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Abstract. In this paper we characterize sequences of orthogonal
polynomials on the unit circle whose Carathéodory function satis-
fies a Riccati differential equation with polynomial coefficients, in
terms of matrix Sylvester differential equations. For the particular
case of semi-classical orthogonal polynomials on the unit circle, it is
derived a characterization in terms of first order linear differential
systems.

1. Introduction

Let F be a Carathéodory function in the Laguerre-Hahn class, i.e.,
satisfying a Riccati differential equation with polynomial coefficients
(see [4])

(1) zAF ′ = BF 2 + CF +D , A 6≡ 0 .

A first approach to the analysis of Carathéodory functions satisfying
this type of differential equations and to the analysis of its correspon-
ding sequences of orthogonal polynomials was done by Alfaro and Mar-
cellán in [2]. We remark that the Laguerre-Hahn class on the unit
circle includes some well-known classes, such as the Laguerre-Hahn
affine class on the unit circle (which corresponds to the case B ≡ 0
in (1)), the semi-classical class on the unit circle (which corresponds
to the case B ≡ 0 and D a specific polynomial in (1)), and the class
of second degree functionals on the unit circle. It also includes linear
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fractional transformations of Laguerre-Hahn Carathéodory functions
(see [3, 4, 7, 8]).

The motivation for the study here presented comes from several ap-
plications related with orthogonal polynomials on the unit circle and
also on the real line. In what concerns to the orthogonality on the
real line we note the works of Magnus [18], Maroni [21, 22] and Hahn
[15, 16]. In [18] Magnus used the theory of Laguerre-Hahn orthogo-
nal polynomials (the “Riccati model”) in the study of the convergence
of Jacobi continued fractions. This was done, first, by considering
a modified approximant which satisfies a Riccati differential equation
and, then, by estimating the error behavior with the help of appro-
priate linear differential equations which are satisfied by a sequence
of Laguerre-Hahn orthogonal polynomials (see [15, 16]). See also the
example in [18, section 5], showing the use of the Riccati model in
disordered systems analysis. In [21, 22], Maroni studies the Laguerre-
Hahn class on the real line from an algebraic point of view, putting
emphasis on the distributional equations for the corresponding forms
defined in the linear space of real polynomials; some modifications that
preserve the Laguerre-Hahn character are studied (in [4] the analogue
of these results are established for Laguerre-Hahn functionals on the
unit circle).

Let us now return to the orthogonality on the unit circle. Since
the Laguerre-Hahn class on the unit circle contains linear fractional
transformations of Carathéodory functions which satisfy Riccati type
differential equations, then it is a suitable class to study some transfor-
mations related with the measure of orthogonality or with the ortho-
gonal polynomials when one starts, for example, with Laguerre-Hahn
affine orthogonal polynomials, or with orthogonal polynomials associ-
ated with second degree Carathéodory functions. Here are some exam-
ples:
a) shift perturbation of the reflection coefficients of the orthogonal poly-
nomials (see [23]);
b) backward extension or modification of a finite number of places of
the reflection coefficients of the orthogonal polynomials (see [23]);
c) rational perturbation of the measure of orthogonality (see [5, 6]).

In this paper we aim to obtain a characterization of the Laguerre-
Hahn Carathéodory functions and a representation for the correspon-
ding sequences of orthogonal polynomials on the unit circle. We will see
that, also on the unit circle, the first order differential relations satisfied
by Laguerre-Hahn orthogonal polynomials play an important role. In
fact, a key result of our paper is the equivalence between (1) and the
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following matrix Sylvester differential equations for Yn =

[
φn −Ωn

φ∗n Ω∗n

]
and Qn =

[
−Qn Q∗n

]T
,{

zAY ′n = BnYn − YnC
zAQ′n = (Bn + (BF + C/2) I)Qn , n ∈ N ,

(2)

where {φn}, {Ωn}, and {Qn} are the corresponding sequences of ortho-
gonal polynomials, of polynomials of the second kind, and functions
of the second kind, respectively, Bn and C are matrices of order two
with polynomial elements, and I is the identity matrix of order two
(see Theorem 3).

As a consequence of the referred equivalence, we obtain a charac-
terization of polynomials which are orthogonal with respect to a semi-
classical weight, in terms of first order linear systems of differential
equations (see Theorem 4). These systems are similar to the ones de-
rived in [10, 17] (see also [19]). But here it is well to emphasize that,
in those papers, the authors went further and studied the dynamics of
the linear systems of differential equations subject to deformations of
the semi-classical weight, thus showing the occurrence of Schlesinger
systems as well as Painlevé equations.

The equivalence between (1) and (2) allow us to give a representa-
tion for {Yn} in terms of the solutions of two linear differential systems,
zAL′ = CL and zAP ′n = BnPn , as Yn = PnL−1 ,∀n ≥ 1 (see Theo-
rem 5). Furthermore, the characterization for semi-classical polynomi-
als previously obtained will help us to establish that the Carathéodory
function F in (1) is a linear fractional transformation of a semi-classical
Carathéodory function, say F̃ (see Theorem 6), and we give a represen-
tation for {Yn} in terms of the semi-classical orthogonal polynomials
corresponding to F̃ (see Theorem 7).

This paper is organized as follows. In section 2 we give the defini-
tions and state the basic results which will be used in the forthcoming
sections. In section 3 we establish the equivalence between (1) and
the matrix Sylvester differential equations (2). In section 4 we es-
tablish a characterization of semi-classical orthogonal polynomials on
the unit circle in terms of first order linear differential systems. In
section 5 we solve the matrix Sylvester differential equations from sec-
tion 3, zAY ′n = BnYn− YnC, with the help of the the results previously
obtained for semi-classical orthogonal polynomials. Thus, we deter-
mine a representation for the solution, Yn, in terms of sequences of
semi-classical orthogonal polynomials on the unit circle. Finally, in
section 6, an example is presented.
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2. Preliminary results

Let µ be a probability measure with infinite support on the unit
circle T = {eiθ : θ ∈ [0, 2π[ }. The corresponding sequence of orthogo-
nal polynomials, called orthogonal polynomials on the unit circle (with
respect to µ), is defined by

1

2π

∫ 2π

0

φn(eiθ)φm(e−iθ) dµ(θ) = hnδn,m , hn 6= 0 , n,m ∈ N .

