗

= −S̃nPn + (A− T̃n)P
∗
n (25)

On the other hand, from the hermitian character of u

〈uA,
zP ′

n

n
z−k〉ngle = 〈u,A

zP ′
n

n
z−k〉 + 〈u,A

(
zP ′

n

n

)∗

zk−n〉

Using (23) and (25) in previous equation we get

〈uA,
zP ′

n

n
z−k〉 = 〈u, G̃nPn z

−k〉

+ 〈u, H̃nP
∗
n z

−k〉 − 〈u, S̃nPn zk−n〉 + 〈u, (A− T̃n)P ∗
n z

k−n〉 . (26)

Since

〈u, G̃nPn z
−k〉 = 0, k = deg(G̃n), ..., n− 1

〈u, H̃nP
∗
n z

−k〉 = 0, k = deg(H̃n) + 1, ..., n

〈u, S̃nPn z
k−n〉 = 0, k = 1, ..., n− deg(S̃n)

〈u, (A− T̃n)P
∗
n z

k−n〉 = 0, k = 0, ..., n− deg(A− T̃n) − 1

then, with p = max{deg(G̃n), deg(H̃n) + 1, deg(S̃n), deg(A − T̃n)}, ∀n ∈ N,
it follows that

〈uA,
zP ′

n

n
z−k〉 = 0 for every p ≤ k ≤ n− p− 1 and for every n ≥ 2p+ 1 .

Next we show that condition ii) of Definition 2,

∃n0 ≥ 2p : 〈uA,
zP ′

n0

n0
z−n0+p〉 6= 0,

holds for n0 ≥ 2p if and only if deg(A− T̃n0
) = p .

From (26)

〈uA,
zP ′

n0

n0
z−n0+p〉 = 〈u, G̃n0

Pn0
z−n0+p〉 + 〈u, H̃n0

P ∗
n0
z−n0+p〉

− 〈u, S̃n0
Pn0

z−p〉 + 〈u, (A− T̃n0
)P ∗

n0
z−p〉. (27)
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Since deg(G̃n) ≤ p, deg(H̃n) ≤ p− 1, deg(S̃n) ≤ p, ∀n ∈ N, and n0 − p ≥ p,
then

〈u, G̃n0
Pn0

z−n0+p〉 = 〈u, H̃n0
P ∗

n0
z−n0+p〉 = 〈u, S̃n0

Pn0
z−p〉 = 0.

Therefore, (27) is equivalent to

〈uA,
zP ′

n0

n0
z−n0+p〉 = 〈u, (A− T̃n0

)P ∗
n0
z−p〉.

Taking into account the orthogonality relations (13) and deg(A− Tn) ≤ p,
we get

〈u, (A− T̃n0
)P ∗

n0
z−p〉 6= 0 ⇔ deg(A− T̃n0

) = p .

Thus,

〈uA,
zP ′

n0

n0
z−n0+p〉 6= 0 ⇔ deg(A− T̃n0

) = p.

Therefore, if there exists n0 ≥ 2p such that deg(A − T̃n0
) = p, then the

sequence { 1
n
zP ′

n} is T−quasi-orthogonal of order p with respect to the her-

mitian functional uA and we conclude that {Pn} is semi-classical.

4. Characterization Theorem

In the sequel we will use the vectors defined by

ψn(z) = [Pn(z) P ∗
n(z)]T , ϑn(z) = [Rn(z) R∗

n(z)]
T , n ∈ N .

We will use the Szegő recurrence relations in the matrix form for {ψn},

ψn(z) = An(z)ψn−1(z), An(z) =

[
z an

anz 1

]
, n ∈ N , an = Pn(0) , (28)

and for {ϑn},

ϑn(z) = Bn(z)ϑn−1(z), Bn(z) =

[
z bn
bnz 1

]
, n ∈ N , bn = Rn(0) . (29)

We will write X(i,j) to denote the entry (i, j) of a matrix X, i, j = 1, 2.

