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Abstract

We state a necessary and sufficient condition for equality of two nonzero decomposable
symmetrized tensors when the symmetrizer is associated with an irreducible character of the
symmetric group of degree m.
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1. Introduction

Symmetry classes of tensors are extensions of the tensor product that involve a
symmetry depending upon a group (finite) and an irreducible character. If V is vector
space over C, and λ is an irreducible character of Sm, we denote the symmetric class
of tensors whose symmetry is defined by λ by Vmλ . The most known symmetry clas-
ses associated with an irreducible character of Sm are the exterior power of V,∧mV ,
and the symmetric power of V,∨mV .
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The study of decomposable elements

x1 ∗ · · · ∗ xm, (x1, . . . , xm ∈ V )
of symmetry classes of tensors is an important topic in Multilinear Algebra since
the knowledge of their properties is necessary for the understanding of symmetry
classes.

Among others, two basic issues are particularly relevant and have been challenges
in Multilinear Algebra for many years: The “vanishing question” that asks conditions
on the vectors x1, . . . , xm that characterize the vanishing

x1 ∗ · · · ∗ xm = 0,

and the “equality question” that asks for conditions on the vectors of V that charac-
terize the equality

x1 ∗ · · · ∗ xm = y1 ∗ · · · ∗ ym,
where x1 ∗ · · · ∗ xm, y1 ∗ · · · ∗ ym /= 0.

These conditions are well known for the tensor product. Indeed,

x1 ⊗ · · · ⊗ xm = 0

if and only if one of the factors xi is the zero vector, and the equality

x1 ⊗ · · · ⊗ xm = y1 ⊗ · · · ⊗ ym

holds (for nonzero decomposable tensors x1 ⊗ · · · ⊗ xm, y1 ⊗ · · · ⊗ ym) if the
homologous factors are proportional (i.e. yi = cixi, ci ∈ C) and an extra normali-
zation condition on the coefficients is fulfilled (

∏m
i=1 ci = 1).

The answer to the corresponding question for the exterior power and symmetric
power are also well known. We have x1 ∧ · · · ∧ xm = 0 if and only if (x1, . . . , xm)

are linearly dependent and x1 ∨ · · · ∨ xm = 0 if and only if one of the vector xi is
zero.

Concerning the equality question (if (x1, . . . , xm) and (y1, . . . , ym) and are line-
arly independent), we have

x1 ∧ · · · ∧ xm = y1 ∧ · · · ∧ ym
if and only if 〈x1, . . . , xm〉 = 〈y1, . . . , ym〉 and the normalization condition
det[aij ] = 1 holds, where yi = ∑m

j=1 aij xj , i = 1, . . . , m.
For the symmetric power, the equality

x1 ∨ · · · ∨ xm = y1 ∨ · · · ∨ ym
(we are assuming x1, . . . , xm, y1, . . . , ym are nonzero vectors) holds if and only if
factors of the right side are proportional to factors of the left side (i.e., there ex-
ists a permutation (i1, . . . , im) of the integers (1, . . . , m) such that xj = cj yij , j =
1, . . . , m) and the normalization property,

∏m
i=1 ci = 1, satisfied.

Symmetry classes of tensors associated with irreducible characters of the full
symmetric group are the most basic ones, and it is natural to start with them to solve
the vanishing and the equality problems.
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Indeed, the vanishing problem was completely solved by Gamas [2] for these
symmetry classes. It was shown that if x1, . . . , xm are nonzero vectors the decom-
posable element x1 ∗ · · · ∗ xm of Vmλ vanishes if and only if the rank partition of
x1, . . . , xm does not dominate the conjugate partition of the partition associated with
λ. This condition obviously extends the results for ∧mV and ∨mV , since the irre-
ducible characters that define the symmetry ∧mV and ∨mV have the associated par-
titions (1, . . . , 1) and (m) respectively.

The purpose of this paper is to present, in symmetry classes associated to irreduc-
ible characters of Sm, the completed description of the conditions on (x1, . . . , xm)

and (y1, . . . , ym) that are necessary and sufficient for the equality

x1 ∗ · · · ∗ xm = y1 ∗ · · · ∗ ym
(assuming x1 ∗ · · · ∗ xm, y1 ∗ · · · ∗ ym /= 0). These conditions extend the above ref-
ereed conditions for ∧mV and ∨mV and can be viewed as a “mixture” of them. They
also extend previous work done on this topic [7,4].

2. Preliminaries

Let m be a positive integer, and let � be a subset of {1, . . . , m}. We use Sm to
denote the symmetric group of degree m and S� to denote the subgroup of Sm,

S� = {σ ∈ Sm : σ(i) = i, i /∈ �}.
Throughout this paper we denote by |X| the cardinality of X, and we use IdX to
denote the identity map from X into X.

Let λ = (λ1, · · · , λt ), λ1 � · · · � λt > 0 be a partition of m. The existence of a
bijective correspondence between the set of the partitions of m and the set of irre-
ducible complex valued character of Sm is well known (see [11] or [12]). Then,
we denote the irreducible character of Sm associated with the partition λ by λ. The
greatest k such that λk > 0 is called the length of λ. The integers λi, i = 1, . . . , k,
where k is the length of λ are called parts of λ.

Let λ = (λ1, . . . , λt ) and µ = (µ1, . . . , µr) be partitions of m. We say that λ
majorizes µ (denoted by λ � µ) if t � r and

j∑
i=1

λi �
j∑
i=1

µi, j = 1, . . . , t.

If λ = (λ1, . . . , λt ) is a partition of m, the sequence λ′ = (λ′
1, . . . , λ

′
λ1
) where

λ′
i = |{j : λj � i}|, i = 1, . . . , λ1,

is a partition ofm called the conjugate partition of λ. Note that the length of λ′ is λ1.
Let λ = (λ1, . . . , λt ) be a partition of m of length t , and let r be the number of

distinct parts of λ′. Let i1, . . . , ir ∈ {1, . . . , λ1} satisfying

λ′
1 = λ′

i1
> · · · > λ′

ir
= λ′

λ1
.
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For each s ∈ {1, . . . , r} let

�s = {j : λ′
j = λ′

is
}.