If µ is absolutely continuous with respect to dθ, associated with a
weight w, i.e., dµ(θ) = w(θ) dθ, then we say that {φn} is orthogonal
with respect to w. If each φn is monic, then {φn} will be called a monic
orthogonal polynomial sequence, and it will be denoted by MOPS.

Given a measure µ, the function F defined by

(3) F (z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

is a Carathéodory function, i.e., it is an analytic function in D = {z ∈
C : |z| < 1} such that F (0) = 1 and <e(F ) > 0 for |z| < 1. The
converse result also holds, since any Carathéodory function has a re-
presentation (3) for a unique probability measure µ on T (see, for exam-
ple, [25]). In addition, it is well-known that dµr(θ) = <e F (reiθ) dθ
converge weakly to dµ when r ↑ 1, limr↑1<e F (reiθ) = <e F (eiθ) exists
a.e. for θ ∈ [0, 2π], and if dµ(θ) = w(θ)dθ + dµs(θ), with dµs the
singular part, then

w(θ) = <e F (eiθ) .

Given a sequence of monic polynomials {φn} orthogonal with respect
to µ, the associated polynomials of the second kind are given by

Ω0(z) = 1, Ωn(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
(
φn(eiθ)− φn(z)

)
dµ(θ) , ∀n ∈ N ,

and the functions of the second kind are given by

Qn(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
φn(eiθ) dµ(θ) , n = 0, 1, . . .

We define the following matrices which will be used throughout the
paper,

(4) Yn =

[
φn −Ωn

φ∗n Ω∗n

]
, Qn =

[
−Qn

Q∗n

]
, ∀n ∈ N ,

where φ∗n and Ω∗n denote the reciprocal polynomial of φn and Ωn, res-
pectively, andQ∗n(z) = Ω∗n(z)−F (z)φ∗n(z). We recall that the reciprocal
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polynomial p∗ of a polynomial p of exact degree n is defined by p∗(z) =
znp(1/z).

The sequences {φn}, {Ωn} and {Qn} satisfy recurrence relations and
coupled relations which we use in the matrix form, as given in the
following theorem (see [14]).

Theorem 1 (cf. [12, 13, 24]). Let F be a Carathéodory function and
{φn}, {Ωn}, and {Qn} the corresponding MOPS on the unit circle, the
sequence of associated polynomials of the second kind, and the sequence
of the functions of the second kind, respectively. Let {Yn} and {Qn}
be the sequences defined in (4). Then, the following relations hold,
∀n ∈ N,

(5) Yn = AnYn−1, An =

[
z an
anz 1

]
,

(6) Qn = Yn

[
−F
1

]
,

with an = φn(0), Y0 =

[
1 −1
1 1

]
.

Moreover, ∀n ∈ N,
φ∗n(z)Ωn(z) + φn(z)Ω∗n(z) = 2hnz

n ,(7)

φ∗n(z)Qn(z) + φn(z)Q∗n(z) = 2hnz
n ,(8)

with hn =
∏n

k=1(1− |ak|2).

Let H0(z) =
∑+∞

j=0 bjz
j, |z| < 1 , H∞ =

∑+∞
j=0 bjz

−j , |z| > 1 . We will

write H0(z) = O(zk) or H∞(z) = O(z−k) if b0 = · · · = bk−1 = 0 , k ∈ N.

Corollary 1. Let {φn} be a MOPS on the unit circle and {Qn} be the
corresponding sequence of functions of the second kind. Then, ∀n ∈ N ,

Qn(z) = 2hnz
n +O(zn+1), |z| < 1 ,

Qn(z) = 2an+1hnz
−1 +O(z−2), |z| > 1 ,

Q∗n(z) = 2an+1hnz
n+1 +O(zn+2), |z| < 1

Q∗n(z) = 2hn +O(z−1), |z| > 1

with an+1 = φn+1(0) , hn =
∏n

k=1(1− |ak|2) .

Corollary 2. Let {φn} be a MOPS on the unit circle and {Ωn} be the
corresponding sequence of associated polynomials of the second kind.
Then, the following holds:
a) If there exists k ∈ N such that φk(α) = Ωk(α) = 0, then α = 0 ;
b) If there exists k ∈ N such that φk(α) = Qk(α) = 0, then α = 0 .
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Theorem 2 (Geronimus, [11]). Given a sequence of complex numbers
(an) satisfying |an| < 1, ∀n ∈ N , let {φn} and {Ωn} be the sequences
of polynomials defined by the recurrence relation (5), and let F be the
corresponding Carathéodory function. Then, the sequence defined for
n ≥ 1 , by

Ω∗n(z)

φ∗n(z)
= 1 +

− 2a1z
1 + a1z

−

a2

a1

z(1− |a1|2)

1 +
a2

a1

z
− · · ·

−

an+1

an
z(1− |an|2)

1 +
an+1

an
z

,

converges uniformly to F (z), on compact subsets of D.

3. Characterization in terms of matrix Sylvester
differential equations

Hereafter, I denotes the identity matrix of order two.

Theorem 3. Let F be a Carathéodory function and {Yn} and {Qn}
the corresponding sequences defined by (4). The following statements
are equivalent:
a) F satisfies the differential equation with polynomial coefficients

(9) zAF ′ = BF 2 + CF +D ;

b) {Yn} and {Qn} satisfy the Sylvester differential equations

zAY ′n = BnYn − YnC(10)

zAQ′n = (Bn + (BF + C/2) I)Qn , n ∈ N ,(11)

where Bn are matrices of bounded degree polynomials,

(12) Bn =

[
ln,1 −Θn,1

−Θn,2 ln,2

]
,

and

(13) C =

[
C/2 −D
B −C/2

]
.

Proof. a)⇒ b).
Let F satisfy (9). Firstly we obtain (10). This will be done by dividing



MATRIX SYLVESTER EQUATIONS IN THE THEORY OF OPUC 7

the proof in two parts: in the first part we deduce the equations

(14)

{
zAΩ′n = (ln,1 + C/2)Ωn −Dφn + Θn,1Ω

∗
n

zAφ′n = (ln,1 − C/2)φn +BΩn −Θn,1φ
∗
n

and in the second part we deduce the equations

(15)

{
zA(Ω∗n)′ = (ln,2 + C/2)Ω∗n +Dφ∗n + Θn,2Ωn

zA(φ∗n)′ = (ln,2 − C/2)φ∗n −BΩ∗n −Θn,2φn

where ln,1, ln,2,Θn,1,Θn,2 are polynomials whose degrees are bounded
by a number independent of n. These two systems of equations can be
written in the matrix form (10), with Bn and C given by (12) and (13),
respectively.

