Rodrigo Fregulia De Fáveri

AVALIAÇÃO DA TRANSFERÊNCIA DE CALOR DIRETA DE CHAMAS PLANAS LAMINARES PARA UMA SUPERFÍCIE ISOTÉRMICA

Dissertação submetida ao Programa de Pós Graduação em Engenharia Química da Universidade Federal de Santa Catarina para a obtenção do Grau de Mestre em Engenharia Química.

Área de Concentração: Desenvolvimento de Processos Químicos e Biotecnológicos.

Orientador: Prof. Dr. Humberto Jorge José **Coorientador**: Prof. Dr. Amir Antônio Martins de Oliveira Jr.

> Florianópolis 2013

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

> De Faveri, Rodrigo Fregulia Avaliação da Transferência de Calor Direta de Chamas Planas Laminares para uma Superfície Isotérmica / Rodrigo Fregulia De Faveri ; orientador, Humberto Jorge José ; coorientador, Amir Antônio Martins de Oliveira Jr.. -Florianópolis, SC, 2013. 132 p. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Química. Inclui referências 1. Chama Laminar Pré-misturada. 2. Transferência de calor entre chama e superfície isotérmica. 3. Limite de extinção. 4. Gás natural. I. José, Humberto Jorge. II. Oliveira Jr., Amir Antônio Martins de . III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Engenharia Química. IV. Título.

Rodrigo Fregulia De Fáveri

AVALIAÇÃO DA TRANSFERÊNCIA DE CALOR DIRETA DE CHAMAS PLANAS LAMINARES PARA UMA SUPERFÍCIE ISOTÉRMICA

Esta Dissertação foi julgada adequada para a obtenção do Título de Mestre em Engenharia Química, Área de Concentração em *Desenvolvimento de Processos Químicos e Biotecnológicos*, e aprovada em sua forma final pelo Programa de Pós-graduação em Engenharia Química da Universidade Federal de Santa Catarina.

Florianópolis, 03 de Setembro de 2013.

Prof. Ricardo Antônio Francisco Machado, Dr. Coordenador do Programa de Pós-graduação em Engenharia Química

> Prof. Humberto Jorge José, Dr. Orientador Universidade Federal de Santa Catarina

Prof. Amir Antônio Martins de Oliveira Jr., Dr. Co-orientador Universidade Federal de Santa Catarina

Banca Examinadora:

Prof.^a Regina de Fátima Peralta Muniz Moreira, Dra. Universidade Federal de Santa Catarina

> Prof.ª Cíntia Soares, Dra. Universidade Federal de Santa Catarina

> Prof. Vicente de Paulo Nicolau, Dr. Universidade Federal de Santa Catarina

Dedico este trabalho: à minha filha Helena, que está neste momento no ventre da minha esposa; à minha esposa, Tatiane; à minha irmã Fernanda; aos meus pais, João Paulo e Leonide.

AGRADECIMENTOS

À minha amada esposa Tatiane, pela compreensão, amor, carinho, paciência e apoio em todos os momentos. Obrigado meu amor! Te amo!

Aos meus pais, João Paulo e Leonide, pela vida, pelo amor, pela educação recebida e pelo apoio, incentivando-me sempre.

À minha irmã Fernanda, pelas alegrias e por todos os momentos compartilhados.

Aos professores Humberto J. José e Amir A. M. Oliveira Jr. pela orientação, disponibilidade, paciência, confiança no meu trabalho, apoio e valorosos ensinamentos.

À Universidade Federal de Santa Catarina, aos Programas de Pós-Graduação em Engenharia Química (PosENQ) e em Engenharia Mecânica (POSMEC), e aos seus professores.

Aos colegas do LabCET Cirilo S. Bresolin, Renzo F. Figueroa Piña e Roberto W. Francisco Jr., pela amizade e boas conversas.

Ao Gabriel A. Ramos pela disponibilidade, dedicação e ajuda com os experimentos.

Aos membros da banca pela participação e colaboração.

À empresa Whirlpool Latin America por permitir e apoiar o trabalho.

Aos meus gestores da Whirlpool durante o mestrado, Marcos R. Silva, Arthur K. Shim e Emmanuel M. Vieira por acreditar em mim e apoiar esse trabalho.

À Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CAPES) pela concessão da bolsa de estudo.

E, por último, mas não menos importante, a Deus, por tudo.

"Talvez não tenha conseguido fazer o melhor, mas lutei para que o melhor fosse feito. Não sou o que deveria ser, mas Graças a Deus, não sou o que era antes."

(Martin Luther King)

RESUMO

Nesse trabalho, estudou-se experimentalmente a interação entre chamas planas laminares e uma superfície isotérmica em configuração de escoamento em plano de estagnação, avaliando a influência da distância entre elas no limite de estabilidade, no coeficiente de transferência de calor médio e na eficiência de transferência de calor, para diferentes velocidades de chama e razões de equivalência. O combustível utilizado foi o gás natural fornecido comercialmente a partir do Gasoduto Bolívia-Brasil. Esse estudo tem aplicação em situações onde há contato entre chamas laminares e superfícies sólidas. Para isso, utilizou-se um trocador de calor na forma de uma superfície circular isotérmica posicionado sobre um queimador de chama plana do tipo McKenna, com a face paralela à superfície do queimador. A superfície do trocador era mantida isotérmica por meio de um escoamento de água circulando no seu interior o qual permitira também medir a taxa de transferência de calor da chama para a superfície. A eficiência térmica foi definida como a razão entre a taxa de transferência de calor entre a chama e a superfície e a entalpia (PCS) associada ao escoamento de gás natural. Os testes foram realizados com velocidades de chama variando entre 17 e 23 cm/s e com razões de equivalência entre 0,8 e 1,0. A medida que a distância de separação entre a superfície isotérmica e a superfície do queimador era reduzida, observava-se uma transição entre a chama plana estabilizada na superfície do queimador e uma chama curva estabilizada na borda do queimador e ancorada em ambos, queimador e trocador de calor. A distância na qual essa transição ocorria permaneceu entre 1,8 mm e 2,3 mm e foi associada à distância de extinção para uma chama laminar pré-misturada em configuração de plano de estagnação. A distância de extinção decresce com o aumento da velocidade de chama e aumenta com o aumento da razão de equivalência. A taxa de transferência de calor situou-se entre 64 e 97 W/m^2 -K e a eficiência térmica entre 0.2 e 0.3 para espacamentos entre o queimador e a superfície entre 2,5 mm e 6,5 mm. As incertezas nas medições de vazões de gases e de água de resfriamento do trocador de calor são responsáveis por mais de 70% das incertezas associadas aos resultados.

Palavras-chave: Chama laminar pré-misturada. Transferência de calor entre chama e superfície isotérmica. Limite de extinção. Gás natural.

ABSTRACT

In this work, the flame stability limit and the average heat transfer coefficient between a flat flame and an isothermal stagnation plane was investigated experimentally, for different flame speeds and equivalence ratios, using natural gas as fuel. This study finds application in situations where there is contact between solid surfaces and laminar flames. The laminar flat flame was generated on the surface of a McKenna burner. The isothermal surface was a circular flat surface with diameter equal to the flame diameter, positioned over the flat flame burner facing parallel to the surface of the burner. A water flow keeps the surface isothermal and allows for the measurement of the heat transfer from the flame to the surface. A thermal efficiency is defined as the ratio of the heat transfer rate to the isothermal surface and the enthalpy flow rate (higher) carried by the natural gas flow. The tests were conducted at flame speeds varying between 17 and 23 cm/s and equivalence ratios between 0.8 and 1.0. As the surface was progressivelly approximated to the burner surface, the flame suffered a transition from a flat flame stabilized on the burner surface to a curved flame stabilized at the edge of the burner, anchored both in the isothermal and the burner surface. The distance when this transition occurred remained within 1.8 and 2.3 mm and was associated to a quenching distance for the stagnation plane flame. It decreased as the flame speed increased and increased for the higher equivalence ratios. The measured heat transfer coefficients between the flame and the surface varied from 64 to 97 W/m^2 -K and the thermal efficiency of the heat transfer to the isothermal surface varied between 0.2 and 0.3 for spacings between the burner and the surface from 2.5 mm to 6.5 mm. The measurement uncertainties associated with the gas flow rates and the water flow rate in the isothermal surface accounted for over 70 % of the uncertainties associated to the results.

Keywords: Laminar premixed flame. Impinging flame heat transfer. Extinction limit. Natural gas.

LISTA DE FIGURAS

Figura 1: Esquema de uma chama laminar estabilizada em um bico de Bunsen.
Figura 2: Esquema mostrando a estrutura e a alimentação de ar para chamas não
pré-misturada, parcialmente pré-misturada e pré-misturada
Figura 3: Distribuições de concentração de reagentes e produtos na seção
transversal de uma chama não pré-misturada
Figura 4: Difusão de calor e espécies químicas numa chama pré-misturada
laminar
Figura 5: Velocidade de chama laminar adiabática para hidrocarbonetos leves
reagindo com ar seco padrão como função da razão de equivalência, a
298 K, 0,1 MPa
Figura 6: Esquema representado um queimador de chama plana
Figura 7: Queimador McKenna fornecido por Holthuis & Associates
Figura 8: Velocidade de chama laminar para gás natural pré-misturado com ar
$(S_{\rm L})$ como função da perda de calor para o queimador $(Q_{\rm w})$, para
diferentes Φ
Figura 9: Extrapolações das velocidades de chama laminares para perda de calor
zero
Figura 10: Velocidade de chama laminar adiabática para razões de equivalência
entre 0,8 e 1,0. "Present work" refere-se a Francisco, Heil e Oliveira
(2013)
Figura 11: Variação típica da velocidade de chama laminar com a razão de
equivalência para vários sistemas ar-combustível à pressão 1 atm e
temperatura de 298K 47
Figura 12: Dependência da velocidade de chama com a temperatura inicial da
mistura (dados obtidos por vários autores para mistura metano-ar
estequiométrica em pressão de 1 atm) 48
Figura 13: Efeito da concentração de oxigênio na velocidade de chama para
diversos hidrocarbonetos à $P = 1$ atm e $T = 298$ K
Figura 14: Efeito da aeração primária sobre o diâmetro de extinção por perda de
calor de chamas de gás natural e ar em tubo cilíndrico em p e T
ambiente
Figura 15: Fluxos de calor de chamas de gás natural e oxigênio, em queimador
pré-misturado de jato circular, com posição fixa em relação à
superfície de estagnação, de latão, com diferentes tratamentos
superficiais como função da posição radial da superfície de
estagnação
Figura 16: Esquema simplificado da bancada experimental
Figura 17: Desenho esquemático do queimador McKenna
Figura 18: Fotografia de uma chama estequiométrica de gás natural estabilizada
no queimador McKenna utilizado. Para a velocidade de mistura
imposta, observa-se um leve enrugamento na borda frontal da
chama

Figura 19: Mesa suporte do queimador e suporte do trocador de calor60
Figura 20: Bancada com medidores de vazão, sistema de aquisição de dados e
computador de controle61
Figura 21: Trocador de calor (cooler) ZM-WB5, montado conforme recebido.62
Figura 22: Trocador de calor (cooler) ZM-WB5 (a) aberto (bipartido), expondo
a estrutura interna e (b) desenho da parte inferior em corte e sua
relação com a superfície do queimador (H é a distância separando as
duas superfícies)
Figura 23: Termopares instalados na superfície do trocador de calor63
Figura 24: Esquema ilustrando as posições dos termopares no trocador de calor.
Figura 25: Distribuições dos compostos C1 a C4+65
Figura 26: Distribuições dos gases inertes
Figura 27: Distribuições de PCS e densidade relativa
Figura 28: (a) Chama plana ($S_r = 29$ cm/s) e (b) chama enrugada ($S_r = 34$ cm/s)
de gás natural estabilizadas sobre o queimador plano ($\Phi = 1$)
Figura 29: (a) Visão em perspectiva do duporte do trocador de calor anexado à
hancada e (b) visão da parte inferior do suporte destacando o
parafuso micrométrico de ajuste
Figura 30: Direct shadowgraphy da (a) chama ancorada no queimador e (b)
ancorada na borda do trocador de calor e queimador
Figura 31: Fotografia direta da chama ancorada no trocador de calor
Figura 32: Fotografia direta da chama plana (a) estabilizada no queimador e (b)
estabilizada na borda do trocador de calor e queimador 71
Figura 33: Print screen da tela do software de aquisição de dados 76
Figura 34: Temperaturas estabilizadas para velocidade de chama laminar de 19
cm/s razão de equivalência de 0.8 e altura de 6.5 mm 76
Figura 35: Interface de cálculo de incertezas no EES
Figura 36: Tabela de dados do FFS 79
Figura 37: Transição de regime da chama plana para chama ancorada no
trocador de calor e queimador: (a) Chama ancorada na superfície do
queimador. (b) começo da instabilidade na borda do queimador. (c)
propagação da extinção ao longo da superfície do queimador, (d)
chama totalmente estabilizada na horda do trocador de calor e
queimador 85
Eigure 29: Historese entre II e II : (a) Chama estabilizada entre a quaimadar a
Figura 36. Instellese entre $\Pi_t \in \Pi_{th}$. (a) Channa establizada entre o queminador e
de calor a (a) a chama volta a cor plana a cocora do docador
de calor e (c) a chama vona a ser prana e ancorada apenas no
$\Gamma_{\rm control} = 20$, Imagenes shelides note métode. Direct she devenue he nore $\Gamma_{\rm control} = 17$
Figura 59: Imagens obtidas pelo metodo <i>Direct snadowgraphy</i> para $S_L = 17$
$Cm/s \in \Psi = 0,9$
Figura 40. imagens oblidas pelo inelodo <i>Direct snadowgraphy</i> para $S_L = 19$
$\text{CIII/S C} \Psi = 0.0.$
Figura 41: imagens obtidas pelo metodo Direct shadowgraphy para $S_L = 19$
cm/s e $\Psi = 0.9$

Figura 42: Imagens obtidas pelo método <i>Direct shadowgraphy</i> para $S_L = 1$	19 89
Figura 43: Imagens obtidas pelo método <i>Direct shadowgraphy</i> para $S_L = 2$	21 20
Figura 44: Imagens obtidas pelo método <i>Direct shadowgraphy</i> para $S_L = 2$ cm/s e $\Phi = 0.9$.	23 20
Figura 45: Variação de H_t e H_{th} conforme velocidade de chama laminar para = 0.9.	Ф 91
Figura 46: Variação de H_t e H_{th} conforme razão de equivalência para $S_L = 1$ cm/s	9 91
Figura 47: Taxa de transferência de calor (a) para o queimador e (b) para trocador de calor para chamas com $S_1 = 17$ cm/s e $\Phi = 0.9$	0 94
Figura 48: Taxa de transferência de calor (a) para o queimador e (b) para trocador de calor para chamas com $S_1 = 19$ cm/s e $\Phi = 1.0$	0 95
Figura 49: Taxas de transferência de calor para o trocador de calor e para queimador como função de H agrupados por $S_{L} = 19$ cm/s	0 96
Figura 50: Taxas de transferência de calor para o trocador de calor e para queimador como função de H agrupados por $\Phi = 0.9$	0 97
Figura 51: Temperaturas superficiais e de entrada e saída de água no trocador o calor para $S_{\rm I} = 19$ cm/s e $\Phi = 0.9$	1e 98
Figura 52: Temperaturas de entrada e saída de água e médias da superfície o trocador de calor para $S_t = 19$ cm/s e $\Phi = 0.9$	io 98
Figura 53: Coeficientes de transferência de calor agrupados por $S_L = 19$ cm/	′s.)0
Figura 54: Coeficientes de transferência de calor agrupados por $\Phi = 0,9,,10$)1
Figura 55: Coeficientes de transferência de calor obtidos com chama lamin plana	ar)2
Figura 56: Eficiências de transferência de calor para o trocador de calor agrupadas por $S_L = 19$ cm/s10	or)3
Figura 57: Eficiência de transferência de calor para o trocador de calor agrupad por $\Phi = 0.9$	lo)4
Figura 58: Eficiências térmicas obtidas com chama laminar plana)5

LISTA DE TABELAS

Tabela 1: Efeito da temperatura inicial da mistura reagente sobre os limites de
inflamabilidade 40
Tabela 2: Comparação da temperatura de ignição de vários gases em ar e em
oxigênio
Tabela 3: Diâmetros mínimos de extinção por perda de calor de chamas de
diferentes gases com ar em temperatura e pressão ambientes
Tabela 4: Distância de extinção entre duas placas planas paralelas para
diferentes combustíveis pré-misturados com ar, em $\Phi = 1$
Tabela 5: Incertezas dos equipamentos de medição78
Tabela 6: Incertezas propagadas nas variáveis calculadas 80
Tabela 7: Condições dos testes executados
Tabela 8: Composição média e incertezas do gás natural
Tabela 9: Médias e incertezas para poder calorífico e densidade relativa 84
Tabela 10: Valores dos coeficientes de transferência de calor máximos e
coeficientes angulares das regressões lineares
Tabela 11: Valores das eficiências de transferência de calor máximos e
coeficientes angulares das regressões lineares 105

LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

η_t	Eficiência térmica do trocador de calor
ρ_r	Massa específica dos reagentes
Φ	Razão de equivalência
a	Número de mols de metano
A_t	Área superficial do trocador de calor
b	Número de mols de etano
с	Número de mols de propano
$C_{p,a}$	Calor específico à pressão constante da água
$C_{p,i}$	Calor específico à pressão constante do componente i
d	Número de mols de butano
е	Número de mols de ar seco padrão simplificado
f	Razão entre as massas de combustível e ar alimentadas
f_s	Razão entre as massas de combustível e ar estequiométricos
Η	Altura entre o trocador de calor e o queimador
$h_i^{0,r}$	Entalpia padrão de formação do componente i nos reagentes
h_i^r	Entalpia específica do componente i nos reagentes
$h_i^{0,p}$	Entalpia padrão de formação do componente j nos produtos
h_i^p	Entalpia específica do componente j nos produtos
h^p	Entalpia específica dos produtos
h^r	Entalpia específica dos reagentes
H^{s}	Entalpia do sistema
H_t	Altura de transição
h_{tc}	Coeficiente de transferência de calor
H_{th}	Altura de transição por histerese
I_{mf}	Incerteza da grandeza f
I_{mxi}	Incerteza da variável medida x_i
k	Número de mols de dióxido de carbono
l	Número de mols de água
<i>m"</i>	Fluxo mássico
m_a	Vazão mássica de ar
m_{aq}	Vazão mássica de água para o queimador
m_{as}	Vazão mássica de ar estequiométrica
m_{at}	Vazão mássica de água para o trocador de calor
m_c	Vazão mássica de combustível
m_{cs}	Vazão mássica de combustível estequiométrica
N_p	Número de produtos
N_r	Número de reagentes
р	Pressão
PCI	Poder Calorífico Inferior

PCS	Poder Calorífico Superior
P_q	Potência do queimador
q_q	Taxa de transferência de calor retirado do queimador
q_t	Taxa de transferência de calor para o trocador de calor
$S_{L_{u}}$	Velocidade de chama laminar
$S_L^{\ \ 0}$	Velocidade de chama laminar adiabática
slph	Standard liters per hour
slpm	Standard liters per minute
T_{AD}	Temperatura de chama adiabática
T_{eq}	Temperatura média de entrada de água no queimador
T_{et}	Temperatura média de entrada de água no trocador de calor
T_{mst}	Temperatura média da superfície inf. do troc. de calor
T_p	Temperatura dos produtos
T_r	Temperatura dos reagentes
T_{sq}	Temperatura média de saída de água do queimador
T_{st}	Temperatura média de saída de água do trocador de calor
V_c	Vazão volumétrica de combustível
x_i	Fração mássica da espécie química i
x_j	Fração mássica da espécie química j

SUMÁRIO

1 INTRODUÇÃO	.27
1.1.1 Objetivo Geral	. 28
1.1.2 Objetivos Específicos	. 29
2 FUNDAMENTAÇÃO TEÓRICA E REVISÃO	
BIBLIOGRAFICA	.31 .31
2.2 CONCEITOS E DEFINIÇÕES	. 36
2.2.1 Estequiometria	. 36
2.2.2 Poder calorífico	. 37
2.2.3 Temperatura de chama adiabática	. 37
2.2.4 Velocidade de chama laminar	. 38
2.2.5 Limites de inflamabilidade	. 39
2.2.6 Temperatura de ignição de chama pré-misturada	. 40
2.3 MÉTODOS PARA MEDIÇÃO DE VELOCIDADE DE CHAMA	
LAMINAR	. 41
2.3.1 Queimador McKenna	. 42
2.4 FATORES QUE INFLUENCIAM A VELOCIDADE DE CHAMA	
LAMINAR	. 46
2.4.1 Razão de equivalência	. 46
2.4.2 Temperatura inicial dos reagentes	. 47
2.4.3 Concentração de oxigênio na mistura reagente	. 48
2.5 ESTABILIDADE E EXTINÇÃO DE CHAMA	. 49
2.6 TRANSFERÊNCIA DE CALOR ENTRE CHAMA E SUPERFÍCIE .	. 52
2.7 SÍNTESE DA REVISÃO BIBLIOGRÁFICA	. 55
3 MATERIAIS E MÉTODOS 3.1. BANCADA EXPERIMENTAL	.57 .57
3.1.1 Queimador de chama plana	. 57
3.1.2 Bancada experimental	. 59
3.1.3 Sistema de alimentação de ar, gás natural e água	. 60

3.1.4 Trocador de calor 61
3.1.5 Medição de temperaturas
3.1.6 Equipamentos de iluminação e captura de imagem
3.1.7 Propriedades do gás natural65
3.2 MÉTODO DIRECT SHADOWGRAPHY 67
3.3 CARACTERIZAÇÃO DA BANCADA EXPERIMENTAL 67
3.4 DEFINIÇÕES DAS ALTURAS DE TRANSIÇÃO
3.5 TAXA DE TRANSFERÊNCIA DE CALOR
3.5.1 Transferência de calor para o queimador
3.5.2 Transferência de calor para o trocador de calor
3.5.3 Eficiência térmica do trocador de calor
3.5.4 Coeficiente de transferência de calor
3.6 PROCEDIMENTO DE TESTE
3.7 ANÁLISE DE PROPAGAÇÃO DE ERROS
3.8 DEFINIÇÃO DOS TESTES 80
4 RESULTADOS E DISCUSSÃO
4.1.1 Composição química
4.1.2 Poder calorífico superior e densidade relativa
4.2 REGIMES DE OPERAÇÃO DO QUEIMADOR
4.2.1 Observação da transição entre os regimes de chama
4.2.2 Espaçamento de transição entre o queimador e o trocador de calor90
4.3 TRANSFERÊNCIA DE CALOR ENTRE CHAMA E SUPERFÍCIE 92
4.3.1 Taxas de transferência de calor
4.3.2 Temperaturas superficiais no trocador de calor
4.3.3 Coeficiente de transferência de calor médio
4.3.4 Eficiência de transferência de calor102
4.4 CONSIDERAÇÕES FINAIS 106
5 CONCLUSÃO

APÊNDICE A – Algoritmo ees para cálculos de transferência de	
calor	23
APÊNDICE B – LISTAGEM DOS DADOS UTILIZADOS1	30

1 INTRODUÇÃO

Legislações ambientais cada vez mais restritivas e a constante busca por aumento de eficiência fazem com que o conhecimento mais detalhado dos mecanismos físicos e químicos da propagação de chamas e da interação destas com superfícies sólidas sejam de fundamental importância para as aplicações tecnológicas.

