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STRUCTURE RELATIONS FOR ORTHOGONAL
POLYNOMIALS ON THE UNIT CIRCLE

A. BRANQUINHO AND M.N. REBOCHO

Abstract: Structure relations for orthogonal polynomials on the unit circle are
studied. We begin by proving that semi-classical orthogonal polynomials on the
unit circle satisfy structure relations of the following type:

∑s1

k=0 βn+s,kPn+s−k +
∑s2

k=0 γn−1,kz
kP ∗

n−1−k =
∑r1

k=0 αn+s,kP
[1]
n+s−k +

∑r2

k=0 ηn+s,k

(

P ∗

n+s−s′−k

)

′

, where
s1, s2, r1, r2 are integers (specified in the text), the polynomials P ∗

n are the re-

versed polynomials and P
[1]
n denotes the monic polynomial of degree n correspond-

ing to Pn, P
[1]
n = P ′

n+1/(n + 1). Then, we study the semi-classsical character of se-
quences of orthogonal polynomials on the unit circle {Rn}, {Pn}, connected through
a structure relation of the following type:

∑s1

k=0 βn,kRn+s1−k +
∑s2

k=0 γn,kR
∗

n+s2−k

=
∑r1

k=0 αn,kP
[1]
n+r1−k +

∑r2

k=0 ηn,k

(

P ∗

n+r2−k

)

′

, where the integers s1, s2, r1, r2 satisfy
some natural conditions.

Keywords: Orthogonal polynomials on the unit circle; Hermitian linear function-
als; Recurrence relations; Structure relations; Semiclassical linear functionals.
AMS Subject Classification (2000): 33C45, 42C05.

1. Introduction
The so-called structure relations for orthogonal polynomials, that is, finite-

type relations involving sequences of orthogonal polynomials and its deriva-
tives, have been widely studied in the literature of orthogonal polynomials
(see, for example, [2, 3, 15] and its list of references). Such type of relations
appear in the framework of Sobolev orthogonal polynomials, within the study
of coherence of measures (see [4, 11, 16]). They also appear in problems
concerning quasi-orthogonality and formulas of quadrature (see [15, 17]),
where well-known connections to linear combinations of orthogonal polyno-
mials emerge.

Structure relations and linear combinations of orthogonal polynomials were
studied in a vast list of papers, and we refer the reader to [2, 3, 5, 7, 13]. The
subject matter is the modification of measures. In [13] it was proven that
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the measures of orthogonality of two sequences of orthogonal polynomials on
the unit circle (OPUC), say {Pn}, {Rn}, related through

k(n)
∑

j=0

αn,jPn−j =

l(n)
∑

j=0

βn,jRn−j ,

where αn,j , βn,j ∈ C and k(n), l(n) depend on n, are a rational modification
of each other. Relations of the above type arise in problems of signal analysis
and linear prediction of stochastic processes (cf. [13, Section 1]).

Concerning orthogonality on the real line, a well-known topic of research
in the literature is to establish the semi-classical character of sequences of
orthogonal polynomials in terms of structure relations (see [3, 6, 14, 15] and
their list of references). Unlike the real case, this topic has not been getting
much attention for OPUC. As far as the authors of the present manuscript
know, the references where some relations between the semi-classical charac-
ter of OPUC and structure relations were studied are [4, 20].

In general terms, in the present paper we are interested in the study of the
semi-classical character of sequences of OPUC satisfying some structure rela-
tions (these will be made precise throughout the text). We begin by proving
that semi-classical OPUC satisfy structure relations of the following type:

s1
∑

k=0

βn+s,kPn+s−k +

s2
∑

k=0

γn−1,kz
kP ∗

n−1−k

=

r1
∑

k=0

αn+s,kP
[1]
n+s−k +

r2
∑

k=0

ηn+s,k (P ∗
n+s−s′−k)

′ ,

where the polynomials P ∗
n are the reversed polynomials (see its definition in

section 2), the integers s1, s2 and r1, r2 depend on the degrees of the polyno-
mials involved in the corresponding distributional equation satisfied by the
functional of orthogonality (see section 3). Furthermore, we study sequences
of OPUC, {Rn}, {Pn}, related through

s1
∑

k=0

βn,kRn+s1−k +

s2
∑

k=0

γn,kR
∗
n+s2−k =

r1
∑

k=0

αn,kP
[1]
n+r1−k +

r2
∑

k=0

ηn,k

(

P ∗
n+r2−k

)′
(1)

where, for the sake of compatibility, the integers s1, s2, r1, r2 satisfy some na-
tural conditions (these shall be specified throughout the text). Under some
conditions, stated in Lemma 2, we deduce the semi-classical character of
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{Pn} and {Rn}. Further, we obtain a connecting formula between {Rn} and
{Pn} (see Lemma 2).