First part. If we substitute F =
Qn

φn
− Ωn

φn
(cf. (6)) in zAF ′ =

BF 2 + CF +D we obtain

zA

(
Qn

φn
− Ωn

φn

)′
= B

(
Qn

φn
− Ωn

φn

)2

+ C

(
Qn

φn
− Ωn

φn

)
+D ,

i.e.,

zA

(
Qn

φn

)′
−BQn

φn

(
Qn

φn
− 2

Ωn

φn

)
− CQn

φn

= zA

(
Ωn

φn

)′
+B

(
Ωn

φn

)2

− C
(

Ωn

φn

)
+D .

Therefore we have

(16)

{
zA

(
Ωn

φn

)′
+B

(
Ωn

φn

)2

− C
(

Ωn

φn

)
+D

}
φ2
n = Θ̃n

with

Θ̃n =

{
zA

(
Qn

φn

)′
−BQn

φn

(
Qn

φn
− 2

Ωn

φn

)
− CQn

φn

}
φ2
n .

From (16) it follows that Θ̃n is a polynomial. From the asymptotic
expansion of Qn in |z| < 1 (see Corollary 1), and since the left side
of (16) is a polynomial, we get

Θ̃n(z) = znΘ̃1
n(z) ,

with Θ̃1
n a polynomial. From the asymptotic expansion of Qn in |z| > 1

(see Corollary 1) it follows that Θ̃1
n has bounded degree,

deg(Θ̃1
n) = max{deg(zA)− 2, deg(B)− 1, deg(C)− 1}, ∀n ∈ N .
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Thus, (16) becomes{
zA

(
Ωn

φn

)′
+B

(
Ωn

φn

)2

− C
(

Ωn

φn

)
+D

}
φ2
n = znΘ̃1

n .

Using (7) in the previous equation we obtain{
zA

(
Ωn

φn

)′
+B

(
Ωn

φn

)2

− C
(

Ωn

φn

)
+D

}
φ2
n = Θn,1(φnΩ∗n + Ωnφ

∗
n) ,

where Θn,1 = Θ̃1
n/(2hn) .

Consequently, ∀n ∈ N,{
zAΩ′n −

C

2
Ωn +Dφn −Θn,1Ω

∗
n

}
φn

=

{
zAφ′n +

C

2
φn −BΩn + Θn,1φ

∗
n

}
Ωn .

We distinguish the following cases (see Corollary 2):
a) φn and Ωn have no common roots, ∀n ∈ N, i.e., φn(0) 6= 0,∀n ∈ N ;
b) there exists a finite number of indexes k ∈ N such that φk and Ωk

have common roots, i.e., φk(0) = Ωk(0) = 0 for a finite number of k’s ;
c) there exists n0 > 1 such that φn(0) = 0, ∀n ≥ n0 .

Case a) If φn and Ωn have no common roots, ∀n ∈ N, then we
conclude that there exists a polynomial ln,1 such that

(17)

{
zAΩ′n − C

2
Ωn +Dφn −Θn,1Ω

∗
n = ln,1Ωn ,

zAφ′n + C
2
φn −BΩn + Θn,1φ

∗
n = ln,1φn , ∀n ∈ N ,

and we obtain (14). Moreover, ln,1 has bounded degree,

deg(ln,1) = max{deg(zA)− 1, deg(B), deg(C), deg(D)}, ∀n ∈ N .

Case b) We first assume that φ1(0) 6= 0, . . . , φk−1(0) 6= 0, and k is
the first index such that φk(0) = 0. Thus, φn and Ωn have no common
roots for n = 1, . . . , k − 1. From case a), equations (17) hold for
n = 1, . . . , k − 1. Let us write (17) to k − 1 and multiply by z, to
obtain{

z2AΩ′k−1 − C
2
zΩk−1 +Dzφk−1 − zΘk−1,1Ω

∗
k−1 = lk−1,1zΩk−1 ,

z2Aφ′k−1 + C
2
zφk−1 −BzΩk−1 + zΘk−1,1φ

∗
k−1 = lk−1,1zφk−1 .

By substituting

Ωk(z) = zΩk−1(z), Ω∗k(z) = Ω∗k−1(z), zΩ′k−1(z) = Ω′k(z)− Ωk−1(z)
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and

φk(z) = kφk−1(z), φ∗k(z) = φ∗k−1(z), zφ′k−1(z) = φ′k(z)− φk−1(z)

in previous equations, it follows that{
zAΩ′k − C

2
Ωk +Dφk − zΘk−1,1Ω

∗
k = (lk−1,1 + A)Ωk ,

zAφ′k + C
2
φk −BΩk + zΘk−1,1φ

∗
k = (lk−1,1 + A)φk ,

and we obtain (14) to n = k with lk,1 = lk−1,1 +A and Θk,1 = zΘk−1,1 .
Furthermore, if φk+1(0) = · · · = φk+k0(0) = 0, φk+k0+1(0) 6= 0 to

some k0 ∈ N, then, using the same method as before, the differential
relations (14) are obtained for n = k + 1, . . . , k + k0, with

ln,1 = lk−1,1+(n−k+1)A , Θn,1 = zn−k+1Θk−1,1 , n = k+1, . . . , k+k0 .

Case c) If φn(0) = 0, ∀n ≥ n0, then φn and Ωn are polynomials of
the Bernstein-Szegő type,

φn(z) = zn−n0+1φn0−1(z) , Ωn(z) = zn−n0+1Ωn0−1(z) .

Applying the same method as before, we conclude that equations (14)
hold, ∀n ∈ N , and, for n ≥ n0 , ln,1 and Θn,1 are given by

ln,1 = ln0−1 + (n− n0 + 1)A , Θn,1 = zn−n0+1Θn0−1,1 .