A combustão, num sentido amplo, pode ser entendida como um conjunto de reações químicas exotérmicas que se desenvolvem de forma relativamente rápida, com ou sem manifestações visíveis. Por sua vez, uma chama de deflagração pode ser definida, de uma forma mais restrita, como reações de combustão que se propagam com velocidades inferiores à velocidade do som, acompanhadas normalmente de radiações visíveis.

Em muitos processos de combustão, o combustível e o oxidante disponíveis para a combustão (normalmente o oxigênio existente no ar atmosférico) estão misturados molecularmente antes de sofrerem combustão como, por exemplo, em motores automotivos de ignição por centelha. Nesses casos, após ignição, forma-se uma chama prémisturada. Em outras aplicações, como em queimadores de fogões domésticos, parte do oxidante necessário para completar as reações de combustão não vem pré-misturado ao combustível, mas é originado do ambiente externo à chama. Essas chamas são denominadas de chamas parcialmente pré-misturadas. Nos processos onde o combustível e o oxidante disponíveis à combustão não são previamente misturados, ocorrem chamas não pré-misturadas (ou "de difusão"), que tem como exemplo clássico, uma vela. Nas chamas parcialmente pré-misturadas, normalmente forma-se uma chama pré-misturada rica envolvida por um envolope onde se desenvolve uma chama não pré-misturada.

As chamas de interesse nesse trabalho são as chamas prémisturadas com características de ondas de deflagração (Turns, 2010). A forma e a estrutura das chamas pré-misturadas e, por consequência, os mecanismos de liberação de calor, dependem da cinética das reações químicas envolvidas, da aerodinâmica do sistema, da presença e geometria de superfícies sólidas, da intensidade de turbulência no fluido, entre outros parâmetros. A velocidade com que os reagentes são consumidos em uma chama pré-misturada laminar é denominada de velocidade de chama laminar e é um importante parâmetro físicoquímico característico da combustão.

A interação de uma chama laminar com uma superfície sólida resulta em uma taxa de transferência de calor da chama para a

superfície. Essa transferência de calor pode afetar somente a temperatura na zona de pós-combustão da chama, onde as reações de combustão já se completaram. Esse é um efeito desejado em aplicações tais como a cocção de alimentos. Por outro lado, transferências de calor mais intensas podem afetar as temperaturas na zona de reação da chama, resultando em redução da velocidade das reações finalizadoras da cadeia, causando formação de poluentes, como o monóxido de carbono, e, possivelmente, em casos mais severos, extinção da chama.

Neste trabalho analisa-se experimentalmente a propagação de chamas laminares planas de gás natural próximas a superfícies sólidas isotérmicas em uma configuração de plano de estagnação. Em especial, verifica-se o comportamento do limite de extinção e da transferência de calor da chama para a superfície para diferentes razões de equivalência e velocidades de chama. Para isso, utiliza-se uma superfície plana circular isotérmica (um trocador de calor), posicionada sobre um queimador de chama plana (queimador McKenna), com a face paralela à superfície do queimador. A distância entre a superfície isotérmica e a superfície do queimador é variada. Observa-se opticamente a transição entre a chama estabilizada na superfície e estabilizada na borda do queimador e mede-se a taxa de transferência de calor entre a chama e a superfície.

Utiliza-se como combustível o gás natural fornecido comercialmente na região da grande Florianópolis pela Companhia de Gás de Santa Catarina a partir do gasoduto Bolívia-Brasil (GASBOL). O gás natural é um combustível automotivo, denominado GNV, assim como é utilizado em aplicações residenciais (aquecimento e cocção), comerciais (aquecimento, cocção, geração de vapor) e industriais (geração de vapor, secagem, cocção, cura de resinas, termoformagem de plásticos, processamento de tecidos, entre outras).

1.1 OBJETIVOS

1.1.1 Objetivo Geral

Determinar o limite de estabilidade, o coeficiente de transferência de calor médio e a eficiência de transferência de calor de chamas planas laminares para uma superfície isotérmica em configuração de plano de estagnação.

1.1.2 Objetivos Específicos

Avaliar a influência da distância entre a superfície do trocador de calor e a do queimador sobre o limite de extinção da chama conforme velocidade de chama e razão de equivalência.

Conforme a distância entre a superfície do trocador de calor e a do queimador, para diferentes velocidades de chama e razões de equivalência, determinar:

- A taxa de transferência de calor da chama para uma superfície plana isotérmica;
- O coeficiente de transferência de calor médio entre a superfície do trocador de calor e a chama;
- A eficiência térmica do trocador de calor.

2 FUNDAMENTAÇÃO TEÓRICA E REVISÃO BIBLIOGRÁFICA

2.1 CLASSIFICAÇÃO E ESTRUTURA DE CHAMAS

Antigamente, antes da aplicação do queimador do tipo bico de Bunsen em equipamentos de aquecimento e iluminação, eram utilizadas chamas formadas pela combustão de gases injetados no ambiente a partir de orifícios injetores, sem a mistura prévia com ar (Lewis e Von Elbe, 1968). Essas chamas eram luminosas, porém suas temperaturas não eram muito altas e apresentavam tendência de depositar fuligem sobre as superfícies frias com as quais entravam em contato.

A chama obtida com o bico de Bunsen constituiu uma novidade importante, porque era clara, capaz de fornecer uma quantidade de calor intensa e temperaturas mais altas e ficava livre de fuligem, não escurecendo as paredes. O bico de Bunsen se baseia no princípio de misturar ar com o gás combustível antes da queima, aproveitando a quantidade de movimento linear do gás após um orifício injetor que precede a zona onde a chama se produz. Esse mecanismo forma a base de praticamente todos os projetos atuais de queimadores atmosféricos para aplicações domésticas. Um esquema de uma chama laminar estabilizada em um bico de Bunsen pode ser visto na Figura 1.

Figura 1: Esquema de uma chama laminar estabilizada em um bico de Bunsen.

A zona escura designada na Figura 1 representa a mistura de gases não queimados antes de entrar na região da zona luminosa. A região onde a combustão ocorre (zona luminosa) é normalmente uma frente muito fina quando comparada com as dimensões da chama, possuindo uma espessura típica da ordem de décimo de milímetro. Especificamente, a zona luminosa corresponde à zona de reação, onde ocorre a sequência de reações em cadeia típicas da combustão de hidrocarbonetos e onde se atinge altas temperaturas pela liberação de energia térmica do combustível. A cor da zona luminosa muda conforme o combustível utilizado e com a relação ar/combustível. Normalmente, quando se utilizam hidrocarbonetos leves como combustível, para misturas pobres em combustível (condição na qual é fornecido oxidante em excesso), a radiação é emitida no comprimento de onda correspondente a cor violeta devido à formação de radicais excitados CH. Quando a mistura é rica em combustível (quando há excesso de combustível na mistura reagente), a radiação é emitida em bandas de cor verde devido a moléculas de C_2 excitadas. As altas temperaturas dos gases queimados usualmente mostram uma chama avermelhada, que surge da radiação do CO_2 e do vapor de água. Em misturas ricas em combustível, uma intensa radiação de cor amarela pode aparecer e é atribuível à presenca de partículas sólidas de carbono formadoras de fuligem (Glassman e Yetter, 2008).

Em um bico de Bunsen, conforme citado anteriormente, pode-se obter diferentes misturas de combustível com ar primário dependendo da abertura que provê o acesso de ar próximo à saída do injetor de gás. As chamas formadas nas diferentes condições de admissão de ar primário podem ser classificadas, conforme o estado dos reagentes na direção principal do escoamento antes da queima, como chamas prémisturadas, parcialmente pré-misturadas e não pré-misturadas (chamadas historicamente de "chamas de difusão"). Nas chamas prémisturadas, se assume que os reagentes necessários à combustão provêm de um processo de mistura molecular prévia, antes de entrar na chama. No caso das chamas não pré-misturadas, existe um processo de mistura local dos reagentes, acontecendo na própria zona de reação via difusão de massa dos reagentes na zona de reação (daí o uso histórico da expressão "chama de difusão". Esse nome está caindo em desuso, porque a difusão de calor e massa é um mecanismo presente e importante para a propagação mesmo das chamas pré-misturadas). Nas chamas parcialmente pré-misturadas, somente parte da quantidade do ar estequiométrico é adicionada com o combustível, o chamado ar primário, enquanto que a parte restante é obtida pela chama a partir do

ambiente externo, o chamado ar secundário. A Figura 2 ilustra os três tipos de chamas descritos acima.

Fonte: Adaptado de Jones (1989).

As chamas não pré-misturadas e pré-misturadas apresentam diferentes estruturas internas, caracterizadas por diferentes distribuições de concentrações de espécies químicas e temperatura. Na Figura 3 mostram-se as distribuições de concentração de reagentes e produtos na seção transversal de uma chama não pré-misturada em regime laminar. A distribuição de temperatura tem um comportamento similar à distribuição dos produtos de combustão.

Figura 3: Distribuições de concentração de reagentes e produtos na seção transversal de uma chama não pré-misturada.

Fonte: Cancino (2004).

A zona de reação de uma chama não pré-misturada é geralmente mais larga que a de uma chama pré-misturada e deve ser entendida como uma região de transição entre um ambiente constituído pelo combustível puro e outro formado pelo oxidante puro (ou em mistura com outras espécies químicas, como no caso do ar). A zona de reação gera produtos de combustão que sofrem difusão tanto em direção do oxidante como do combustível, diluindo os dois reagentes. Na região onde há proporções estequiométricas de combustível e oxidante se tem a máxima temperatura.

A Figura 4 apresenta um esquema das distribuições de temperatura e concentração de espécies químicas em uma chama prémisturada. Nesta figura, o gradiente na cor vermelha representa a difusão de calor e espécies químicas da zona de reação para a montante e jusante da chama. A difusão de calor à montante da chama gera um pré-aquecimento da mistura que escoa na direção da chama. É essa taxa de difusão de calor que vai criar condições de propagação da chama, tornando-a autosustentada. Portanto, diferentemente das chamas não pré-misturadas, as chamas pré-misturadas são caracterizadas por uma velocidade de consumo dos reagentes na frente de chama, denominada de velocidade de chama laminar. Esta é uma característica físico-química da combustão da mistura reagente em determinada razão de equivalência, temperatura e pressão.

Figura 4: Difusão de calor e espécies químicas numa chama pré-misturada laminar.

Fonte: Cancino (2004).

Nas chamas parcialmente pré-misturadas, existe a presença de uma chama pré-misturada rica queimando internamente à região onde se forma uma chama não pré-misturada entre os produtos de combustão da primeira e o ambiente contendo o oxidante. Essas chamas são caracterizadas por uma velocidade de chama laminar determinada pela combustão da parcela de ar primário e um comportamento de difusão do ar secundário determinando o consumo final do combustível. Quando o acesso de ar secundário é restringido pela presença de outras chamas ou pela presença de uma superfície sólida, pode não haver combustão completa do combustível, gerando produtos intermediários, como o monóxido de carbono e até mesmo particulados (fuligem).

Dependendo da velocidade e do nível de turbulência do escoamento, as chamas podem ocorrer de forma turbulenta. A presença de escoamento turbulento tende a diminuir a diferença entre as chamas pré-misturadas e não pré-misturadas, pois o campo de escoamento tridimensional e transiente do combustível nas chamas não pré-misturadas de alta turbulência pode fornecer uma mistura parcial com o ar circundante, antes que o gás chegue à zona de reação, gerando um comportamento similar ao das chamas pré-misturadas. As chamas turbulentas não serão analisadas nesse trabalho.

Ainda, as chamas de interesse nesse trabalho são classificadas como ondas de deflagração. A velocidade de propagação das ondas de deflagração é relativamente baixa, sendo da ordem de 10 a 55 cm/s, para hidrocarbonetos leves, e de até 325 cm/s no caso de hidrogênio. Nessas condições, a pressão se mantém praticamente constante ao longo da direção normal à chama, podendo ser caracterizada como uma combustão a pressão constante (Turns, 2000; Glassman, 2008). As ondas de detonação, ao contrário, são regiões de reação química acopladas com o deslocamento de ondas de choque. A energia necessária para manutenção da onda de choque se origina na própria combustão. As velocidades de propagação de ondas de detonação são elevadíssimas, variando entre 1.500 e 6.000 vezes as velocidades das ondas de deflagração. Nas ondas de detonação existem grandes variações de pressão entre os reagentes e os produtos de combustão. Essas não são foco desse trabalho. Esse trabalho se restringe às ondas de deflagração na forma de chamas laminares pré-misturadas.

2.2 CONCEITOS E DEFINIÇÕES

Para facilitar a apresentação dos resultados, nesta seção serão fornecidos os principais conceitos e definições utilizados.

2.2.1 Estequiometria

A reação de combustão global entre hidrocarbonetos leves saturados presentes no gás natural com ar atmosférico seco padrão, tendo como resultado final produtos saturados de combustão, considerando mistura pobre (com excesso de ar), pode ser expressa como:

$$aCH_4 + bC_2H_6 + cC_3H_8 + dC_4H_{10} + \frac{e}{\phi}(O_2 + 3,76N_2) \xrightarrow{\cdot} kCO_2 + lH_2O + \frac{e}{\phi}3,76 \cdot N_2 + (\frac{e}{\phi} - 1)O_2$$
(1)

As variáveis *a*, *b*, *c*, *d*, *e*, *k*, *l* representam os números de mols dos componentes CH_4 , C_2H_6 , C_3H_8 , C_4H_{10} , ar seco padrão, CO_2 e H_2O , respectivamente.

A razão de equivalência, representada pela letra grega Φ , indica a relação entre a quantidade de combustível e ar presente nos reagentes em relação à quantidade de combustível e ar em uma mistura estequiométrica desses componentes, ou seja,

$$\Phi = \frac{f}{f_s} \tag{2}$$

onde *f* representa a fração da massa de combustível e a massa de ar seco da mistura:

$$f = \frac{m_c}{m_a} \tag{3}$$

e f_s representa a fração da massa de combustível e a massa de ar seco da mistura avaliadas na condição estequiométrica, ou seja:

$$f_s = \frac{\dot{m}_{cs}}{\dot{m}_{as}},\tag{4}$$
sendo $\dot{m}_c \in \dot{m}_a$ as vazões mássicas de combustível e ar respectivamente, nas condições do ensaio, e $\dot{m}_{cs} \in \dot{m}_{as}$ as vazões mássicas de combustível e ar na condição estequiométrica.

Sendo assim, se Φ é igual a unidade a mistura reagente é estequiométrica. Porém, se Φ é maior que a unidade, a mistura é considerada rica (com excesso de combustível). Se Φ é menor que a unidade, a mistura é pobre (com excesso de ar).

2.2.2 Poder calorífico

O poder calorífico de um combustível é definido como a quantidade de energia que é liberada na combustão estequimétrica completa com ar seco padrão à temperatura de 298 K e pressão de 1 atm, quando os produtos da reação são saturados e tem a temperatura final de 298 K e pressão total de 1 atm. O poder calorífico pode ser expresso por unidade de massa, volume ou molar de combustível.

Quando há formação de água nos produtos de combustão, esta pode ser assumida como vapor ou líquido. Sendo assim, duas classificações são possíveis: Poder Calorífico Superior (PCS) se a água é assumida como líquida e Poder Calorífico Inferior (PCI) se a água é assumida como vapor. Portanto, como se considera o calor latente de vaporização da água no cálculo do PCS, este é sempre maior que o PCI.

2.2.3 Temperatura de chama adiabática

Considerando um sistema fechado, adiabático, à pressão constante, a Primeira Lei da Termodinâmica prevê que $dH^s = 0$. Portanto, a entalpia específica dos gases após a combustão (indicado pelo índice "p" – produtos) e dos gases não queimados (índice "r" – reagentes) é a mesma. Dessa forma,

$$h^{r} = \sum_{i=1}^{Nr} x_{i}^{r} h_{i}^{r} = \sum_{j=1}^{Np} x_{j}^{p} h_{j}^{p} = h^{p},$$
(5)

onde x_i é a fração mássica do componente *i* na mistura e h_i é a entalpia específica do componente *i* na temperatura e pressão do sistema.

A entalpia específica do componente *i*, a uma temperatura arbitrária T_1 e pressão constante é definida por:

$$h_i^r = h_i^{0,r} + \int_{298}^{T_1} c_{p,i} dT,$$
(6)

onde $h_i^{0,r}$ é a entalpia padrão de formação do componente *i* a temperatura de 298 K.

Com isso, é possível afirmar que:

$$\sum_{i=1}^{Nr} h_i^{0,r} + \sum_{i=1}^{Nr} \int_{298}^{T_r} c_{p,i} dT = \sum_{j=1}^{Np} h_j^{0,p} + \sum_{j=1}^{Np} \int_{298}^{T_p} c_{p,j} dT$$
(7)

Dessa forma, com os reagentes na temperatura T_r é possível calcular a temperatura dos produtos T_p .

Como o sistema foi considerado fechado e adiabático, a temperatura T_p é máxima e é denominada Temperatura de Chama Adiabática, representada por T_{AD} .

2.2.4 Velocidade de chama laminar

Um parâmetro importante na caracterização de chamas prémisturadas é a velocidade de chama, e, como discutido detalhadamente por Poinsot e Veynante (2001), existem várias formas de defini-la. A forma utilizada nesse trabalho corresponde à chamada velocidade de consumo de reagentes, ou seja, a velocidade de chama laminar é a velocidade do escoamento da mistura reagente antes de atingir a região da chama em uma direção normal à frente de chama.

Denominado de $\rho_r(T_r, p)$ a massa específica da mistura reagente nas condições de temperatura inicial dos reagentes (T_r) e pressão (p), o fluxo mássico de mistura reagente consumida pela chama é

$$m'' = \rho_r S_L \tag{8}$$

onde S_L é a velocidade de chama laminar.

A velocidade de propagação da chama é função do combustível, da composição da mistura reagente combustível/oxidante (expressa pela razão de equivalência Φ), da temperatura inicial da mistura (T_r), da pressão (p) e das características físicas do queimador, que determinam, por exemplo, a taxa de transferência de calor da chama para o queimador e para o ambiente externo. Quando a chama pode ser considerada adiabática, define-se a velocidade de chama laminar adiabática, S_L^o . A Figura 5 mostra os valores típicos de velocidade de chama laminar adiabática medidos para misturas de hidrocarbonetos com ar, a 298 K, 0,1 MPa, em função da razão de equivalência Φ . As linhas representam valores calculados utilizando mecanismos detalhados de cinética química.

Fonte: Adaptado de De Goey e Bosschaart (2004).

Observa-se que a velocidade de chama laminar é máxima para valores de razão de equivalência próximos à estequiometria (na verdade, ligeiramente ricos). Isso ocorre porque nessas condições a temperatura de chama adiabática é máxima, resultando no maior pré-aquecimento da mistura reagente a montante da chama e, portanto, maior velocidade.

2.2.5 Limites de inflamabilidade

Uma mistura de gás é considerada inflamável se uma chama pode se auto-propagar através dessa mistura. Os limites de inflamabilidade de um combustível gasoso definem a mínima e a máxima concentração do gás em mistura com determinado oxidante entre as quais uma chama pode propagar-se. Quando iniciada por uma fonte de ignição externa (uma chama piloto ou uma faísca) em uma mistura com razão de equivalência abaixo do limite mínimo ou acima do limite máximo a chama sofre extinção.

Alguns fatores influenciam os limites de inflamabilidade, como a temperatura inicial, a pressão e a natureza dos diluentes presentes na mistura. A elevação da temperatura inicial da mistura reagente amplia os limites de inflamabilidade, ou seja, o limite inferior se reduz e o limite superior se eleva. Isso pode ser visto na Tabela 1, obtida para gases combustíveis reagindo com ar à pressão atmosférica:

Temperatura inicial do gás (°C)	Metano	Hidrogênio	Monóxido de carbono	Etileno
17	6,3 – 12,9	9,4 - 71,5	16,3 - 70,0	3,45 - 13,7
100	5,95 - 13,7	8,8-73,5	14,8 - 71,5	3,20 - 14,1
200	5,50 - 14,6	7,9 - 76,0	13,5 - 73,0	2,95 - 14,9
300	5,10-15,5	7,1-79,0	12,4 - 75,0	2,75 - 17,9
400	4,80 - 16,6	6,3 - 81,5	11,4 – 77,5	2,50

Tabela 1: Efeito da temperatura inicial da mistura reagente sobre os limites de inflamabilidade.

Fonte: Adaptado de American Gas Association (1965).

Os valores dos limites não variam de forma significativa para pequenas variações de pressão ao redor de 0,1 MPa. Já para grandes variações de pressão, em pressões inferiores à atmosférica, a tendência geral é de contração da faixa de inflamabilidade, com elevação do limite inferior e redução do limite superior.

2.2.6 Temperatura de ignição de chama pré-misturada

Por definição, é a menor temperatura na qual uma parcela de mistura ar-combustível deve ser aquecida de forma que o calor gerado pela combustão seja superior ao calor dissipado para a vizinhança, dando à mistura condições de se auto-propagar. Abaixo desta temperatura a combustão só ocorrerá continuamente mediante o fornecimento ininterrupto de calor externo.

A temperatura de ignição para um determinado combustível depende da razão de equivalência, temperatura, pressão, presença de escoamento e de gradientes de temperatura.

A Tabela 2 mostra a temperatura de ignição em pressão atmosférica de alguns combustíveis utilizando como comburentes ar atmosférico e oxigênio puro.

Tabela 2: Comparação da temperatura de ignição de vários gases em ar e em oxigênio

Substância	em ar (°C)	em oxigênio (°C)
Monóxido de carbono	644 a 658	637 a 658
Metano	705	
Etano	520 a 630	520 a 630
Propano	466	490 a 570
i-butano	462	
n-butano	405	
n-pentano	309	
iso-pentano	420	
Eteno	542 a 548	500 a 519
Acetileno	406 a 440	416 a 440

Fonte: Adaptado de American Gas Association (1965).

Apesar da grande variação mostrada na Tabela 2, a temperatura de ignição é um importante parâmetro de medida da tendência de um objeto quente provocar a ignição de uma mistura ar-combustível. Portanto, é uma base técnica para considerações de segurança.