Note that when s1 = r1 = 0 and the γ’s and the η’s are all zero in (1),

we get Rn =
P ′

n+1

n+1 . In this case it is known [12] that Pn = zn , ∀n ≥ 1, thus
Rn = Pn, ∀n ≥ 1. When s1 = 0, r1 = 2 and the γ’s and the η’s are all zero
in (1), we get

Rn =
P ′

n+1

n+ 1
+ αn,1

P ′
n

n
+ αn,2

P ′
n−1

n− 1
(2)

that is, (Pn, Rn) is a generalized coherent pair on the unit circle (according
to the definition of generalized pair on the real line introduced and studied
in [11]). When s1 = 0, r1 = 1 and the γ’s and the η’s are all zero, we get

Rn =
P ′

n+1

n+ 1
+ αn,1

P ′
n

n
(3)

that is, (Pn, Rn) constitute a coherent pair on the unit circle. In such a case
both, {Pn} and {Rn}, are semi-classical (see [4, theorem 4]). Furthermore,
the measures of orthogonality of {Rn} and {Pn} are a rational modification
of each other. We remark that such relationship between the measures fol-
lows from the application of the techniques on quasi-orthogonality [1] to a
connecting formula between {Rn} and {Pn},

zAψn = Mnϕn, ϕn =

[

Pn

P ∗
n

]

, ψn =

[

Rn

R∗
n

]

,

whereA is a polynomial that does not depend on n, and Mn is a matrix whose
entries are bounded degree polynomials. Unlike the cases of coherency (2)
and (3), to study the semi-classical character and to analyze the relation
between the measures of orthogonality becomes much more difficult when
in (1) one considers s1 ≥ 1, since that implies that {Pn} and {Rn} are
related through

zAKnψn = Tnϕn , n ≥ 1 , (4)

where there is a dependence on n in the polynomial Kn. Note that relations
such as (4) are more general than the ones studied in [7, Section 4.1].

The structure of the paper is as follows. In section 2 we give the definitions
and state the basic results which will be used in the forthcoming sections. In
section 3 we deduce structure relations for semi-classical OPUC. In section 4
we study sequences of OPUC connected through structure relations such
as (1). In section 5 we present some examples of OPUC related through (1).
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2. Preliminary results and notations
Let T = {z ∈ C : |z| = 1} be the unit circle, let Λ = span {zk : k ∈ Z}

be the linear space of Laurent polynomials with complex coefficients, and let
P = span {zk : k ≥ 0} be the space of polynomials with complex coefficients.
Given a linear functional u : Λ → C, and the sequence of moments (cn)n∈Z

of u, cn = 〈u, ξn〉, n ∈ Z, c0 = 1, define the minors of the Toeplitz matrix
∆ = (ck−j) , by

∆−1 = 1, ∆0 = c0, ∆k =

∣

∣

∣

∣

∣

∣

c0 . . . ck
... . . . ...
c−k . . . c0

∣

∣

∣

∣

∣

∣

, k ∈ N.

u is said to be Hermitian if c−n = c̄n, ∀n ≥ 0, and quasi-definite (respectively,
positive definite) if ∆n 6= 0, ∀n ≥ 0 (respectively, ∆n > 0), ∀n ≥ 0 (see [19]).
We will denote by H the set of Hermitian linear functionals defined on Λ.

Definition 1. Let {Pn} be a sequence of complex polynomials with deg (Pn)
= n, and let u ∈ H be quasi-definite. {Pn} is said to be a sequence of
orthogonal polynomials with respect to u if

{

〈u, Pn(z)z
−k〉 = 0 , k = 0, . . . , n− 1 , n ≥ 1 ,

〈u, Pn(z)z
−n〉 = en , en 6= 0, n = 0, 1, . . . .

(5)

If Pn(z) = zn+lower degree terms, {Pn} will be called a sequence of monic
orthogonal polynomials, and we will denote it by MOPS.

If the linear functional u is positive-definite, then it has an integral repre-
sentation given in terms of a nontrivial probability measure µ with infinite
support on the unit circle,

〈u, einθ〉 =
1

2π

∫ 2π

0

einθdµ(θ), n ∈ Z ,

and the corresponding MOPS will also be called the MOPS with respect to µ.
We consider the Carathéodory function of u ∈ H,

Fu(z) = 1 + 2
+∞
∑

k=1

ckz
k . (6)

If u ∈ H is positive definite, associated to a measure whose absolutely conti-
nuous part is w, then limr↑1 ℜe F (reiθ) = ℜe F (eiθ) exists a.e. for θ ∈ [0, 2π],
and the inversion formula w(θ) = ℜe F (eiθ) holds (see [9, 18, 19]).
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Given a polynomial B(z) =
∑m

k=0 bkz
k and p ∈ N, the polynomial B∗p is

defined by B∗p(z) = zpB(1/z), that is, B∗p(z) =
∑m

k=0 bkz
−k+p . Throughout

the paper we will omit the index p in B∗p if, and only if, the degree of B is
exactly p.