Theorem 4. Let (u, v) be a coherent pair of hermitian linear functionals on
the unit circle and {Pn}, {Rn} the corresponding MOPS. Then, there exist
A ∈ P and matrices Kn,Mn of order two whose elements are bounded degree
polynomials such that, for n ≥ 1,

zA(z)ψ′
n(z) = Kn(z)ψn(z) (30)
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and
zA(z)ϑn(z) = Mn(z)ψn(z) (31)

Moreover,
a) {Pn} is semi-classical;
b) {Rn} is quasi-orthogonal of order p ( p ≤ 6) with respect to the func-
tional uzA. Thus, there exists a unique polynomial B of degree p such that
uzA = vB.

Proof : From

Rn =
P ′

n+1

n+ 1
+ αn

P ′
n

n
(32)

we get

R∗
n =

(P ′
n+1)

∗n

n+ 1
+ αnz

(P ′
n)

∗n−1

n
.

Using (14) the last equation is equivalent to

R∗
n = P ∗

n+1 + αnzP
∗
n − z

(P ∗
n+1)

′

n+ 1
− αnz

2 (P ∗
n)′

n
. (33)

If we write (32) and (33) in a matrix form and use (28), we obtain

ϑn = Snψn + Tnψ
′
n, n ≥ 1, (34)

with

Sn =

[
0 0
0 1

]
An+1 +

[
0 0
0 αnz

]
+

[
1/(n+ 1) 0

0 −z/(n+ 1)

] [
1 0

an+1 0

]

Tn =

[
1/(n+ 1) 0

0 −z/(n+ 1)

]
An+1 +

[
αn/n 0

0 −αnz
2/n

]
.

Using (34) for n+ 1 and the recurrence relations (28) and (29), we get

Hnψ
′
n = M̃nψn (35)

where the matrices Hn and M̃n are given by

Hn = Bn+1Tn − Tn+1An+1, M̃n = Sn+1An+1 + Tn+1

[
1 0

an+1 0

]
− Bn+1Sn.

Now, if we multiply (35) by the adjoint matrix of Hn, adjHn , we get

hnψ
′
n = Knψn

where hn = det(Hn) is a non-zero polynomial and Kn = adj(Hn)M̃n. More-
over, hn(0) = 0, ∀n ∈ N, and deg(hn) ≤ 5, ∀n ≥ 1. From Theorem 3 it
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follows that hn is independent of n. Thus, we obtain (30) with zA = h1 and
Kn defined as above.

To obtain (31) we multiply (34) by zA and use (30). Thus, we obtain (31)
with Mn = zASn + TnKn.

To prove assertion a) we remind that equations (30) can be written as
equations of the same type as (21) and (22) of Theorem 3. Moreover, if

p = max{deg(K(1,1)
n ), deg(K(1,2)

n ) + 1, deg(K(2,1)
n ), deg(A−K(2,2)

n )}, ∀n ∈ N,

then one can see that p ≤ 4 and deg(A − K
(2,2)
n ) = p, n ≥ 1. Thus, from

Theorem 3 we conclude that {Pn} is semi-classical.
To prove assertion b) we use an analogue argument as in the proof of

Theorem 3. We write (31) in the form

zARn = GnPn +HnP
∗
n (36)

zAR∗
n = SnPn + TnP

∗
n , n ≥ 1 , (37)

with Gn, Hn, Sn, Tn ∈ P. From the definition of uzA and the hermitian char-
acter of u, we have

〈uzA, Rn z
−k〉 = 〈u, zARn z

−k〉 + 〈u, zAR∗
n z

k−n〉 (38)

On the other hand, using (36) and (37) in (38) we get, for n, k ≥ 0,

〈uzA, Rn z
−k〉

= 〈u,GnPn z
−k〉 + 〈u,HnP

∗
n z

−k〉 + 〈u, SnPn zk−n〉 + 〈u, TnP ∗
n z

k−n〉. (39)

Using a similar reasoning as in the proof of Theorem 3, we obtain for

p = max{deg(Gn), deg(Hn) + 1, deg(Sn), deg(Tn)}, ∀n ∈ N,

that

〈uA, Rn z
−k〉 = 0 for every p ≤ k ≤ n−p−1 as well as for every n ≥ 2p+1 .

