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Resumo

Os veículos aéreos não tripulados (UAV’s), inicialmente utilizados para aplicações militares,
tornaram-se cada vez mais atraentes para fins civis. A utilização deste tipo de aeronave tem
crescido exponencialmente nos últimos anos, tanto para fins profissionais como recreativos, de-
vido às inúmeras vantagens que apresentam. Este aumento da procura levou a um crescente
investimento no setor, nomeadamente nos UAVs movidos a energia solar, que hoje em dia já
ocupam uma pequena fatia do mercado. No entanto, com o aparecimento deste tipo de UAV’s,
os softwares de planeamento de missões precisam de ser atualizados de forma a terem em conta
a energia fornecida pelo sol. Desta forma, o presente trabalho descreve o desenvolvimento e
validação de um planeador de missões para UAV’s movidos a energia solar, capaz de planear
e otimizar uma missão, considerando uma estimativa inicial dos parâmetros de cada waypoint
(latitude, longitude, altitude e velocidade), e ainda considerando dados reais de previsão me-
teorologica e elevação de terreno. Para isso, o planeador de missões considera vários modelos
matemáticos, necessários para o cálculo do desempenho da missão, e um algoritmo quadrático
sequencial de forma a otimizar a missão inicial. Depois de descrever os modelos teóricos, uma
aplicação prática do planeador de missão é feita com o objetivo de verificar o seu desempenho.
Em relação à validação, vários resultados divididos por tópicos de interesse são apresentados e
discutidos, concluindo: é eficiente em relação ao planeamento de missões, ainda assim, tendo
alguns aspetos a serem melhorados.

Palavras-chave
Planeamento de missões, veículos aérios não tripulados, algoritmo de otimização, modelo solar
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Abstract

Unmanned aerial vehicles (UAV’s), initially used for military applications, have become increas-
ingly attractive for civilian purposes. The use of this type of aircraft has grown exponentially
in recent years, both for professional and recreational purposes, due to the numerous advan-
tages they present. The increasingly demand of UAV led to an increase in investment, namely
in the development of solar powered UAVs. Nowadays, with the arising of this type of UAV’s,
the mission planners have to start to be updated with new features considering UAV’s with pho-
tovoltaic solar panels. This way, the present work describes the development and validation of
a mission planner for solar powered UAV’s, capable of planning and optimizing a mission given
a initial guess of waypoints parameters (latitude, longitude, altitude and airspeed), consider-
ing real weather forecast and terrain elevation data. For this, the mission planner considers
several mathematical models, required for the calculation of the mission performance, and a
sequential quadratic programming algorithm to optimize the initial mission. After it describes
the theoretical models, a practical application of the mission planner is done in order to ver-
ify its performance. Regarding its validation, several results divided by topics of interest are
presented and discussed, concluding that the mission planner works efficiently, regarding the
mission planning, even though, it has some aspects to be improved.

Keywords
Mission planning, unmanned aerial vehicles, optimization algorithm, solar model
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Chapter 1

Introduction

This chapter, first introduces the mission planning by a general aproach, followed by the moti-
vation and the objectives of this work. The goal of this chapter is to help the reader become
familiar with the mission planning concept and understand why and for what purposes this work
was done.

1.1 Mission Planning Approach

With all the evolution in aerial vehicles, an entire range of practical problems appeared to be
solved. One of those problems was the mission planning problem. Since aircraft routes and
flight frequencies are essential for making airline timetables, it is important to plan them ef-
fectively in order to achieve a profitable timetable [1].

The mission planning, or path planning problem, has long been seen as one of the fundamental
problems in aviation. Originally arising from the need of pre-defined path for each aircraft to
follow and so prevent saturated air traffic and mid-air collisions. It is the process of producing
a flight plan to describe a proposed aircraft flight between a starting and an ending point. It
involves several aspects: fuel calculation, to ensure that the aircraft is able to reach the desti-
nation, the aircraft control limitations to secure that the vehicle can do the maneuvers to avoid
obstacles, and terrain data to know if there is any possible obstacle to avoid [2].