The following properties will be useful throughout the text (see [20]).

Lemma 1. Let P ∈ P and m ∈ N. The following equalities hold:

(P ∗m(z))∗m = P (z) ,

(zP ′(z))∗m = (P ′(z))∗m−1 ,

z(P ∗m(z))′ = mP ∗m(z) − (P ′(z))∗m−1 .

Note that the reversed polynomials of a sequence of orthogonal polynomials
satisfy

〈u, P ∗
n(z) z−k〉 = 0, k = 1, . . . , n, 〈u, P ∗

n(z)〉 = en , n = 0, 1, . . . ,

where en is the same as in (5).
In the sequel we will use the vectors defined by

ϕn(z) = [Pn(z) P ∗
n(z)]T , n ≥ 0 ,

where T denotes the transpose operator.
It is well-known that MOPS on the unit circle satisfy the following recur-

rence relations, known as Szegő recurrence relations (see [10]):

ϕn = Anϕn−1 , An =

[

z an

ānz 1

]

, n ∈ N , an = Pn(0) .

Therefore, for all k ≥ 1,

ϕn+k(z) =
k−1
∏

l=0

An+k−l ϕn(z) . (7)

For u ∈ H and A ∈ P, we define

〈Au, f〉 = 〈u,A(z)f(z)〉, f ∈ Λ ,

〈(A+ Ā)u, f〉 = 〈u,
(

A(z) + Ā(1/z)
)

f(z)〉, f ∈ Λ

〈Du, f〉 = −i〈u, zf ′(z)〉 , f ∈ Λ .

Notice that if u ∈ H, then (A + Ā)u, as well as Du, belong to H. We will
use the notation uA = (A(z) + Ā(1/z))u.



6 BRANQUINHO AND M.N. REBOCHO

Definition 2 (see [1]). Let v ∈ H, p ∈ N, and let {Pn} be a sequence
of monic polynomials. {Pn} is said to be T-quasi-orthogonal of order p with
respect to v if:
(i) 〈v, Pn(z) z

−k〉 = 0, for every k with p ≤ k ≤ n − p − 1 and for every
n ≥ 2p+ 1;
(ii) There exists n0 ≥ 2p such that 〈v, Pn0

(z) z−n0+p〉 6= 0.

Definition 3 (see [20]). Let u ∈ H. u is said to be semi-classical if there
exists A,B ∈ P, A 6≡ 0, such that D(Au) = Bu. The corresponding {Pn}
orthogonal with respect to u is said to be semi-classical.

Taking into account Theorem 4.1 of [1], in [4] the following was proved.

Theorem 1 ([4]). Let {Pn} be a MOPS on the unit circle and {P ∗
n} be the

sequence of reversed polynomials. Let {Pn} satisfy a structure relation with
bounded degree polynomials, n ≥ 1,

zΠn(z)P
′
n(z) = Gn(z)Pn(z) +Hn(z)P

∗
n(z) (8)

zΠn(z)(P
∗
n)′(z) = Sn(z)Pn(z) + Tn(z)P

∗
n(z) . (9)

Then Πn does not depend on n. Let p = max{deg(Gn), deg(Hn)+1, deg(Sn),
deg(Π1 − Tn)}, ∀n ≥ 1. If there exists n0 ≥ 2p such that deg(Π1 − Tn0

) = p,
then {Pn} is semi-classical.

3. Structure relations for semi-classical OPUC
In what follows we shall adopt the convention

∑m
l · = 0 whenever m < l.

Theorem 2. Let {Pn} be a MOPS with respect to a semiclassical linear
functional u that satisfies D(Au) = Bu Let deg(A) = s, deg(B) = s′, s ≥ 1 .
Assume that (iB + kA)(0) 6= 0, k = s′, . . . , n , n ∈ N, in the case s < s′,
and A(0) 6= 0 in the case s ≥ s′. Then, there exist sequences (βn,k), (γn−1,k),
(αn,k) and (ηn,k) such that forall n ≥ max{s, s′} + 1

s
∑

k=0

βn+s,kPn+s−k +

s′−s−2
∑

k=0

γn−1,kz
kP ∗

n−1−k

=

min(s,s′−1)
∑

k=0

αn+s,kP
[1]
n+s−k +

s−s′
∑

k=0

ηn+s,k (P ∗
n+s−s′−k)

′ . (10)
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Proof : Case I: deg(A) < deg(B).