We denote by Sλ′ the subgroup of Sλ1

Sλ′ = S�1 × · · · × S�r ,

where × denotes the direct product.
Let σ ∈ Sλ′ and let k ∈ {1, . . . , r}. Since �i ∩ �j = ∅, i, j ∈ {1, . . . , r}, i /= j , it

is easy to see that

σ(�1 ∪ · · · ∪ �k) = σ(�1) ∪ · · · ∪ σ(�k) = �1 ∪ · · · ∪ �k. (1)

It is also easy to see that for all i ∈ {1, . . . , λ′
1} there exits k ∈ {1, . . . , r} such that

{1, . . . , λi} = �1 ∪ · · · ∪ �k. (2)

We denote the Young diagram corresponding to λ by [λ]. In this paper we identify
the boxes of [λ] with integers of {1, . . . , m} and label the m boxes of [λ] from left to
right and from top to bottom.

A filling D of the diagram [λ] with the integers 1, . . . , m such that each integer
occurs once will be called a strict Young tableau. The mapping σ that maps the
integer i(∈ {1, . . . , m}) on the integer σ(i) filling the box i of [λ] is a permutation
of m. We denote this strict Young tableau by Dλ,σ . If D = Dλ,σ is a strict Young
tableau, and ν ∈ Sm, then we denote the strict Young tableau Dλ,νσ by νD. We
say that a strict Young tableau D = Dλ,σ is increasing by columns (by rows) if the
integers in each column (each row) of D are in increasing order. We say that a strict
Young tableau is standard if it increases simultaneous by rows and by columns.

Given a strict Young tableau D, the subgroup of Sm of the permutations ν such
that D and νD have the same rows is called the group of rows of D and is denoted
by R(D). Similarly, we define the group of columns of D,C(D).

Let C be the complex field, let V be a finite dimensional vector space over C, and
let (x1, . . . , xm) and (y1, . . . , ym) be linearly independent families of vectors of V
that span the same subspace. If yi = ∑m

j=1 aij xj , i = 1, . . . , m, the m×m matrix
[aij ] is denoted by

M[y1, . . . , ym|x1, . . . , xm].
Let � = {i1, . . . , is} and � = {j1, . . . , js} be subsets of {1, . . . , m} of cardinality
s. Assume that (xi)i∈� is linearly independent, and 〈xi : i ∈ �〉 = 〈yi : i ∈ �〉. We
denote the s × s matrix M[yj1 , . . . , yjs |xi1 , . . . , xis ] by

M[y1, . . . , ym|x1, . . . , xm][�|�].
If � = �, we denote the s × s matrix M[y1, . . . , ym|x1, . . . , xm][�|�] by

M[y1, . . . , ym|x1, . . . , xm][�].

Definition 2.1. Let (x1, . . . , xm) be a family of nonzero vectors of V . We say that a
collection C = (C1, . . . , Cr), (Cj = {xi : i ∈ �j })j=1,...,r of subfamilies of
(x1, . . . , xm), is a coloring of (x1, . . . , xm) if the following conditions hold:
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(1) Ci is linearly independent, i = 1, . . . , r;
(2) �i ∩ �j = ∅, i /= j, i, j = 1, . . . , r;
(3)

⋃r
i=1 �i = {1, . . . , m};

(4) |�1| � · · · � |�r |.

The collection (�1, . . . ,�r ) is called the support of the coloring C =
(C1, . . . , Cr). The finite sequence (|�1|, . . . , |�r |) is a partition ofm called the shape
of C and denoted by

shape(C).

If shape(C) = µ, we also say that C is a µ-coloring of (x1, . . . , xm).

Let (x1, . . . , xm) be a family of nonzero vectors of V . In [3] it was proved that,
with respect to majorization, the set of the shapes of colorings of (x1, . . . , xm) has a
maximum. This maximum partition is the rank partition of (x1, . . . , xm), and it will
be denoted by

ρ(x1, . . . , xm).

A ρ-coloring of (x1, . . . , xm), where ρ is the rank partition of (x1, . . . , xm), is called
factorization of (x1, . . . , xm).

Denote by �m,n the set of the maps from {1, . . . , m} into {1, . . . , n}. We denote
the subset of �m,n of the strictly increasing maps by Qm,n. If A = [aij ] is a m× n

matrix, and if α ∈ �p,m and β ∈ �q,n, we use A[α|β] to denote p × q matrix whose
(i, j) entry is aα(i)β(j), i = 1, . . . , p, j = 1, . . . , q.

If V is an inner product vector space and if W is a subspace of V , we denote by
W⊥ the orthogonal complement of W . We denote by ⊗mV the mth tensor power
of V , and we write u1 ⊗ · · · ⊗ um for the tensor product (decomposable tensor) of
u1, . . . , um ∈ V . An inner product (,) in V induces a unique inner product in ⊗mV ,
also denoted by (,), satisfying

(u1 ⊗ · · · ⊗ um, v1 ⊗ · · · ⊗ vm) =
m∏
i=1

(ui, vi) (3)

for all u1, . . . , um, v1, . . . , vm ∈ V .
For σ ∈ Sm, let P(σ) be the unique linear operator of ⊗mV such that

P(σ)(u1 ⊗ · · · ⊗ um) = uσ−1(1) ⊗ · · · ⊗ uσ−1(m)

for all u1, . . . , um ∈ V . An operator in the linear closure of {P(σ), σ ∈ Sm} is called
a symmetrizer and its image is called a symmetry class of tensors. The image of
the decomposable tensor u1 ⊗ · · · ⊗ um by a symmetrizer is called a decomposable
symmetrized tensor and is denoted by

u1 ∗ · · · ∗ um.
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Let D be a strict Young tableau. Denote by P(D) the symmetrizer

P(D) =
∑

σ∈R(D)
P (σ )

and by N(D) the symmetrizer

N(D) =
∑

σ∈C(D)
ε(σ )P (σ ).

The symmetrizer E(D) = P(D)N(D) is the Young symmetrizer associated with D.

Theorem 2.1 [6]. Letµ be a partition ofm, and letD be a Young diagram associated
with µ. Let x1, . . . , xm ∈ V. Then

E(D)(x1 ⊗ · · · ⊗ xm) /= 0

if and only if

N(D)(x1 ⊗ · · · ⊗ xm) /= 0.