Thus the condition i) of Definition 2 is satisfied.
Then, we can also establish that condition ii) of Definition 2,

∃n0 ≥ 2p : 〈uA, Rn0
z−n0+p〉 6= 0,

holds for n0 ≥ 2p if and only if deg(Tn0
) = p. Moreover, we get that p ≤ 6

and deg(Tn) = p, ∀n ≥ 1.
Thus {Rn} is quasi-orthogonal of order p with respect to the functional uzA.

In this case, from Theorem 2, we conclude that there exists a polynomial B
with deg(B) = p such that uzA = vB.
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5. Examples of Coherent Pairs on the Unit Circle

In this section we present the examples of coherent pairs corresponding to
the Bernstein-Szegő class.

Theorem 5. Let (µ0, µ1) be a coherent pair of measures supported on the unit
circle. If µ0 is the Lebesgue measure, then µ1 belongs to the Bernstein-Szegő
class, and the corresponding MOPS, {Rn} , is given by, Rn(z) = zn−1(z +
c), n ≥ 1 , with c a constant, |c| < 1 .
Furthermore, dµ1 = dθ/(2π |z + c|2) .

Proof : If in (7) we assume the sequence {Pn} is a classical Hahn MOPS in
the sense that {P ′

n/n} is a sequence of monic polynomials orthogonal with
respect to a measure supported on the unit circle, we know that Pn(z) = zn

(see [6]). Therefore,

Rn−1(z) = zn−1 + αn−1z
n−2 .

If we want that {Rn} is a monic orthogonal polynomial sequence on the unit
circle, then it will satisfy a forward recurrence relation

zRn−1(z) + Rn(0)R∗
n−1(z) = Rn(z) , (40)

and so

zn + αnz
n−1 = zn + αn−1z

n−1 ,

that is, αn = αn−1 = · · · = α2 = c. As a consequence,

Rn(z) = zn−1(z + c) .

Thus the MOPS {Rn} belongs to the Bernstein-Szegő class and µ1 is defined
as stated (see [2], for example).

Theorem 6. The only Bernstein-Szegő measure, µ0, that admits a compan-
ion measure µ1 supported on the unit circle such that it yields a coherent
pair, is the Lebesgue measure.

Proof : Let (µ0, µ1) be a coherent pair of measures supported on the unit
circle and {Pn}, {Rn} the corresponding MOPS. We will prove that if Pn

belongs to the Bernstein-Szegő class, then Pn(z) = zn.
Let us suppose that the monic orthogonal polynomial sequence {Pn} is

defined by Pn(z) = zn−kPk(z) for n ≥ k (for a fixed nonnegative integer
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number k), where Pk is a monic polynomial of degree k such that Pk(0) 6= 0.
Thus

P ′
n(z) = (n− k)zn−k−1Pk(z) + zn−kP ′

k(z) .

From (7) it follows that

Rn(z) =
(n− k + 1)zn−kPk(z) + zn+1−kP ′

k(z)

n+ 1

+ αn

(n− k)zn−k−1Pk(z) + zn−kP ′
k(z)

n
,

or, equivalently,

Rn(z) = zn−k−1Pk(z)

[
n− k + 1

n+ 1
z + αn

n− k

n

]
+ zn−kP ′

k(z)

[
z

n+ 1
+
αn

n

]
.

Since Rn(0) = 0 for n ≥ k + 2 and taking into account (40), we have

Rn(z) = zRn−1(z) , n ≥ k + 2 .