Let p = s′ − s. Then, ∀n ≥ s′, (10) reads as

s
∑

k=0

βn+s,kPn+s−k +

p−2
∑

k=0

γn−1,kz
kP ∗

n−1−k =
s
∑

k=0

αn+s,kP
[1]
n+s−k . (11)

We write

Pn+l =
n+l
∑

j=0

cn+l,jP
[1]
n+l−j , l = 0, . . . , s ,

zkP ∗
n−1−k =

n−1
∑

j=0

ckn−1,jP
[1]
n−1−j , k = 0, . . . , p− 2 .

Thus,

s
∑

k=0

βn+s,kPn+s−k +

p−2
∑

k=0

γn−1,kz
kP ∗

n−1−k = P
[1]
n+s +

n+s−1
∑

j=0

µn+s−1,jP
[1]
n+s−1−j (12)

where

µn+s−1,j =











































cn+s,j+1 +

j+1
∑

k=1

βn+s,kcn+s−k,j+1−k , j = 0, . . . , s− 1 ,

cn+s,j+1 +
s
∑

k=1

βn+s,k cn+s−k,j+1−k

+

p−2
∑

k=0

γn−1,kc
k
n−1,j−s , j = s, . . . , n+ s− 1 .

(13)

Let us multiply (12) by z−k+1 and apply Au. Then, the left-hand side gives
us, for k = s+ p, . . . , n,

〈u, (
s
∑

k=0

βn+s,kPn+s−k +

p−2
∑

k=0

γn−1,kz
kP ∗

n−1−k)Az
−k+1〉 = 0 , (14)

where p ≥ 1.
The right-hand side gives us, after using the definition of the operator D

as well as D(Au) = Bu,

〈Au, P
[1]
n+s−1−j z

−k+1〉 =
1

n+ s− j
〈(iB + kA)u, Pn+s−j z

−k〉 .



8 BRANQUINHO AND M.N. REBOCHO

Therefore, taking into account max{deg(iB + kA), k ≥ 1} = deg(B), as
deg(A) < deg(B), there follows

〈Au, P
[1]
n+s−1−j z

−k+1〉 = 0, k = s′, . . . , n+ s− j − 1 . (15)

Taking into account (14) and (15) (note that s′ = s + p), we obtain that
the coefficients µn+s−1,j in (12) satisfy

0 =
n+s−1
∑

j=n+s−k

µn+s−1,j ξk,j, k = s′, . . . , n , (16)

where ξk,j =
〈(iB + kA)u, Pn+s−j z

−k〉

n+ s− j
.

Our goal is to prove that there exist βn+s,k, k = 1, . . . , s, γn−1,k, k =
0, . . . , p − 2, such that in (12) one has µn+s−1,s = µn+s−1,s+1 = · · · =
µn+s−1,n+s−1 = 0.

We expand (16), thus getting





ξn,s · · · ξn,n−p
. . . ...

ξs+p,n−p









µn+s−1,s
...

µn+s−1,n−p





+





ξn,n−p+1 · · · ξn,n+s−1
...

...
ξs+p,n−p+1 · · · ξs+p,n+s−1









µn+s−1,n−p+1
...

µn+s−1,n+s−1



 =





0
...
0



 . (17)

We remark that

µn+s−1,n−p+1 = µn+s−1,n−p+2 = · · · = µn+s−1,n+s−1 = 0 (18)

implies µn+s−1,s = µn+s−1,s+1 = · · · = µn+s−1,n−p = 0 , because if (18) holds
then (17) becomes





ξn,s · · · ξn,n−p
. . . ...

ξs+p,n−p









µn+s−1,s
...

µn+s−1,n−p



 =





0
...
0



 , (19)

where the matrix of the system (19) is nonsingular (upper triangular), as the
elements of the diagonal are given by

ξn−l,s+l =
〈u, (iB + (n− l)A)Pn−lz

−n+l〉

n− l
, l = 0, 1, . . . , n− (p+ s) ,
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and since (iB+ (n− l)A)(0) 6= 0, l = 0, 1, . . . , n− (s+ p) , there follows that
ξn−l,s+l 6= 0, ∀n ≥ s′ .
Let us return to (18). Taking into account (13) one expands (18) as

Gp
n,s−1 B

p
n,s = −

[

cn+s,n−p+2 · · · cn+s,n+s

]T
, (20)

where

Gp
n,s−1 =







cn+s−1,n−p+1 · · · cn,n−p−s+2 c0n−1,n−p+1−s · · · cp−2
n−1,n−p+1−s

... . . . ...
... . . . ...

cn+s−1,n+s−1 · · · cn,n c0n−1,n−1 · · · cp−2
n−1,n−1







B p
n,s =

[

βn+s,1 · · · βn+s,s γn−1,0 · · · γn−1,p−2

]T
.