If H is a subgroup of Sm and if λ is a complex irreducible character of H , the
symmetrizer

T (H, λ) = λ(id)

|H |
∑
σ∈H

λ(σ)P (σ )

is an orthogonal projection, and its range is the symmetry class denoted by Vmλ (H).
Observe that

P(D) = |R(D)|T (R(D), 1) (4)

and

N(D) = |C(D)|T (C(D), ε). (5)

If H = Sm, we call Vmλ (H) an immanantal symmetry class of tensors, and we de-
note it by Vmλ . A decomposable symmetrized tensor in Vmλ is called an immanantal
decomposable tensor or just a decomposable element of Vmλ .

If λ = ε, the alternating character,Vmε = ∧mV , and u1 ∗ · · · ∗ um is denoted by
u1 ∧ · · · ∧ um. If λ = 1, the principal character, Vm1 = ∨mV , and u1 ∗ · · · ∗ um is
denoted by u1 ∨ · · · ∨ um.

It is well known that u1 ∧ · · · ∧ um /= 0 if and only if u1, . . . , um are linearly
independent vectors, and if a σ ∈ Sm, then

uσ(1) ∧ · · · ∧ uσ(m) = ε(σ )u1 ∧ · · · ∧ um.
It is also well known that given a basis {e1, . . . , en} of V , the set

{e∧α : α ∈ Qm,n},
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where e∧α denotes eα(1) ∧ · · · ∧ eα(m) is a basis of ∧mV . This basis is orthogonal if

(e1, . . . , en) is an orthogonal basis of V . So, we can conclude that dim ∧kV =
(
n

m

)
.

By convention, Q0,n={∅} and e∧∅ = 1.

Theorem 2.2 [10]. Let V be an n-dimensional vector space over C, and let
(e1, . . . , en) be a basis of V. Let (x1, . . . , xk) be a family of linearly independent
vectors of V, and let T ∈ Ck×n satisfying

xi =
n∑
j=1

tij ej , i = 1, . . . , k

Then

x1 ∧ · · · ∧ xk =
∑
α∈Qk,n

det(T [ηk|α])e∧α ,

where ηk = (1, . . . , k).

The next result gives a necessary and sufficient condition for an element z ∈ ∧kV
to be decomposable:

Corollary 2.1. Let V be an n-dimensional vector space over C, and let {e1, . . . , en}
be a basis of V. Let

z =
∑
α∈Qk,n

aαe
∧
α

be an element of ∧kV . Then, z is decomposable if and only if there exists a k × n

matrix A over C such that

aα = det(A[ηk|α]), α ∈ Qk,n.

If � = {i1, . . . , is}, (i1 < · · · < is) is a subset of {1, . . . , m} we denote xi1 ∧ · · · ∧
xis by∧

i∈�

xi.

Let V be an n-dimensional vector space over C. We denote the Grassmann algebra
over V by ∧V , that is, the 2n-dimensional C-algebra

∧V = C ⊕ V ⊕ ∧2V ⊕ · · · ⊕ ∧nV .
Let z,w ∈ ∧V, z = z0 + z1 + · · · + zn, and w = w0 + w1 + · · · + wn where zi,
wi ∈ ∧iV , i = 1, . . . , n and z0, w0 ∈ C. We define an inner product in ∧V as fol-
lows:

(z, w) =
n∑
i=0

(zi, wi). (6)
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If σ, τ ∈ Sm, we say that σ > τ if

(σ (1), σ (2), . . . , σ (m)) > (τ(1), τ (2), . . . , τ (m))

by the lexicographic order. Based on the result of [9–p. 78], the following result was
proved in [4]:

Proposition 2.1. Let λ be a partition ofm. Let id = σ1, . . . , σd be the permutations
of Sm satisfying

(1) σi < σj if i < j , i, j = 1, . . . , d; and
(2) Dλ,σ1 , . . . , Dλ,σd are the standard strict Young tableaux associated with the

Young diagram [λ].

Let ν ∈ Sm. Define Pi = P(νDλ,σi ) and Ni = N(νDλ,σi ), i = 1, . . . , m. Let

ei,i = λ(id)

m! MiPiNi, i = 1, . . . , d

where M1 = Id⊗mV and Mi = Id⊗mV − e1,1 − · · · − ei−1,i−1, i = 2, . . . , d . Then,

T (Sm, λ) = e1,1 + · · · + ed,d .

Moreover, e1,1, . . . , ed,d are orthogonal idempotents.

Let µ = (µ1, . . . , µr) be a partition of m, and let D be a strict Young tableau
associated with the Young diagram [µ]. Let kij be the integer filling the (i, j) box of
D, and let θ be the permutation of Sm defined by the equalities

θ(µ1 + µ2 + · · · + µj−1 + t) = kj,t ,

j = 1, . . . , r and t = 1, . . . , µj . Using the pair (ν,⊗mV ) where ν = P(θ−1) ◦ ⊗,
as a model of mth tensor power of V , we denote ν(x1, . . . , xm) by x1⊗̃ · · · ⊗̃xm (or
by x1 ⊗ · · · ⊗ xm if there are no ambiguities to avoid). Let �i = {ki,1, . . . , ki,µi },
j = 1, . . . , r . It can be easily checked that if H = S�1 × · · · × S�r and if λ = ε|H ,

T (H, λ)(x1⊗̃ · · · ⊗̃xm) =

 ∧
i∈�1

xi


 ⊗ · · · ⊗


 ∧
i∈�r

xi




for all x1, . . . , xm ∈ V .
Since we will work with nonzero immanantal decomposable tensors, it is useful

to say something about the vanishing of these tensors. In [2], Gamas obtained a nec-
essary and sufficient condition for an immanantal decomposable tensor to be zero.
This result was reformulated in [3].

Theorem 2.3. In Vmλ the immanantal decomposable tensor

x1 ∗ · · · ∗ xm
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is nonzero if and only if there exists a λ′-coloring of the family x1, . . . , xm; if and
only if ρ(x1, . . . , xm) � λ′.

3. Irreducible subsets of the Grassmann Algebra

The objective of this section is to present two irreducible subsets of ∧V used in
the proof of the main result. Throughout this paper, we identify the elements of ∧V
with the 2n-tuple of its coordinates on the basis {e∧α : α ∈ ⋃n

i=0Qi,n}. We also view
C2n as a topological space (with the Zariski topology).