Second part. If we substitute F =
Ω∗n
φ∗n
− Q∗n
φ∗n

(cf. (6)) in zAF ′ =

BF 2 + CF + D and proceed as in the first part, we obtain (15) with
polynomials Θn,2 and ln,2 such that

deg(Θn,2) = max{deg(zA)− 1, deg(B), deg(C)}, ∀n ∈ N ,
deg(ln,2) = max{deg(zA)− 1, deg(B), deg(C), deg(D)}, ∀n ∈ N .
Let us now obtain (11). Taking derivatives on Qn = Ωn + φnF and

Q∗n = Ω∗n − φ∗nF (cf. (6)) we obtain

zAQ′n = zAΩ′n + zAφ′nF + zAF ′φn ,

zA(Q∗n)′ = zA(Ω∗n)′ − zA(φ∗n)′F − zAF ′φ∗n .
If we use (9), (14) and (15) in the previous equations, then (11) follows.

b)⇒ a).

Taking into account (6), Qn = Yn

[
−F
1

]
,∀n ∈ N, the equation (11)

is equivalent to

zAY ′n

[
−F
1

]
+ zAYn

[
−F ′

0

]
= BnYn

[
−F
1

]
+ (BF + C/2)Yn

[
−F
1

]
.
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From (10) it follows that

(BnYn − YnC)
[
−F
1

]
+ zAYn

[
−F ′

0

]
= BnYn

[
−F
1

]
+ (BF + C/2)Yn

[
−F
1

]
,

i.e.,

Yn

(
zA

[
−F ′

0

]
− C

[
−F
1

])
= (BF + C/2)Yn

[
−F
1

]
.

Taking into account that Yn is nonsingular, we obtain

zA

[
−F ′

0

]
− C

[
−F
1

]
= (BF + C/2)

[
−F
1

]
.

Since C is given by (13), zAF ′ = BF 2 + CF +D follows. �

The following formula for tr(Bn) was given in [20] for a particular
case of a semi-classical sequence of orthogonal polynomials on the unit
circle.

Corollary 3. Under the conditions of the previous theorem, the ma-
trices Bn given by (12) satisfy

zAA′n = BnAn −AnBn−1 , n ≥ 2 ,(18)

tr(Bn) = nA , n ∈ N ,(19)

det(Bn) = det(B1)− A
n−1∑
k=1

lk,2 , n ≥ 2 ,(20)

where tr(Bn) and det(Bn) denote the trace and the determinant of Bn ,
respectively, and

(21) det(B1)

= A
(
2zAa1 − h1(D +B) + C(|a1|2 + 1)

)
/(2h1) +BD − C2/4 ,

a1 = φ1(0), h1 = 1− |a1|2 .
Proof. To obtain (18) we take derivatives on Yn = AnYn−1 and substi-
tute Y ′n = A′nYn−1 + AnY ′n−1 in (10), zAY ′n = BnYn − YnC. Therefore,
we get

zAA′nYn−1 + zAAnY ′n−1 = BnYn − YnC .
Using (10) for n− 1 in the previous equation we get

zAA′nYn−1 +An (Bn−1Yn−1 − Yn−1C) = BnYn − YnC .
Using the recurrence relation (5) we obtain

zAA′nYn−1 +An (Bn−1Yn−1 − Yn−1C) = BnAnYn−1 −AnYn−1C ,



MATRIX SYLVESTER EQUATIONS IN THE THEORY OF OPUC 11

i.e.,

zAA′nYn−1 = (BnAn −AnBn−1)Yn−1 .

Since Yn is nonsingular, for all n ∈ N and z 6= 0, we obtain (18).
To deduce (19) we use equations (14) and (15),

zAφ′n + C/2φn −BΩn + Θn,1φ
∗
n = ln,1φn

zAΩ′n − C/2Ωn +Dφn −Θn,1Ω
∗
n = ln,1Ωn

zA(Ω∗n)′ − C/2Ω∗n −Dφ∗n −Θn,2Ωn = ln,2Ω
∗
n

zA(φ∗n)′ + C/2φ∗n +BΩ∗n + Θn,2φn = ln,2φ
∗
n .

If we multiply the previous equations by Ω∗n, φ∗n, φn and Ωn, respec-
tively, we obtain, after summing,

zA (φ′nΩ∗n + φn(Ω∗n)′ + (φ∗n)′Ωn + φ∗nΩ′n) = (ln,1 + ln,2) (φnΩ∗n + φ∗nΩn) ,

i.e.,

zA (φnΩ∗n + φ∗nΩn)′ = (ln,1 + ln,2) (φnΩ∗n + φ∗nΩn) .

Thus,

zA (φnΩ∗n + φ∗nΩn)′ = tr(Bn) (φnΩ∗n + φ∗nΩn) .

If we use (7) in the previous equation then we get (19).
We now establish (20). From (18) we obtain, for n ≥ 2 ,

det(BnAn) = det(zAA′n +AnBn−1) .

Taking into account that Bn is given by (12) and An =

[
z an
anz 1

]
, we

obtain

det(Bn) det(An) = z(1− |an|2) (det(Bn−1) + A ln−1,2) , ∀n ≥ 2 .

Since det(An) = z(1 − |an|2) , then the last equation is equivalent, if
z 6= 0 , to

det(Bn) = det(Bn−1) + A ln−1,2 , ∀n ≥ 2 .

Consequently, we obtain (20). Moreover, if we compute det(B1) by
taking n = 1 in (10), we obtain (21). �

Remark . (18) is equivalent to the following equations, for all n ∈ N,

(22)


anln,1 −Θn,1 = −zΘn−1,1 + anln−1,2

zln,1 − anzΘn,1 = zln−1,1 − anΘn−1,2 + zA

−zΘn,2 + anzln,2 = anzln−1,1 −Θn−1,2 + anzA

−anΘn,2 + ln,2 = −anzΘn−1,1 + ln−1,2 .
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4. A characterization of semi-classical orthogonal
polynomials on the unit circle

In this section we derive a characterization for sequences of semi-
classical orthogonal polynomials on the unit circle.

Definition 1 (cf. [26]). Let µ be a measure supported on the unit circle

given by dµ(θ) = w(θ) dθ +
∑N

k=1 λkδzk
, where λk ≥ 0 , |zk| = 1 , k =

1, ..., N , N ∈ N . The weight w (or the measure µ) is semi-classical if
there exist polynomials A,C such that

(23)
dw(θ)/dθ

w(θ)
=
C(z)

A(z)
, z = eiθ.