Note that Gp
n,s−1 is a (s+ p− 1) × (s+ p− 1) matrix.

Let us discuss the system (20). We denote by G̃p
n,s−1 the (s+p−1)×(s+p)

matrix given by




−cn+s,n−p+2

Gp
n,s−1

...
−cn+s,n+s



 .

If det(Gp
n,s−1) 6= 0, then (20) has a solution, and this means that there exist

βn+s,1, . . . , βn+s,s such that µn+s−1,n−p+1 = µn+s−1,n+1 = · · · = µn+s−1,n+s−1 =
0 , thus, from our previous discussion, there follows µn+s,s = µn+s,s+1 = · · · =
µn+s,n−p = 0, and (11) holds.

If det(Gp
n,s−1) = 0 , then (20) is possible if, and only if, the matrices

Gp
n,s−1, G̃

p
n,s−1 have precisely the same number of independent rows.

Let us assume, without loss of generality, that the i-th and the j-th rows
of Gn,s−1 are linearly dependent, that is,

cn+s−1,n+i

cn+s−1,n+j
=
cn+s−2,n+i−1

cn+s−2,n+j−1
= · · · =

cn,n+i−(s−1)

cn,n+j−(s−1)

= · · · =
c0n−1,n−p+1−i

c0n−1,n−p+1−j

= · · · =
cp−2
n−1,n−p+1−i

cp−2
n−1,n−p+1−j

. (21)

Note that n is arbitrary and the algorithm described above can be carried
out to n + 1, thus we get the same proportion as above using the matrix
Gp

n+1,s−1, thus we can take n + 1 in (21), and we conclude that the i-th and

the j-th rows of G̃p
n,s−1, are linearly dependent. With a similar reasoning one

concludes that Gp
n,s−1, G̃

p
n,s−1 have precisely the same number of independent
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rows. Consequently, (20) is possible and, similarly to the previous discussion
in the case det(Gp

n,s−1) 6= 0, we conclude that (11) holds.
Case II: deg(A) ≥ deg(B).

Let q = s− s′. Then, ∀n ≥ s+ 1, (10) reads as

s
∑

k=0

βn+s,kPn+s−k =

s−q−1
∑

k=0

αn+s,kP
[1]
n+s−k +

q
∑

k=0

ηn+s,k

(

P ∗
n+q−k

)′
. (22)

Let us write

P
[1]
n+s−l =

n+s−l
∑

j=0

cn+s−l,jPn+s−l−j , l = 0, . . . , s− q − 1 ,

(P ∗
n+q−l)

′ =

n+q−l−1
∑

j=0

c∗n+q−l,jPn+q−l−1−j , l = 0, . . . , q .

Thus,

s−q−1
∑

k=0

αn+s,kP
[1]
n+s−k +

q
∑

k=0

ηn+s,k

(

P ∗
n+q−k

)′

= Pn+s +
n+s−1
∑

j=0

µn+s−1,jPn+s−1−j (23)

where, for j = n, . . . , n+ s− 1, the µn+s−1,j’s are given by

µn+s−1,j = cn+s,j+1

+

s−q−1
∑

k=1

αn+s,k cn+s−k,j+1−k +

1+q
∑

k=1

ηn+s,k c
∗
n+q−k,j+q−s−k+1 . (24)

Let us multiply (23) by z−k+1 and apply Au. Then, the left-hand side gives us

〈(iB + kA)u, (

s−q−1
∑

k=0

αn+s,k
Pn+s−k+1

n+ s− k + 1
+

q
∑

k=0

ηn+s,kP
∗
n+q−k) z

−k〉 ,

where we used the definition of D, as well as D(Au) = Bu. Therefore, taking
into account max{deg(iB + kA), k ≥ 1} = deg(A), as deg(A) ≥ deg(B),



STRUCTURE RELATIONS FOR OPUC 11

there follows, for k = s+ 1, . . . , n,

〈(iB + kA)u, (

s−q−1
∑

k=0

αn+s,k
Pn+s−k+1

n+ s− k + 1
+

q
∑

k=0

ηn+s,kP
∗
n+q−k)z

−k〉 = 0 . (25)

From the right-hand side there follows

〈Au, Pn+s−1−j z
−k+1〉 = 0, k = s+ 1, . . . , n+ s− j − 1 . (26)

Thus, taking into account (25) and (26) we obtain that the coefficients
µn+s−1,j in (23) satisfy

0 =
n+s−1
∑

j=n+s−k

µn+s−1,j ξk,j, k = s+ 1, . . . , n , (27)

where ξk,j = 〈Au, Pn+s−1−j z
−k+1〉.