Definition 3.1. A topological spaceX is called irreducible if, for any decomposition
of X = A1 ∪ A2 as union of closed subsets, we have X = A1 or X = A2. A subset
X′ of X is called irreducible if X′, as a topological space with the induced topology,
is irreducible.

Theorem 3.1 [8, p. 12]. Let X′ be a subset of a topological space X. Then, X′ is
irreducible if and only if the closure of X′ is irreducible.

The next result states a sufficient condition for the irreducibility of a subset of Cn

with the Zarisky topology.

Proposition 3.1 [8, p. 15]. Let f1, . . . , fn ∈ C[T1, . . . , Tm] where T1, . . . , Tm are
independent indeterminates, and let U0 be the subset of Cn:

U0 = {(f1(t1, . . . , tm), . . . , fn(t1, . . . , tm)) : (t1, . . . , tm) ∈ Cm} (7)

The closure of U0 in the Zariski topology is an irreducible affine algebraic variety.

We say that a subset U of Cn is parametrizable if there are polynomials f1, . . . ,

fn ∈ C[T1, . . . , Tm] satisfying equality (7).

Corollary 3.1. The parametrizable subsets of Cn are irreducible.

We denote by F(V ) the subset of ∧V

F(V ) =
{

n∑
i=1

u1 ∧ · · · ∧ ui : u1, . . . , un ∈ V
}
.

Theorem 3.2. The set F(V ) is an irreducible subset of C2n .
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Proof. In order to prove that F(V ) is irreducible, we only have to show that F(V )

is parametrizable. Denote by T and T, respectively, the following scalar matrix and
the matrix of indeterminates:

T =


t11 · · · t1n
...

. . .
...

tn1 · · · tnn


 , tij ∈ C, i, j = 1, . . . , n,

T =


T11 · · · T1n
...

. . .
...

Tn1 · · · Tnn




Define h0,∅ = 0. For each i ∈ {1, . . . , n} and for each α ∈ Qi,n, let hi,α be the
polynomial of C[T11, . . . , T1n, . . . , Tn1, . . . , Tnn] defined by

hi,α =: det(T[ηi |α]).
Observe that, if uk = ∑n

j=1 tkj uj , k = 1, . . . , n, then

u1 ∧ · · · ∧ ui =
∑
a∈Qi,n

hi,α(T )e
∧
α , i = 1, . . . , n.

Consider the map

� : Cn × · · · × Cn → F(V )

(t11, . . . , t1n, . . . , tn1, . . . , tnn) →
n∑
i=1


 ∑
α∈Qi,n

hi,α(T )e
∧
α


 .

Using Corollary 2.1, we can easily see that � is well defined, i.e., Im� ⊆ F(V ).
Since we are identifying the elements of ∧V with their 2n-tuple of the coordinates
in the base {e∧α : α ∈ ⋃n

i=0Qi,n}, we conclude that the range of � is

Im � = {
(hi,α(t11, . . . , t1n, . . . , tn1, . . . , tnn)) i=0,...,n

α∈Qi,n
:

(t11, . . . , t1n, . . . , tn1, . . . , tnn) ∈ Cn
2}
.

If we prove that � is onto, we conclude, by Corollary 3.1, that F(V ) is an irreducible
set of ∧V . Let z ∈ F(V ). Then there exist v1, . . . , vn ∈V such that

z =
n∑
i=1

v1 ∧ · · · ∧ vi .

For all i ∈ {1, . . . , n} let

vi =
n∑
j=1

aij ej ,
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and let

A =


a11 · · · a1n
...

. . .
...

an1 · · · ann




By Theorem 2.2, we have

v1 ∧ · · · ∧ vi =
∑
α∈Qi,n

det(A[ηi |α])e∧α ,

where ηi = (1, . . . , i).
Therefore,

�(a11, . . . , an1, . . . , a1n, . . . , ann)=
n∑
i=1

∑
α∈Qi,n

hi,α(A)e
∧
α

=
n∑
i=1

v1 ∧ · · · ∧ vi
= z,

and the proof is complete. �

Let W be a subspace of V such that dimW = k < n. Let j ∈ {1, . . . , n}. We
denote by Fj,W (V ) the set of the z ∈ F(V ) for which there exist u1, . . . , un ∈ V
satisfying

z =
n∑
i=1

u1 ∧ · · · ∧ ui,

and uj ∈ W⊥.

Theorem 3.3. The set Fj,W (V ) is an irreducible subset C2n .

Proof. We prove that Fj,W (V ) is parametrizable. The result follows by Corollary
3.1.

Denote by T ′ and T′, respectively, the following scalar matrix and the matrix of
indeterminates:

T ′ =




t11 · · · t1k t1k+1 · · · t1n
...

. . .
...

...
. . .

...

0 · · · 0 tjk+1 · · · tjn
...

. . .
...

...
. . .

...

tn1 · · · tnk tnk+1 · · · tnn



,
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and

T′ =




T11 · · · T1k T1k+1 · · · T1n
...

. . .
...

...
. . .

...

0 · · · 0 Tjk+1 · · · Tjn
...

. . .
...

...
. . .

...

Tn1 · · · Tnk Tnk+1 · · · Tnn



.

Let {e1, . . . , en} be an orthonormal base of V such that

W = 〈e1, . . . , ek〉. (8)

Therefore, if v ∈ W⊥, we have

v =
n∑

t=k+1

atet .

Consider the map

�1 : Cn × · · · × Cn−k × · · · × Cn → Fj,W (V )

such that

�1(t11, . . . , t1n, . . . , tjk+1, . . . , tjn, . . . , tn1, . . . , tnn)

=
n∑
i=1


 ∑
α∈Qi,n

det(T ′[ηi |α])e∧α

 .

Define g0,∅ = 0. For each i ∈ {1, . . . , n} and each α ∈ Qi,n, we use gi,α to denote
the polynomial of C[T11, . . . , T1n, . . . , Tjk+1, . . . , Tjn, . . . , Tn1, . . . , Tnn]

gi,α := det(T′[ηi |α]).
By identifying the elements of ∧V with their 2n-tuple of coordinates in the basis
{e∧α : α ∈ ⋃n

i=0Qi,n}, we conclude that the image of �1 is

Im�1 = {
(gi,α(t11, . . . , t1n, . . . , tjk+1, . . . , tjn, . . . tn1, . . . , tnn)) i=0,...,n

α∈Qi,n

(t11, . . . , t1n, . . . , tjk+1, . . . , tjn, . . . , tn1, . . . , tnn) ∈ Cn
2−k}.