2.3 MÉTODOS PARA MEDIÇÃO DE VELOCIDADE DE CHAMA LAMINAR

Os métodos experimentais de medição de velocidade de chama são projetados para fornecer resultados diretos e, em alguns casos, validar as simulações e modelos preditivos. Nestes, pode-se utilizar tanto configurações com chamas estacionárias como métodos que empregam chamas que se deslocam em relação a um ponto fixo do laboratório.

A medição utilizando chamas estacionárias se baseia na estabilização de uma chama em um queimador. Normalmente utiliza-se um bico de Bunsen (chama cônica), um queimador plano (chama plana) ou queimadores de jatos opostos (chamas em plano de estagnação). Esses métodos requerem a realização de condições de regime permanente e se baseiam na medição da componente da velocidade da mistura reagente normal à frente de chama.

Para o queimador de chama plana usado nesse trabalho, considerando uma chama laminar, localmente plana, estacionária em

relação a um referencial fixo no laboratório, a velocidade de chama pode ser calculada como o quociente entre a vazão volumétrica de mistura à montante e a área total da chama. No entanto, apesar de possuir definição teórica simples. nas medicões em laboratório particularmente difícil alcançar condições de chama adiabática. Outra dificuldade consiste em identificar a posição das bordas da chama e medir a sua área com precisão. A Figura 6 mostra os esquemas de duas realizações de queimadores planos. Uma forma de tentar definir com precisão as bordas da chama é escoar um gás inerte ao redor do queimador, como mostrado no esquema da Figura 6(b).

Figura 6: Esquema representado um queimador de chama plana.

Fonte: Adaptado de Glassman e Yetter (2008).

Apesar da maior parte dos erros envolvidos nesse método estarem relacionados à transmissão de calor entre a chama e o queimador, medir com grande precisão a vazão volumétrica também é muito importante e pode levar a grandes erros, caso os medidores não estejam devidamente calibrados e adequadamente dimensionados.

Nesse trabalho será utilizado um queimador plano com construção semelhante ao mostrado na Figura 6(b), o queimador McKenna. A cortina de gás inerte é utilizada normalmente quando a chama é rica para prevenir a difusão de oxigênio atmosférico para a zona de reação. Porém, quando utilizada, ela causa distorções nas imagens feitas pelo método *direct shadowgraphy*. No presente trabalho serão avaliadas somente chamas pré-misturadas, portanto a cortina de gás inerte não será utilizada.

2.3.1 Queimador McKenna

Um dos queimadores amplamente utilizados em estudos de chamas laminares é o queimador McKenna, mostrado na Figura 7. Esse queimador tem sido amplamente utilizado, a mais de 25 anos, como um

padrão para estudos de combustão. Por exemplo, ele é usado como um dos padrões de calibração de métodos de determinação de fuligem por incandescência a laser (LII) (Axelsson, Colin e Bengtsson, 2000; Krüger et al., 2005; Schulz et al., 2006), para estudos de cinética química de combustão e de formação de precursores de fuligem (Iuliis et al., 2008; Law, 2006) e em medição de velocidade de chama laminar (Francisco, Oliveira e Vicentim, 2013; Francisco, Heil e Oliveira, 2013).

Figura 7: Queimador McKenna fornecido por Holthuis & Associates.

Fonte: Adaptado de Holthuis & Associates, http://www.flatflame.com

Na Figura 7, o disco central com 60 mm de diâmetro na parte superior do queimador é uma placa porosa metálica sinterizada através da qual escoa a mistura reagente e sobre a qual a chama é estabilizada a uma pequena distância da superfície. O anel ao redor do disco central é também poroso, feito de metal sinterizado e, através desse anel, pode-se escoar uma cortina de gás inerte, na forma representada no esquema da Figura 6(b). A placa porosa central é munida de um trocador de calor formado por um tubo metálico enrolado na forma de uma espiral por onde escoa água de refrigeração. A função do trocador de calor é regular e medir a perda de calor da chama para a placa porosa. O método experimental de medição de velocidade de chama laminar consiste em medir valores de velocidade de chama laminar em função da perda de calor para a placa porosa. Então, extrapolando o comportamento obtido para perda de calor nula, obtém-se a velocidade de chama laminar adiabática.

Francisco, Heil e Oliveira (2013) utilizaram o queimador McKenna para medir a velocidade de chama laminar de gás natural (o mesmo usado nesse trabalho, cuja composição será apresentada no Capítulo 3). Nesse trabalho eles estabilizaram chamas planas laminares em diferentes condições de velocidade de chama laminar e razão de equivalência e mediram, em cada condição, a transferência de calor para o sistema de refrigeração do queimador. A extrapolação dos dados de velocidade de chama *versus* transferência de calor, dada uma razão de equivalência, para a condição de transferência de calor nula resulta na velocidade de chama laminar adiabática. Esses resultados foram então comparados com a literatura e com simulações utilizando o mecanismo GRIMECH 3.0.

A Figura 8 mostra os valores de chama laminar medidos por Francisco, Heil e Oliveira (2013) para misturas de gás natural e ar para diferentes valores de perda de calor para a placa porosa, na ausência de escoamento de gás inerte como cortina. A Figura 9 mostra a extrapolação dos valores medidos para fluxo de calor nulo, obtendo a velocidade de chama laminar adiabática (S_L^{0}) . Finalmente, a Figura 10 mostra a comparação dos resultados medidos por Francisco, Heil e Oliveira (2013) com as medições de De Goey et al. (2004), Wang et al. (2012) e Mazas et al. (2011) e com simulações utilizando o mecanismos cinético detalhado GRIMech 3.0.

Francisco, Heil e Oliveira (2013) reportam que o queimador utilizado nesse trabalho estabiliza chamas planas no intervalo de 17 a 21 cm/s para razões de equivalência entre 0,8 e 1,0, conforme as regiões destacadas com linhas tracejadas no gráfico da Figura 8. Em velocidades de chama maiores, a superfície da chama apresenta instabilidades superficiais, cuja amplitude cresce à medida que a velocidade aumenta e que, eventualmente, levarão à turbulência. Na presença dessas instabilidades, a chama se torna rugosa e deixa de ser plana. Para valores de velocidade muito baixos, a chama sofre extinção a partir das bordas do queimador.

Figura 8: Velocidade de chama laminar para gás natural pré-misturado com ar (S_L) como função da perda de calor para o queimador (Q_w) , para diferentes Φ .

Fonte: Adaptado de Francisco, Heil e Oliveira (2013).

Figura 9: Extrapolações das velocidades de chama laminares para perda de calor zero.

Fonte: Adaptado de Francisco, Heil e Oliveira (2013).

Figura 10: Velocidade de chama laminar adiabática para razões de equivalência entre 0,8 e 1,0. "Present work" refere-se a Francisco, Heil e Oliveira (2013).

Fonte: Adaptado de Francisco, Heil e Oliveira (2013).

Nesse trabalho, apesar de se utilizar um queimador apropriado, não serão feitas medições de velocidade de chama laminar adiabática. Os resultados medidos por Francisco, Heil e Oliveira (2013) e mostrados acima serão usados para determinar a faixa de aplicação de velocidades de chama e de razões de equivalência possíveis para esse queimador.

2.4 FATORES QUE INFLUENCIAM A VELOCIDADE DE CHAMA LAMINAR

Nessa seção revisam-se os principais fatores que influenciam a velocidade de chama laminar e que podem influenciar os resultados nesse trabalho.

2.4.1 Razão de equivalência

Conforme já discutido anteriormente, o pico da velocidade de chama ocorre próximo ao ponto estequiométrico, um pouco deslocado para o lado rico em combustível (do mesmo modo que a temperatura adiabática de chama, que é máxima temperatura obtida pelos produtos da combustão em um processo adiabático). Os valores de velocidade para chama laminar reportados na literatura, para a maioria dos hidrocarbonetos, variam conforme a técnica de medição utilizada, mas a maioria dos resultados, no entanto, são internamente consistentes (Glassman e Yetter, 2008).

Na Figura 11 mostram-se alguns resultados típicos de velocidade de chama laminar em função da razão de equivalência.

Figura 11: Variação típica da velocidade de chama laminar com a razão de equivalência para vários sistemas ar-combustível à pressão 1 atm e temperatura de 298K.

Fonte: Glassman e Yetter (2008).

O gás natural utilizado nesse trabalho é uma mistura de metano (majoritário), etano, propano e butano. Portanto, espera-se que a velocidade de chama laminar para as razões de equivalência entre 0,8 e 1,0 situe-se entre 20 e 50 cm/s.

2.4.2 Temperatura inicial dos reagentes

A velocidade das reações de combustão depende de constantes cinéticas normalmente modeladas por relações de Arrhenius. Portanto, o valor das constantes cinéticas é fortemente sensível à temperatura, fazendo com que o efeito de temperatura seja dominante na velocidade de chama. Há também o efeito da temperatura sobre a difusividade térmica, que em misturas gasosas varia com a temperatura na potência de 1,75 (Glassman, 2008).

A Figura 12 mostra a influência da temperatura inicial da mistura metano-ar estequiométrica, à pressão de 1 atm, na velocidade de chama medida por diversos autores (Turns, 2000). É importante notar que a escala da velocidade de chama (ordenada do gráfico) é logarítmica,

reforçando a teoria da dependência exponencial da velocidade de chama com a temperatura.

Figura 12: Dependência da velocidade de chama com a temperatura inicial da mistura (dados obtidos por vários autores para mistura metano-ar estequiométrica em pressão de 1 atm).

Fonte: Adaptado de Turns (2000).

2.4.3 Concentração de oxigênio na mistura reagente

Na Figura 13 mostra-se a velocidade da chama para alguns combustíveis em várias misturas de oxigênio com nitrogênio. É possível verificar que, para todos os casos, há um grande aumento da velocidade de chama com o aumento da quantidade de oxigênio na mistura. Para os hidrocarbonetos, esse grande aumento da velocidade de chama pode ser explicado por duas razões: maior temperatura da chama e menor diluição devido a menor quantidade de nitrogênio na mistura.

Figura 13: Efeito da concentração de oxigênio na velocidade de chama para diversos hidrocarbonetos à P = 1 atm e T = 298 K.

Fonte: Adaptado de Glassman e Yetter (2008).

2.5 ESTABILIDADE E EXTINÇÃO DE CHAMA

Para que a combustão de uma mistura se desenvolva de forma estável em um queimador, devem ser respeitados os limites mínimos e máximos de ar primário, potência específica e velocidade de alimentação da mistura combustível/comburente para a qual o referido queimador foi projetado. Dessa forma, se esses limites forem respeitados, a velocidade de saída da mistura pelos pórticos do queimador é igual à velocidade de chama, e esta pode então permanecer "ancorada" ao queimador, mantendo a combustão estável. O aparecimento de pontas amarelas na extremidade da chama pode ocorrer quando a mistura é ajustada para ser muito rica em combustível. Essa radiação de corpo negro é atribuída à presença de partículas sólidas de carbono, formadoras da fuligem, no interior da chama.

Quando a velocidade da mistura combustível/comburente perpendicular à superfície da chama excede a velocidade de chama laminar da mistura ar-combustível ocorre o descolamento de chama (*lifting*). Nesta condição, a combustão tem seu início distante do queimador e, se a velocidade for ainda mais elevada, pode ocorrer a extinção da chama por assopramento (*blow-off*). Essa condição pode levar ao aparecimento de gás combustível não queimado ou produtos de combustão incompleta nos produtos da combustão.

Por outro lado, quando a velocidade de chama laminar da mistura ar-combustível for superior à velocidade do escoamento de mistura reagente normal à superfície da chama, ocorre o retorno de chama (*flashback*), fazendo com que a combustão ocorra no interior do queimador podendo provocar sérios danos à sua estrutura física. Dependendo das dimensões do canal de alimentação da mistura arcombustível, pode ocorrer a extinção da chama quando ela sofre *flashback*, uma situação desejável do ponto de vista de segurança nas aplicações.

Essa extinção durante o retorno de chama ocorre por transferência de calor da zona de reação, dimuindo a temperatura e reduzindo drasticamente a velocidade das reações químicas. Esse comportamento é analisado em experimentos que visam determinar a distância mínima de extinção durante o retorno de chama. Nesses experimentos (Turns, 2000), uma chama pré-misturada é estabilizada na borda de um queimador de jato circular ou de fenda retangular. Após atingir o regime permanente, a vazão de mistura reagente é subitamente interrompida e verifica-se se a chama sofre extinção quando penetra no orifício do queimador.

Na Figura 14 é apresentada a influência da aeração primária sobre o diâmetro de extinção para misturas de gás natural e ar, em temperatura e pressão ambientes, em um queimador de orifício circular. A Tabela 3 mostra os diâmetros mínimos de apagamento para diferentes gases em temperatura e pressão ambientes. A mesma referência afirma que basta multiplicar o valor do diâmetro mínimo de extinção lido no gráfico por 0,65 para determinar o espaçamento mínimo de extinção para seções retangulares com largura muito maior que a altura. Dessa forma, se obtem um espaçamento entre placas planas de 2,3 mm para metano e 1,8 mm para gás natural (NGC).

Figura 14: Efeito da aeração primária sobre o diâmetro de extinção por perda de calor de chamas de gás natural e ar em tubo cilíndrico em p e T ambiente.

Fonte: Adaptado de Jones (1989).

Tabela 3: Diâmetros mínimos de extinção por perda de calor de chamas de diferentes gases com ar em temperatura e pressão ambientes.

Gas	H_2	CH_4	C_2H_4	C_2H_6	C_3H_8	NGC (G22)
Diâmetro mínimo de extinção (mm)		3,5	1,8	2,5	2,9	2,7

Fonte: Adaptado de Jones (1989).

Turns (2010) também reporta resultados conforme a Tabela 4. Nessa tabela, para metano e ar, a distância de extinção entre duas placas planas é 2,5 mm.

Tabela 4: Distância de extinção entre duas placas planas paralelas para diferentes combustíveis pré-misturados com ar, em $\Phi = 1$.

Combustível	Distância de extinção para $\Phi=1$ (mm)			
Acetileno, C_2H_2	2,3			
n-Decano, $C_{10}H_{22}$	2,1			
Etano, C_2H_6	2,3			
Eteno, C_2H_4	1,3			
Hidrogênio, H ₂	0,64			
Metano, CH ₄	2,5			
n-octano, C_8H_{18}	-			
Propano, C_3H_8	2,0			

Fonte: Adapado de Turns (2000).

2.6 TRANSFERÊNCIA DE CALOR ENTRE CHAMA E SUPERFÍCIE

Em várias aplicações, as chamas formadas em processos de combustão interagem diretamente com superfícies (paredes). Os gases queimados atingem temperaturas da ordem de 1500 a 2500 K, enquanto as paredes se mantém entre 400 a 600 K. Essa interação com paredes causa resfriamento da chama e aumento das taxas de deformação, devido à deflexão do escoamento. O resfriamento reduz a velocidade das reações, principalmente das reações finalizadoras da cadeia, dificultando a conversão de intermediários para produtos saturados de combustão. Isso pode levar à formação de poluentes, perda de eficiência e, finalmente, extinção de chama. A deflexão do escoamento, por exemplo, como em um escoamento em ponto de estagnação, aumenta a taxa de deformação da chama, reduzindo a velocidade de chama laminar, podendo, inclusive, levar à extinção (Law, 2006). Finalmente, em regiões muito próximas à parede, esta pode agir como aniquiladora de radicais, alterando a cinética de combustão.

Estudar a interação entre a chama e a parede é difícil do ponto de vista experimental, porque todos os fenômenos de interesse ocorrem numa camada muito fina e muito próxima à parede. A temperatura, por exemplo, diminui da temperatura da zona de reação para a temperatura da parede em uma camada da ordem de 1 mm numa região muito próxima da parede, formando fortes gradientes de temperatura naquela região. Muitas vezes, mede-se o fluxo de calor através da parede, o que é uma medida indireta do que está acontecendo na fase gasosa (Poinsot e Veynate, 2001).

Kadowaki (2005) faz uma análise dos efeitos da perda de calor na velocidade de chama pré-misturada . Em seu trabalho é feita uma análise teórica e por simulação numérica com base na equação de Navier-Stokes compressível, bidimensional de fluxos reativos em regime transiente e na equação do modelo difusivo-térmico. Ele observa que as frentes de chama tornam-se mais instáveis devido às perdas de calor por condução e radiação. Por fim, ele conclui que a velocidade da chama diminui à medida que a perda de calor aumenta devido à redução da temperatura de chama.

Ray e Chander (2005) fizeram uma revisão de 24 trabalhos disponíveis na literatura sobre transferência de calor de chamas para superfícies após uma revisão de Viskanta (1998) que, por sua vez, levantou uma série de questões não resolvidas sobre o tema, como o efeito da geometria do queimador, compreensão da estrutura da chama, entre outros. Os trabalhos analisados por Ray e Chander (2005) são

relacionados aos diferentes formatos. estruturas e formas de estabilização de chamas e dos diferentes modos de transferência de calor, analisando diferentes configurações experimentais, geometrias de queimadores, distâncias de separação e instrumentação dos planos de estagnação. As condições de funcionamento do queimador (composição do oxidante, a composição do combustível e a razão de equivalência) são importantes, uma vez que influenciam fortemente a intensidade da transferência do calor. A maioria dos estudos disponíveis na literatura tem sido realizada com queimadores de jato circular. Portanto muito pouco se fez com queimadores de fendas (slots), e estudos relacionados a outros formatos de queimadores são quase inexistentes.

Em Baukal e Gebhart (1997), três materiais para superfície de estagnação (cobre, latão e aço inox) e cinco tratamentos superficiais (não tratada, polida, enegrecida, revestida de alumina e revestida de platina) foram avaliadas com relação à taxa de transferência de calor recebida em condições operacionais idênticas. Eles utilizaram um queimador pré-misturado de jato circular e mostraram que somente para a superfície revestida de platina há diferença significativa de absorção de calor, devido à característica da platina catalisar as reações de oxidação, aumentando a velocidade de chama e, consequentemente, a temperatura. A Figura 15 mostra os resultados obtidos por Baukal e Gebhart (1997) para chamas de gás natural e oxigênio, com posição fixa da superfície de estagnação, de latão, com diferentes tratamentos superficiais como função da posição radial da superfície de estagnação.

Figura 15: Fluxos de calor de chamas de gás natural e oxigênio, em queimador pré-misturado de jato circular, com posição fixa em relação à superfície de estagnação, de latão, com diferentes tratamentos superficiais como função da posição radial da superfície de estagnação.

Fonte: Baukal e Gebhart (1997).

Por fim, Ray e Chader (2005) mencionam que a transferência de calor de chamas de estagnação sobre superfícies planas representam a configuração mais comum estudada. Dados de fluxo de calor local e médio estão disponíveis para diferentes condições experimentais e operacionais e os resultados são muito úteis, pois ajudam a otimizar processos de aquecimento industriais e domésticos. Porém, ainda é necessário mais trabalho em configurações como chamas que se deslocam paralelas às superfícies planas e das chamas que atingem superfícies planas de forma inclinada. Existem ainda muitas outras configurações das superfícies de estagnação que podem ser estudadas, como, por exemplo, corpos em forma de quadrados, retangulares e triangulares, que podem ser de interesse do ponto de vista das aplicações industriais ou domésticas. Com relação ao queimador, há escassez de informações sobre como características de projeto, de operação e de forma de estabilização da chama no queimador podem influenciar as taxas de transferência de calor. Ademais, é necessário aprofundar o conhecimento da interação entre chama e parede, de como a extinção da chama pela superfície mais fria pode afetar a cinética química, a emissão de produtos indesejados da combustão e a estabilidade da chama.

Portanto, segundo os autores, embora o contato da chama tenha sido estudado há muito tempo, devido à complexidade do problema, ainda há muito mais trabalho a ser feito.

2.7 SÍNTESE DA REVISÃO BIBLIOGRÁFICA

Com base na revisão acima, verifica-se a inexistência de medições de interação entre chamas planas laminares diferentes das chamas em jato circular, mas ainda bem caracterizadas, como aquelas formadas no queimador McKenna desse trabalho e analisadas por Francisco, Heil e Oliveira (2013), e superfícies isotérmicas. Ainda, inexistem resultados para o gás natural fornecido comercialmente no Brasil e utilizado amplamente nos setores residencial e produtivo, principalmente nas regiões sudeste e sul.

Dessa forma, esse trabalho contribui especificamente para:

- o estudo da interação de chamas laminares com superfícies sólidas, especialmente em uma configuração de plano de estagnação, na qual a taxa de deformação da chama aumenta continuamente à medida que ela é aproximada da superfície isotérmica;
- fornecer resultados das características de combustão de gás natural em chamas planas laminares estabilizadas próximas a superfícies sólidas isotérmicas; e
- estabelecer um procedimento experimental que pode ser aplicado para estudos futuros nessa mesma configuração, utilizando técnicas não intrusivas para a medição de campo de velocidade e de temperatura.

3 MATERIAIS E MÉTODOS

3.1. BANCADA EXPERIMENTAL

Um esquema simplificado da bancada experimental é mostrado na Figura 16. Os detalhes dos componentes são expostos nas próximas seções.

A bancada foi instalada no Laboratório de Combustão e Engenharia de Sistemas Térmicos (LabCET), no Departamento de Engenharia Mecânica da Universidade Federal de Santa Catarina.

Figura 16: Esquema simplificado da bancada experimental

Fonte: Adaptado de Francisco, Oliveira e Vicentim (2013).

3.1.1 Queimador de chama plana

Foi utilizado o queimador de chama plana McKenna fabricado pela empresa *Holthuis & Associates*. A Figura 17 apresenta um desenho esquemático do queimador McKenna e a Figura 18 uma fotografia do queimador disponível no laboratório utilizado neste trabalho, com uma chama plana estabilizada.

O queimador é composto por duas matrizes porosas:

- central, na qual passam os reagentes. É constituída por uma matriz porosa sinterizada de aço inoxidável AISI 316 (há outra opção comercial disponível com a matriz construída em bronze), dentro da qual há uma serpentina de cobre, pela qual circula líquido refrigerante (no caso deste trabalho, água), para evitar superaquecimento da matriz e facilitar a estabilização da chama plana laminar.
- externa, na qual passa o gás inerte para formar a cortina protetora da chama, formada por uma matriz porosa de bronze.

A função do gás inerte é formar uma cortina ao redor da chama, evitando, por exemplo, a difusão de oxigênio da atmosfera para a chama, quando se opera o queimador com razão de equivalência superior a 1,0 (chama rica).

Fonte: Adaptado de http://www.flatflame.com/pdfs/labeled_burner_bronze.pdf.

Figura 18: Fotografia de uma chama estequiométrica de gás natural estabilizada no queimador McKenna utilizado. Para a velocidade de mistura imposta, observa-se um leve enrugamento na borda frontal da chama.

Fonte: do autor.