As in the previous case, one can prove that there exist αn+s,k, k = 1, . . . , s−
q − 1, ηn+s,k, k = 0, . . . , q, such that in (23) one has µn+s−1,s = µn+s−1,s+1 =
· · · = µn+s−1,n+s−1 = 0.

We expand (27), thus getting




ξn,s · · · ξn,n−1
. . . ...

ξs+1,n−1









µn+s−1,s
...

µn+s−1,n−1





+





ξn,n · · · ξn,n+s−1
...

...
ξs+1,n · · · ξs+1,n+s−1









µn+s−1,n
...

µn+s−1,n+s−1



 =





0
...
0



 . (28)

We remark that

µn+s−1,n = µn+s−1,n+1 = · · · = µn+s−1,n+s−1 = 0 (29)

implies µn+s−1,s = µn+s−1,s+1 = · · · = µn+s−1,n−1 = 0 , because if (29) holds
then (28) becomes





ξn,s · · · ξn,n−1
. . . ...

ξs+1,n−1









µn+s−1,s
...

µn+s−1,n−1



 =





0
...
0



 , (30)

where the matrix of the system (30) is nonsingular (upper triangular), as the
elements of the diagonal are given by

ξn−l,s+l = 〈u,APn−l−1z
−n+l+1〉 , l = 0, 1, . . . , n− (s+ 1) ,
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and since A(0) 6= 0 , there follows that

ξn−l,s+l 6= 0, ∀n ≥ s+ 1 .

Let us return to (29). Taking into account (24) one expands (29) as

Gn,s−1 Bn,s = −
[

cn+s,n+1 · · · cn+s,n+s

]T
, (31)

where

Gn,s−1 =





cn+s−1,n · · · cn+q+1,n+q−s+2 c∗n+q−1,n+q−s · · · c∗n−1,n−s
... . . . ...

... . . . ...
cn+s−1,n+s−1 · · · cn+q+1,n+q+1 c∗n+q−1,n+q−1 · · · c∗n−1,n−1





Bn,s =
[

αn+s,1 · · · αn+s,s−q−1 ηn+s,0 · · · ηn+s,q

]T
.

Note that Gn,s−1 is a s× s matrix.
The discussion of the system (31) is similar to the one in case I, thus we

conclude that in (23) one has µn+s−1,s = µn+s−1,s+1 = · · · = µn+s−1,n+s−1 = 0,
hence (22) holds.

Remark . If deg(B) = deg(A) + 1, that is, s′ = s+ 1, then (10) becomes

s
∑

k=0

βn+s,kPn+s−k =
s
∑

k=0

αn+s,kP
[1]
n+s−k , ∀n ≥ s′ + 1 . (32)

4. OPUC related through (1)
Given the MOPS {Pn} and {Rn}, we will consider the following notations:

ϕn =

[

Pn

P ∗
n

]

, ψn =

[

Rn

R∗
n

]

, n ∈ N.

Note that ϕn and ψn satisfy the Szegő recurrence relations in the matrix form

ϕn = Anϕn−1, ψn = Bnψn−1, n ∈ N,

where

An =

[

z an

anz 1

]

, Bn =

[

z bn
bnz 1

]

,

with an = Pn(0) and bn = Rn(0).
In what follows we will denote by X(i,j) the element of a matrix X in the

position (i, j).
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Lemma 2. Let {Rn}, {Pn} be two sequences of MOPS on the unit circle
related through (1), ∀n ≥ 1,

s1
∑

k=0

βn,kRn+s1−k +

s2
∑

k=0

γn,kR
∗
n+s2−k =

r1
∑

k=0

αn,kP
[1]
n+r1−k +

r2
∑

k=0

ηn,k

(

P ∗
n+r2−k

)′
,

where the integers s1, s2, r1, r2 satisfy s1 = r1, max{s2, r2} < s1. Let ϕn =
[

Pn

P ∗
n

]

, ψn =

[

Rn

R∗
n

]

, n ≥ 1. Then, the following assertions hold:

(a) there exists A ∈ P and matrices Xn such that

zAϕ′
n = Xnϕn , n ≥ 1 . (33)

Further, let

p = max{deg(X (1,1)
n ), deg(X (1,2)

n ) + 1, deg(X (2,1)
n ), deg(A− X (2,2)

n )}, n ≥ 1 .