Figure 1.1: Example of a mission planning problem solution. [3]
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1.2 Motivation

The first applications of unmanned aerial vehicles (UAV’s) were military-type. In spite of that,
their reducing costs and their increasing capacity made them attractive for civilian applica-
tions. Nowadays, the mission planning has become even more important with the increased use
of UAV’s. In surveillance missions, for example, UAV’s need a predefined plan of an optimal
route with obstacle avoidance and target reaching.

New assigned tasks to UAV’s are demanding better management of energy, in order to reach
specific objectives without compromising safety. Therefore, a mission planner that optimizes
mission parameters like energy or time can be very useful while setting up the vehicle for op-
timal performance. In addition, aircraft performance optimization and flight tests may prove
themselves very difficult to do without a previous mission plan. In autonomous flights, if a pro-
totype is tested without a mission plan in unknown environments, there is the risk of a crash
and, in that case, all the work is lost. In order to avoid that, many mission planning software
were created. Yet for non-profit institutions like universities, those software may prove too
expensive for the institution to afford it.

In the Department of Aerospace Sciences of the University of Beira Interior there is the Long
Endurance Electric UAV (LEEUAV). As it’s name suggests, this UAV was built to do long endurance
missions, also, it is a solar powered UAV. So, the main reason for the development of the present
thesis is to plan viable missions assuring the safety and the success of its flight.

1.3 Objectives

The main objective of this thesis is to develop and validate a mission planner for solar powered
UAV’s. To achieve this objective, a detailed description of the various tasks is shown below:

• Identification of the parameters that feed the mathematical models;

• Development and implementation of a mission performance model required to estimate
all the necessary parameters to define a mission;

• Selection of databases that provide real weather forecast and terrain elevation data;

• Development and implementation of models that request and return, from the selected
databases, the required data for the mission performance model;

• Implementation of a propulsion performance model;

• Implementation of a solar model required to estimate the total energy harvested from the
photovoltaic cells;

• Development of the flight energy management algorithm required to estimate the to-
tal/partial energy, as well the rates of change;

• Selection and implementation of an algorithm that can solve the mission planning problem;

• Verification of the mission planner.

2



Chapter 2

State of Art

This chapter first gives an overview of common approaches taken to solve the mission planning
problem, then a brief introduction to the solar-powered aircraft is given as well as an historic
contextualization of the field of study. Finally, the chapter ends with the presentation of prac-
tical applications of different planning tools.

2.1 Methods and Algorithms

To solve the path planning problem it is necessary to research methods and modern computer
technology. There are currently five types of methods that can be used to solve this problem
[4] [5]

2.1.1 Roadmap-based Method

A roadmap-based method consists in constructing a map that represents the environment space
constraints, and then using a search algorithm to find the shortest path [6]. One example of
this type of methods is the Voronoi Map method, example in Figure 2.1 . As its name would
suggest, it is based on Voronoi diagrams which are used to extract the network representation
of the environment. After that, as mentioned above, a search algorithm is used to go through
the map analysing the possibilities and, by these means finding the best path.

Figure 2.1: Trajectory calculated with a Voronoi method. [6]

2.1.2 Heuristic Search Algorithm

This type of methods, e.g. Dijkstra’s algorithm, involves knowing some special information about
the domain of the problem, so that it is possible to evaluate the heuristic cost of each solution
by an heuristic function. It constructs nonoverlapping regions that cover free space and encode
cell connectivity in a graph [7]. Dijkstra’s algorithm is used to find the shortest path between
two points, it picks the unvisited node with the lowest distance, calculates the distance through
it to each unvisited neighbor, and updates the neighbor’s distance if it is smaller. In Figure 2.2
an example of a cell connectivity and the cost of each path is represented.