3.1.2 Bancada experimental

A Figura 19 apresenta a bancada experimental construída para realizar os ensaios. Ela é constituída por duas estruturas principais: a mesa suporte do queimador e o suporte do trocador de calor.

A mesa suporte do queimador foi construída utilizando perfis de alumínio da empresa FAMAK modelo 45x45 M12 4R. Os detalhes construtivos da bancada podem ser vistos no trabalho de Vicentim Neto (2012).

O suporte do trocador de calor foi construído utilizando como base principal um suporte de microscópio. O controle de altura do trocador de calor em relação ao queimador é feito através de um parafuso micrométrico em contato com uma cremalheira presa ao suporte de microscópio.

Figura 19: Mesa suporte do queimador e suporte do trocador de calor

Fonte: do autor.

3.1.3 Sistema de alimentação de ar, gás natural e água

O laboratório dispõe de ar comprimido com pressão aproximada de 1 MPa (manométrico). Um regulador de pressão é utilizado na linha de alimentação da bancada para reduzir e manter a pressão em 0,4 MPa (man.), evitando flutuações de pressão e, consequentemente, de vazão. A jusante foi instalado um filtro coalescente NORGREN modelo F73C-2AN-ATO com elemento filtrante de 0,1 µm para reter eventuais impurezas, umidade e óleo presentes na linha.

O fornecimento de combustível para o experimento se dá através de uma linha de gás ligada a um conjunto de cilindros de gás natural sob alta pressão (25 MPa), instalados externamente ao laboratório. Uma válvula reguladora de pressão foi instalada e ajustada para fornecer gás com pressão de 0,2 MPa (man.).

Para medir a vazão de gás natural foi utilizado um medidor OMEGA FMA-1824-N2 (faixa de 0-20 l/min), enquanto que para controlar a vazão de ar foi utilizado um controlador OMEGA 773A-V-CH4 (faixa de 0-50 l/min) acoplado à caixa de controle OMEGA FMA 78P4. A Figura 20 mostra a bancada dos medidores de vazão utilizados nos experimentos.

Figura 20: Bancada com medidores de vazão, sistema de aquisição de dados e computador de controle.

Fonte: do autor.

A vazão de água de refrigeração do queimador foi medida através do rotâmetro LD07562 (faixa 0-60 l/h) da marca *VEB MLW Prufgerate Werk*. A vazão de água do trocador de calor foi medida através do rotâmetro BLI-500 (faixa 0-2 l/min) da marca Blaster.

Ao final do capítulo será apresentada a análise de propagação de incertezas de medição.

3.1.4 Trocador de calor

O trocador de calor utilizado no presente trabalho foi adaptado a partir de um trocador de calor para resfriamento de processador de microcomputador (*water cooler*) comercial da empresa Zalman, modelo ZM-WB5. As figuras a seguir mostram o equipamento como recebido,

com uma vista externa (Figura 21) e uma vista da estrutura interna (Figura 22).

Figura 21: Trocador de calor (cooler) ZM-WB5, montado conforme recebido.

Fonte: do autor.

Figura 22: Trocador de calor (*cooler*) ZM-WB5 (a) aberto (bipartido), expondo a estrutura interna e (b) desenho da parte inferior em corte e sua relação com a superfície do queimador ($H \neq a$ distância separando as duas superfícies).

(a) Vista interna do trocador de calor

(b) Corte A-A (esquema) e relação com a superfície do queimador

Fonte: do autor.

A base do trocador de calor foi usinada em cobre e a cobertura superior, com diâmetro de 63 mm, em alumínio. As aletas internas no trocador de calor são de perfil quadrado com 2 mm de aresta e estão dispostas em uma matriz de 12x12, com espaçamento entre aletas de 1 mm. A face inferior, que estará exposta à chama, é na forma de um ressalto com 55 mm de diâmetro e altura de cerca de 1 mm acima da base. Nota-se que a matriz porosa do queimador, sobre a qual a chama se estabiliza, possui 60 mm de diâmetro. Assim, conforme mostrado na Figura 22(b), a borda da face inferior do trocador de calor termina 2,5 mm antes da borda do queimador e a borda do trocador de calor avança 1,5 mm em relação à borda do queimador.

3.1.5 Medição de temperaturas

Foram instalados termopares na superfície interna do trocador de calor para monitorar a temperatura superficial, bem como na entrada e saída de água, conforme pode ser visualizado na Figura 23 e no esquema da Figura 24.

Os termopares instalados são do tipo K (Ni-Cr / Ni-Al) sem bainha, com faixa de operação de -270 °C até 1372 °C, conectados ao sistema de aquisição de dados Agilent HP 34401a.

Figura 23: Termopares instalados na superfície do trocador de calor.

Fonte: do autor.

Figura 24: Esquema ilustrando as posições dos termopares no trocador de calor.

Fonte: do autor.

3.1.6 Equipamentos de iluminação e captura de imagem

Uma lâmpada de LED foi utilizada para projetar a sombra do sistema em um anteparo, instalado do lado oposto da lâmpada, e a imagem formada era capturada por uma máquina fotográfica para avaliar a posição de estabilização da chama e visualizar o escoamento ao redor do trocador de calor. Este método é conhecido como *direct shadowgraphy*.

Para produzir a sombra foi utilizada uma lâmpada de LED com apenas 1 LED de 3 W (equivalente à luz branca 6400 K) e lente colimadora de 15°, com uma restrição para diminuir o diâmetro da fonte luminosa. Para fazer a captura da imagem foi utilizada uma Câmera Digital CCD Sony Cyber-Shot DSC-WX7.

A máquina fotográfica foi fixada sempre no mesmo local (suporte anexado à mesa do queimador), assegurando a padronização das imagens e facilitando, dessa forma, a análise.

Da mesma forma que no trabalho de Francisco, Oliveira e Vicentim (2013), a distância entre a fonte luminosa e o anteparo foi mantida em 800 mm, posicionando o centro do queimador equidistante da fonte e do plano, obtendo, assim, uma imagem nítida com ampliação de 100 %.

O diâmetro da fonte luminosa foi mantido constante em 3 mm, conforme Francisco, Oliveira e Vicentim (2013) avaliou e utilizou em seu trabalho.

3.1.7 Propriedades do gás natural

A composição química do gás natural utilizado no presente trabalho foi obtida com a empresa fornecedora do combustível ao laboratório. Os dados fornecidos mostram a composição dia a dia, desde 01/06/2010 até 30/06/2013.

A composição do gás natural foi fornecida como porcentagem volumétrica em termos de C1 (metano), C2 (etano), C3 (propano), C4+ (compostos com mais de 4 carbonos), $N_2 e CO_2$.

Para gerar os histogramas, avaliar a distribuição dos dados, médias e desvios padrão foi utilizado o *software* estatístico JMP10, da empresa SAS. A Figura 25 mostra as distribuições (histogramas) para os compostos de carbono (C1 a C4+), juntamente com os dados estatísticos: média (*mean*), desvio padrão (*Std Dev*) e número total de medidas (*N*).

Fonte: Companhia de Gás de Santa Catarina (SCGÁS).

A mesma análise foi feita para os gases inertes presentes no combustível, e é mostrada na Figura 26:

Figura 26: Distribuições dos gases inertes

Fonte: Companhia de Gás de Santa Catarina (SCGÁS).

É possível verificar que a dispersão é pequena, pois os valores de desvio padrão são pequenos, e que os dados se ajustam bem em distribuições normais. Portanto, é possível afirmar que a composição do gás natural varia muito pouco ao longo do tempo.

Da mesma forma que a composição química, o PCS e a densidade relativa foram fornecidos pela empresa, em um arquivo contendo análises diárias desde 01/06/2010 até 30/06/2013.

Os histogramas mostrando as distribuições, médias e desvios padrão são mostrados na Figura 27.

Figura 27: Distribuições de PCS e densidade relativa

Fonte: Companhia de Gás de Santa Catarina (SCGÁS).

Da mesma forma que para a composição, é possível verificar que a dispersão é pequena, pois os valores de desvio padrão são pequenos, e que os dados se ajustam bem em distribuições normais.

3.2 MÉTODO DIRECT SHADOWGRAPHY

Para obter as imagens utilizando o método *direct shadowgraphy* foi utilizada uma lâmpada contendo um único LED com potência de 3 W com cor correspondente à temperatura de 6400 K e lente colimadora de 15° posicionada 800 mm à montante do queimador. Conforme estudos de Vicentim (2012) e Francisco, Oliveira e Vicentim (2013), foi utilizada uma restrição na frente da lâmpada com diâmetro de 3 mm para melhorar o foco da imagem e evitar distorções.

Um anteparo branco foi posicionado 800 mm à jusante do queimador para possibilitar a projeção das sombras do escoamento e da frente de chama, objetos de estudo dessa técnica. Uma câmera digital CCD Sony Cyber-Shot DSC-WX7 foi fixada sempre na mesma posição entre o queimador e o anteparo, ligeiramente abaixo do plano horizontal do queimador para não gerar sombra extra no anteparo, para registro das imagens.

3.3 CARACTERIZAÇÃO DA BANCADA EXPERIMENTAL

Trabalhos de Vicentim (2012), Francisco, Heil e Oliveira (2013) e Francisco, Oliveira e Vicentim (2013) com o mesmo queimador mostraram que, dada uma razão de equivalência, há uma faixa de velocidades na qual o queimador opera com chama plana. Aumentando a vazão de reagentes além dessa faixa, a chama apresenta regiões "enrugadas". Diminuindo a vazão total para um valor abaixo da faixa de estabilidade, a chama tende a se extinguir. A Figura 28 apresenta duas fotografias onde se pode observar, para gás natural e ar pré-misturados e $\Phi = 1$, a diferença entre a chama (a) plana com $S_L = 29$ cm/s e a chama (b) enrugada com $S_L = 34$ cm/s. Figura 28: (a) Chama plana ($S_L = 29 \text{ cm/s}$) e (b) chama enrugada ($S_L = 34 \text{ cm/s}$) de gás natural estabilizadas sobre o queimador plano ($\Phi = 1$).

Fonte: Adaptado de Francisco Jr., Oliveira Jr. e Vicentim Neto (2013)

No queimador, a vazão de água para refrigeração da malha central foi fixada em 5.10^{-6} m³/s (18 l/h), conforme estudos de Francisco, Oliveira e Vicentim (2013). A cortina de gás inerte não foi utilizada durante os ensaios para não influenciar na visualização do escoamento através do método *direct shadowgraphy*.

O suporte com o trocador de calor foi anexado à bancada de medição de velocidade de chama laminar já utilizada no laboratório, como pode ser visualizado na Figura 29. A Figura 29(a) mostra uma visão em perspectiva do sistema de ajuste de altura do trocador de calor, com a seta verde indicando o suporte propriamente dito. A Figura 29(b) mostra a parte inferior do suporte. Nela é indicado, através da seta verde, o parafuso micrométrico para ajuste da altura do trocador de calor.

O trocador de calor foi alinhado, primeiro o posicionando de forma a cobrir inteiramente a matriz porosa central do queimador (o trocador de calor é 1,5 mm maior no raio que a matriz porosa, e este espaçamento foi garantido em cada quadrante), garantindo, assim, a centralização do conjunto. Após a centralização, o paralelismo das superfícies superior do queimador e inferior do trocador de calor foi garantido ajustando e medindo a distância da superfície superior do trocador até o queimador em quatro pontos, um em cada quadrante do trocador. Figura 29: (a) Visão em perspectiva do duporte do trocador de calor anexado à bancada e (b) visão da parte inferior do suporte, destacando o parafuso micrométrico de ajuste.

Fonte: do autor.

A vazão de água para o trocador de calor foi definida em $2.5 \times 10^{-5} \text{ m}^3/\text{s}$ (1.5 *slpm*). É importante salientar que se a vazão de água for muito alta, aumenta-se a precisão na determinação da vazão, porém a diferença entre a temperatura de entrada e saída da água se torna pequena e, por consequência, erros de medição das temperaturas acarretam em grandes incertezas na determinação da taxa de transferência de calor. Por outro lado, se a vazão de água for baixa, há uma diminuição dos efeitos das incertezas na medição das temperaturas, uma vez que a diferença entre elas se torna grande, porém a incerteza na determinação da vazão se torna importante e maior contribuidor na incerteza total da determinação da taxa de transferência de calor. Portanto, a vazão de água foi definida utilizando dois critérios: (1) utilizar a faixa superior de medição de vazão do rotâmetro, que apresenta escala de 8,33 x 10^{-7} m³/s (0,05 slpm) e que apresenta menor incerteza de medição e (2) garantir que, mesmo se todo o calor da combustão seja transferido para a água (eficiência térmica de 100%), a temperatura da água na saída não ultrapasse 90 °C, evitando, desse modo, formação de bolhas e deformação das mangueiras de alimentação e saída de água.

A Figura 30 mostra a mudança de regime a $S_L = 17$ cm/s, $\Phi = 0.9$, h = 2.5 mm com a chama ancorada no queimador em (a) e com a chama

ancorada na borda do trocador de calor e queimador em (b) obtidas utilizando o método *direct shadowgraphy*. A Figura 31 mostra a fotografia direta da chama na mesma condição de teste da Figura 30 (b).

Figura 30: *Direct shadowgraphy* da (a) chama ancorada no queimador e (b) ancorada na borda do trocador de calor e queimador.

Fonte: do autor.

Fonte: do autor.

3.4 DEFINIÇÕES DAS ALTURAS DE TRANSIÇÃO

Uma característica importante encontrada durante experimentos preliminares foi a existência de, dada uma velocidade de chama laminar e uma razão de equivalência, uma altura em que a chama sofria uma transição, deixando de ser plana e estabilizada no queimador – Figura 32 (a) – e tornando-se curva e estabilizada no trocador de calor – Figura 32Figura 32 (b). Essa transição marca a situação de extinção da chama plana e reignição na posição estabilizada na borda do queimador. Figura 32: Fotografia direta da chama plana (a) estabilizada no queimador e (b) estabilizada na borda do trocador de calor e queimador.

Fonte: do autor.

Para determinar essa altura, a chama era estabilizada sobre o queimador em uma condição de velocidade de chama e razão de equivalência com o trocador de calor em altura máxima. Quando o trocador de calor era abaixado em direção ao queimador e a transição de regime de ancoramento de chama ocorria, a altura era medida e classificada como *altura de transição*, representada por H_t .

Para avaliar o efeito de histerese, uma vez a chama estabilizada na borda do trocador de calor e queimador, se aumentava a altura entre o queimador e o trocador de calor até que a chama voltava a ser plana e estabilizada no queimador. Por sua vez, essa altura era medida e classificada como *altura de transição por histerese*, H_{th} .

3.5 TAXA DE TRANSFERÊNCIA DE CALOR

Os cálculos apresentados nesta seção foram desenvolvidos no *software Engineering Equation Solver* (EES) da empresa FChart. O algoritmo completo pode ser encontrado no Apêndice A.

3.5.1 Transferência de calor para o queimador

Como descrito anteriormente, o queimador possui uma serpentina de cobre para refrigerar a malha central por onde os gases reagentes passam e sobre a qual a chama plana se estabiliza.

Para calcular a taxa de calor que é retirado pela água que circula dentro da serpentina, utilizou-se a seguinte equação:

$$\dot{q}_q = \dot{m}_{aq} \cdot c_{p,a} \cdot \left(T_{sq} - T_{eq} \right), \tag{9}$$

onde \dot{m}_{aq} é a vazão mássica de água, em kg/s, que circula na serpentina; $c_{p,a}$ é o calor específico à pressão constante da água, em kJ/(kg.°C); T_{sq}

é a temperatura média de saída de água do queimador, em °C; T_{eq} é a temperatura média da entrada de água do queimador, em °C.

Dessa forma, a taxa de transferência de calor retirado do queimador pela água de refrigeração, \dot{q}_a , é dado em kW.

A vazão mássica de água é calculada a partir da vazão volumétrica lida no rotâmetro instalado na entrada de água do queimador, multiplicada pela massa específica da água, em pressão de 0,1 MPa e na temperatura média entre $T_{sq} \in T_{eq}$.

As temperaturas T_{sq} e T_{eq} foram obtidas a partir da média aritmética dos últimos 20 minutos do registro de dados obtidos pelo sistema de aquisição de temperaturas. O sistema está configurado para adquirir os dados de temperaturas em intervalos de dois segundos.

Os dados termodinâmicos, massa específica e calor específico da água, foram obtidos diretamente da biblioteca presente no *software* EES.

3.5.2 Transferência de calor para o trocador de calor

Para calcular a taxa de calor que é retirado pela água que circula dentro do trocador de calor, utilizou-se a seguinte equação:

$$\dot{q}_t = \dot{m}_{at} \cdot c_{p,a} \cdot (T_{st} - T_{et}),$$
 (10)

onde \dot{m}_{at} é a vazão mássica de água, em kg/s, que circula no trocador de calor; $c_{p,a}$ é o calor específico à pressão constante da água, em kJ/(kg.°C); T_{st} é a temperatura média de saída de água do trocador de calor, em °C; T_{et} é a temperatura média da entrada de água do trocador de calor, em °C. Dessa forma, a taxa de calor absorvido pelo trocador de calor, \dot{q}_t , é dado em kW.

A vazão mássica de água é calculada a partir da vazão volumétrica lida no rotâmetro instalado na entrada de água do trocador de calor multiplicada pela massa específica da água, em pressão de 0,1 MPa e na temperatura média entre $T_{st} \in T_{et}$.

As temperaturas T_{st} e T_{et} também foram obtidas a partir da média aritmética dos últimos 20 minutos do *log* de dados obtidos pelo sistema de aquisição de dados.

Da mesma forma que no item anterior, os dados termodinâmicos, massa específica e calor específico da água, foram obtidos diretamente da biblioteca presente no *software* EES.
3.5.3 Eficiência térmica do trocador de calor

Definiu-se como eficiência térmica do trocador de calor, representado por η_t , a relação entre a taxa de transferência de calor absorvida pelo trocador de calor, \dot{q}_t , e a potência do queimador na condição do teste, representada por P_q , multiplicada por 100. Dessa forma,

$$\eta_t = \frac{\dot{q}_t}{P_q} \cdot 100,\tag{11}$$

com a potência térmica do queimador calculada por:

$$P_q = \dot{v}_c. PCS \tag{12}$$

onde, \dot{v}_c é a vazão volumétrica de gás natural alimentada ao queimador – lida no medidor de vazão em *slpm (standard liters per minute)* de N₂ e convertida para Nm³/s de gás natural usando os coeficientes fornecidos para cada gás pelo fabricante do medidor – e o PCS é o poder calorífico superior do gás, obtido junto ao fornecedor em kJ/m³. Dessa forma, a potência do queimador é dada em kW e a eficiência térmica em %. Ao invés do PCI, o PCS é usado nas normas de medição de eficiência e de potência térmica de queimadores a gás usados em cocção doméstica. Ainda, como as temperaturas do trocador de calor são próximas às do ambiente, pode haver condensação do vapor d´água originado da combustão. Por essas razões, o PCS foi utilizado no cálculo da eficiência.

3.5.4 Coeficiente de transferência de calor

O coeficiente de transferência de calor, representado por h_{tc} , é aqui definido por:

$$h_{tc} = \frac{\dot{q}_t}{A_t \cdot (T_{AD} - T_{sup})},\tag{13}$$

onde T_{AD} é a temperatura de chama adiabática na razão de equivalência do ensaio, calculada através da equação (7), T_{sup} é a temperatura média da superfície externa do trocador de calor que está em contato com a chama e A_t é assumida como a área da superfície inferior do trocador de calor.

As incertezas de medição em h_{tc} decorrem das incertezas nos parâmetros A_{t} , T_{ad} e T_{sup} .

As incertezas de medição de T_{sup} decorrem da posição e instalação dos termopares. Conforme aFigura 24, 5 termopares foram instalados próximos a superfície do trocador de calor, usando os acessos dos escoamentos de entrada e saída de água. Como a espessura da superfície inferior do trocador de calor é pequena – aproximadamente 1,5 mm – e é feita de cobre, que tem alta condutividade térmica, assumiu-se que essas temperaturas medidas representam bem as temperaturas na superfície externa. Incertezas no posicionamento desses termopares, assim como possíveis deslocamentos da junta de medição da superfície durante operação (por acidente), afetam a incerteza na determinação da temperatura média da superfície do trocador de calor. Porém, como a temperatura adiabática é próxima a 1800 K e a temperatura da superfície do trocador de calor é próxima a 300 K, como será mostrado no Capítulo 4, as incertezas de medição originadas da fixação dos termopares acarretarão em pequenas incertezas de medição nos valores de h_{tc} . A propagação de incertezas de medição será abordada ao final do capítulo.

O coeficiente h_{tc} poderia ser definido em termos da temperatura da chama. A incerteza na determinação da temperatura da chama decorre das perdas de calor da chama para o trocador e para o queimador. A espessura da chama é da ordem de 1 mm e esta se localiza em uma região confinada entre as superfícies do trocador de calor e do queimador. A medição de temperatura nessa região é dificultada pela presença das superfícies e pelos efeitos de transferência de calor por radiação sobre o sensor de temperatura, requerendo métodos de difícil implementação. Por outro lado, a temperatura de chama adiabática é uma característica bem definida e facilmente calculada, de forma que se torna um excelente parâmetro de referência. Dessa forma, a temperatura de chama adiabática é escolhida para a definição do coeficiente de transferência de calor.

3.6 PROCEDIMENTO DE TESTE

Os testes nesse trabalho foram realizados de acordo com o seguinte procedimento:

1. com o queimador apagado, o trocador de calor era ajustado para altura mínima até tocar a superfície do queimador para assegurar

sua centralização com relação à malha sobre a qual a chama se estabiliza;

- após eventual ajuste, se aumentava a altura do trocador de calor com relação ao queimador e se verificava o paralelismo das superfícies inferior do trocador e superior do queimador, fazendo medidas de altura da face superior do trocador com relação ao queimador nos quatro quadrantes;
- o trocador de calor era levantado até sua altura máxima (fim de curso do parafuso micrométrico) e as vazões de água do queimador e do trocador eram ajustadas para seus valores nominais (respectivamente 5.10⁻⁶ m³/s e 2,5.10⁻⁵ m³/s);
- com a água circulando no trocador de calor e no queimador, as vazões de ar e gás natural desejadas para o ensaio eram ajustadas nos controladores e o queimador era aceso;
- 5. o sistema de aquisição de dados era ligado logo após o queimador estar em operação;
- 6. o trocador de calor era posicionado na altura de medição;
- 7. as temperaturas eram monitoradas através do *software* do sistema de aquisição de dados em intervalos de 2 segundos para cada medida. As temperaturas eram consideradas estáveis, e o sistema em estado estacionário, quando estas não variavam mais que 0,5 °C entre medidas e não apresentassem tendência de subida ou descida no intervalo total de 20 minutos;
- 8. após a estabilização, era registrado o *log* dos dados de temperatura e uma nova altura era ajustada para o trocador de calor, reiniciando o ciclo a partir da etapa número 6.