If ∃n0 ≥ 2p such that deg(A−X
(2,2)
n0

) = p, then {Pn} is semi-classical.
(b) there exists Kn ∈ P and non-singular matrices Tn such that ψn and ϕn

are related trough

zAKnψn = Tnϕn , n ≥ 1 . (34)

(c) there exists A1 ∈ P and matrices Un such that

zA1ψ
′
n = Unψn , n ≥ 1 . (35)

Further, let

p = max{deg(U (1,1)
n ), deg(U (1,2)

n ) + 1, deg(U (2,1)
n ), deg(A1 − U (2,2)

n )}, n ≥ 1 .

If ∃n0 ≥ 2p such that deg(A1 − U
(2,2)
n0

) = p, then {Rn} is semi-classical.

Proof : If we apply the ∗n+s1
operator to (1) and then write the resulting

equation (after using the relations from Lemma 1) together with (1) in the
matrix form, we get

s1
∑

k=0

En,kψn+k =

r1+1
∑

k=0

Fn,kϕn+k +

r1+1
∑

k=0

Gn,kϕ
′
n+k (36)
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with

En,k =































[

βn,s1−k γn,s2−k

γn,s2−k z
s1−k βn,s1−k z

s1−k

]

, k = 0, . . . , s2

[

βn,s1−k 0

0 βn,s1−k z
s1−k

]

, k = s2 + 1, . . . , s1 ,

Fn,k =































[

0 0

ηn,r2−k(n+ k) zr1+1−k αn,r1+1−k z
r1+1−k

]

, k = 0, . . . , r2

[

0 0

0 αn,r1+1−k z
r1+1−k

]

, k = r2 + 1, . . . , r1 + 1 ,

Gn,k =































[

αn,r1+1−k

n+k ηn,r2−k

−ηr2−k z
r1+2−k −

αn,r1+1−k

n+k zr1+2−k

]

, k = 0, . . . , r2

[

αn,r1+1−k

n+k
0

0 −
αn,r1+1−k

n+k zr1+2−k

]

, k = r2 + 1, . . . , r1 + 1 ,

where, by convention, αn,r1+1 = 0.
Using the recurrence relations (7) for ϕn as well as for ψn, with the con-

vention that
∏n

l=m · · · = I whenever m > n, there follows

Hnϕ
′
n = Jnϕn + Knψn , ∀n ∈ N . (37)

with

Hn =

s1+1
∑

k=0

Gn,k

k−1
∏

l=0

An+k−l ,

Jn = −
s1+1
∑

k=0

Fn,k

k−1
∏

l=0

An+k−l −
s1+1
∑

k=0

Gn,k

(

k−1
∏

l=0

An+k−l

)′

,

Kn =

s1
∑

k=0

En,k

k−1
∏

l=0

Bn+k−l .
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If we multiply (37) by adj(Kn) there follows

Lnϕ
′
n = Mnϕn +Knψn , n ≥ 1 . (38)

with non-singular matrices Ln,Mn, and a polynomial Kn given by

Ln = adj(Kn)Hn, Mn = adj(Kn)Jn, Kn = det(Kn) .

To deduce (33) we start by writing (38) to n + 1 and use the recurrence
relations, thus getting

Ln,1ϕ
′
n = Mn,1ϕn + ξnψn (39)

with

Ln,1 = adj(Bn+1)Ln+1An+1 ,

Mn,1 = adj(Bn+1)(Mn+1An+1 −Ln+1A
′
n+1) ,

ξn =Kn+1 det(Bn+1) .

The elimination of ψn between (38) and (39) gives us

Nnϕ
′
n = (ξnMn −KnMn,1)ϕn , Nn = ξnLn −KnLn,1 . (40)

After multiplying (40) by adj(Nn), we get

det(Nn)ϕ
′
n = Snϕn , Sn = adj(Nn)(ξnLn −KnLn,1) .

Taking into account Theorem 1, there follows (33) and the assertion concern-
ing the semi-classical character of {Pn}.

Eq. (34) follows by eliminating ϕ′
n between (38) and (33),

zAKnψn = Tnϕn , Tn = LnXn − zAMn .

To obtain (35) we take derivatives on (34), then we multiply the resulting
equation by zA and use (33), thus getting

zA(zAKn)
′ψn + (zA)2Knψ

′
n = (zAT ′

n + TnXn)ϕn . (41)

The multiplication of (41) by det(Tn) and the use of relation (34) in the
equivalent form

det(Tn)ϕn = zAKn adj(Tn)ψn

yields

(zA)2Kn det(Tn)ψ
′
n = Vnψn,

with

Vn = (zAT ′
n + TnXn)zAKn adj(Tn) − zA(zAKn)

′ det(Tn).
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Taking into account Theorem 1, there follows (35) and the assertion concern-
ing the semi-classical character of {Rn}.

Remark . The Theorem 4 of [4], which asserts the semi-classical character of
coherent pairs on the unit circle, is a particular case of the previous Lemma.