After proving that �1 is onto, we conclude that Fj,W (V ) is parametrizable, and so,
by Corollary 3.1, Fj,W (V ) is an irreducible subset of ∧V .

Let w ∈ Fj,W (V ). Then w belongs to F(V ), and so, there exist w1, . . . , wn ∈ V
such that

w =
n∑
i=1

w1 ∧ · · · ∧ wi,

and wj ∈ W⊥.
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Then, for all i ∈ {1, . . . , n} − {j},

wi =
n∑
t=1

ait et , and wj =
n∑

t=k+1

ajt et ,

and bearing in mind Theorem 2.2, we have

w=
n∑
i=1


 ∑
α∈Qin

det(A[ηi |α])e∧α



=
n∑
i=1


 ∑
α∈Qin

gi,α(A)e
∧
α




where

A =




a11 · · · a1k a1k+1 · · · a1n
...

. . .
...

...
. . .

...

0 · · · 0 ajk+1 · · · ajn
...

. . .
...

...
. . .

...

an1 · · · ank ank+1 · · · ann



.

By definition of �1, we obtain

�1(a11, . . . , a1n, . . . , ajk+1, . . . , ajn, . . . , an1, . . . , ann) = w,

and the proof is complete. �

We end this section with the following result:

Theorem 3.4 [1]. Let x1, . . . , xk and y1, . . . , yk be families of linearly independent
vectors of the inner product vector space V. Then, x1 ∧ · · · ∧ xk is orthogonal to
y1 ∧ · · · ∧ yk if and only if

〈x1, . . . , xk〉⊥ ∩ 〈y1, . . . , yk〉 /= {0}.

4. Equality of decomposable symmetrized tensors

Finding conditions for equality of decomposable symmetrized tensors was an
open problem in the study of the symmetry class of tensors. This paper addresses
conditions for equality of immanantal decomposable tensors. If λ is a linear character
of Sm (that is, λ = ε or λ = 1), then the conditions have been known for some time
[10,12]:
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Theorem 4.1 [10,12]. Assume that x1 ∧ . . . ∧ xm /= 0. Then,

x1 ∧ · · · ∧ xm = y1 ∧ · · · ∧ ym
if and only if

(1) 〈x1, . . . , xm〉 = 〈y1, . . . , ym〉; and
(2) detM[y1, . . . , ym|x1, . . . , xm] = 1.

Theorem 4.2 [10,12]. Assume that x1 ∨ . . . ∨ xm /= 0. Then,

x1 ∨ · · · ∨ xm = y1 ∨ · · · ∨ ym
if and only there exists c1, . . . , cm ∈ C and σ ∈ Sm such that

(1) yi = cixσ(i), i = 1, . . . , m; and
(2)

∏m
i=1 ci = 1.

If λ is not a linear character of Sm, the problem of finding conditions for equality
of immanantal decomposable tensors has not been solved. However, some partial res-
ults have appeared in recent years. The main theorem proved in [4] is a necessary and
sufficient condition for equality of immanantal decomposable tensors x1 ∗ · · · ∗ xm =
y1 ∗ · · · ∗ym with the assumption that the rank partition of (x1, . . . , xm) and
(y1, . . . , ym) is λ′.

Theorem 4.3 [4]. Let (x1, . . . , xm) and (y1, . . . , ym) be families of nonzero vectors
of V with rank partition λ′. Then,

x1 ∗ · · · ∗ xm = y1 ∗ · · · ∗ ym
if and only if the following conditions hold:

(1) The set of supports of the factorizations of (x1, . . . , xm) is equal to the sets of
supports of the factorizations of (y1, . . . , ym); and

(2) If (�1, . . . ,�λ1) is the support of a factorization of (x1, . . . , xm) then

〈xi : i ∈ �j 〉 = 〈yi : i ∈ �j 〉, j = 1, . . . , λ1,

and
λ1∏
i=1

detM[y1, . . . , ym|x1, . . . , xm][�i] = 1.

A necessary condition for equality of immanantal decomposable tensors is given
in [5] without any constraint on the families of vectors (x1, . . . , xm) and (y1, . . . , ym).

Theorem 4.4 [5]. Let λ be an irreducible character of Sm, and let (x1, . . . , xm) and
(y1, . . . , ym) be families of nonzero vectors of V. If
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x1 ∗ · · · ∗ xm = y1 ∗ · · · ∗ ym /= 0,

then every support of a λ′-coloring of (x1, . . . , xm) is also a support of a λ′-coloring
of (y1, . . . , ym).

In a previous paper we state a necessary and sufficient condition for equality of
two nonzero decomposable symmetrized tensors when the symmetrizer is associated
with an irreducible character of the symmetric group of degree m with the form
(p, . . . , p).

Theorem 4.5 [7]. Let (x1, . . . , xm) and (y1, . . . , ym) be families of nonzero vec-
tors of V, and let λ = (p, . . . , p) be an irreducible character of Sm. Assume that
x1 ∗ · · · ∗ xm /= 0. Then,

x1 ∗ · · · ∗ xm = y1 ∗ · · · ∗ ym
if and only if the following conditions hold:

(1) The set of supports of the λ′-colorings of (x1, . . . , xm) is equal to the set of sup-
ports of the λ′-colorings of (y1, . . . , ym); and

(2) If (�1, . . . ,�p) is the support of a λ′-coloring of (x1, . . . , xm), then there exists
σ ∈ Sp such that

〈xi : i ∈ �j 〉 = 〈yi : i ∈ �σ(j)〉, j = 1, . . . , λ1,

and
p∏
i=1

detM[y1, . . . , ym|x1, . . . , xm][�σ(i)|�i] = 1.

The next result is the main theorem of this paper and generalizes the previous
theorem to all irreducible characters of Sm.