A Figura 33 exemplifica uma situação considerada estável através do monitoramento das temperaturas pelo software do sistema de aquisição de dados.

Figura 33: Print screen da tela do software de aquisição de dados.

O tempo total mostrado é de 20 minutos. Cada temperatura era ajustada para ficar sobre uma linha de referência e a variação era ajustada para 0,5°C. Ou seja, se a temperatura apresentasse alguma variação maior que 0,5°C ou apresentasse tendência de subida ou descida seria facilmente detectável e mais tempo seria necessário para estabilização.

Os dados podem ser visualizados com mais clareza na Figura 34.

Figura 34: Temperaturas estabilizadas para velocidade de chama laminar de 19 cm/s, razão de equivalência de 0,8 e altura de 6,5 mm.

Fonte: do autor.

Fonte: do autor.

Vale a pena ressaltar que as vazões de gás, ar e água, tanto para o queimador quanto para o trocador, eram monitoradas durante todo o ensaio. Quando correções eram necessárias, observava-se se o comportamento das temperaturas se mantinha constante. Caso houvesse alguma variação em algum dos termopares, mais 20 minutos eram esperados para estabilização.

3.7 ANÁLISE DE PROPAGAÇÃO DE ERROS

Por se tratar de um trabalho experimental, devem-se analisar as incertezas inerentes aos processos de medição e verificar o impacto dessas nas variáveis resposta.

A propagação de erros para variáveis não correlacionadas, de forma simplificada, pode ser calculada pela seguinte equação:

$$I_{mf} = \sqrt{\sum_{i=1}^{n} \left(I_{m_{xi}} * \left(\frac{\partial f}{\partial x_i} \right) \right)^2},\tag{14}$$

onde I_{mf} é a incerteza da grandeza, $I_{m_{xi}}$ é a incerteza da variável medida e $\frac{\partial f}{\partial x_i}$ é a derivada parcial da variável resposta pela medida.

Esta rotina está implementada no *software* EES, de modo que é possível fazer o cálculo da propagação de erros nas variáveis calculadas inserindo as equações no algoritmo e as incertezas nas tabelas de dados do programa, discriminando, no fim, quais são as variáveis resposta.

Neste trabalho, todos os cálculos de velocidade de chama laminar (S_L) , razão de equivalência (Φ) , taxa de transferência de calor absorvida pelo trocador de calor (\dot{q}_t) , taxa de transferência de calor perdida pela refrigeração do queimador (\dot{q}_q) , eficiência de transferência de calor entre a chama e o trocador de calor (η_t) e coeficientes de transferência de calor (h_{tc}) foram feitos através desse *software*. Portanto, todas as equações envolvidas já estavam implementadas no algoritmo.

As incertezas relativas ao combustível utilizado nos experimentos (gás natural) foram calculadas a partir das análises de composição fornecidas pela empresa distribuidora de gás do laboratório. Os dados enviados pela empresa continham análises diárias da composição química, densidade relativa e Poder Calorífico Superior, sendo possível, dessa forma, calcular o desvio padrão de cada característica/componente a alimentar o algoritmo com os dados.

A incerteza de cada termopar tipo K utilizado nas medições de temperatura foi calculada através do desvio padrão dos dados obtidos pelo sistema de aquisição de dados para cada condição de teste e alimentada diretamente no algoritmo.

As incertezas das medições de vazão de ar, de gás natural e de água, tanto para o trocador de calor quanto para o queimador, foram obtidas diretamente dos manuais e catálogos dos equipamentos utilizados e estão listadas na Tabela 5.

Equipamento	Faixa de operação	Incerteza absoluta
Medidor de vazão de gás natural	0 – 20 l/min	± 0,3 l/min
Medidor de vazão de ar	0 – 50 l/min	± 0,5 1/min
Medidor de vazão de água para	0 - 60 l/h	\pm 0,6 l/h
queimador		
Medidor de vazão de água para	0 – 2 l/min	± 0,04 l/min
trocador de calor		

Tabela 5: Incertezas dos equipamentos de medição.

Fonte: Catálogos e manuais dos equipamentos.

Para fazer os cálculos de propagação de erros, rodou-se a rotina *Unsertainty Propagation Table* do *software*. Nessa rotina é preciso declarar quais são as variáveis resposta e quais são as varáveis medidas e, para as últimas, os valores das incertezas. Portanto, inseriram-se nas tabelas de dados as incertezas das medidas da composição do gás, temperaturas da água (entrada e saída, do trocador de calor e do queimador) e das vazões (gás, ar e água, tanto do trocador de calor quanto do queimador). A Figura 35 a seguir mostra a interface dessa função no programa e a Figura 36 mostra a tabela com os dados inseridos (em preto) e calculados (em azul).

u_ch phi Q_Queim Q_Troc Perda_queimad Eta_trocador Potencia	lor	U_Teat U_Treag U_Tsaq U_Tsat V_dot_agua_ zeta	queim troc	t run 1 🔮 t run 6 🜻 ✔ OK ★ Cancel
rtainties of Mea	sured ¥ariables	5	Enter a numerical un	han an untichla ana
Variable	Value	Units	Absolute	Relative Uncertainty
peta	0,01471		0,001062	
delta	0,0587		0,001317	
psilon	0,01806		0,000707	
	0,8917		0,002166	
ama	-9999.0	1/min	0,5	
jama)meg_Ar_50lpm			0,3	
jama Imeg_Ar_50lpm Imeg_COMB_20lp	-9999	1/min		
jama Dmeg_Ar_50lpm Dmeg_COMB_20lp PCS	-9999 39876	kJ/m^3	U_PCS	

Figura 35: Interface de cálculo de incertezas no EES

Figura 36: Tabela de dados do EES

Real Parametr	ic Table							_ 🗆 🗵
Table 2								
138	11 U UTeat [C]	¹² T _{s;agua;troc} [C]	¹³ U UTsat [C]	¹⁴ U _{PCS} [kJ/m ³]	15 U _{ch}	16 ⊑ φ [-]	17 G _{Quein} [kW]	IS LA Q _{Troc} [kW]
Run 32	0,03135	22,37±0	0,1348	106,5	19,0±0,2	0,81±0,07	0,22±0,008775	0,3636±0,01739
Run 33	0,03426	19,92±0	0,1061	106,5	17,0±0,2	0,91±0,08	0,3336±0,01251	0,3332±0,01464
Run 34	0,03954	20,2±0	0,1306	106,5	17,0±0,2	0,91±0,08	0,3366±0,01269	0,3575±0,01714
Run 35	0,1235	21,97±0	0,1727	106,5	17,0±0,2	0,91±0,08	0,309±0,01187	0,3675±0,02423
Run 36	0,02485	21,11±0	0,1396	106,5	17,0±0,2	0,91±0,08	0,38±0,01415	0,4697±0,01939
Run 37	0,05687	20,26±0	0,1455	106,5	17,0±0,2	0,91±0,08	0,2911±0,01179	0,4083±0,01961
Run 38	0,04625	19,67±0	0,1317	106,5	17,0±0,2	0,91±0,08	0,2711±0,01066	0,3618±0,01747 -
•					·]	

Fonte: do autor.

A Tabela 6 mostra os valores das incertezas máximas obtidas para a velocidade de chama laminar, razão de equivalência, taxa de transferência de calor para o trocador de calor, taxa de transferência de calor para o queimador, eficiência de transferência de calor do trocador de calor e coeficiente de transfência de calor.

Tabela 6: Incertezas propagadas nas variáveis calculadas

Variável calculada	Incerteza propagada	
Velocidade de chama laminar (S _L)	± 0,2 cm/s	
Razão de equivalência (Φ)	$\pm 0,08$	
Taxa de transferência de calor para o trocador	\pm 0,03 kW	
de calor (\dot{q}_t)		
Taxa de transferência de calor para o	\pm 0,02 kW	
queimador (\dot{q}_q)		
Eficiência de transferência de calor do	$\pm 2,6$ %	
trocador (η_t)		
Coeficiente de transferência de calor (h_{tc})	\pm 4,8 W/m ² .K	
Fonte: do autor		

Francisco, Oliveira e Vicentim (2013), utilizando o mesmo queimador, estimaram que a perda de calor para o ambiente por convecção natural é da ordem de 0,5 % da potência do queimador. Por essa razão, neste trabalho essa perda será negligenciada.

3.8 DEFINIÇÃO DOS TESTES

Com base no exposto, decidiu-se avaliar as influências do trocador de calor mantendo a velocidade de chama constante em 19 cm/s, variando a razão de equivalência entre 0,8 e 1,0 (em intervalos de 0,1), pois o queimador apresenta boa estabilidade nessas condições. Também decidiu-se avaliar na condição de razão de equivalência constante com valor de 0,9, variando a velocidade de chama entre 23 e 17 cm/s (em intervalos de 2 cm/s), pois nessa razão de equivalência o queimador também possui uma boa faixa de estabilidade. A Tabela 7 mostra as condições de cada teste realizado.

Condição	Velocidade de chama laminar (S _L)	Razão de equivalência (Φ)
1	19	0,8
2	19	0,9
3	19	1,0
4	17	0,9
5	21	0,9
6	23	0,9

Tabela 7: Condições dos testes executados

Fonte: do autor.

Para cada uma dessas condições experimentais a distância entre a superfície do queimador e a superfície do trocador de calor H era variada entre 0,5 mm e 6,5 mm, em intervalos de 2 mm, na direção de diminuição e de aumento da altura H. No total, foram realizadas 38 medições.

4 RESULTADOS E DISCUSSÃO

4.1 PROPRIEDADES DO GÁS NATURAL

4.1.1 Composição química

A composição química do gás natural é necessária para calcular a vazão de ar requerida nos experimentos. Ainda, a incerteza na composição será utilizada para estimar a incerteza na razão de equivalência.

Com os dados apresentados no Capítulo 3 é possível definir a reação química que descreve a combustão, como demonstrada a seguir:

$$\begin{array}{l} 0,8917\ CH_4 + 0,0587\ C_2H_6 + 0,0181\ C_3H_8 + 0,00965C_4H_{10} \\ + 0,01471\ CO_2 + 0,007062\ N_2 + \frac{2,142}{\phi}\ (O_2 + 3,76N_2) \rightarrow \\ \rightarrow 1,117CO_2 + 2,08\ H_2O + \frac{8,061}{\phi}\ N_2 + (\frac{2,142}{\phi} - 1)O_2 \end{array} \tag{15}$$

Os valores médios e incertezas de composição (calculadas através do desvio padrão das medidas de composição fornecidas pela SCGÁS) considerados nos cálculos foram os presentes na Tabela 8.

Componente	Média	Incerteza Absoluta
	(% v./v.)	(% v./v.)
Metano	89,2	$\pm 0,2$
Etano	5,9	$\pm 0,3$
Propano	1,81	$\pm 0,07$
C4 e mais pesados	0,97	$\pm 0,04$
Dióxido de carbono	1,5	$\pm 0,1$
Nitrogênio	0,71	$\pm 0,05$

Tabela 8: Composição média e incertezas do gás natural

Fonte: do autor.

4.1.2 Poder calorífico superior e densidade relativa

Da mesma forma que na seção anterior, os valores médios e incertezas, estas calculadas através dos desvios padrão das medidas fornecidas pela SCGÁS, relativos ao Poder Calorífico Superior e à Densidade Relativa considerados nos cálculos foram os presentes na Tabela 9.

Tuo ena y Tiste anas e meeste Bas	para poaer earonneo	e demondade renam (a
Propriedade	Média	Incerteza Absoluta
Poder Calorífico Superior	39876 (kJ/Nm ³)	$\pm 107 (kJ/Nm^3)$
Densidade Relativa	0,634	$\pm 0,002$

Tabela 9: Médias e incertezas para poder calorífico e densidade relativa

4.2 REGIMES DE OPERAÇÃO DO QUEIMADOR

4.2.1 Observação da transição entre os regimes de chama

Conforme discutido anteriormente, dada uma velocidade de chama laminar e uma razão de equivalência, conforme o trocador de calor era aproximado do queimador, havia uma altura em que a chama deixava de ser plana e ancorada somente no queimador e tornava-se curva e ancorada no trocador de calor.

A sequência de imagens da Figura 37 mostra a transição de regime quando o trocador de calor é aproximado do queimador próximo à altura de transição (H_t), com S_L = 19 cm/s e Φ = 0,8. Vale a pena ressaltar que as imagens da Figura 37 foram tiradas de um vídeo gravado enquanto o fenômeno acontecia, pois não era possível estabilizar o sistema nas condições apresentadas em (b) e (c) tempo suficiente para tirar fotografias.

As regiões marcadas com retângulos tracejados em vermelho na Figura 37 (a), (b) e (c) mostram o início do fenômeno de transição do regime da chama. É possível notar em (a) que há um pequeno descolamento de chama no lado direito do queimador, devido ao início da extinção da chama laminar causada pelo resfriamento local causado pelo trocador de calor. Aproximando um pouco mais o trocador de calor do queimador, visualizado em (b), é possível notar que a chama ancora parcialmente no lado direito do trocador de calor, enquanto que do lado esquerdo a chama continua plana e ancorada no queimador. Ao aproximar mais um pouco o trocador de calor, em (c), é possível visualizar que a frente de chama se desloca para a esquerda até que, em (d), estabiliza completamente entre o trocador de calor e o queimador. Figura 37: Transição de regime da chama plana para chama ancorada no trocador de calor e queimador: (a) Chama ancorada na superfície do queimador, (b) começo da instabilidade na borda do queimador, (c) propagação da extinção ao longo da superfície do queimador e (d) chama totalmente estabilizada na borda do trocador de calor e queimador.

Fonte: do autor.

Uma vez a chama estabilizada na *altura de transição*, quando se afastava o trocador de calor do queimador ocorria histerese, ou seja, a chama continuava estável entre o trocador de calor e o queimador em uma altura maior que a altura de transição até o ponto denominado *altura de transição por histerese* (H_{th}). Em altura maior que *altura de*

transição por histerese, a chama voltava a ser plana e estabilizada apenas no queimador.

A Figura 38 mostra a sequência de imagens retiradas do vídeo que mostra o fenômeno de histerese ocorrendo. Em (a) é possível visualizar a chama estabilizada entre o queimador e o trocador de calor na *altura de transição por histerese*. Ao afastar levemente o trocador de calor do queimador, é possível visualizar em (b), dentro do retângulo tracejado vermelho, que a chama "descola" do trocador de calor e, no instante seguinte, em (c), é possível notar que a chama volta a ser plana e ancorada apenas no queimador.

Figura 38: Histerese entre $H_t e H_{th}$: (a) Chama estabilizada entre o queimador e o trocador de calor na altura H_{th} , (b) a chama "descola" do trocador de calor e (c) a chama volta a ser plana e ancorada apenas no queimador.

Fonte: do autor.

Portanto, entre H_t e H_{th} duas condições de estabilização são possíveis: (1) somente no queimador se o trocador de calor for aproximado do queimador, e (2) entre o trocador de calor e o queimador se esse for afastado do queimador a partir de H_t .

Outra forma de visualizar o fenômeno é através do método *direct* shadowgraphy, no qual é possível observar o escoamento dos gases quentes ao redor do trocador de calor e a chama ancorada entre o trocador de calor e o queimador. Da Figura 39 à Figura 44 são mostradas imagens utilizando o método *direct shadowgraphy* das condições em que os testes foram executados. Abaixo de cada imagem está indicada a altura entre o queimador e o trocador de calor (H). É possível observar que em todas condições há sempre uma mesma altura H em que a chama ora está estabilizada somente no queimador, ora no queimador e no trocador de calor.

As manchas destacadas pelos retângulos tracejados são apenas reflexos do ressalto do trocador de calor, que não eram possíveis de evitar, e devem ser desconsiderados.

As imagens com altura de 0,5 mm dão falsa impressão de que o trocador de calor está tocando o queimador. Na verdade, devido à câmera não estar exatamente perpendicular ao sistema, a sombra da chama e dos gases aquecidos acaba sobrepondo a sombra do ressalto do trocador de calor.

Figura 39: Imagens obtidas pelo método Direct shadow
graphy para $S_L=17$ cm/s e $\Phi=0,9$

Fonte: do autor.

Figura 40: Imagens obtidas pelo método Direct shadowgraphy para $S_L = 19$ cm/s e $\Phi = 0.8$

Fonte: do autor.

Figura 41: Imagens obtidas pelo método Direct shadowgraphy para $S_{\rm L}$ = 19 cm/s e Φ = 0,9

Fonte: do autor.

H = 6,5 mm H = 4,5 mm H = 4,5 mm $H_{th} = 3,1 \text{ mm}$ $H_t = 2,3 \text{ mm}$ H = 0,5 mm

Figura 42: Imagens obtidas pelo método *Direct shadowgraphy* para $S_L = 19$ cm/s e $\Phi = 1.0$

Fonte: do autor.

Figura 43: Imagens obtidas pelo método Direct shadowgraphy para $S_L = 21$ cm/s e $\Phi = 0.9$

Fonte: do autor.

Figura 44: Imagens obtidas pelo método Direct shadowgraphy para $S_{\rm L}=23$ cm/s e $\Phi=0.9$

Fonte: do autor.

4.2.2 Espaçamento de transição entre o queimador e o trocador de calor

Lembra-se que a altura mínima na qual ocorre a mudança de regime corresponde à distância entre o trocador de calor e a superfície do queimador que resulta na extinção da chama laminar e essa extinção é causada por resfriamento e por estiramento da chama, sendo o segundo efeito preponderante, como será discutido abaixo.

Na Figura 45 variou-se a velocidade da mistura reagente, mantendo a estequiometria constante. Quando se aumenta a velocidade de chama e se mantém a razão de equivalência constante, se está aumentando a potência térmica do queimador. Com isso, a quantidade de energia liberada pela chama é maior e capaz de resistir a uma maior perda de calor. Ainda, a camada limite no ponto de estagnação é empurrada mais próxima à placa. Nesse caso, o trocador de calor deve se aproximar mais da placa porosa para causar a extinção da chama. Por isso, a *altura de transição* diminui com o aumento da velocidade de chama. Por sua vez, a *altura de transição por histerese* permaneceu praticamente constante, com um leve aumento de 0,1 mm no ensaio de maior velocidade, o que fica dentro da incerteza de medição. O motivo desse comportamento é que o efeito fluidodinâmico controla a transição de regime.

Figura 45: Variação de H_t e H_{th} conforme velocidade de chama laminar para $\Phi = 0.9$.

Na Figura 46, variou-se a razão de equivalência, mantendo a velocidade da mistura reagente constante. Nesse caso, tanto a *altura de transição* quanto a *altura de transição por histerese* aumentam com a razão de equivalência. Isso ocorre porque o aumento da razão de equivalência resulta em um aumento de velocidade de chama laminar e aumento de temperatura de chama. Embora a chama busque uma posição de estabilidade em uma posição mais próxima do queimador, a transferência de calor para o trocador de calor é mais intensa. A transferência de calor mais intensa domina os resultados do experimento e, assim, o efeito de resfriamento do trocador de calor é sentido mais cedo e a distância mínima (de extinção) é maior.

Figura 46: Variação de H_t e H_{th} conforme razão de equivalência para $S_L = 19$ cm/s.

Fonte: do autor.

Os valores obtidos para altura de transição H_t são levemente maiores que as distâncias de extinção por resfriamento reportadas em Jones (1989) e mostradas na Figura 14. Dos resultados de Jones (1989), se obtém uma distância de extinção por transferência de calor entre placas planas de 2,3 mm para metano e 1,8 mm para gás natural (NGC). Turns (2000) também reporta uma distância de extinção entre duas placas planas de 2,5 mm para metano. Portanto, a distância H_t é uma distância de extinção da chama plana laminar intensificada pelo efeito de deformação da chama, para as condições do queimador utilizado e do experimento realizado.

4.3 TRANSFERÊNCIA DE CALOR ENTRE CHAMA E SUPERFÍCIE

4.3.1 Taxas de transferência de calor

As taxas de transferência de calor entre o queimador e o trocador de calor são apresentadas nas figuras a seguir. As barras de erros são apresentadas para cada ponto conforme calculados na propagação de incertezas.

A Figura 47 (a) mostra a taxa de transferência de calor para o queimador e a Figura 47 (b) para o trocador de calor em função da altura H, para chamas com $S_{\rm L} = 17$ cm/s e $\Phi = 0.9$. Nessas figuras, as linhas azuis correspondem às situações nas quais a chama estabiliza-se na superfície do queimador, enquanto que as linhas vermelhas correspondem às situações com as chamas estabilizadas na borda do queimador. A direção das setas indica se a medição é tomada com a altura H descrescendo ou crescendo. Quando a seta é bidirecional isso implica que a chama se mantém estabilizada na mesma condição, tanto para H crescendo, como para H decrescendo.

Na Figura 47 (a) observa-se que a taxa de transferência de calor para o queimador é máxima quando H = 2,5 mm na situação de chama estabilizada no queimador. Isso ocorre porque nessa condição a chama está mais próxima ao queimador, apresentando, portanto, maior fluxo de calor por condução da chama para o queimador. A partir dessa condição, ao decrescer a altura H, a chama sofre extinção e estabiliza-se na borda do queimador para 2,0 mm $\leq H \leq 0,5$ mm. A partir de H = 0,5 mm, quando se aumenta o valor de H, a chama permanece estabilizada na borda do queimador até a altura $H = H_{th} = 2,5$ mm. Nessa região, a taxa de transferência de calor para o queimador ocorre apenas na borda do queimador, existindo na região central apenas o jato de mistura reagente com pré-aquecimento. Nota-se que a taxa de transferência de calor nessa região é maior do que para a chama estabilizada no queimador em alturas maiores (H > 4 mm). Isso ocorre porque a chama estabilizada na borda do queimador queima com alta taxa de consumo de reagente (alta velocidade de chama) e possui contato direto com o queimador ao longo de uma linha de contato, conforme mostrado na Figura 31. A alta taxa de consumo decorre do pré-aquecimento da mistura reagente quando esta escoa na região central da placa porosa e é evidenciada pelo fato da área da chama estabilizada na borda ser menor que a área da chama estabilizada sobre a superfície do queimador. Com a altura *H* crescente, em H = 2,5 mm a chama sobre o queimador sofre re-ignição e volta a queimar de forma estabilizada na sua superfície. Esse valor é denominado de H_{th} . A partir dessa altura, ainda com *H* crescente, a relação entre a taxa de transferência de calor e a altura *H* segue o mesmo caminho que o obtido com o *H* decrescente.