3



Figure 2.2: Example of a graph with the nodes that can be visited and each cost on the segments. [8]

2.1.3 Stochastic Programming Methods

Many Stochastic Programming approaches are based on random sampling, which has a component
of probability, e.g. rapidly-exploring random tree (RRT). This algorithm provides a way to search
high-dimensional spaces efficiently. It consists of a tree data-structure of samples in the space,
created by an algorithm in a way that provides good coverage. The tree-construction algorithm
consists in a loop of the following operations: firstly, RRT picks a random sample in the search
space, secondly, finds the nearest neighbor of that sample, thirdly, selects an action from the
neighbor that heads towards the random sample, then, creates a new sample based on the
outcome of the action applied to the neighbor and lastly, adds the new sample to the tree,
connecting it to the neighbour. In addition, RRT is biased to grow towards large unsearched
areas of the problem [9].

2.1.4 Potential Field-based Methods

Potential field methods are based on the concept of electrical charges. If we see an UAV as an
electrically-charged particle Figure 2.3, then obstacles should have the same type of electrical
charge in a way to repulse the UAV. Following this group of methods the stream function is
constantly used to path finding and obstacle avoidance.

Figure 2.3: Example of a potential field based algorithm paths. [8]

4



2.1.5 Optimization algorithm Methods

Optimization algorithms help to minimize or maximize an objective function ,f(x), which is a
mathematical function dependent on the Model’s internal parameters. They are used in comput-
ing the target design variables ,x, taking into account the constraints functions, g(x), defined
in the model. An optimization problem can be represented in the following way:

• Given a function f : A → R

• Sought an element x0 ∈ A such that f(x0) ≤ f(x) for all x ∈ A (minimization) or such that
f(x0) ≥ f(x) for all x ∈ A (maximization)

Many real-world and theoretical problems may be modelled in this general framework. Typically,
A is some subset of the Euclidean space Rn, often specified by a set of constraints, equalities or
inequalities that the members of A have to satisfy. The domain A of f is called the search space
or the choice set, while the elements of A are called candidate solutions or feasible solutions.
A local minimum is at least as good as any nearby elements, and a global minimum is at least
as good as every feasible element [10]. Generally, unless the objective function is convex in a
minimization problem, there may be several local minima. In a convex problem, if there is a
local minimum that is interior (not on the edge of the set of feasible elements), it is also the
global minimum, but a non-convex problem may have more than one local minimum not all of
which need to be global minima [10].

2.1.6 Methods Comparison

These different methods are normally combined to use their best capabilities in order to bet-
ter solve the path planning problem. The roadmap-based method is usually used to extract a
network representation of the environment. This helps to stablish the space boundaries of the
path, yet it needs a search algorithm to evaluate and optimize each path. On the other hand,
heuristic search algorithms need a previously defined space with the heuristic cost of each seg-
ment of the map pre-defined. Therefore, sampling-based can also serve as a search algorithm,
being faster than the heuristic search algorithms as it does not need to visit each path to find a
solution, yet that solution may not be the global solution as it works by randomly exploring the
space. The potential field based methods have a great behaviour in respect to obstacle avoid-
ance, even though the path is limited to the defined stream functions. Finally, optimization
algorithm can be used to solve any problem, if it is expressed as a mathematical function, as
well as, optimize more than one function, yet, it may not find the global solution and find only
a local solution like the sampling based methods.

2.2 Brief History of Electrical and Solar Powered Flight

Since 1884, when a couple of French army officers named Renard and Krebs used a hydrogen-
filled dirigible powered by batteries and won a 10 km race around Villacoulbay and Medon, the
electrical aerial vehicles became a possibility for the researchers [11]. In spite of the this suc-
cess for the electrical motors, after the arrival of the piston engines this clean energy motors
were abandoned almost for a century [11][13]. Nevertheless, a first step towards solar powered
flight had been taken.
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In the 1960s Fred Militky of Kerkheim Tech begun to work with lightweight free flight mod-
els powered by toy motors and one shot saline batteries. Although these models have flown,
they were considered unsuccessful. Later in 1970 Roland and Robert Boucher started their ex-
periments with electrical flight [12]. At this point, the combination of electrical flight and solar
cells was made for the first time. Robert Boucher built a couple of pilotless solar-powered air-
craft under contracts with the Defence Advanced Research Projects Agency [11].