Theorem 4.6. Let (x1, . . . , xm) and (y1, . . . , ym) be families of nonzero vectors of
V, and let λ = (λ, . . . , λt ) be an irreducible character of Sm. Assume that x1 ∗ · · · ∗
xm /= 0. Then,

x1 ∗ · · · ∗ xm = y1 ∗ · · · ∗ ym
if and only if the following conditions hold:

(1) The set of supports of the λ′-colorings of (x1, . . . , xm) is equal to the set of
supports of the λ′-colorings of (y1, . . . , ym); and

(2) If (�1, . . . ,�λ1) is a support of a λ′-coloring of (x1, . . . , xm), then there exists
σ ∈ Sλ′ such that

〈xi : i ∈ �j 〉 = 〈yi : i ∈ �σ(j)〉, j = 1, . . . , λ1,
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and
λ1∏
i=1

detM[y1, . . . , ym|x1, . . . , xm][�σ(i)|�i] = 1.

Proof. Assume that

x1 ∗ · · · ∗ xm = y1 ∗ · · · ∗ ym.
The first condition is satisfied by Theorem 4.4, so we only have to prove the second
condition. We do this by induction. Let (�1, . . . ,�λ1) be the support of a λ′-coloring
of (x1, . . . , xm). We start the proof by showing that there exists t1 ∈ {1, . . . , λ1} such
that

〈xi : i ∈ �1〉 = 〈yi : i ∈ �t1〉.
If dimV = λ′

1, then

〈xi : i ∈ �1〉 = 〈yi : i ∈ �1〉.
Assume that dimV > λ′

1, and let {e1, . . . , en} be an orthonormal basis of V such that

〈xi : i ∈ �1〉 = 〈e1, . . . , eλ′
1
〉.

We denote by ē∧α the unit tensor

ē∧α := 1

‖e∧α ‖e
∧
α .

Let D be a strict Young tableau associated with [λ], whose ith column is �i , i =
1, . . . , λ1. Then, by Proposition 2.1 and Theorem 2.1,

E(D)(x1 ⊗ · · · ⊗ xm)= m!
λ(id)

e11(x1 ∗ · · · ∗ xm)

= m!
λ(id)

e11(y1 ∗ · · · ∗ ym) (9)

= E(D)(y1 ⊗ · · · ⊗ ym) /= 0,

where e1,1 = λ(id)
m! E(D).

Let u1, . . . , un be a family of vectors of V , and let u′
1, . . . , u

′
m be a family of

vectors taken from u1, . . . , un choosing u′
j = ui if j belongs to ith row of D.

Obviously, using (9), we get

(u′
1 ⊗ · · · ⊗ u′

m,E(D)(x1 ⊗ · · · ⊗ xm))

= (u′
1 ⊗ · · · ⊗ u′

m,E(D)(y1 ⊗ · · · ⊗ ym)), (10)

and, since T (R(D), 1) is an orthogonal projection, we get from (10) (using equalities
(4) and (5)) the equality

(T (R(D), 1)(u′
1 ⊗ · · · ⊗ u′

m), T (C(D), ε)(x1 ⊗ · · · ⊗ xm))

= (T (R(D), 1)(u′
1 ⊗ · · · ⊗ u′

m), T (C(D), ε)(y1 ⊗ · · · ⊗ ym)).
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Bearing in mind the way we have chosen the vectors u′
1, . . . , u

′
m, we can see that,

for all σ ∈ R(D), we have

P(σ)(u′
1 ⊗ · · · ⊗ u′

m) = u′
1 ⊗ · · · ⊗ u′

m.

So

T (R(D), 1)(u′
1 ⊗ · · · ⊗ u′

m) = u′
1 ⊗ · · · ⊗ u′

m,

and, since T (C(D), ε) is an orthogonal projection, we obtain

(T (C(D), ε)(u′
1 ⊗ · · · ⊗ u′

m), T (C(D), ε)(x1 ⊗ · · · ⊗ xm))

= (T (C(D), ε)(u′
1 ⊗ · · · ⊗ u′

m), T (C(D), ε)(y1 ⊗ · · · ⊗ ym)).

Then, 



 λ′

1∧
i=1

ui


 ⊗ · · · ⊗



λ′
λ1∧
i=1

ui


 ,


 ∧
i∈�1

xi


 ⊗ · · · ⊗


 ∧
i∈�λ1

xi







=




 λ′

1∧
i=1

ui


 ⊗ · · · ⊗



λ′
λ1∧
i=1

ui


 ,


 ∧
i∈�1

yi


 ⊗ · · · ⊗


 ∧
i∈�λ1

yi





 ,

that is,

λ1∏
j=1



λ′
j∧

i=1

ui,
∧
i∈�j

xi


 =

λ1∏
j=1



λ′
j∧

i=1

ui,
∧
i∈�j

yi


 . (11)

From now on we assume, for all j = 1, . . . , λ1, that∧
i∈�j

xi,
∧
i∈�j

yi ∈ ∧V,

and denote by ũ the element of ∧V ,

ũ =
n∑
i=1

u1 ∧ · · · ∧ ui.

By (6) we conclude
ũ, ∧

i∈�j

xi


 =



λ′
j∧

i=1

ui,
∧
i∈�j

xi


 , j = 1, . . . , λ1,

and, using (11), we can write

λ1∏
j=1


ũ, ∧

i∈�j

xi


 =

λ1∏
j=1


ũ, ∧

i∈�j

yi


 . (12)



112 H.F. da Cruz, J.A. Dias da Silva / Linear Algebra and its Applications 395 (2005) 95–119

Assume that

ũ ∈
〈 ∧
i∈�1

xi

〉⊥
.

Then, by (12), we have

λ1∏
j=1


ũ, ∧

i∈�j

yi


 = 0. (13)

For all j = 1, . . . , λ1 let∧
i∈�j

yi = vj + wj , (14)

where vj ∈ 〈∧i∈�1
xi〉, and wj ∈ 〈∧

i∈�1
xi

〉⊥.
Let k ∈ {1, . . . , λ1} be

k = |{t : λ′
1 = λ′

t }|.
Then �1 = {1, . . . , k}. From (13) and (14) we conclude that

(ũ, w1) . . . (ũ, wk)

λ1∏
j=k+1


ũ, ∧

i∈�j

yi


 = 0, (15)

for all ũ ∈ F(V ) ∩ 〈∧i∈�1
xi〉⊥.