The corresponding sequence of orthogonal polynomials is called semi-
classical.

For our purposes, we will consider the analytic continuation of the
weight w to an annulus {z : ε1 < |z| < ε2} and, in order to simplify
the notation, we still denote this analytic continuation by w = w(z).
Thus, the equation (23) is now equivalent to

(24)
w′(z)

w(z)
=
−i C(z)

zA(z)
(′:= d/dz).

It is well-known that the corresponding Carathéodory function satisfies
a first order linear differential equation

zA(z)F ′(z) = −i C(z)F (z) +D(z) ,

where D is a polynomial (see [26]). Moreover, the converse holds for a
specific polynomial D depending on A,C (see [3, 7]).

We will need the lemma that follows (see [9]).

Lemma 1. Let X and M be matrix functions of order two such that
X ′ = M X . Then,

(25) (det(X))′ = tr(M) det(X) .

The theorem that follows is a generalization of a result for semi-
classical orthogonal polynomials on the real line established in [19].
Moreover, it shows that the necessary condition given in [3, Theorem 5]
for a MOPS on the unit circle to be semi-classical is also sufficient.

Theorem 4. Let {φn} be a MOPS with respect to a weight w, {Qn} be

the sequence of functions of the second kind, and Ŷn =

[
φn −Qn/w
φ∗n Q∗n/w

]
,
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∀n ≥ 1 . Then,

(26) w(z) = Ke
∫ z

z1

C(t)
tA(t)

dt
, K ∈ C ,

if, and only if, Ŷn satisfies

(27) zAŶ ′n = (Bn − C/2 I)Ŷn , ∀n ∈ N ,

where Bn is the matrix associated with the equation zAF ′ = CF + D
satisfied by the corresponding Carathéodory function.

Proof. Let w satisfy w′/w = C/(zA) and let the corresponding F
satisfy zAF ′ = CF +D.

From Theorem 3 the following two equations hold,

zA

[
−Q′n/w
(Q∗n)′/w

]
= (Bn + C/2 I)

[
−Qn/w
Q∗n/w

]
,(28)

zA

[
φn
φ∗n

]′
= (Bn − C/2 I)

[
φn
φ∗n

]
,(29)

where Bn are the matrices associated with zAF ′ = CF +D. Moreover,
as w′/w = C/(zA), then

(30) zA

[
−Qn/w
Q∗n/w

]′
= zA

[
−Q′n/w
(Q∗n)′/w

]
− C I

[
−Qn/w
Q∗n/w

]
.

If we substitute (28) in (30) we get

(31) zA

[
−Qn/w
Q∗n/w

]′
= (Bn − C/2 I)

[
−Qn/w
Q∗n/w

]
.

Finally, from (29) and (31), the differential system (27) follows.
We now prove the converse.

If Ŷn =

[
φn −Qn/w
φ∗n Q∗n/w

]
satisfies (27) then, from Lemma 1, we obtain

(det(Ŷn))′ =
tr(Bn − C/2 I)

zA
det(Ŷn) .

From (8) we get det(Ŷn) = 2hnz
n/w , thus the last equation is equiva-

lent to
w′

w
=
nA− tr(Bn − C/2 I)

zA
.

If we use tr(Bn) = nA (cf. (19)) in the previous equation then we get
w′

w
=

C

zA
, and we conclude that w is given by (26). �
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5. Solutions of the Sylvester differential equations

In this section we solve the Sylvester differential equations (10),
zAY ′n = BnYn − YnC, ∀n ∈ N. The result that comes next is a par-
ticular case of a result on matrix Riccati equations known as Radon’s
Lemma (see [1]).

Theorem 5. Let F be a Carathéodory function satisfying zAF ′ =
BF 2 + CF +D and Bn, C be the corresponding matrices given by (12)
and (13), respectively. Let G ⊂ C be a domain not containing the zeros
of zA, and z0 ∈ G. If L (L nonsingular) and Pn satisfy, ∀n ∈ N,

(32)

{
zA(z)L′(z) = C(z)L(z)

L(z0) = I

and

(33)

{
zA(z)P ′n(z) = Bn(z)Pn(z)

Pn(z0) = Yn(z0)

then the corresponding sequence {Yn} associated with F , defined in (4),
has the following representation in G,

(34) Yn(z) = Pn(z)L−1(z) , ∀n ∈ N.

Proof. To zAF ′ = BF 2+CF+D we associate (10), zAY ′n = BnYn−YnC,
with Bn and C given by (12) and (13), respectively (see Theorem 3).
Let L and Pn satisfy (32) and (33), respectively. Let us see that that
Yn = PnL−1 is the solution of zAY ′n = BnYn−YnC . Taking into account
that

zA(PnL−1)′ = zAP ′nL−1 + zAPn(L−1)′

and (L−1)′ = −L−1L′L−1, from (33) we get

zA(PnL−1)′ = BnPnL−1 − zAPnL−1L′L−1 .

Using (32) in the previous equation we get

zA(PnL−1)′ = BnPnL−1 − PnL−1CLL−1 ,

i.e., Yn = PnL−1 satisfies zAY ′n = BnYn − YnC , and the assertion
follows. �

Remark . The solution of (32) is given by L(z) = L(z)L0, with L a fun-
damental matrix of the differential system (32) satisfying zAL′ = CL,
and L0 = L(z0)

−1. The solution of (33) is given by Pn(z) = Pn(z)P 0
n ,

with Pn a fundamental matrix of (33) satisfying zAP ′n = BnPn, and
P 0
n satisfying Pn(z0)P

0
n = Yn(z0), i.e., P 0

n = (Pn(z0))
−1Yn(z0). Thus, if
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we substitute L and Pn, given as above, in (34), the solution of the
Sylvester differential equations (10) becomes

(35) Yn(z) = Pn(z)EnL
−1(z)

with

(36) En = (Pn(z0))
−1Yn(z0)L(z0) .

5.1. Solution of (32). We search for a matrix L of order 2 satisfying
zA(z)L′(z) = C(z)L(z) , with C given in (13).

Lemma 2. Let L be a fundamental matrix of solutions of (32). Then,
det(L(z)) = det(L(z0)).