In Germany, there was another solar model airplane project in work, which was under the
responsibility of Helmut Bruss. Yet this model could not achieve level flight due to the over
heating of its solar cells [12]. One year later, his friend Fred Militky, achieve the first flight
totally powered by solar energy, with Solaris. This flight was made on the 16th of August 1976,
when it reach 50m of altitude by making three flights by 150 seconds each[12].

Nowadays, aircraft internal combustion engines have a much higher endurance than electri-
cal motors. The problem is not the high energy required by the electrical flight, is because it
results in an increase of weight and space. The combination of electric flight and solar cells
has become very useful since the batteries size and weight can be reduced, thus allowing long
endurance flights.

This reintegration of electrical powered flight, led to an investment in many researches and
experiments in electrical aircraft, trying to achieve better results, namely in the efficiency and
endurance field [13].

2.2.1 Evolution of Solar Powered Aircraft

The evolution in the electrical flight field made possible to the pioneers to start experiments for
the solar powered flight. The first solar powered aircraft, a radio controlled model plane called
Sunrise I, was develop by Roland Boucher and made its first flight in 4th of November of 1974
in California [14]. Four years later, on 19 December 1978, Solar One, a manned solar-powered
aircraft developed by Britons David Williams and Fred To, achieved its first flight at Lasham
Airfield, Hampshire. This conventional shoulder wing monoplane was build in the first place to
be human powered. However, it was proved too heavy to be so. Thus, that is how the Solar
One became a solar-powered aircraft. Fred To was convinced that, if the wings upper surface
was covered with high-efficiency solar cells like the ones used on Sunrise, probably it would
be able to fly without the need of batteries. Yet these cells were considered too expensive to
afford [11]. Four months later, at Flabob airport, California, the Solar Riser flew for the first
time piloted by Larry Mauro. The battery has to be charged for three hours in order to power
the motor for ten minutes covering a distance of about 800 m varying between 1.5 m and 5 m
of altitude [12].

Aeronautical competitions are always a great method to promote research in the field. The
Berblinger flight competition, which is a aeronautical competition hosted by Ulm in Germany,
is a proof of that [15]. In the event of 1996, the motorglider Icaré 2 won the contest being
the only one ready to fly in the final competition [12]. In the same event, there were also two
other interesting competitors. The Sole Mio from the Italian team of Dr. Antonio Bubbico and
Solair II of the team of Prof. Günter Rochelt. They did not fulfil the competition airworthiness
directives, besides the fact they were in an advance stage of development. Finally in 1998,
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Solair II made its first flight [12].

2.2.2 High Altitude Long Endurance Platforms and Eternal Flight

During the last two decades, many projects were developed with purpose to achieve a long
endurance and eternal flight. One of this projects was the Pathfinder, project under a US gov-
ernment classified program that was abandoned and reactivated by the Ballistic Missile Defense
Organization Organization having achieved its first flight at NASA Dryden in 1993 [16]. After
this program ended, NASA’s Environmental Research Aircraft Sensor Technology (ERAST) took
responsibility of it in 1994. In 1995, it set a new altitude record for solar-powered aircraft
by reaching 15392 m and only two years later it set the record to 21802 m [16]. Five years
later, a successor of the Pathfinder was developed, the Centurion. It was a modified version of
Pathfinder in order to be more efficient. [17].

Finishing this series of prototypes, Helios was the culmination of the group’s solar-powered
aircraft that, in August, 2001, reached an official world record altitude for a non-rocket pow-
ered aircraft, of 29523 m during a maximum-altitude flight. NASA had the objective of flying
for 24 hours without stopping. It never achieved this objective as it was destroyed in a crash in
the Pacific Ocean in 2003 due to structural failures. [12]

The objective of Helios was reached when Solong flew during 24 hours and 11 minutes with-
out stopping on the 22nd of April 2005, by Alan Cocconi. It used only the available solar energy
powered by its solar panels and the currents of warm air rising from the desert floor. Two months
later, Solong confirmed its capabilities by flying during 48 hours and 16 minutes in California’s
Colorado Desert [12].