Corollary 1. MOPS {Pn} satisfying (10) also satisfy

zAϕ′
n = Xnϕn , ϕn =

[

Pn

P ∗
n

]

, (42)

with A ∈ P and matrices Xn. Thus, for

p = max{deg(X (1,1)
n ), deg(X (1,2)

n ) + 1, deg(X (2,1)
n ), deg(A− X (2,2)

n )}, n ≥ 1,

if ∃n0 ≥ 2p such that deg(A−X
(2,2)
n0

) = p, then {Pn} is semi-classical.

5. Examples
The case r1 ≥ 1, s2, r2 < 0 in (1), that is,

Rn+r1
=

r1
∑

k=0

αn,kP
[1]
n+r1−k , αn,0 = 1 , n ≥ 0 ,

gives (cf. (34))
zAψn = Tnϕn .

Notice that, in such a case, the polynomial Kn in (34) satisfies Kn = 1.
Taking into account the results of [1] on T-quasi-orthogonality, there follows
that if {Pn} is semi-classical, then {Rn} is also semi-classical, since the corres-
ponding linear functionals are a rational modification of each other (the proof
follows the same technique as in [4, Theorem 4]). In particular, in [4] we gave
some examples of MOPS satisfying structure relations such as

Rn =
P ′

n+1

n+ 1
+ αn

P ′
n

n
, n ≥ 1 . (43)

The case s1 = r1 = 1 with αn,0 = 0 and s2, r2 < 0 in (1) gives a structure
relation of the following type:

Rn+1 + βnRn =
P

′

n+2

n+ 2
, βn 6= 0 , n ≥ 0 . (44)

In what follows we consider u, v the linear functionals corresponding to
the MOPS {Pn}, {Rn}, respectively. Further, we assume that u and v are
associated to the measures dµ and dσ, respectively.
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Example 1. Let µ be the Lebesgue measure on the unit circle, dµ =
dθ

2π
, that

is, Pn = zn, n ≥ 0. Then, (44) becomes

Rn+1 + βnRn = zn+1 , n ≥ 0 .

If we apply the linear functional v to the above equality there follows 〈v, zn+1〉
= 0, ∀n ≥ 1. Thus, the moments of v, which we denote by vn, satisfy
vn = 0, ∀n ≥ 2. Notice that we assume that v0 = 1. To compute v1 we use
R1 + β0R0 = z, from which we get, applying v, β0v0 = v1. Therefore,

vn =











v0 = 1, n = 0

β0, n = 1

0, n ≥ 2

Therefore, the Toeplitz matrix corresponding to v is tridiagonal,

∆ =















1 v1

v1 1 . . .
. . . . . . . . .

v1 1 v1
. . . . . . . . .















, n ≥ 2 .

According to the results of [8], the measure σ is a perturbation of the
Lebesgue measure,

dσ =
dθ

2π
+ (z + z)

dθ

2π
, z = eiθ .

Example 2. Let µ be the Bernstein-Szegő measure dµ = dθ/(2π |z + c|2),
|c| < 1, that is, Pn = zn−1(z + c). Then, (44) becomes

Rn+1 + βnRn = zn+1 + c
n+ 1

n+ 2
zn , n ≥ 0 .

Applying v there follows

vn+1 + c
n+ 1

n+ 2
vn = 0 , ∀n ≥ 1,

thus

vn+1 =
2

n+ 2
(−c)nv1 , ∀n ≥ 1 .
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Notice that we assume v0 = 1. To compte v1 we take n = 0 in (44), thus
getting v1 = β0 − c/2. Thus, we have

vn =











1 , n = 0

β0 − c/2 , n = 1
2

n+1(−c)
n−1v1 , n ≥ 2 .

The corresponding Carathéodory function, Fv(z) = 1+2
∑+∞

n=1 vnz
n , becomes

Fv(z) = 1 + 2

(

v1z + 2v1

+∞
∑

n=2

(−1)n−1

n+ 1
cn−1zn

)

. (45)

Taking into account that
+∞
∑

n=2

(−1)n−1

n+ 1
cn−1zn =

−1

c2z

(

+∞
∑

n=0

(−1)n

n+ 1
(cz)n+1 − cz +

(cz)2

2

)

there follows
+∞
∑

n=2

(−1)n−1

n+ 1
cn−1zn =

−1

c2z
ln(1 + cz) +

1

c
−
z

2
,

which we substitute into (45), thus obtaining

Fv(z) = 1 +
4v1

c
−

4v1

c2z
ln(1 + cz) .

The inversion formula gives us the absolutely continuous part of σ,

dσ =

(

lim
r↑1

ℜe Fv(re
iθ)

)

dθ . (46)
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