Proof. From Lemma 1 (cf. (25)) we have

(det(L))′ =
tr(C)
zA

det(L) .

Since tr(C) = 0, it follows that (det(L))′ = 0, i.e.,

det(L) = c, c ∈ C .

Thus, det(L(z)) = det(L(z0)), for some z0 ∈ C. �

Lemma 3. Let C be the matrix defined by (13). Then,

(a) C2 = β I, β = (C/2)2 −BD ;
(b) The eigenvalues of C are ±

√
β ;

(c) V√β = span{
[
D C/2−

√
β
]T} is the eigenspace corresponding

to
√
β and V−

√
β = span{

[
D C/2 +

√
β
]T} is the eigenspace

corresponding to −
√
β.

In what follows, L1, L2 are column vectors of size 2 .

Lemma 4. Let L = [L1 L2] be a fundamental matrix of (32). Then,

zAL′1 =
√
βL1 + zAc1V−

√
β ,(37)

zAL′2 = −
√
βL2 + zAc2V√β ,(38)

with c1, c2 functions.

Proof. From (32) it follows that

(C +
√
β I)

(
L′1 −

√
β

zA
L1

)
= 02×1 ,(39)

(C −
√
β I)

(
L′2 +

√
β

zA
L2

)
= 02×1 .(40)
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Since the eigenvalues of C are ±
√
β, and the corresponding eigenvectors

are V√β and V√−β, from (39) and (40) we obtain, respectively,

L′1 −
√
β

zA
L1 = c1(z)V−

√
β

L′2 +

√
β

zA
L2 = c2(z)V√β

where c1, c2 are functions. Thus, (37) and (38) follow. �

5.2. Solution of (33). We search for matrices Pn of order two satis-
fying, for each n ∈ N ,

(41) zAP ′n = BnPn .

Hereafter we will consider z1 ∈ C and C̃ a polynomial such that∫ z
z1

C̃/2
tA
dt is defined (in suitable domains).

Lemma 5. Let Bn be the matrices given in (12), let A, C̃ be polynomi-
als. P̃n is a solution of

(42) zAP̃ ′n = (Bn − C̃/2 I)P̃n

if, and only if, Pn = e
∫ z

z1

C̃/2
tA

dt
P̃n is a solution of (41).

Proof. Let P̃n be a solution of (42). Since

zA(e
∫ z

z1

C̃/2
tA

dt
P̃n)′ =

C̃

2
e

∫ z
t1

C̃/2
tA

dt
P̃n + zAP̃ ′n e

∫ z
t1

C̃/2
tA

dt
,

and P̃n satisfies (42), then we obtain

zA(e
∫ z

t1

C̃/2
tA

dt
P̃n)′ = BnP̃ne

∫ z
z1

C̃/2
tA

dt
,

thus Pn = e
∫ z

t1

C̃/2
tA

dt
P̃n satisfies (41). Analogously one proves the con-

verse. �

Taking into account the previous lemma, we will solve (41) sear-

ching for a solution {Pn} given by Pn = e
∫ z

z1

C̃/2
tA

dt
P̃n , n ∈ N , where

P̃n satisfies (42). Furthermore, we will search for P̃n given by P̃n =[
φ̃n −Q̃n/w̃

(φ̃n)∗ Q̃∗n/w̃

]
, ∀n ∈ N , where {φ̃n} is a MOPS on the unit circle

with respect to a weight function w̃, and {Q̃n} is the corresponding
sequence of functions of the second kind.
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Let us remark that, using the same arguments as the ones used in
the proof of Theorem 4, from zAP̃ ′n = (Bn − C̃/2 I)P̃n we get

w̃′

w̃
=
nA− tr(Bn − C̃/2 I)

zA
,

and since tr(Bn) = nA, there follows
w̃′

w̃
=

C̃

zA
, thus

(43) w̃ = K e
∫ z

z1

C̃
tA
dt
, K ∈ C .

Henceforth,

(44) Pn = e
∫ z

z1

C̃/2
tA

dt

[
φ̃n −Q̃n/w̃

(φ̃n)∗ Q̃∗n/w̃

]
, n ∈ N ,

with w̃ given by (43).

Remark . According with Theorem 4, P̃n =

[
φ̃n −Q̃n/w̃

(φ̃n)∗ Q̃∗n/w̃

]
satisfies

zAP̃ ′n = (B̃n − C̃/2 I)P̃n , where B̃n is associated with the equation
for the corresponding Carathéodory function, say zAF̃ ′ = C̃F̃ + D̃,
thus depending on A, C̃, D̃. On the other hand, Bn of (42) depend on
A,B,C,D. As it will be seen in Lemma 7, this is possible because the
polynomials B,C,D depend on C̃, D̃.

Lemma 6. Let F be a Carathéodory function satisfying zAF ′ = BF 2+
CF + D and {φn} the corresponding MOPS. For all n ∈ N, let Pn be
a fundamental matrix of the corresponding differential system (33). If

Pn is given by (44), where {φ̃n} is the MOPS with respect to the weight
w̃, then the following equations hold:

(45) Pn = ÃnPn−1, Ãn =

[
z ãn
ãnz 1

]
, n ∈ N ,

(46) zAÃ′n = BnÃn − ÃnBn−1 , n ≥ 2 .

Proof. (45) is a consequence of the recurrence relations for {P̃n} (see
Theorem 1),

P̃n = ÃnP̃n−1, Ãn =

[
z φ̃n(0)

φ̃n(0)z 1

]
, n ∈ N ,

We now establish (46). Since Pn satisfies zAP ′n = BnPn, then by subs-
tituting Pn = ÃnPn−1 in the previous equation, there follows

zAÃ′nPn−1 + ÃnzAP ′n−1 = BnÃnPn−1 , n ≥ 2 .
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Using zAP ′n−1 = Bn−1Pn−1 in the last equation we get

zAÃ′nPn−1 + ÃnBn−1Pn−1 = BnÃnPn−1 .

Thus,
(zAÃ′n + ÃnBn−1)Pn−1 = BnÃnPn−1 .