A British company designated as QinetiQ, was working in a Zephyr aircraft. In 10th of September
2007, One Zephyr, during trials at the US Military’s White Sands Missile Range in New Mexico,
set official world record time for the longest duration unmanned flight with a 54 hour flight in
New Mexico [18] [12].

A project named Solar Impulse started in 2003, with the objective to become the first manned
aircraft to accomplish the circumnavigation of the Earth powered enterely by solar energy [13].
On 8 July 2010, Solar Impulse I, achieved the world’s first manned 26-hour solar-powered flight.
At the time, the flight was the longest and highest ever flown by a manned solar-powered
aircraft[19]. Even before the Solar Impulse I had successfully completed its first intercontinen-
tal flight in 2012, the Solar Impulse II had started being built in 2011, but a structural failure of
the aircraft’s main spar occurred during static tests in July 2012, delaying the flight tests. The
repair work to the aircraft’s main spar delayed Solar Impulse 2’s circumnavigation of the Earth
from 2012 to 2015 [20]. In the summer of 2016 the Solar Impulse 2 achieved its circumnavigation
mission when it landed in Abu Dhabi after 16 and half months reaching 42000 kilometres of flight
bowered only by solar energy [21].

In the Autonomous Systems Lab (ASL) of Zurich an unmanned solar aircraft project, the At-
lantikSolar was created with the main objective of being the first fully solar powered aircraft to
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cross the Atlantic Ocean, a journey of 5000km and 7 days of continuous flight. The AtlantikSolar
has already proved its value by successfully completing an 81-hour continuous flight [22].

2.3 Mission Planning Tools

2.3.1 Mission Planner - Ardupilot

One of the most utilized mission planning tools is the Mission Planner, which is a full-featured
ground station application for the ArduPilot, an open source autopilot project. This ground
control station can be used as a configuration utility or as a dynamic control complement for
an UAV [23]. Some features of Mission Planner are the capability of loading the software into
the autopilot board that controls a specific UAV; setup and configure the UAV for an optimized
performance; plan, save and load autonomous missions into the autopilot with simple point-and-
click way-point entry on Google Maps or others [23]. A Mission Planner ground station interface
example is shown in Figure 2.4.

The UAV can also be programmed to take off and land autonomously, and loiter over any way-
point for a specified number of turns for a given duration, while acquiring aerial photographs or
video. The user can also program other flight parameters such as ground/air speed and altitude
of the drone over each waypoint. A pre-programmed mission can be uploaded to the UAV before
launch. But even when the UAV is already in the air, a new mission can still be programmed and
uploaded via data telemetry to give new instructions to the UAV [23].

Figure 2.4: Mission Planner ground station interface example [23].

2.3.2 QBase Mission Planner Software - Quantum-Systems

The company Quantum-Systems GmbH was founded in January 2015 and is specialized in the
development and production of automatic transition UAV’s for civilian use. To help its clients
it also developed a mission planning software that plans with a few input parameters, its UAV’s
missions [24].
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Figure 2.5: QBase Mission Planner Interface.

QBase automatically generates efficient flight paths after the flight area and the mission pa-
rameters have been defined. These parameters are the mapping zone boundaries, shown in
Figure 2.6, the selected UAV for the mission, the wind speed and direction, which has to be
checked online by the user, the speed of flight, the altitude of flight and the used payload,
(cameras, sensors), which define the type of the mission. The user also has to check and assure
that there is no obstacle in the flight path. Then, the software generates a mission/trajectory,
e.g. Figure 2.6. It also provides a monitoring of some relevant parameters of the mission like,
battery status, flight time, altitude and number of recorded images of the payload [24].

Figure 2.6: QBase Mission Planner Mission [24].