Na Figura 47(b) observa-se que a taxa de transferência de calor para o trocador de calor é máxima quando H = 2,5 mm, o mesmo valor no qual a taxa de transferência de calor para o queimador era máxima. Isso ocorre porque nessa condição a chama está próxima ao trocador de calor e ainda apresentando uma grande área de chama. Com a altura Hdecrescendo, em $H = H_t = 2,0$ mm a chama sofre extinção e estabiliza-se na borda do queimador. A taxa de transferência de calor para o trocador diminui por causa do efeito de redução da área de contato entre a chama e o trocador de calor. Com a redução da altura H ainda mais a taxa de transferência de calor diminui porque aumenta a transferência de calor do trocador de calor para o escoamento de ponto de estagnação deixando a placa porosa e incidindo no trocador de calor, devido ao aumento da velocidade deste escoamento. Com o aumento da distância H, a chama sofre re-ignição e estabiliza-se sobre o queimador quando H $= H_{th} = 2,5$ mm.

Figura 47: Taxa de transferência de calor (a) para o queimador e (b) para o trocador de calor para chamas com $S_L = 17$ cm/s e $\Phi = 0.9$.

A Figura 48 (a) e (b) apresenta mesma situação experimental e os mesmos comportamentos gerais discutidos acima, agora, porém, para com $S_L = 19$ cm/s e $\Phi = 1,0$. Apenas, nessas condições, o ponto de reignição ocorre em uma distância maior, $H = H_{th} = 3,1$ mm. A chama com razão de equivalência maior queima em maior potência e com maior temperatura de chama, fornecendo maior taxa de transferência de calor para o queimador. Assim, a chama permanece estável mesmo para uma distância maior.

Figura 48: Taxa de transferência de calor (a) para o queimador e (b) para o trocador de calor para chamas com $S_L = 19$ cm/s e $\Phi = 1,0$

As Figura 49 e 50 apresentam as taxas de transferência de calor para o queimador e para o trocador de calor como função da altura H em todas as condições medidas neste trabalho, agrupadas por velocidade de chama laminar na Figura 49 e por razão de equivalência na Figura 50. As linhas contínuas mostram as taxas de transferência de calor para o queimador, enquanto que as linhas tracejadas representam as taxas de transferência de calor para o trocador de calor. As cores representam a variável que foi agrupada (S_L ou Φ) conforme a legenda. É possível notar que a taxa de transferência de calor é maior para o trocador de calor do que para o queimador, quando a chama está estabilizada de forma plana na superfície do queimador e quando $H > H_t$, enquanto que, quando a chama está estabilizada no trocador de calor, quando $H < H_t$, as taxas são aproximadamente iguais. Isso ocorre porque, quando o valor de altura é grande, a chama se encontra suficientemente afastada da superfície do queimador, resultando em pequena troca de calor para o mesmo. Por outro lado, o trocador de calor recebe os gases quentes da chama.

Com base na Figura 49, para as condições testadas em $S_L = 19$ cm/s e $0.8 < \Phi < 1.0$, verifica-se que, dentro da incerteza experimental, não há mudança significativa nas taxas de transferência de calor, tanto para o trocador de calor quanto para o queimador. Observa-se que o ponto $H = H_{th} = 3.1$ mm para $S_L = 19$ cm/s e $\Phi = 1.0$ está abaixo das outras curvas porque, nessas condições, a reignição da chama plana ocorre mais tardiamente.

Figura 49: Taxas de transferência de calor para o trocador de calor e para o queimador como função de H agrupados por S_L =19 cm/s.

Fonte: do autor.

Na Figura 50 os resultados são agrupados por razão de equivalência, facilitando a análise da influência da velocidade de chama laminar sobre as taxas de transferência de calor. É possível afirmar que, para as condições testadas, a taxa de transferência de calor para o trocador de calor aumenta com o aumento da velocidade de chama laminar, mantendo a razão de equivalência constante em 0,9 para o intervalo de alturas de $H > H_{th}$. Isso se deve ao fato de, quando a

velocidade de chama é aumentada, mantida a razão de equivalência constante, a vazão total de mistura reagente é aumentada e, por consequência, a potência do queimador aumenta. Para $H_t < H < H_{th}$ o comportamento é similar ao descrito anteriormente, porém com intensidade menor. Com $H < H_t$, dentro da incerteza experimental, as taxas de transferência de calor são praticamente independentes da velocidade de chama laminar.

Figura 50: Taxas de transferência de calor para o trocador de calor e para o queimador como função de H agrupados por $\Phi = 0.9$.

Fonte: do autor.

4.3.2 Temperaturas superficiais no trocador de calor

A Figura 51 mostra as temperaturas medidas durante o teste com $S_L = 19$ cm/s e $\Phi = 0.9$ para as diferentes alturas H avaliadas. As temperaturas de entrada e saída de água são mais baixas que todas as outras temperaturas superficiais medidas, como era esperado. Observase que a temperatura mais alta é da posição a da borda do trocador de calor, que corresponde à posição 3 conforme o esquema daFigura 24. Nota-se que para $H < H_{th}$ as temperaturas superficiais decrescem por causa da menor transferência de calor para o trocador de calor. A maior queda é observada no termopar no centro do trocador, o qual, após a transição, recebe o jato frio de mistura reagente.

Figura 51: Temperaturas superficiais e de entrada e saída de água no trocador de calor para $S_L = 19$ cm/s e $\Phi = 0.9$

Fonte: do autor.

A Figura 52 mostra o valor médio de temperatura superficial obtido a partir da média aritmética de todas as temperaturas superficiais medidas nas condições descritas da Figura 51. Ele exibe o mesmo comportamento discutido anteriormente.

Figura 52: Temperaturas de entrada e saída de água e médias da superfície do trocador de calor para $S_L = 19$ cm/s e $\Phi = 0.9$.

Fonte: do autor.

As incertezas na determinação das temperaturas superficiais são negligenciáveis no cálculo da incerteza total de medição do coeficiente de transferência de calor, tornando inexpressivo qualquer problema de instalação dos termopares. Para chegar a essa conclusão, foi utilizada a equação (14) e avaliada a contribuição de cada componente de variação na variável resposta (incerteza total do coeficiente de transferência de calor). Através desses cálculos, os resultados das contribuições das temperaturas superficiais sobre a incerteza total foram nulos.

As demais condições experimentais apresentam comportamentos semelhantes, portanto não serão discutidas.

4.3.3 Coeficiente de transferência de calor médio

A Figura 53 apresenta os coeficientes de transferência de calor agrupados por S_L em função da altura H. Nessa análise, não se separa os efeitos de transferência de calor por convecção e por radiação. O coeficiente obtido deve ser entendido como um coeficiente global.

Analogamente à discussão da transferência de calor para o trocador, o coeficiente de transferência de calor diminui com o aumento do espaçamento para $H > H_{th}$. As diferenças observadas entre as razões de equivalência estão dentro das incertezas experimentais. Para $H < H_{th}$, o comportamento inverso é observado, porque a velocidade do escoamento aumenta com a diminuição do espaçamento. Este aumento de velocidade causa diminuição da taxa de transferência de calor e da temperatura superficial. Como a temperatura de chama adiabática é constante com a razão de equivalência, o coeficiente de convecção diminui.

Figura 53: Coeficientes de transferência de calor agrupados por $S_L = 19$ cm/s.

Fonte: do autor.

A Figura 54 apresenta os coeficientes de transferência de calor agrupados por Φ em função da altura *H*. O comportamento com relação a *H* é o mesmo que discutido acima, porém os resultados indicam uma maior influência da velocidade de chama laminar. Para as velocidades de chama laminar de 17 e 19 cm/s, os coeficientes de transferência de calor são os mesmos para $H > H_{th}$. E os valores são maiores para as velocidades maiores. Como a velocidade do escoamento contra a superfície do trocador de calor aumenta, o coeficiente de transferência de calor aumenta. Não é claro nesse momento porque ocorre uma mudança brusca de coeficiente de transferência de calor entre 19 cm/s e 21 cm/s. Esse efeito precisa ser investigado em maior detalhe no futuro.

Figura 54: Coeficientes de transferência de calor agrupados por $\Phi = 0.9$.

A Figura 55 mostra a variação dos coeficientes de transferência de calor, em todas as condições testadas, para as alturas H em que a chama estava plana e ancorada somente no queimador. Observa-se que comportamento geral dos coeficientes de transferência de calor não muda significativamente entre as condições testadas, decrescendo conforme a altura entre o trocador de calor e o queimador era aumentada. A Tabela 10 complementa a Figura 55 mostrando os valores coeficientes de transferência de máximos dos calor obtidos experimentalmente nos pontos de transição e os coeficientes angulares das regressões lineares dos pontos experimentais para cada condição.

Para a região 2,5 mm \leq H \leq 6,5 mm, o coeficiente de transferência de calor pode ser aproximado como

$$h_{tc} = h_{tc,max} + (dh_{tc}/dT) H, \tag{16}$$

onde os valores de $h_{tc,max} e dh_{tc}/dT$ são dados na Tabela 10.

Figura 55: Coeficientes de transferência de calor obtidos com chama laminar plana

Fonte: do autor.

Tabela 10: Valores dos coeficientes de transferência de calor máximos e coeficientes angulares das regressões lineares.

S_L (cm/s)	Φ	<i>h_{tc}</i> máximo (W/m ² .K)	dh_{tc}/dH (W/m.K)
23	0,9	97	-4,6
21	0,9	96	-6,0
19	1,0	89	-6,0
19	0,9	84	-5,2
19	0,8	81	-4,1
17	0,9	82	-4,7
		Média	-5,1

Fonte: do autor.

4.3.4 Eficiência de transferência de calor

A Figura 56 mostra as eficiências de transferência de calor para o trocador de calor agrupadas por S_L . Observa-se que com razão de equivalência menor, a chama está mais distante do queimador, pelos motivos descritos anteriormente, o que implica em menor perda de calor

para o queimador e maior transmissão de calor para o trocador. Portanto, a eficiência térmica é maior. Esse efeito se sobrepõe ao efeito da diminuição da temperatura da chama devido ao empobrecimento da mistura reagente.

Figura 56: Eficiências de transferência de calor para o trocador de calor agrupadas por $S_L = 19$ cm/s.

Fonte: do autor.

A Figura 57 mostra as eficiências de transferência de calor para o trocador de calor agrupadas por Φ . Nessa condição é possível avaliar como a velocidade do escoamento influencia a eficiência térmica do trocador de calor. Para menor velocidade de chama laminar, o maior tempo de residência dos gases queimados abaixo do trocador de calor e a chama mais afastada do queimador, perdendo menos calor para este, acabam afetando positivamente a eficiência, tornando-a mais alta. Esses efeitos se sobrepõem ao efeito do menor coeficiente de convecção na superfície do trocador de calor para as condições de baixa velocidade de chama laminar.

Figura 57: Eficiência de transferência de calor para o trocador de calor agrupado por $\Phi = 0.9$.

Fonte: do autor.

A Figura 58 mostra a variação das eficiências de transferência de calor, em todas as condições testadas, para as alturas H em que a chama estava plana e ancorada somente no queimador. Da mesma forma que os coeficientes de transferência de calor, o comportamento geral dos das eficiências não muda significativamente entre as condições testadas, decrescendo conforme a altura entre o trocador de calor e o queimador era aumentada. É possível observar que a eficiência na condição de velocidade de chama mais alta é menor para pequena distância entre o queimador e o trocador de calor, porém, o comportamento se inverte para distância maior. Isso acontece devido ao efeito da diminuição da velocidade do escoamento ser mais influente que a diminuição do coeficiente de transferência de calor conforme o espaçamento entre o queimador e o trocador de calor aumenta. Isso pode ser verificado através da junção das equações (11), (12) e (13) resultando na seguinte equação:

$$\eta_{tc} = \frac{h_{tc} \cdot A_t \cdot (T_{AD} - T_{sup})}{\dot{v}_c \cdot PCS},\tag{17}$$

onde no numerador é levado em consideração o coeficiente de transferência de calor e no denominador, de forma indireta, a velocidade do escoamento sob o trocador de calor.

A Tabela 11 complementa a Figura 58 mostrando os valores máximos das eficiências de transferência de calor obtidos experimentalmente e os coeficientes angulares das regressões lineares dos pontos experimentais para cada condição.

Figura 58: Eficiências térmicas obtidas com chama laminar plana.

Fonte: do autor.

Tabela 11: Valores das eficiências de transferência de calor máximos e coeficientes angulares das regressões lineares

$S_L(cm/s)$	Φ	η máxima (%)	$d\eta/dH$, (m^{-1})
23	0,9	27	-1,3
21	0,9	28	-1,8
19	1	27	-1,8
19	0,9	27	-1,7
19	0,8	29	-1,5
17	0,9	30	-1,7
		Média	-1,6

Fonte: do autor.

Nesse trabalho estudou-se experimentalmente a interação de chamas planas laminares com uma superfície isotérmica, avaliando a influência da distância entre elas no limite de extinção da chama e na eficiência de transferência de calor entre a chama e o trocador de calor para diferentes velocidades de chama e razões de equivalência. Esse estudo tem aplicação potencial em situações onde há contato entre chamas laminares e superfícies sólidas, como, por exemplo, na cocção de alimentos, onde a chama do queimador interage com as trempes e o utensílio de cozimento.

Da análise da literatura não foram encontrados estudos de interação entre chamas planas laminares, como aquelas formadas no queimador McKenna desse trabalho, e superfícies isotérmicas. Dessa forma, esse trabalho contribuiu com a elaboração de um procedimento experimental não intrusivo e fornecendo resultados de taxas e coeficientes médios de transferência de calor para combustão de gás natural em chamas planas laminares estabilizadas próximas a superfícies sólidas isotérmicas.

Para isso, utilizou-se um trocador de calor, o qual configura uma superfície circular isotérmica, posicionado sobre um queimador de chama plana (queimador McKenna), com a face paralela à superfície do queimador. Em cada ensaio, a distância entre a superfície isotérmica e a superfície do queimador foi variada mantendo constante a razão de equivalência e a velocidade de chama laminar. Era observada opticamente a transição entre a chama estabilizada na superfície do queimador e estabilizada entre o trocador de calor e o queimador.

O combustível utilizado foi o gás natural proveniente do Gasoduto Bolívia-Brasil e fornecido comercialmente na região da Grande Florianópolis. Os dados fornecidos pela empresa distribuidora mostram que a composição do combustível contém, em média, 89% de metano, sendo o restante 5,9% de C2, 1,8 % de C3, 0,97 % de C4 e mais pesados, 1,5 % de dióxido de carbono e 0,7 % de nitrogênio. Ainda, medições da SCGAS apontam que esta composição tem se mantido praticamente constante durante os últimos 3 anos. Os cálculos de propagação de incertezas mostraram que a incerteza na medição da velocidade de chama e da razão de equivalência do queimador, decorrentes da incerteza na determinação da massa específica, são fracamente dependentes da composição química do gás natural, dispensando, dessa forma, uma análise mais detalhada.

Os testes foram realizados com velocidade de chama variando entre 17 e 23 cm/s, em intervalos de 2 cm/s, com razão de equivalência constante de 0,9. A razão de equivalência foi avaliada entre 0,8 e 1,0 - em intervalos de 0,1 - mantendo a velocidade de chama fixa em 19 cm/s.

A partir dos resultados, obtêm-se as conclusões listadas abaixo.

Quanto à distância de transição:

- 1. os valores obtidos para altura de transição H_t (entre 2,1 mm e 2,5 mm) são levemente maiores que as distâncias de extinção por transferência de calor reportadas em Jones (1989) e Turns (2000), caracterizando, dessa forma, H_t como uma distância de extinção da chama plana laminar intensificada pelo estiramento da chama, para as condições do queimador utilizado e do experimento realizado;
- 2. o aumento da velocidade de chama (S_L) causa aumento da taxa de transferência de calor para o queimador, porém, ocorre um confinamento da camada limite para regiões mais próximas da superfície. Isso se reflete na diminuição de H_t , enquanto que H_{th} permanece praticamente constante;
- 3. o aumento da razão de equivalência (Φ) causa um aumento da temperatura da chama e maior troca de calor para o trocador de calor. Dessa forma, existe um aumento de ambos, $H_t e H_{th}$.

Quanto à transferência de calor chama-superfície:

- 4. quando a chama está estabilizada no queimador com $H = H_t$, a taxa de transferência de calor para o trocador de calor, o coeficiente de transferência de calor e a eficiência térmica do trocador de calor são máximos para todas as condições avaliadas;
- 5. com a diminuição da razão de equivalência (Φ), a chama estabiliza-se mais distante do queimador, o que implica em menor perda de calor para o queimador e maior transmissão de calor para o trocador. Porém, o aumento da razão de equivalência causa aumento da temperatura da chama, causando maior gradiente e, por consequência, maior transferência de calor entre o trocador de calor e a chama e, dessa forma, o efeito de resfriamento do trocador de calor é sentido mais cedo, fazendo com que H_t seja maior. Portanto, para variação de razão de equivalência mantendo a velocidade de chama constante, há uma interação entre os

efeitos de posição relativa da frente de chama versus a temperatura local sobre a extinção da chama. Um efeito causa H_t decrescer, enquanto que o outro causa H_t aumentar. É possível que haja um ponto de mínimo no valor de H_t em relação à razão de equivalência. Isso deve ser estudado com mais detalhes em trabalhos futuros, com equipamentos que permitam obter maior resolução na variação da razão de equivalência e na movimentação do trocador de calor;

- 6. com a redução da velocidade de chama laminar (S_L) , o maior tempo de residência dos gases queimados abaixo do trocador de calor e a chama mais afastada do queimador, perdendo menos calor para este, acabam afetando positivamente a eficiência, tornando-a mais alta. Esses efeitos se sobrepõem ao efeito do menor coeficiente de convecção na superfície do trocador de calor para as condições de baixa velocidade do escoamento na camada limite;
- 7. da mesma forma que os coeficientes de transferência de calor, o comportamento geral das eficiências não muda significativamente entre as condições testadas quando a chama está estabilizada no queimador, decrescendo conforme a altura entre o trocador de calor e o queimador é aumentada.

Quanto às incertezas de medição:

- 8. o maior impacto nas incertezas dos experimentos para determinação da velocidade de chama e da razão de equivalência se dá pelo medidor de vazão de ar. responsável por aproximadamente % е 90 % incerteza 70 da total. respectivamente. A incerteza na composição do combustível representa menos de 1 % da incerteza total para essas duas variáveis:
- 9. para as medições da taxa de transferência de calor para o queimador, o maior responsável pela incerteza total é o rotâmetro utilizado para medir a vazão de água do circuito de refrigeração do queimador, responsável por aproximadamente 75 % da incerteza total. Por sua vez, para a taxa de transferência de calor para o trocador de calor, a incerteza na medição da temperatura de saída da água é a que apresenta maior influência na incerteza total (aprox. 65%), seguido pela incerteza na medição da vazão volumétrica de água (aprox. 30%), ambos do trocador de calor;
- 10. as incertezas na determinação das temperaturas superficiais do trocador de calor podem ser negligenciadas no cálculo da incerteza total de medição do coeficiente de transferência de calor, para a definição usada, tornando inexpressivo qualquer problema de instalação dos termopares. Para esse caso, os maiores contribuidores são as incertezas da temperatura de saída da água da vazão volumétrica de água, ambos do trocador de calor, na mesma proporção que no caso anterior;
- para a determinação da potência térmica do queimador, utilizada no cálculo da eficiência térmica, o responsável pela incerteza total é o medidor de vazão do combustível, com participação de aproximadamente 99% (o restante é devido incerteza da composição do combustível);
- por sua vez, a eficiência térmica tem incerteza atribuída principalmente ao medidor de vazão de combustível (aprox. 70%) e à temperatura de saída de água do trocador de calor (aprox. 20%).

5 CONCLUSÃO

Nesse trabalho estudou-se experimentalmente a interação de chamas planas laminares com uma superfície isotérmica. Sendo assim, esse estudo tem aplicação potencial em situações onde há contato entre chamas laminares ancoradas no queimador e superfícies sólidas, como, por exemplo, na cocção de alimentos, onde a chama do queimador interage com as trempes e o utensílio de cozimento.

Com base nos resultados obtidos, as conclusões do trabalho são listadas a seguir.

Quanto à distância de transição:

- os valores obtidos para altura de transição H_t (entre 1,8 mm e 2,1 mm) são levemente maiores que as distâncias de extinção por transferência de calor reportadas na literatura;
- o aumento da velocidade de chama (SL) aumenta a taxa de transferência de calor para o queimador, porém, ocorre um confinamento da camada limite para regiões mais próximas da superfície. Isso se reflete na diminuição de H_t, enquanto que H_{th} permanece praticamente constante;
- o aumento da razão de equivalência (Φ) causa um aumento da temperatura da chama e maior troca de calor para o trocador de calor. Dessa forma, existe um aumento de ambos, H_t e H_{th}.

Quanto à transferência de calor chama-superfície:

- quando a chama está estabilizada no queimador com H = H_t, a taxa de transferência de calor para o trocador de calor, o coeficiente de transferência de calor e a eficiência térmica do trocador de calor são máximos para todas as condições avaliadas;
- com a diminuição da razão de equivalência (Φ), a chama estabiliza-se mais distante do queimador, o que implica em menor perda de calor para o queimador e maior transmissão de calor para o trocador;
- com a redução da velocidade de chama laminar (S_L), o maior tempo de residência dos gases queimados abaixo do trocador de calor e a chama mais afastada do queimador, aumentam a eficiência. Esses efeitos se sobrepõem ao efeito do menor

coeficiente de transferência de calor na superfície do trocador de calor;

 da mesma forma que os coeficientes de transferência de calor, o comportamento geral das eficiências não muda significativamente entre as condições testadas quando a chama está estabilizada no queimador, decrescendo conforme a altura entre o trocador de calor e o queimador é aumentada.

Quanto às incertezas de medição:

- para a velocidade de chama (S_L) e razão de equivalência (Φ):
 - o medidor de vazão de ar é responsável por aproximadamente 70 % e 90 % da incerteza total, respectivamente;
 - a incerteza na composição do combustível representa menos de 1% da incerteza total para essas duas variáveis;
- para a taxa de transferência de calor para o queimador:
 - a vazão de água do circuito de refrigeração do queimador é responsável por aproximadamente 75 % da incerteza total;
- para a taxa de transferência de calor para o trocador de calor:
 - a incerteza da temperatura de saída da água é a que apresenta maior influência na incerteza total (aprox. 65%);
 - a medição da vazão volumétrica de água é responsável por aproximadamente 30% da incerteza;
- para o coeficiente de transferência de calor médio:
 - as incertezas nas temperaturas superficiais do trocador de calor podem ser negligenciadas;
 - as incertezas da temperatura de saída da água e da vazão volumétrica de água, ambos do trocador de calor,

são os maiores contribuidores, na mesma proporção que no caso anterior.

- para a potência térmica do queimador (utilizada no cálculo da eficiência térmica):
 - a incerteza do medidor de vazão de combustível é responsável por aprox. 99 % da incerteza total;
 - o restante é devido incerteza da composição do combustível;
- para a eficiência térmica do trocador de calor:
 - o medidor de vazão de combustível é responsável por aproximadamente 70 % da incerteza;
 - a temperatura de saída de água do trocador de calor é responsável por aproximadamente 20 %.