Let W = 〈xi : i ∈ �1〉. As we have defined before, Fλ′
1,W
(V ) is the subset of

F(V ) of the elements

ũ =
n∑
i=1

u1 ∧ · · · ∧ ui,

such that

uλ′
1

∈ 〈xi : i ∈ �1〉⊥.
By Theorem 3.4 and by (6) we have

Fλ′
1,W
(V ) ⊆ F(V ) ∩

〈 ∧
i∈�1

xi

〉⊥
. (16)

For all j = 1, . . . , k, let Pj be the hyperplane of ∧V ,

〈wj 〉⊥,
and for all j = k + 1, . . . , λ1, let Sj be the hyperplane of ∧V ,〈 ∧

i∈�j

yi

〉⊥
.
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Using (15) and (16) we obtain

Fλ′
1,W
(V ) ⊆ P1 ∪ · · · ∪ Pk ∪ Sk+1 ∪ · · · ∪ Sλ1 .

Therefore,

Fλ′
1,W
(V )= Fλ′

1,W
(V ) ∩ (P1 ∪ · · · ∪ Pk ∪ Sk+1 ∪ · · · ∪ Sλ1)

= (Fλ′
1,W
(V ) ∩ P1) ∪ · · · ∪ (Fλ′

1,W
(V ) ∩ Pk) ∪

(Fλ′
1,W
(V ) ∩ Sk+1) ∪ · · · ∪ (Fλ′

1,W
(V ) ∩ Sλ1).

Since Fλ′
1,W
(V ) is an irreducible subset of ∧V (Theorem 3.3) and since

Fλ′
1,W
(V ) ∩ Pj , j = 1, . . . , k and Fλ′

1,W
(V ) ∩ St , t = k + 1, . . . , λ1 are closed

sets of Fλ′
1,W
(V ), in the topology induced by the Zariski topology of C2n , there

exists t ∈ {1, . . . , k} such that

Fλ′
1,W
(V ) = Fλ′

1,W
(V ) ∩ Pt ,

or there exists r ∈ {k + 1, . . . , λ1} such that

Fλ′
1,W
(V ) = Fλ′

1,W
(V ) ∩ Sr .

Assume that an r ∈ {k + 1, . . . , λ1} exists such that Fλ′
1,W
(V ) = Fλ′

1,W
(V ) ∩ Sr .

Then 
ũ, ∧

i∈�r

yi


 = 0 (17)

for all ũ ∈ Fλ′
1,W
(V ).

Since λ′
1 > λ

′
r , we can choose n vectors of V, u1, . . . , un, such that

λ′
r∧

i=1

ui =
∧
i∈�r

yi ,

and uλ′
1

∈ 〈xi : i ∈ �1〉⊥.
Let

ũ =
n∑
i=1

u1 ∧ · · · ∧ ui.

Then ũ ∈ Fλ′
1,W
(V ), and so, by (17),

ũ, ∧
i∈�r

yi


 =


 λ′

r∧
i=1

ui,
∧
i∈�r

yi




=

∧
i∈�r

yi ,
∧
i∈�r

yi




= 0.
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This is a contradiction, since
∧
i∈�r

yi /= 0. So

Fλ′
1,W
(V ) /= Fλ′

1,W
(V ) ∩ Sr ,

for all r ∈ {k + 1, . . . , λ1}. Then there exists t ∈ �1 such that

Fλ′
1,W
(V ) = Fλ′

1,W
(V ) ∩ Pt .

Therefore,

(ũ, wt ) = 0

for all ũ ∈ Fλ′
1,W
(V ).

Since wt ∈ ∧λ′
1V , we can conclude, using Theorem 4.1, that

(z, wt ) = 0

for all decomposable elements z ∈ 〈∧i∈�1
xi〉⊥, now viewed as a subspace of ∧λ′

1V .
Since wt ∈ 〈∧i∈�1

xi〉⊥ and {e∧α : α ∈ Qλ′
1,n

− {ηλ′
1
}} is an orthogonal basis for

〈∧i∈�1
xi〉⊥ formed by decomposable tensors, we conclude that

wt = 0.

Therefore,∧
i∈�t

yi = vt

where vt ∈ 〈∧i∈�1
xi〉, and then∧

i∈�t

yi = d1

∧
i∈�1

xi

where d1 = detM[y1, . . . , ym|x1, . . . , xm][�t |�1]. By applying Theorem 4.1, we
conclude that

〈xi : i ∈ �1〉 = 〈yi : i ∈ �t 〉.
Let l ∈ {2, . . . , λ1 − 1} and assume that for all j ∈ {1, . . . , l} ∩ �s there exists tj ∈
({1, . . . , λ1} − {t1, . . . , tj−1}) ∩ �s such that

〈xi : i ∈ �j 〉 = 〈yi : i ∈ �tj 〉.
Then d2, . . . , dl exists such that∧

i∈�tj

yi = dj
∧
i∈�j

xi, j = 2, . . . , l, (18)

where dj = detM[y1, . . . , ym|x1, . . . , xm][�tj |�j ], j = 2, . . . , l.
Since for every ũ ∈ F(V )

λ1∏
j=1


ũ, ∧

i∈�j

xi


 =

λ1∏
j=1


ũ, ∧

i∈�j

yi


 ,
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we obtain from (18)
ũ, ∧

i∈�1

xi


 . . .


ũ, ∧

i∈�l

xi





 λJ∏
j=l+1


ũ, ∧

i∈�j

xi




−d1 . . . dl

λ1∏
j=1

j /∈{t1,...,tl }


ũ, ∧

i∈�j

yi





 = 0. (19)

For j ∈ {l + 1, . . . , λ1} let∧
i∈�j

xi =
∑

α∈Qλ′
j
,n

ajαe
−∧
α ,

and for j ∈ {1, . . . , λ1} − {t1, . . . , tl} let∧
i∈�j

yi =
∑

α∈Qλ′
j
,n

bjαe
−∧
α .

Let z be an arbitrary element of ∧V . Then

z = x0 +

 ∑
α∈Q1,n

x1αē
∧
α


 + · · · +


 ∑
α∈Qn,n

xnαē
∧
α


 ,

and so, for j ∈ {l + 1, . . . , λ1},
z, ∧

i∈�j

xi


 =

∑
α∈Qλ′

j
,n

ajαxjα,

and for j ∈ {1, . . . , λ1} − {t1, . . . , tl},
z, ∧

i∈�j

yi


 =

∑
α∈Qλ′

j
,n

bjαxjα.