9



10



Chapter 3

Theoretical algorithm and Methodology

The main focus of the current chapter is to describe the chosen method to plan the mission
for a solar powered UAV. For better understanding and organization during the development
of this thesis, the method was divided in individual models. Each module will be described
by Subsections along this chapter. In Figure 3.1 it can be seen the four models linked to one
central box, these four models are independent subroutines that return the needed data to the
main program. The main program is separated in two main phases, mission analysis and mission
optimization. Starting with an analysis of a non-optimized initial mission (design variables),
followed by an optimization phase, it calculates new design variables to optimize an objective
function, taking in account some pre-defined constraints. The final optimized solution is found
by an iterative process composed of a sequence of analyses and optimizations that is explained
through this chapter.

Figure 3.1: Individual models used for the mission planning

3.1 Mission Analysis

The analysis phase purpose is to calculate the objective function and its constraints, from the
design variables. The design variables are each latitude, longitude, altitude and airspeed of a
set of waypoints that define the mission the user wants to plan. This is represented by Equation
3.1.

dv4n = (φ1, φ2, . . . , φn, λ1, λ2, . . . , λn, h1, h2, . . . , hn−1, hn, V1, V2, . . . , Vn)

φi, λi, hi, vi ∈ Nfor1 ≤ i ≤ n (3.1)

where dv is the list of design variables, φ and λ represent the coordinates (latitude and lon-
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gitude, respectively) of each waypoint, h corresponds the altitude of flight at each waypoint
measured from the take-off ground elevation and V is the airspeed at each waypoint. The num-
ber of parameters is four times the number of waypoints, n. There are two types of design
variables: the first one is expressed in Eq. 3.1 in which the coordinates system is represented
by the geographic coordinates represented in decimal degrees; the second one is represented
by the Eq.3.2:

dv4n = (x1, x2, . . . , xn, y1, y2, . . . , yn, h1, h2, . . . , hn−1, hn, V1, V2, . . . , Vn)

xi, yi, hi, vi ∈ Nfor1 ≤ i ≤ n (3.2)

in which x and y are represented in the East North Up (ENU) coordinates. If the design variables
are defined in the geographic coordinates format, the algorithm of analysis has to convert the
coordinates to the ENU system, so the final inputs are in SI units. If the design variables are
already defined in the second format the mission analysis will proceed. Figure 3.2 shows the
Initial trajectory representation, where each waypoint represents each xi, yi and hi, where i

Figure 3.2: Initial 5 waypoints trajectory example.

is the waypoint index, the correspondent Vi is saved in the program in each waypoint vector.
The analysis is done by segment performance, which represents the segment performance δj of
flight between a waypoint wi and a waypoint wi+1. It is important to note that, in the following
equations, if the parameter is referent to a waypoint i is used as the parameter index. On the
other hand, if the parameter is referent to a segment, it has j as the correspondent index. The
next step of the analysis is to calculate each segment performance parameter, starting with the
segment total distance, that is given by

dsj =
√
dg2j + dh2

j (3.3)

where dgj is the segment ground distance, calculated by
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dgj =

√
(xj+1 − xj)

2
+ (yj+1 − yj)

2 (3.4)

and, dhj is the segment height variation that can be written as

dhj = hj+1 − hj (3.5)

The next step of the mission analysis algorithm is to calculate the average segment airspeed
along the path, that is represented by,

Vaj =
Vj+1 + Vj

2
(3.6)

followed by the calculation of average segment wind speed components V waxj
, V wayj

,V wazj .
It should be mentioned that this step is dependent on the atmospheric data model. The model
described in Section 3.6, will return to this step the wind speed V w at each waypoint and
the corresponding angle of orientation θwi

which assumes the north-clockwise convention, θwi

∈ [0, 360[ where 0 represents the North → South way.