Thus,

zn−k−1Pk(z)

[
n− k + 1

n+ 1
z + αn

n− k

n

]
+ zn−kP ′

k(z)

[
z

n+ 1
+
αn

n

]

= zn−k−1Pk(z)

[
n− k

n
z + αn−1

n− k − 1

n− 1

]
+ zn−kP ′

k(z)

[
z

n
+
αn−1

n− 1

]
,

zn−k−1Pk(z)

[(
n− k + 1

n+ 1
−
n− k

n

)
z +

n− k

n
αn −

n− k − 1

n− 1
αn−1

]

+zn−kP ′
k(z)

[(
1

n+ 1
−

1

n

)
z +

αn

n
−
αn−1

n− 1

]
= 0 ,

Pk(z)

[(
n− k + 1

n+ 1
−
n− k

n

)
z +

n− k

n
αn −

n− k − 1

n− 1
αn−1

]

+zP ′
k(z)

[(
1

n+ 1
−

1

n

)
z +

αn

n
−
αn−1

n− 1

]
= 0 . (41)

Since

Pk(0)

[
n− k

n
αn −

n− 1 − k

n− 1
αn−1

]
= 0 , n ≥ k + 2,



COHERENT PAIRS ON THE UNIT CIRCLE 19

and taking into account that Pk(0) 6= 0, we get for n ≥ k + 2,

n− k

n
αn −

n− 1 − k

n− 1
αn−1 = 0 .

Thus
2

k + 2
αk+2 −

1

k + 1
αk+1 = 0 , i.e.

αk+2 =
k + 2

2(k + 1)
αk+1 ,

and, as a consequence,

αk+3 =
k + 3

k + 2

1

3
αk+2 =

k + 3

k + 1

1

3!
αk+1 .

In general, for n ≥ k + 2

αn =
n

k + 1

1

(n− k)!
αk+1 .

Substituting this expression in (41),

0 = Pk(z)

[(
n− k + 1

n+ 1
−
n− k

n

)
z

]

+ zP ′
k(z)

[
−

z

n(n+ 1)
+

(
1

(k + 1)

1

(n− k)!
−

1

(k + 1)

1

(n− k − 1)!

)
αk+1

]

0 = Pk(z)

[(
n− k + 1

n+ 1
−
n− k

n

)
z

]

+ zP ′
k(z)

[
−

z

n(n+ 1)
+

1

(k + 1)

1 − n+ k

(n− k)!
αk+1

]
,

k

n(n+ 1)
Pk(z) − P ′

k(z)

[
z

n(n+ 1)
+

1

(k + 1)

n− k − 1

(n− k)!
αk+1

]
= 0 ,

kPk(z) − P ′
k(z)

[
z +

n(n+ 1)

(k + 1)

n− k − 1

(n− k)!
αk+1

]
= 0 .

Since this equation is satisfied for all n ≥ k + 2, then αk+1 = 0, as well
as Pk(z) = zk. But this contradicts the fact Pk(0) 6= 0, up to k = 0. In
such a case we are in the previous situation. So we obtain that Pn(z) = zn,
n ∈ N .
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Lemma 2. If a sequence of monic polynomials {Pn} orthogonal with respect
to a linear functional v on the unit circle satisfies

zn

n
+ un−1 =

Pn(z)

n
+ αn−1

Pn−1(z)

n− 1
, n = 2, 3, . . . . (42)

then un = 0, n = 1, 2, . . . .
Furthermore, the corresponding moments cn are zero for n = 2, 3, . . . .

Proof : We will use induction arguments. For n = 2, (42) becomes
z2

2
+ u1 =

P2(z)

2
+ α1P1(z) . If we apply the linear functional v in the above expression

c2
2

+ u1c0 = 0. (43)

If we multiply by 1/z and using the linear functional v then we get

c1
2

+ u1c̄1 = α1〈v, P1(z)P1(1/z)〉.

From the last expression and taking into account v is quasi–definite then
c1 6= 0.