6 SUGESTÕES PARA TRABALHOS FUTUROS

- 1. Medir a composição dos gases de exaustão conforme a altura do trocador de calor, principalmente na transição de regime.
- 2. Avaliar outros combustíveis.
- 3. Avaliar, quando o trocador de calor estiver na altura de transição por histerese, com a chama estabilizada entre o trocador de calor e o queimador, se há uma nova condição de velocidade de chama e razão de equivalência que faz com que a chama volte ao queimador.
- 4. Avaliar, quando o trocador de calor estiver na altura de transição por histerese, com a chama plana estabilizada no queimador, se há uma nova condição de velocidade de chama e razão de equivalência que faz com que a chama estabilize no trocador de calor.
- 5. Avaliar o aumento de eficiência devido ao aumento do diâmetro total do trocador de calor.
- Buscar métodos experimentais não intrusivos e realizar simulação numérica detalhada para avaliar em maior detalhe a relação entre os efeitos de perda de calor e de estiramento da chama na sua extinção.

7 REFERÊNCIAS BIBLIOGRÁFICAS

AMERICAN GAS ASSOCIATION. "Gas Engineers Handbook". Industrial Press, 1550 p., 1965

AXELSSON, B.; COLLIN, R.; BENGTSSON, P. E.. Laser-induced incandescence for soot particle size measurements in premixed flat flames. **Appl. Opt.**, Washington, Estados Unidos, v. 39, n., p.3683-3690, 2000.

BAUKAL, C. E.; GEBHART, B. Surface condition effects on flame impingement heat transfer. **Exp. Thermal Fluid Sci**. v.15, p.323–335, nov. 1997.

BAUKAL, C. E.; GEBHART, B.. A review of empirical flame impingement heat transfer correlations. **Int. J. Heat And Fluid Flow**, Filadélfia, Estados Unidos, v. 17, n. , p.386-396, jan. 1996.

CANCINO, L.R., "Análise de equilíbrio, cinética química da ignição térmica e propagação de chama plana laminar de misturas de hidrocarbonetos leves com ar". Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Engenharia Mecânica. Florianópolis, 185p. Dissertação (Mestrado), 2004.

CARRILLO IBAÑEZ, W. A., "Análise e desenvolvimento de uma metodologia de projeto de queimadores atmosféricos tipo tubo perfurado." Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Engenharia Mecânica. Florianópolis, 154p. Dissertação (Mestrado), 2005.

CATAPAN, R.C., "Estudo do mecanismo combinado térmico e fluidodinâmico de estabilização de chama em um queimador poroso radiante e sua operação em ambiente de elevada temperatura". Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Engenharia Mecânica. Florianópolis, 146p. Dissertação (Mestrado), 2007.

DE GOEY, L.P.H. et al. Analysis of the heat transfer of an impinging laminar flame jet. **International Journal Of Heat And Mass Transfer**, Eindhoven, Holanda, v. 50, n. 13-14, p.2816-2827, jul. 2007. Disponível em:

<http://www.sciencedirect.com/science/article/pii/S0017931007000208 >. Acesso em: 10 jul. 2011.

DE GOEY, L.P.H. et al. Extended heat-transfer relation for an impinging laminar flame jet to a flat plate. **International Journal Of Heat And Mass Transfer**, Eindhoven, Holanda, v. 51, n. , p.1854-1865, abr. 2008. Disponível em: <http://www.sciencedirect.com/science/article/pii/S001793100700498X >. Acesso em: 10 jul. 2011.

DE GOEY, L.P.H.; BOSSCHAART, K.J. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. **Combustion And Flame**, Eindhoven, Holanda, v. 136, n. 3, p.261-269, fev. 2004. Disponível em: <<u>http://www.sciencedirect.com/science/article/pii/S001021800300275X</u> >. Acesso em: 13 dez. 2011.

EL-MAHALLAWY, F., EL-DIN HABIK, S., "Fundamentals and technology of combustion". Elsevier Science Ltd, Oxford, U.K., 870p., 2000.

FRANCISCO JUNIOR, R.W.; OLIVEIRA JUNIOR, A.A.M.; VICENTIM NETO, A. Measurement of Laminar Flame Speeds of Low Calorific Value Fuels Using a Flat Flame Burner and the Direct Shadowgraph Method. In: EUROPEAN COMBUSTION MEETING, 6., 2013, Lund, Suécia: EMC2013 Anals. Lund, Suécia: Lund University, 2013. p. 38 - 38.

FRANCISCO JUNIOR, R.W.; OLIVEIRA JUNIOR, A.A.M; HEIL, A. Laminar Flame Speed Measurements Of Natural Gas / Air Mixtures Using a Flat Flame Burner. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 22., 2013, Ribeirão Preto, Brasil. **ABCM.** Ribeirão Preto, Brasil: Abcm, 2013.

GLASSMAN, I., YETTER, R.A., "Combustion", Fourth Edition, Academic Press, London, U. K., 794p., 2008.

SMITH, G.P.; GOLDEN, D.M.; FRENKLACH, M.; MORIARTY, N.W.; EITENEER, B.; GOLDENBERG, M.; BOWMAN, C.T.; HANSON, R.K.; SONG, S.; GARDINER, W.C.; LISSIANSKI, V.V.; and QIN, Z.; <u>http://www.me.berkeley.edu/gri_mech/</u>

HARTMANN, R. M., "Análise da propagação de chamas prémisturadas em reator de volume constante". Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Engenharia Mecânica. Florianópolis, 148p. Dissertação (Mestrado), 2009.

IULIIS, S. De et al. How "flat" is the rich premixed flame produced by your McKenna burner? **Combustion And Flame**, Milão, Itália, v. 153, n. , p.384-393, 2008. Disponível em: <http://www.sciencedirect.com/science/article/pii/S001021800800045X >. Acesso em: 21 fev. 2012.

JAROSINSKI, J., VEYSSIERE, B., "Combustion phenomena: Selected mechanisms of flame formation, propagation and extinction." CRC Press, Taylor & Francis Group, Broken Sound Parkway NW, USA, 236p., 2009.

JONES, H.R.N., "The Application of Combustion Principles to Domestic Gas Burner Design", British Gas Teaching Fellow, University of Cambridge, 199p., 1989.

KADOWAKI, S., "The effects of heat loss on the burning velocity of cellular premixed flames generated by hydrodynamic and diffusivethermal instabilities"., Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan, 2005.

KRÜGER, V. et al. Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating to soot particle size distribution. **Meas. Sci. Technol.**, Berlin, Alemanha, v. 16, n. , p.1477-1486, 2005.

KUO, K.K., "Principles of combustion", John Wiley & Sons, New York, USA, 810p., 1986.

LAW, C. K., "Combustion Physics", Cambridge University Press, Cambridge U. K., 742 p., 2006.

LEWIS, B. VON ELBE, G., "Combustion, Flames and Explosion of Gases". 2ed. New York: ACADEMICS PRESS INC. 1968. 731 p.

MAZAS, A.N., et al. Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. **Combustion And Flame**, Châtenay-malabry, França, v. 158, n. 12, p.2428-2440, dez. 2011. Disponível em: <http://www.sciencedirect.com/science/article/pii/S001021801100160X >. Acesso em: 21 fev. 2012.

POINSOT, T., VEYNANTE, D., "Theoretical and Numerical Combustion", Edwards, Philadelphia, 421 p., 2001.

RAY, Anjan; CHANDER, Subhash. Flame impingement heat transfer: A review. **Energy Conversion And Management**, Nova Deli, India, v. 46, p.2803-2837, 16 mar. 2005. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0196890405000324 >. Acesso em: 10 jul. 2011.

SCHULZ, C. et al. Laser-induced incandescence: recent trends and current questions. **Applied Physics B**, Duisburg, Alemanha, v. 83, n. , p.333-354, jun. 2006.

TURNS, S.R., "An introduction to combustion: Concepts and applications". 2ed., McGraw Hill, Singapura, 700p., 2000.

VICENTIM NETO, Antônio. **Desenvolvimento, construção e validação de bancada para medição de velocidade de chama pelo método da chama plana.** 2012. 59 f. Trabalho de Conclusão de Curso (graduação) (Bacharel) - Universidade Federal de Santa Catarina, Florianópolis, 2012.

VISKANTA, R. Convective and radiative flame jet impingement heat transfer. **Int J Transport Phenom,** Londres, Inglaterra, p. 1-15. nov. 1998.

WANG, Z. H., et al. Investigation of combustion enhancement by ozone additive in CH4/air flames using direct laminar burning velocity measurements and kinetic simulations. **Combustion And Flame**, Hangzhou, China, v. 159, n. 1, p.120-129, jan. 2012. Disponível em: http://www.sciencedirect.com/science/article/pii/S0010218011001970 Acesso em: 21 fev. 2012.

WARNATZ, J., MAAS, U., DIBBLE, R. W., "Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation", Springer-Verlanger, Berlin, 299 p., 1996.

APÊNDICE A – Algoritmo ees para cálculos de transferência de calor

"BALANÇO ESTEQUIOMÉTRICO, PODER CALORÍFICO INFERIOR E PROPRIEDADES DA MISTURA"

"Temperatura e pressão de referência"

T1 = T_reagentes U_Treag=Incerteza_Treag P1 = 101,3 [kPa]

"Balanço estequiométrico para o GNV"

"1 (alpha N2 + beta CO2 + gama CH4 + delta C2H6 + epsilon C3H8 + zeta C4H10) + a (O2 + 3.76 N2) = b CO2 + c H2O + d N2"

```
beta + gama + 2 * delta + 3 * epsilon + 4 * zeta = b "Balanço para o C"
2*alpha + 2*a * 3,76 = 2*d "Balanço para o N"
4 * gama + 6 * delta + 8 * epsilon + 10 * zeta = 2*c "Balanço para o H"
2*beta + 2*a = 2*b + c "Balanço para o O"
```

```
alpha=0,00706
beta=0,01471
gama=0,89172
delta=0,0587
epsilon=0,01806
zeta=0,00965
```

"Razão entre a fração molar do combustível e o ar - estequiométrico"

 $fs = M_comb / M_ar$

"Massa molar do combustível e do ar" M_N2 = MolarMass(Nitrogen) M_CO2 = MolarMass(CarbonDioxide) M_CH4 = MolarMass(Methane)

```
M_C2H6 = MolarMass(Ethane)
M_C3H8 = MolarMass(Propane)
M_iC4H10 = MolarMass(Isobutane)
M_nC4H10 = MolarMass(n-Butane)
M_O2 = MolarMass(Oxygen)
M_H2O = MolarMass(Steam)
M_Air = MolarMass(Air)
```

```
M_comb = alpha * M_N2 + beta * M_CO2 + gama * M_CH4 + delta *
M_C2H6 + epsilon * M_C3H8 + (zeta * M_iC4H10 + zeta *
M_nC4H10)/2
M_ar = a * M_O2 + a * 3,76 * M_N2
```

"Número de mols de ar e combustível presentes na mistura reagente"

 $n_ar = a * 4,759 / phi$ $n_comb = 1$ $n_reag = n_comb + n_ar$

"Fração molar do ar e do combustível presentes na mistura reagente"

 $X_ar = n_ar / n_reag$ $X_comb = n_comb / n_reag$

"Densidades do ar, do combustível e dos reagentes nas condições T = T_reagentes e 101.3 kPa"

rho_ar = DENSITY(Air;T=T1;P=P1)
rho_comb = (alpha * rho_N2) + (beta * rho_CO2) + (gama *
rho_CH4) + (delta * rho_etan) + (epsilon * rho_pro) + ((zeta * rho_nbut
) + (zeta* rho_ibut))/2

rho_reag = X_comb * rho_comb + X_ar * rho_ar

rho_N2 = DENSITY(Nitrogen;T=T1;P=P1)
rho_CO2 = DENSITY(CarbonDioxide;T=T1;P=P1)
rho_CH4 = DENSITY(Methane;T=T1;P=P1)
rho_etan = DENSITY(Ethane;T=T1;P=P1)

```
rho_pro = DENSITY(Propane;T=T1;P=P1)
rho_nbut = DENSITY(n-Butane;T=T1;P=P1)
rho_ibut = DENSITY(Isobutane;T=T1;P=P1)
```

rho_ag = DENSITY(Water; T=T1;P=P1)

"RAZÃO DE EQUIVALÊNCIA, VELOCIDADE DE CHAMA E VAZÕES DE AR E COMBUSTÍVEL"

"Área da secção transversal do queimador (m)"

 $Aq = pi * (Rq)^2$ Dq = 2 * RqRq = 0.03[m]

"Razão de equivalência"

phi = fr / fs fr = m_dot_comb / m_dot_ar "Razão de combustível e ar aplicada"

"Velocidade de chama (cm/s)"

 $S_L = 100 * V_dot_reag / Aq "cm/s"$

m_dot_reag = m_dot_ar + m_dot_comb "Vazão mássica (kg/s)"

m_dot_reag = V_dot_reag * rho_reag m_dot_ar = V_dot_ar * rho_ar m_dot_comb = V_dot_comb * rho_comb

V_dot_reag_2 = V_dot_reag * 1000 * 60 "Vazão volumétrica em lpm" V_dot_comb_2 = V_dot_comb * 1000 * 60 "Vazão volumétrica em lpm" V_dot_ar_2 = V_dot_ar * 1000 * 60 "Vazão volumétrica em lpm"

"FLUXOS APLICADOS NOS MEDIDORES DE VAZÃO"

"Medidor Alicat (0-5 lpm - Calibrado para N2) - O fluido utilizado no medidor será o CH4"

 $Alicat_CH4_5lpm = V_dot_comb_2$

"Medidor Omega (0-50 lpm / CH4) - O fluido utilizado será o ar"

V_dot_ar_2_medidor = - 0,136186 + 0,994784 * V_dot_ar_2 + 0,000736676 * V_dot_ar_2^2

Omeg_Ar_50lpm = (V_dot_ar_2_medidor * Cfg_N2_CH4) * (100 / 50) "Conversão de CH4 para ar"

"Medidor Omega (0-20lpm) amarelo"

V_dot_comb_2 = Omeg_COMB_20lpm * Cfg_gnv_nit

Cfg_gnv_nit = (alpha*100 * Cfg_N2_N2+ beta*100 * Cfg_N2_CO2 + gama*100 * Cfg_N2_CH4 + delta*100 * Cfg_N2_etan + epsilon*100 * Cfg_nit_pro + (zeta*100 * Cfg_nit_nbut + zeta * Cfg_nit_ibut)/2) /(Cfg_N2_N2 * 100) "Fator de correção do equipamento nitrogênio/gnv"

"Fatores de conversão dos medidores Omega"

 $Cfg_Air_CH4 = (Cfg_N2_CH4)/(Cfg_N2_N2)$ "Fator de correção do equipamento - Air p/ CH4" $Cfg_Air_CO2 = (Cfg_N2_CO2)/(Cfg_N2_N2)$ $Cfg_Air_H2 = (Cfg_N2_H2)/(Cfg_N2_N2)$ $Cfg_Air_CO = (Cfg_N2_CO)/(Cfg_N2_N2)$ $Cfg_H2_N2 = (Cfg_N2_N2)/(Cfg_N2_H2)$ $Cfg_CO2_CO = (Cfg_N2_CO)/(Cfg_N2_CO2)$ $Cfg_CO2_N2 = (Cfg_N2_N2)/(Cfg_N2_CO2)$ $Cfg_CO2_H2 = (Cfg_N2_H2)/(Cfg_N2_CO2)$ $Cfg_CH4_H2 = (Cfg_N2_H2)/(Cfg_N2_CH4)$ $Cfg_CH4_CO = (Cfg_N2_CO)/(Cfg_N2_CH4)$ $Cfg_CH4_CO2 = (Cfg_N2_CO2)/(Cfg_N2_CH4)$ $Cfg_CH4_N2 = (Cfg_N2_N2)/(Cfg_N2_CH4)$ $Cfg_N2_N2 CH4$ $Cfg_N2_N2 C$

```
Cfg\_CO\_CO2 = (Cfg\_N2\_CO2)/(Cfg\_N2\_CO)Cfg\_CO\_H2 = (Cfg\_N2\_H2)/(Cfg\_N2\_CO)
```

 $Cfg_N2_CH4 = 0,7175 \\ Cfg_N2_CO2 = 0,7382 \\ Cfg_N2_N2 = 1 \\ Cfg_N2_H2 = 1,0106 \\ Cfg_N2_CO = 1 \\ Cfg_N2_CO =$

Cfg_N2_etan = 0,49 Cfg_nit_pro = 0,35 Cfg_nit_nbut = 0,26 Cfg_nit_ibut = 0,27

" TROCAS DE CALOR "

" Perda de calor para o queimador (sistema de refigeração da malha) "

q_dot_Queim=m_dot_agua_queim*Cp(water;P=101,325[kPa];T=(T_s_agua_queim+T_e_agua_queim)/2)*(T_s_agua_queim-T_e_agua_queim)

m_dot_agua_queim=V_dot_agua_queim*density(water;P=101,325[kPa];T=(T_s_agua_queim+T_e_agua_queim)/2)

V_dot_agua_queim=18[l/hr]*convert(l/hr;m^3/s)

U_Tsaq=incerteza_Tsaq; U_Teaq=incerteza_Teaq;

" Para o trocador de calor "

q_dot_Troc=m_dot_agua_troc*Cp(water;P=101,325[kPa];T=(T_s_agua_troc+T_e_agua_troc)/2)*(T_s_agua_troc-T_e_agua_troc)

m_dot_agua_troc=V_dot_agua_troc*density(water;P=101,325[kPa];T=(T_s_agua_troc+T_e_agua_troc)/2)

V_dot_agua_troc=1,5[l/min]*convert(l/min;m^3/s)

U_Tsat=incerteza_Tsat; U_Teat=incerteza_Teat;

h=altura_trocador;

" POTÊNCIA QUEIMADOR "

Potencia=PCS* V_dot_comb; PCS=39876,09[kJ/m^3] {U_PCS=106,5456[kJ/m^3]}

" EFICIÊNCIA TROCADOR "

Eta_trocador=100*(q_dot_Troc/Potencia)

" PERDA PELO QUEIMADOR "

Perda_queimador=100*(q_dot_Queim/Potencia)

" COEFICIENTE DE TROCA TERMICA "

h_troca_termica=(q_dot_troc*convert(kW;W))/(A_troc*(converttemp(C;K;T_AD)-converttemp(C;K;((T_cg+T_pv+T_ph+T_mv+T_mh)/5))))

A_troc=(pi*D_troc^2)/4

D_troc=0,063[m]

" TEMPERATURA ADIABÁTICA DE CHAMA "

 $alpha*M_N2*enthalpy(N2;T=T1)+beta*M_CO2*enthalpy(CO2;T=T1)+gama*M_CH4*enthalpy(CH4;T=T1)+delta*M_C2H6*enthalpy(C2H6;T=T1)+epsilon*M_C3H8*enthalpy(C3H8;T=T1)+zeta*M_iC4H10*enthalpy(C4H10;T=T1)+a*M_O2*enthalpy(O2;T=T1)+a*3,76*M_N2*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(CO2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T_AD)+c*M_H2O*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T1)=b*M_CO2*enthalpy(N2;T=T1)+c*M_H2O*enthalpy(N2;T=$

 $alpy(H2O;T=T_AD)+d*M_N2*enthalpy(N2;T=T_AD)+((a/phi)-1)*M_O2*enthalpy(O2;T=T_AD)$

" Temperatura superficial "

 ${T_sup=(T_cg+T_pv+T_ph+T_mv+T_mh)/5}$

U_Tcg=incerteza_Tcg; U_Tpv=incerteza_Tpv; U_Tph=incerteza_Tph; U_Tmv=incerteza_Tmv; U_Tmh=incerteza_Tmh;

 $\label{eq:constraint} \begin{array}{l} \{U_Tsup=(U_Tcg^2 + U_Tpv^2 + U_Tph^2 + U_Tmv^2 + U_Tmh^2)^{(1/2)}\} \end{array}$