Since Pn is nonsingular (det(Pn) 6= 0, ∀n ∈ N, ∀z 6= 0) then

zAÃ′n + ÃnBn−1 = BnÃn
follows, and we obtain (46). �

Remark . From (18) and (46) we get the equations

zA(An − Ãn)′ = Bn(An − Ãn)− (An − Ãn)Bn−1 , n ≥ 2 .

Hence,

(47)


λnΘn,1 = λnΘn−1,2

λnln,1 = λnln−1,2

λnΘn−1,1 = λnΘn,2

λnln,2 − λnln−1,1 = λnzA

where λn = an − ãn, an = φn(0), ãn = φ̃n(0) , ∀n ∈ N .

Hereafter we will denote linear fractional transformations T (F ) =
a+ bF

c+ dF
by T(a,b;c,d)(F ) .

Theorem 6. Let F be a Carathéodory function satisfying zAF ′ =
BF 2 +CF +D, and {φn} be the corresponding MOPS. Let Pn, n ∈ N,
be a fundamental matrix of the differential system (33) given by (44),
and F̃ be the corresponding Carathéodory function. Then, there exists
a unique linear fractional transformation, T(a,b;c,d), with a, b, c, d ∈ P
and ad− bc 6≡ 0, such that F = T(a,b;c,d)(F̃ ).

Proof. To prove that F is a linear fractional transformation of F̃ , we
begin by establishing that the reflection coefficients of {φn} and {φ̃n},
i.e., an = φn(0) and ãn = φ̃n(0), differ only in a finite number of
indexes.

Let us write λn = an− ãn, ∀n ∈ N . First we establish that Z = {n ∈
N : λn 6= 0} is a finite set. In fact, if Z was not finite, for example,
Z ≡ N, then λn 6= 0, ∀n ∈ N. But from (47) we would obtain

ln,1 = ln−1,2, ∀n ∈ N .
Substituting in (22), we would obtain

Θn,1 = zΘn−1,1, ∀n ∈ N ,
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hence

Θn,1 = znΘ1,1,∀n ∈ N .

But this is a contradiction to the fact that deg(Θn) is bounded. There-
fore, Z 6≡ N . On the other hand, if we consider, without loss of gene-
rality, the case {

an = ãn , n = 1, 2, . . . , n0 ,

an 6= ãn , n ≥ n0 ,

then we will obtain the same conclusion.
To conclude that F is a rational transformation of F̃ of the referred

type, we take into account its representation in continued fraction given
in Theorem 2. To establish the uniqueness of T(a,b;c,d) we remind that
the inverse of T(a,b;c,d) , ad− bc 6= 0 , is given by T(a,−c;−b,d) . Therefore,

if T1 and T2 are two linear fractional transformations such that T1(F̃ ) =
T2(F̃ ), then the composition T−1

2 ◦ T1 satisfies (T−1
2 ◦ T1)(F̃ ) = F̃ , and

thus we obtain T−1
2 ◦ T1 = id, i.e., T1 = T2. Hence, the uniqueness of T

is established. �

5.3. Determination of the polynomial C̃. In what follows we de-
termine the polynomial C̃ which defines {Pn} given in (44).

Lemma 7. Under the conditions of the previous theorem, let F be
a Carathéodory function satisfying zAF ′ = BF 2 + CF + D, let C̃
be a polynomial which defines a weight w̃ given by (43), and F̃ the
Carathéodory function associated with w̃. Let T(α1,−β1;−α2,β2) , αi, βi ∈
P, i = 1, 2, α1β2−α2β1 6≡ 0 , such that F = T (F̃ ) . Let us consider the
first order linear differential equation for F̃ ,

zAF̃ ′ = C̃F̃ + D̃ , D̃ ∈ P .(48)

Then, the following relations hold:

B = (α2β
′
2 − α′2β2)zA+ α2β2C̃ + β2

2D̃ ,(49)

C = (α2β
′
1 + α1β

′
2 − α′2β1 − α′1β2)zA(50)

+ (α1β2 + α2β1)C̃ + 2β1β2D̃ ,

D = (α1β
′
1 − α′1β1)zA+ α1β1C̃ + β2

1D̃ ,(51)

where we have considered, without lost of generality, α2β1−α1β2 = 1.

Proof. Since w̃′/w̃ = C̃/(zA) (cf. (43)), then w̃ is semi-classical. There-
fore, the corresponding F̃ satisfies (48), with D̃ a polynomial (see [3, 7]).
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Let us write F =
α1 − β1F̃

−α2 + β2F̃
, i.e., F̃ =

α1 + α2F

β1 + β2F
. Using F̃ =

α1 + α2F

β1 + β2F
in (48), it follows that

(52) zA(α2β1 − α1β2)F
′ = B2F

2 + C2F +D2 ,

with

B2 = (α2β
′
2 − α′2β2)zA+ α2β2C̃ + β2

2D̃ ,

C2 = (α2β
′
1 + α1β

′
2 − α′2β1 − α′1β2)zA+ (α1β2 + α2β1)C̃ + 2β1β2D̃ ,

D2 = (α1β
′
1 − α′1β1)zA+ α1β1C̃ + β2

1D̃ .

Hence, F satisfies zAF ′ = BF 2 +CF +D and (52), thus it follows that

zA(α2β1 − α1β2)

zA
=
B2

B
=
C2

C
=
D2

D
.

Therefore, if α2β1 − α1β2 = 1, then

B = B2, C = C2, D = D2,

and (49)-(51) follow. �

According with Theorem 6, for each polynomial C̃ defining a weight
w̃ by (43) and {Pn} as in (44), there exists a unique linear fractional
transformation T such that F = T (F̃ ), with F̃ the Carathéodory func-
tion associated with w̃. In this issue, we pose the question: being C̃1

and C̃2 polynomials (defining weights of the same type as in (43)) and
F̃1, F̃2 the corresponding Carathéodory functions such that F is a linear
fractional transformation of F̃i , i = 1, 2, to obtain relations between
C̃1 and C̃2. The next lemma gives us an answer.