For n = 3, (42) becomes
z3

3
+ u2 =

P3(z)

3
+ α2P2(z) . If we multiply in the

above expression by 1, 1/z, 1/z2, respectively and using the linear functional v
we get

c3
3

+ u2c0 = 0 , (44)

c2
3

+ u2c̄1 = 0 , (45)

c1
3

+ u2c̄2 =
α2

2
〈u, P2(z)P2(1/z)〉 .

Thus

c1
3
− 3|u2|

2c1 =
α2

2
〈u, P2(z)P2(1/z)〉 ,

and, as a consequence, c1 6= 0 as well as 1 − 9|u2|
2 6= 0.

For n = 4, (42) becomes
z4

4
+ u3 =

P4(z)

4
+ α3

P3(z)

3
. Again, if we multiply
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the above expression by 1, 1/z, 1/z2, and 1/z3 respectively, then we get

c4
4

+ u3c0 = 0 , (46)

c3
4

+ u3c̄1 = 0 , (47)

c2
4

+ u3c̄2 = 0 , (48)

c1
4

+ u3c̄3 =
α3

3
〈u, P3(z)P3(1/z)〉 . (49)

From (47) and (49) c1(1 − 16|u3|
2) =

α3

3
〈u, P3(z)P3(1/z)〉 i. e. |u3| 6=

1

4
.

Taking into account (48) we deduce that c2 = 0, and, as a consequence
of (45), u2 = 0. On the other hand, from (44), c3 = 0. Thus, taking into
account (47), u3 = 0 and, as a consequence, c2 = c4 = 0. Notice that u1 = 0
from (43).
Finally,

α1〈v, P1(z)P1(1/z)〉 =
c1
2
,

α2〈v, P2(z)P2(1/z)〉 =
2

3
c1 ,

α3〈v, P3(z)P3(1/z)〉 =
3

4
c1 .

If we assume un−2 = 0 as well as ck = 0 for k = 2, 3, . . . , n − 1, then we
can multiply in (42) by 1, 1/z, . . . , 1/zn−1, respectively. Using the linear
functional v we get

cn
n

+ un−1c0 = 0 (50)

cn−1

n
+ un−1c̄1 = 0 (51)

cn−2

n
+ un−1c̄2 = 0

...
c2
n

+ un−1c̄n−2 = 0

c1
n

+ un−1c̄n−1 =
αn−1

n− 1
〈u, Pn−1(z)Pn−1(1/z)〉 . (52)
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From (51) we get un−1 = 0 and thus, from (50), cn = 0. Taking into ac-
count (52)

αn−1〈v, Pn−1(z)Pn−1(1/z)〉 =
n− 1

n
c1 .

Moreover, if v is a positive definite linear functional, then we get an integral
representation of such a functional taking into account their moments c0 and
c1. Indeed,

c0 =
A

2π

∫ 2π

0

|z − α|2 dθ , c1 =
A

2π

∫ 2π

0

z|z − α|2 dθ

with z = eiθ.
Thus, c0 = (1 + |α|2)A, c1 = −αA. In other words,

α

1 + |α|2
= −

c1
c0
.

Theorem 7. Let (µ0, µ1) be a coherent pair of measures supported on the
unit circle. If µ1 is the Lebesgue measure then µ0 must be an absolutely
continuous measure

dµ0 = |z − α|2
dθ

2π
, z = eiθ .

Proof : If we assume µ1 is the Lebesgue measure supported on the unit circle,
i.e., Rn(z) = zn, then (7) becomes

zn−1 =
P ′

n(z)

n
+ αn−1

P ′
n−1(z)

n− 1
, n = 2, 3, . . . .

Integrating the above expression, there exists a sequence of complex num-
bers (un) such that

zn

n
+ un−1 =

Pn(z)

n
+ αn−1

Pn−1(z)

n− 1
, n = 2, 3, . . . .

Using the previous lemma, the assertion follows.
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