Let H be the algebraic variety of ∧V defined by the polynomial of C[Xjα : j =
1, . . . , n, α ∈ Qj,n].

λ1∏
j=l+1


 ∑
α∈Qλ′

j
,n

ajαXjα


 − d1 . . . dl

λ1∏
j=1

j /∈{t1,...,tl }


 ∑
α∈Qλ′

j
,n

bjαXjα


 ,

and let Rj be the hyperplane of ∧V ,〈 ∧
i∈�j

xi

〉⊥
.
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By using (19) we conclude

F(V ) ⊆ (R1 ∪ · · · ∪ Rl ∪ H),

so

F(V )= F(V ) ∩ (R1 ∪ · · · ∪ Rl ∪ H)

= (F(V ) ∩ R1) ∪ · · · ∪ (F(V ) ∩ Rl ) ∪ (F(V ) ∩ H).

Since ∧
i∈�j

xi /= 0,

we have
 ∧
i∈�j

xi,
∧
i∈�j

xi


 /= 0,

therefore, there exists ũ ∈ F(V ) such that
ũ, ∧

i∈�j

xi


 /= 0.

Hence,

F(V ) ∩ Rj /= F(V ), j = 1, . . . , l,

and since F(V ) is an irreducible subset of ∧V (Theorem 3.2), we conclude that

F(V ) = F(V ) ∩ H,

that is,

λ1∏
j=l+1


ũ, ∧

i∈�j

xi


 = d1 · · · dl

λ1∏
j=1

j /∈{t1,...,tl }


ũ, ∧

i∈�j

yi




for all ũ ∈ F(V ). Assume ũ is such that

ũ ∈
〈 ∧
i∈�l+1

xi

〉⊥

and l + 1 ∈ �q . As before, we can conclude that a tl+1 ∈ {1, . . . , λl} − {t1, . . . , tl}
exists such that∧

i∈�tl+1

yi = dl+1

∧
i∈�l+1

xi,

where dl+1 = detM[y1, . . . , ym|x1, . . . , xm][�tl+1 |�l+1]. Using Theorem 4.1 we ob-
tain
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〈xi : i ∈ �l+1〉 = 〈yi : i ∈ �tl+1〉.
Therefore, tl+1 ∈ �q . So, by induction, we conclude that there exists σ ∈ Sλ′ such
that

〈xi : i ∈ �j 〉 = 〈yi : i ∈ �σ(j)〉, j = 1, . . . , λ1.

Denote the integer in the box (i, j) of D by kij . Let σ ′ be the permutation of Sm
defined by

σ ′(ki,j ) = kiσ (j).

Bearing in mind (1) and (2) it is easy to see that σ ′ ∈ R(D).
Then, since P(D)P (σ ′) = P(D),

1

|C(D)|E(D)(y1 ⊗ · · · ⊗ ym)

= P(D)





 ∧
i∈�1

yi


 ⊗ · · · ⊗


 ∧
i∈�λ1

yi







= P(D)P (σ ′)





 ∧
i∈�σ(1)

yi


 ⊗ · · · ⊗


 ∧
i∈�σ(λ1)

yi







=
λ1∏
i=1

detM[y1, . . . , ym|x1, . . . , xm][�σ(i)|�i]

×P(D)




 ∧
i∈�1

xi


 ⊗ · · · ⊗


 ∧
i∈�λ1

xi







=
λ1∏
i=1

detM[y1, . . . , ym|x1, . . . , xm][�σ(i)|�i]

× 1

|C(D)|E(D)(x1 ⊗ · · · ⊗ xm),

and, since

E(D)(x1 ⊗ · · · ⊗ xm) = E(D)(y1 ⊗ · · · ⊗ ym) /= 0,

we obtain
λ1∏
i=1

detM[y1, . . . , ym|x1, . . . , xm][�σ(i)|�i] = 1.

Assume now that the conditions (1) and (2) are satisfied. We prove that

x1 ∗ · · · ∗ xm = y1 ∗ · · · ∗ ym,
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showing that

E(D)(x1 ⊗ · · · ⊗ xm) = E(D)(y1 ⊗ · · · ⊗ ym)

for all standard strict Young tableaux associated to [λ].
Let D be a standard strict Young tableaux associated to [λ]. If the columns of D

are not a support of a λ′-coloring of x1, . . . , xm, then by (1) they are not a support of
a λ′-coloring of y1, . . . , ym, and so we have

E(D)(x1 ⊗ · · · ⊗ xm) = E(D)(y1 ⊗ · · · ⊗ ym) = 0.

If the columns of D are a support of a λ′-coloring of x1, . . . , xm, using the adequate
model for the tensor product we have

1

|C(D)|E(D)(y1 ⊗ · · · ⊗ ym)

= P(D)





 ∧
i∈�1

yi


 ⊗ · · · ⊗


 ∧
i∈�λ1

yi







= P(D)P (σ ′)





 ∧
i∈�σ(1)

yi


 ⊗ · · · ⊗


 ∧
i∈�σ(λ1)

yi







=
λ1∏
i=1

detM[y1, . . . , ym|x1, . . . , xm][�σ(i)|�i]

×P(D)




 ∧
i∈�1

xi


 ⊗ · · · ⊗


 ∧
i∈�λ1

xi







=
λ1∏
i=1

detM[y1, . . . , ym|x1, . . . , xm][�σ(i)|�i]

× 1

|C(D)|E(D)(x1 ⊗ · · · ⊗ xm),

and since
λ1∏
i=1

detM[y1, . . . , ym|x1, . . . , xm][�σ(i)|�i] = 1,

we conclude that

E(D)(x1 ⊗ · · · ⊗ xm) = E(D)(y1 ⊗ · · · ⊗ ym).

Finally, bearing in mind the Proposition 2.1, we get

eii(x1 ⊗ · · · ⊗ xm) = eii(y1 ⊗ · · · ⊗ ym), i = 1, . . . , d,

where d is the number of the standard strict Young tableaux associated with [λ], and
so,
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x1 ∗ · · · ∗ xm = y1 ∗ · · · ∗ ym,
and the proof is complete. �
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