Lemma 8. Under the same conditions of the previous lemma, let F
be a Carathéodory function satisfying zAF ′ = BF 2 + CF + D. Let
C̃1, C̃2 be polynomials defining semi-classical weights of the type (43),
and let F1 and F2 be the corresponding Carathéodory functions, non
rational, satisfying

zAF ′1 = C̃1F1 + D̃1 ,(53)

zAF ′2 = C̃2F2 + D̃2 .(54)

Let T1 = T(α1,−β1;−α2,β2) , T2 = T(γ1,−η1;−γ2,η2) be the transformations
such that T1(F1) = F, T2(F2) = F. If we assume, without loss of
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generality, that α2β1 − α1β2 = 1, γ2η1 − γ1η2 = 1 , then the following
relations take place:

(55) (α2β
′
2 − α′2β2)zA+ α2β2C̃1 + β2

2D̃1

= (γ2η
′
2 − γ′2η2)zA+ γ2η2C̃2 + η2

2D̃2 ,

(56) (α2β
′
1 + α1β

′
2 − α′2β1 − α′1β2)zA+ (α1β2 + α2β1)C̃1 + 2β1β2D̃1

= (γ2η
′
1 + γ1η

′
2 − γ′2η1 − γ′1η2)zA+ (γ1η2 + γ2η1)C̃2 + 2η1η2D̃2 ,

(57) (α1β
′
1 − α′1β1)zA+ α1β1C̃1 + β2

1D̃1

= (γ1η
′
1 − γ′1η1)zA+ γ1η1C̃2 + η2

1D̃2 .

Proof. Since F = T1(F1) with F1 satisfying (53), from previous lemma
we obtain

B = (α2β
′
2 − α′2β2)zA+ α2β2C̃1 + β2

2D̃1 ,

C = (α2β
′
1 + α1β

′
2 − α′2β1 − α′1β2)zA+ (α1β2 + α2β1)C̃1 + 2β1β2D̃1 ,

D = (α1β
′
1 − α′1β1)zA+ α1β1C̃1 + β2

1D̃1 .

Also, since F = T2(F2) with F2 satisfying (54), from previous lema we
obtain

B = (γ2η
′
2 − γ′2η2)zA+ γ2η2C̃2 + η2

2D̃2 ,

C = (γ2η
′
1 + γ1η

′
2 − γ′2η1 − γ′1η2)zA+ (γ1η2 + γ2η1)C̃2 + 2η1η2D̃2 ,

D = (γ1η
′
1 − γ′1η1)zA+ γ1η1C̃2 + η2

1D̃2 .

Therefore, (55)-(57) follow. �

We now state the main result of this section, a representation formu-
lae for {Yn}, defined in (4), associated with a Carathéodory function
F that satisfies zAF ′ = BF 2 + CF +D.

Theorem 7. Let F be a Carathéodory function satisfying zAF ′ =
BF 2 + CF + D , A,B,C,D ∈ P, and let {Yn} be the corresponding
sequence given by (4). Then, there exists a polynomial C̃ (defined by

Lemmas 8 and 9), and a weight w̃ = K e
∫ z

z1

C̃
tA
dt
, K ∈ C , such that

Yn =

[√
w̃φ̃n −Q̃n/

√
w̃√

w̃φ̃∗n Q̃∗n/
√
w̃

]
En L

−1 , n ∈ N ,

where {φ̃n} is the MOPS with respect to w̃, {Q̃n} is the sequence of

functions of the second kind associated with {φ̃n}, En are the matrices
defined in (36), and L is a fundamental matrix of (32).
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Proof. These equations are a direct application of Theorem 5, na-
mely (35). �

6. Example

Let us consider the sequence of Jacobi orthogonal polynomials on
the unit circle, {φn}, with parameters α = β, F̃ the corresponding
Carathéodory function. Let {Ωn} be the sequence of associated poly-
nomials of the second kind and F be the corresponding Carathéodory
function. F satisfies (see [4])

z(z2 − 1)F ′ = −2αc0(z
2 − 1)F 2 − 2α(z2 + 1)F ,

where c0 is the moment of order zero of the Jacobi measure on the unit
circle.

Taking into account Theorem 6, firstly we will solve the following
differential systems:

z(z2 − 1)L′(z) =

[
−α(z2 + 1) 0
−2αc0(z

2 − 1) α(z2 + 1)

]
L(z) ,(58)

z(z2 − 1)P ′n = BnPn .(59)

In what follows we consider a complex domain G such that {0, 1,−1}  
G, and a z0 in G.

Lemma 9. The fundamental matrix of solutions of (58) is given by

L(z) = z−α(z2 − 1)α

×
[

z2α(z2 − 1)−2α z2α(z2 − 1)−2α

1− 2αc0
∫ z
z1
t2α−1(t2 − 1)−2αdt 1− 2αc0

∫ z
z2
t2α−1(t2 − 1)−2αdt

]
with z1 6= z2.

Now we obtain a solution of (59). Takin into account Theorem 4,
henceforth we will consider C̃ as polynomial and we will solve (59)

searching for a solution P̃n given by (44), Pn = e
∫ z

z1

C̃/2
tA

dt

[
φ̃n −Q̃n/w̃

φ̃∗n Q̃∗n/w̃

]
,

∀n ∈ N , with A = z2 − 1, {φ̃n} the MOPS with respect to w̃, {Q̃n}
the corresponding sequence of functions of the second kind, and w̃ =

Ke
∫ z

z1

C̃
tA
dt

.
On the other hand, F is a linear fractional transformation of F̃ given

by F = 1/F̃ (see, for example, [23, 25]), with F̃ satisfying (see [26])

z(z2 − 1)F̃ ′ = 2α(z2 + 1)F̃ + 2αc0(z
2 − 1) .

Therefore, by Lemma 7, C̃ = 2α(z2 + 1) follows, and consequently we

obtain w̃ = ((z2 − 1)/z)
2α
.
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From Theorem 7, the following representation for Yn =

[
φn −Ωn

φ∗n Ω∗n

]
holds:

Yn K =

[
φ̃n − ((z2 − 1)/z)

−2α
Q̃n

(φ̃n)∗ ((z2 − 1)/z)
−2α

(Q̃n)∗

]
En

×
[

1− 2αc0
∫ z
z2
t2α−1(t2 − 1)−2αdt −z2α(z2 − 1)−2α

−1 + 2αc0
∫ z
z1
t2α−1(t2 − 1)−2αdt z2α(z2 − 1)−2α

]
, n ∈ N

where K = 2αc0

∫ z2

z1

t2α−1(t2− 1)−2α dt , En = (Pn(z0))
−1Yn(z0)L(z0).
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