(Fonte: desenvolvido pelo autor)

	tencia	kw]	5±0, 1386	5±0, 1386	5±0, 1386	5±0, 1386	5±0, 1386	5±0,1386		tencia	kw]	7±0,1386	7±0,1386	7±0,1386	7±0,1386	7±0,1386	7±0,1386		tencia	kw]	3±0, 1386	3±0, 1386	3±0, 1386	3±0, 1386	3±0, 1386	3±0,1386
	AD PO	5	61 2,076	61 2,076	61 2,076	61 2,076	61 2,076	60 2,076		AD PO	5	68 1,937	67 1,937	67 1,937	67 1,937	67 1,937	66 1,937		AD PO.] [69 1,755	69 1,755	68 1,75	69 1,755	69 1,75	69 1,75
	a T_/	2	18	18	18	18	18	18		r_∕	2	18	18	18	18	18	18		,⊤ T_/	0]	18	18	18	18	18	18
	h_troca_termic	[W/m^2-K]	63,09±3,201	63,4±4,751	68,83±3,422	97,05±4,099	87,37±4,85	78,83±4,359		h_troca_termic	[W/m^2-K]	63,74±4,076	65,91±4,191	72,82±4,304	95,67±5,395	83,28±4,831	71,43±3,74		h_troca_termic	[W/m^2-K]	61,15±2,914	62,25±2,941	71, 79±3,83	83,62±3,979	71,23±3,717	62,85±3,215
	Eta_trocador		17,42±1,448	17,51±1,747	18,99±1,567	26,74±2,093	24,08±2,074	21,74±1,869		Eta_trocador		18,92±1,802	19,57±1,859	21,62±1,991	28,36±2,563	24, 7±2, 257	21, 2±1, 863		Eta_trocador		20,07±1,835	20,43±1,863	23,53±2,223	27,39±2,503	23,34±2,191	20,61±1,922
	q_dot_Troc	[kw]	0,3616±0,01791	0,3635±0,02694	0,3942±0,01912	0,5551±0,02265	0,4998±0,0272	0,4512±0,02446		q_dot_Troc	[kw]	0,3666±0,02306	0,3791±0,02371	0,4189±0,02428	0,5494±0,03033	0,4785±0,02721	0,4107±0,02098		q_dot_Troc	[kw]	0,3518±0,01616	0,3581±0,01629	0,4124±0,02137	0,4802±0,02201	0,4092±0,02071	0,3612±0,0179
	q_dot_Queim	[kw]	0,3444±0,01322	0,3489±0,01389	0,3459±0,01328	0,4428±0,01578	0,2817±0,01101	0,2571±0,01123		q_dot_Queim	[kw]	0,3333±0,01381	0,3296±0,01319	0,3011±0,01217	0,3345±0,01326	0,2739±0,01087	0,2468±0,01153		q_dot_Queim	[kw]	0,313±0,01168	0,3047±0,01125	0,2928±0,0115	0,3065±0,01175	0,2613±0,01009	0,2576±0,009727
; Ø = 0,9	phi	Ξ	0,89±0,06	0,89±0,06	0,89±0,06	0,89±0,06	0,89±0,06	0,89±0,06	; Ø = 0,9	ihq	Ξ	0,91±0,07	0,91±0,07	0,91±0,07	0,91±0,07	0,91±0,07	0,91±0,07	; Ø = 0,9	ihq	-	0,91±0,07	0,91±0,07	0,91±0,07	0,91±0,07	0,91±0,07	0,91±0,07
S _L = 23 cm/s	S_L	[cm/s]	22,96±0,2314	22,96±0,2314	22,96±0,2314	22,96±0,2314	22,96±0,2314	22, 96±0, 2314	S ₁ = 21 cm/s	SL	[cm/s]	21,03±0,2321	21,03±0,2321	21,03±0,2321	21,03±0,2321	21,03±0,2321	21,03±0,2321	S _L = 19 cm/s	S_L	[cm/s]	19,01±0,2328	19,01±0,2328	19,01±0,2328	19,01±0,2328	19,01±0,2328	19,01±0,2328
	T_s_agua_troc	[0]	19,87±0,1363	19,65±0,1916	20,52±0,145	21,09±0,1519	20, 32±0,1996	19,61±0,1859		T_s_agua_troc	[0]	19,8±0,1639	19, 39±0,1694	19, 13±0,1716	19,63±0,2212	18, 18±0,2137	17,07±0,1566		T_s_agua_troc	[c]	21, 19±0,1243	21, 29±0,1232	21,55±0,1706	22,68±0,1586	22, 23±0,1571	21, 75±0,1371
	T_e_agua_troc	[0]	16,41±0,04815	16,17±0,1458	16,75±0,04883	15,77±0,06228	15,53±0,1083	15,3±0,08388		T_e_agua_troc	[c]	16,29±0,1146	15,76±0,1161	15,12±0,1148	14,37±0,1255	13,6±0,08528	13,14±0,0694		T_e_agua_troc	[c]	17,82±0,02078	17,86±0,0286	17,6±0,04126	18,08±0,06551	18,31±0,06138	18,29±0,04577
	T_s_agua_queim	[c]	33,18±0,2726	33,02±0,3192	33,44±0,2988	37,15±0,2383	28,83±0,2362	27,26±0,3127		T_s_agua_queim	[]	32,52±0,3365	31,63±0,3109	29,63±0,2868	30,52±0,2995	26,67±0,2483	24,86±0,3652		T_s_agua_queim	[c]	33±0,2242	32,6±0,2019	31,6±0,2624	32,69±0,2464	30,57±0,2044	30,31±0,1669
	T_e_agua_queim	[c]	16,66±0,1562	16, 29±0, 1756	16,85±0,104	15,91±0,1218	15,34±0,1412	14,94±0,1527		T_e_agua_queim	[c]	16,54±0,2035	15,83±0,1614	15,2±0,1632	14,49±0,1703	13,55±0,1345	13,04±0,1291	 5	T_e_agua_queim	[c]	17,99±0,1151	17,99±0,1154	17,56±0,1277	17,99±0,1298	18,04±0,1327	17,96±0,1418
	T_reagentes	[c]	14,67±0,245	14,68±0,2602	14,59±0,3296	14,53±0,2655	14,08±0,106	13,57±0,1166		T_reagentes	[C]	15,22±0,1296	14,99±0,1351	14,96±0,3215	14,42±0,2652	13,82±0,2634	13,38±0,2578		T_reagentes	[c]	17,2±0,1549	17,23±0,1348	14,8±0,1347	16,89±0,1821	17,18±0,1265	17,26±0,131
	ч	[mm]	0,5	1,71	2,49	2,5	4,5	6,5		٩	[mm]	0,5	1,71	2,49	2,5	4,5	6,5		ء	[mm]	0,5	2,01	2,49	2,5	4,5	6,5

APÊNDICE B – LISTAGEM DOS DADOS UTILIZADOS

(Fonte: desenvolvido pelo autor)

1 CIG CIM/m ⁻¹⁶ (1) NWm ⁻²⁶ (1) NWm ²⁶	eagentes T_e_agua_queim T_s_agua_queim T_e_agu	T_e_agua_queim T_s_agua_queim T_e_ag	T_s_agua_queim T_e_ag	T_e_agi	ua_troc	T_s_agua_troc	S ₁ = 17 cm/s S_L	; Ø = 0,9 ihi	q_dot_Queim	q_dot_Troc	Eta_trocador	h_troca_termica	T_AD	Potencia
0.0210 17.240.01249 31.340.0146 16.770.00345 10.240.0124 51.794.0574 15.860.0134 1586.01374 15.244.0268 57.94.0574 1588 15.660.013 0.0311 18.280.0171 33.400.2048 16.774.00346 10.240.01285 0.3954.001045 0.3954.001045 0.3954.001245 15.460.013 15.86	_	0	[c]	[c]	[C]	[C]	[cm/s]	Ξ	[kW]	[kw]		[W/m^2-K]	[]	[kw]
0.244 17.02601.124 33.446.0204 0.5.484.01.245 0.5.484.01.245 0.5.484.01.245 0.5.248.1.245 0.5.248.1.245 0.5.248.1.245 0.5.248.1.245 0.5.248.1.245 0.5.248.1.245 0.5.248.1.245 0.5.248.1.245 0.5.248.1.245 0.5.248.1.245 0.5.248.1.255 1.5.660.1.255 0.5.248.1.255 1.5.660.1.255 0.5.248.1.255 0.5.248.1.255 1.5.660.1.255 0.5.248.1.255 1.5.660.1.255 0.5.248.1.255 1.5.660.1.255 1.5.660.1.255 0.5.248.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.660.1.255 1.5.686.1.255 1.5.686.1.255 <td>0</td> <td>7±0,2301</td> <td>17,24±0,1259</td> <td>33,24±0,2446</td> <td>16,73±0,03426</td> <td>$19, 92\pm 0, 1061$</td> <td>17,02±0,2336</td> <td>0,91±0,08</td> <td>0,3336±0,01251</td> <td>0,3331±0,01464</td> <td>21,24±2,095</td> <td>57,9±2,675</td> <td>1868</td> <td>1,568±0,1385</td>	0	7±0,2301	17,24±0,1259	33,24±0,2446	16,73±0,03426	$19, 92\pm 0, 1061$	17,02±0,2336	0,91±0,08	0,3336±0,01251	0,3331±0,01464	21,24±2,095	57,9±2,675	1868	1,568±0,1385
550.2021 13.2.8.0.012 55.9.0.0230 56.9.0.012 0.3.9.9.0.0137 0.3.4.9.2.50 53.4.3.2.50 53.4.2.50 53.4.2.50 53.4.2.50 53.4.2.50 53.4.2.50 53.4.2.50 53.4.2.50 53.4.2.50 53.4.2.50 53.4.2.50 53.4.2.50 53.4.2.50		1±0,2494	17,02±0,1124	33,16±0,2612	16,77±0,03954	20,2±0,1306	17,02±0,2336	0,91±0,08	0,3366±0,01269	0,3582±0,01715	22,84±2,294	62,26±3,11	1868	1,568±0,1385
550.535 16.840.11 35.976.326 16.840.038 15.840.136 16.826.0378 16.826.0478 16.826.0478 16.826.0478 16.826.0478 16.826.0478 16.826.0478 16.886.0488 16		5±0,2421	18,28±0,1771	33, 1±0,2204	18,45±0,1235	21,97±0,1727	17,02±0,2336	0,91±0,08	0,309±0,01187	0,3674±0,02423	23,43±2,582	63,95±4,314	1868	1,568±0,1385
18.0.255 16.27.0.105 30.23.0.281 16.23.0.0687 3.0.408.0.1367 17.0.73.3.5 188 1.5680.0.1367 0.7.0.255 15.27.0.0125 0.53.0.00165 15.27.0.01065 0.53.10.00176 0.53.10.00176 1.0.0.3.3.10.01129 188 1.5680.0136 0.7.0.1.0 1.5.3.0.00465 16.21.0.00465 1.5.3.0.00465 1.5.2.0.00465 1.5.1.0.00465 1.5.1.0.0046 1.5.8.1.136 1.88 1.5.680.013 0.7.0.1.1.0 1.1.0 1.1.0 1.1.0 1.0.011 0.5.1.0.00465 1.5.1.00465 1.5.1.00466 1.5.1.136 <		5±0,2458	16,84±0,11	35,07±0,2816	16,61±0,02485	21, 11±0,1396	17,02±0,2336	0,91±0,08	0,3801±0,01415	0,4699±0,01939	29,96±2,921	81,82±3,571	1868	1,568±0,1385
07:02:05 15,740,1257 36,966,236 16,7140,0623 16,7140,01056 0,916,100177 23,042,323 5,2884,196 188 1,5680,136 15 T 1		48±0, 2575	16,27±0,1205	30,23±0,2981	16,35±0,05687	20, 26±0,1455	17,02±0,2336	0,91±0,08	0,2912±0,0118	0,4083±0,01961	26,03±2,617	71,07±3,56	1868	1,568±0,1385
energies T = agua queim T = agua quei		07±0,299	15,97±0,1297	28,96±0,2376	16,21±0,04625	19,67±0,1317	17,02±0,2336	0,91±0,08	0,2711±0,01065	0,3613±0,01747	23,04±2,32	62,88±3,169	1868	1,568±0,1385
$\frac{s = 19 \text{ cm}(s, \sigma = 1)}{100, 100, 100, 100, 100, 100, 100, 100,$														
regents T agent C 3 gent C C (0) C (0) <thc (0)<="" th=""> <thc (0)<="" th=""> <thc (0)<="" th=""></thc></thc></thc>							S _L = 19 cm/s	; Ø = 1,0						
(IC) (IC) <th< td=""><td>∟ ≤.</td><td>eagentes</td><td>T_e_agua_queim</td><td>T_s_agua_queim</td><td>T_e_agua_troc</td><td>T_s_agua_troc</td><td>SL</td><td>ihq</td><td>q_dot_Queim</td><td>q_dot_Troc</td><td>Eta_trocador</td><td>h_troca_termica</td><td>T_AD</td><td>Potencia</td></th<>	∟ ≤.	eagentes	T_e_agua_queim	T_s_agua_queim	T_e_agua_troc	T_s_agua_troc	SL	ihq	q_dot_Queim	q_dot_Troc	Eta_trocador	h_troca_termica	T_AD	Potencia
596.0581 15.56.023 25.66.0066 18.40.0106 18.276.0230 51.42.023 19.90.01 69.06181 15.776.0207 51.44.00166 18.40.0106 18.276.0230 51.44.0236 15.14.47.03 15.14.00166 18.276.0124 15.278.01267 15.14.00166 18.40.0107 15.44.01017 15.44.0136 15.24.01276 15.24.01276 15.24.01276 15.24.01276 15.24.01276 15.24.01276 15.24.01017 15.44.01017		[C]	[c]	[c]	[]	[c]	[cm/s]	-	[kw]	[kw]		[W/m^2-K]	Ū	[kw]
6860.161 15.75:0.1207 27.78:0.237 15.34:0.1407 15.37:0.01178 16.320:3.318 182 <th< td=""><td>173</td><td>59±0, 1588</td><td>15,5±0,139</td><td>29,16±0,2522</td><td>15,25±0,04066</td><td>18, 11±0,1106</td><td>18,97±0,2329</td><td>20'0#66'0</td><td>0,285±0,01124</td><td>0,2988±0,01466</td><td>15,8±1,393</td><td>51,22±2,575</td><td>1892</td><td>1,891±0,1386</td></th<>	173	59±0, 1588	15,5±0,139	29,16±0,2522	15,25±0,04066	18, 11±0,1106	18,97±0,2329	20'0#66'0	0,285±0,01124	0,2988±0,01466	15,8±1,393	51,22±2,575	1892	1,891±0,1386
Start Start <th< td=""><td>175</td><td>68±0, 1631</td><td>15,27±0,1207</td><td>27,78±0,2457</td><td>15,17±0,0516</td><td>18,81±0,1447</td><td>18,97±0,2329</td><td>70,0±99,07</td><td>0,2611±0,01041</td><td>0,3802±0,01898</td><td>20,1±1,782</td><td>65,23±3,334</td><td>1892</td><td>$1,891\pm0,1386$</td></th<>	175	68±0, 1631	15,27±0,1207	27,78±0,2457	15,17±0,0516	18,81±0,1447	18,97±0,2329	70,0±99,07	0,2611±0,01041	0,3802±0,01898	20,1±1,782	65,23±3,334	1892	$1,891\pm0,1386$
(7) (3) <td>19</td> <td>5±0,2208</td> <td>17,07±0,1099</td> <td>31,81±0,3142</td> <td>17,14±0,02198</td> <td>20,49±0,1356</td> <td>18,97±0,2329</td> <td>20'0∓66'0</td> <td>0,3074±0,01237</td> <td>0,3498±0,01711</td> <td>18,5±1,629</td> <td>60,05±3,01</td> <td>1892</td> <td>1,891±0,1386</td>	19	5±0,2208	17,07±0,1099	31,81±0,3142	17,14±0,02198	20,49±0,1356	18,97±0,2329	20'0∓66'0	0,3074±0,01237	0,3498±0,01711	18,5±1,629	60,05±3,01	1892	1,891±0,1386
(396):135 15/540:156 29/570:303 17/540:156 189/741:329 <t< td=""><td>113</td><td>77±0,1931</td><td>15,21±0,1396</td><td>28,68±0,308</td><td>15,13±0,08735</td><td>20,1±0,1825</td><td>18,97±0,2329</td><td>70,0±99,07</td><td>0,2811±0,01173</td><td>0,5191±0,02526</td><td>27,45±2,414</td><td>89,19±4,449</td><td>1892</td><td>$1,891\pm0,1386$</td></t<>	113	77±0,1931	15,21±0,1396	28,68±0,308	15,13±0,08735	20,1±0,1825	18,97±0,2329	70,0±99,07	0,2811±0,01173	0,5191±0,02526	27,45±2,414	89,19±4,449	1892	$1,891\pm0,1386$
14.80.2 15.110.01421 27.086.0131 15.564.0036 19.44.0562 18.97.40.2239 0.999.007 0.24096.02296 0.33812.066 75.7.5.833 182 1.899.01 77.01.730 14.990.01255 2.6934.0.001 15.664.0031 18.97.40.2329 0.999.007 0.24096.02296 0.38822.00126 75.7.5.833 182 1.899.01 17.01.730 18.07.1255 18.97.40.2329 0.999.077 0.38024.00126 0.5.264.5.07 1882 1.890.01 18.01 17.00 18.04.100 0.4001.00076 0.38024.00136 0.5.245.1201 1882 1.890.01 17.01 17.01 16.01 16.01 19.01007 0.3119.00146 1.000416 1.4660.11 17.01 17.01 17.01 17.01 18.01 1.4660.11		09±0, 2134	17,54±0,1556	29,67±0,3094	17,87±0,08825	21,61±0,1619	18,97±0,2329	20'0∓66'0	0,253±0,0111	0,3904±0,02188	20,64±1,904	67,08±3,831	1893	$1,891\pm0,1386$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	4,8±0,2	15,11±0,1421	27,08±0,2143	15,18±0,06666	19,4±0,1662	18,97±0,2329	70,0±92,07	0, 2499±0, 009908	0,4408±0,02209	23,31±2,069	75,7±3,883	1892	1,891±0,1386
regentes 1 = squa_queim 7 = squa_quei	1.2.2	77±0,1793	14,99±0,1295	26,93±0,2091	15,05±0,0291	18,69±0,1415	18,97±0,2329	20'0∓66'0	0, 2492±0, 009766	0,3802±0,01818	20,1±1,759	65,26±3,201	1892	$1,891\pm0,1386$
4=130m/s, 0=03 statem/s, 0=03 (1)														
respenses T e agua quein T e agua que							S _L = 19 cm/s	; Ø = 0,8						
IC IC<	∟ ≤.	eagentes	T_e_agua_queim	T_s_agua_queim	T_e_agua_troc	T_s_agua_troc	SL	ihq	q_dot_Queim	q_dot_Troc	Eta_trocador	h_troca_termica	T_AD	Potencia
046.385 19.416.079 33.22.60.516 22.46.1046 19.40.228 08.46.077 0.28796.0107 0.3173-00.048 20.732.42.021 56.264.277 184 1.5680.1 176.1075 19.264.0132 33.116.0205 33.126.010312 22.46.0.108 19.40.228 08.41.007 0.28796.01035 0.3775.43.04 5773-43.06 15.680.1 126.0.0451 19.264.013 33.116.0205 19.296.01941 21.646.0129 19.40.228 08.41.007 0.28796.01035 0.3775.046 15.7734.306 15.680.1 126.0.0446 17.346.01.15 33.116.0205 19.296.01941 21.646.0132 19.40.228 08.41.007 0.28796.01031 0.5735.0165 22.165.228 65.024.331 1580 15.680.1 126.0.0446 17.346.01.15 33.116.0205 19.296.01941 21.064.0132 19.40.228 08.41.007 0.28796.01013 0.5654.166 66.024.331 184 1.5680.1 10.04.145 19.364.01132 32.40.0139 22.860.131 19.40.228 08.41.007 0.26796.01013 0.5654.168 66.024.331 184 1.5680.1 11.40.315 18.86.01132 25.60.159 18.840.0319 22.860.131 19.40.228 08.41.007 0.26796.01013 0.5654.168 66.024.331 184 1.5680.1 11.40.315 18.86.01132 25.60.159 18.840.0313 22.400.139 19.40.228 08.41.007 0.26796.00103 0.466.01058 22.462.238 08.41.07 1.5680.1 11.40.315 18.86.01132 25.60.159 18.840.0313 22.400.139 19.40.228 08.44.07 02.6796.00033 0.4564.01287 20.824.248 66.024.331 184 1.5680.1 11.40.131 11.40.44.0138 25.40.159 18.840.0313 22.40.0139 22.860.0111 9.40.0288 0.84.407 0.2076.00033 0.4564.01387 20.824.248 64.024.348 15.680.1 11.40.131 11.40.44.14.14.14.14.14.14.14.14.14.14.14.14.		[C]	[c]	[c]	[]	[c]	[cm/s]	-	[kw]	[kw]		[W/m^2-K]	Ū	[kw]
20.4.167 19.256-0105 3314.0.106 19.266.00103 23.574.0.0169 20.758.5.016 19.738.5.016 19.466.1.16	2	04±0,1885	19,41±0,1079	33,22±0,1687	19,16±0,02116	22,2±0,1146	19±0,2328	0,81±0,07	0,2879±0,01047	0,3173±0,01481	20,23±2,021	56,26±2,77	1834	1,568±0,1385
05404.053 195560.107 331140.206 19560.0195 25640.130 1984.1307 08445007 0283560.0026 0247560.156 22166.224 61,645.106 15660.15 0560,0155 17,560.1139 30,2760,0265 17,560.0132 1940.2328 0814007 0269560.0115 0,347560.156 22,462.248 61,645.106 15,660.11 0560,0155 13,660.1137 21,661.243 13,660.1137 2,645.140 13,660.1137 2,645.140 13,660.1137 2,645.141 15,660.11 1,5660.11 1,5660.11 1,5660.11 1,5660.11 1,5660.11 1,5660.11 1,5660.11 1,5660.11 1,5660.11 1,5660.11 2,645.166 1,324.166.12 1,5660.11 1,5660.11 1,5660.11 1,5660.11 1,5660.11 1,5660.11 2,555.166 1,324.156 1,5660.11 1,5660.11 1,5660.11 2,555.166 1,324.156 1,5660.11 1,5660.11 1,5660.11 2,555.166 1,324.156 1,5660.11 1,5660.11 1,5660.11 1,5660.11 2,555.166 1,324.156 1,5660.11 1,5660.11 1,5660.11 1,5660.11	1.1	17±0,1767	19,27±0,1025	33,13±0,1765	19,02±0,05025	22, 14±0,1209	19±0, 2328	0,81±0,07	0,2889±0,01053	0,3257±0,01619	20,76±2,104	57,73±3,008	1834	1,568±0,1385
CHARG 17.3540.115 30.2740.206 17.3640.0447 20.6840.0132 19-40.078 0.8440.0115 0.383240.0179 24.432.438 68.023.331 181 1.5680.1 0.9461.1016 31.6884.0197 32.844.01081 20.34324.00179 24.432.438 68.023.331 181 1.5680.1 0.9461.1018 31.6884.0197 32.844.01081 20.444.01087 20.6422.648 58.945.648 124.640.018 12.646.018		02±0,1653	19,5±0,1071	33,11±0,2056	19,29±0,01918	22,62±0,1301	19±0, 2328	0,81±0,07	0,2837±0,01062	0,3475±0,01656	22,16±2,224	61,64±3,091	1834	1,568±0,1385
00-00.1145 19.036-01169 31.886-01197 18.864-010813 22.824-013-99.02.282 0.81-007 0.2675-00.0033 0.666-110.087 20.882.28 80.988-3554 184 1.566-012. 1.11-01.315 18-00-132 23:56-0.315 18.596-003199 22.86-01319 21-02.282 0.81-007 0.2076-000689 0.666-00139 23.165-237 66.4673.46 1566-0154 1.	0	5±0,07446	17,35±0,1158	30,27±0,2945	17,36±0,04417	21,03±0,1323	19±0, 2328	0,81±0,07	0,2695±0,01115	0,3832±0,01779	24,43±2,438	68,02±3,331	1831	1,568±0,1385
11H0.174 18.9440.1138 29.540.0219 18.940.03199 22.8840.1511 1940.2228 0.8140.07 0.220540.00893 0.416440.01955 26.542.666 73.924.3659 18.44 1.56840.1540 1.56840 1.5	-	09±0,1415	19,03±0,1169	31,88±0,197	18,84±0,01813	23, 21±0,1349	19±0,2328	0,81±0,07	0,2679±0,01013	0,4561±0,0187	29,08±2,832	80,98±3,554	1834	1,568±0,1385
(1140,1315 18,8440,1192 29,3340,1979 18,8940,03135 22,3740,1348 1940,228 0,8140,07 0,220140,008776 0,363240,01739 23,1642,327 64,4643,246 1834 1,56840,17	mi i	11±0,174	18,93±0,1138	29,5±0,215	18,9±0,03109	22,89±0,1511	19±0, 2328	0,81±0,07	0,2205±0,00893	0,4164±0,01955	26,55±2,656	73,92±3,659	1834	1,568±0,1385
	111	11±0,1315	18,84±0,1192	29,39±0,1979	18,89±0,03135	22, 37±0,1348	19±0, 2328	0,81±0,07	0,2201±0,008776	0,3632±0,01739	23,16±2,327	64,46±3,246	1834	1,568±0,1385

(Fonte: desenvolvido pelo autor)