So the average segment wind speed is given by:

V waj(V waxj
, V wayj

, V wazj ) (3.7)

where,

V waxj
=

V wxj
+ V wxj+1

2
(3.8a)

V wayj
=

V wyj
+ V wyj+1

2
(3.8b)

V wazj =
V wzj + V wzj+1

2
(3.8c)

and

V wxi = V wi cos(90− θwi) (3.9a)

V wyi = V wi sin(90− θwi) (3.9b)

V wzi = 0 (3.9c)

The vertical wind speed component is considered zero due to weather forecast databases limita-
tions, yet the model considered 3D components to be used if a more complete weather database
is implemented in a next version of the software. Hence,

V waj =
√
V waxj

2 + V wayj

2 + V wazj
2 (3.10)
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Due to lack of the database information the angle of orientation of the wind speed, θwi, is two
dimensional (x, y), so V wazj is considered zero.

Once the average wind speed is calculated it is necessary to know the flight path direction.
In Figure 3.3, between two waypoints ds, dg and dh are already known from Equations 3.3, 3.4
and 3.5 respectively, θgj and γgj are described bellow in equations 3.11 and 3.12.

Figure 3.3: Flight Path Direction Scheme

θgj = arctan

(
yj+1 − yj
xj+1 − xj

)
= arcsin(

dgyj

dgxj

) (3.11)

γgj = arctan
dhj

dsj
(3.12)

With this, the next step is to calculate the average ground speed V gaj ,

V gaj
(V gaxj

, V gayj
, V gazj ) (3.13)

where the average ground speed components along the path dsi are represented by,

V gaxj
= V gaj

cos(γgj ) cos(θgj ) (3.14a)

V gayj
= V gaj cos(γgj ) sin(θgj ) (3.14b)

V gazj = V gaj
sin(γgj ) (3.14c)

and V⃗ gaj is given by:
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V⃗ gaj
= V⃗aj

+ V⃗ waj
↔


V gaxj

= Vaxj
+ V waxj

V gayj
= Vayj

+ V wayj

V gazj = Vazj + V wazj

(3.15)

where Vaxj
,Vayj

and Vazj are defined in Equations 3.16 - 3.18.

Vaxj
= V gaxj

− V waxj
= V gaj

cos(γgj ) cos(θgj )− V waxj
(3.16)

Vayj
= V gayj

− V wayj
= V gaj cos(γgj ) sin(θgj )− V wayj

(3.17)

Vazj = V gazj − V wazj = V gaj
sin(γgj )− V wazj (3.18)

Adding the square of Equations 3.16, 3.17 and 3.18 it is obtained

[V gaj
cos(γgj ) cos(θgj )− V waxj

]2 + [V gaj
cos(γgj ) sin(θgj )− V wayj

]2 + [V gaj
sin(γgj )− V wazj ]

2 = V 2
a j

so

V g2aj
− 2[cos(γgj )

(
cos(θgj )V waxj

+ sin(θgj )V wayj

)
+ sin(γgj )V wazj ]V gaj

+[V w2
axj

+ V w2
ayj

+ V w2
azj

− V 2
a j ] = 0

and can be solved by

aV g2aj
+ bV gaj

+ c = 0

V gaj
=

−b±
√
b2 − 4ac

2a
(3.19)

where a, b and c are given by

a = 1

b = V w2
axj

+ V w2
ayj

+ V w2
azj

− V 2
a j

c = V w2
axj

+ V w2
ayj

+ V w2
azj

− V 2
a j

At this phase the time in each segment can be calculated by,

dtj =
dsj
V gaj

(3.20)

and the total time can be expressed as:

ttotal =

n−1∑
j=1

dtj (3.21)
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Since the time of the mission is known, the analysis continues to calculate the missions energy.
First, it has to be calculated the air path angle, γaj ,

γaj
= arcsin(

Vazj

Vaj

) (3.22)

where Vazj also represents the rate of climb in each segment RCj.

For the calculation of aerodynamic forces, since in Equations 3.25 and 3.26 the speed variable
is squared, the squared average velocity is represented in Equation 3.23.

V avej =

√
V 2
j + V 2

j+1

2
(3.23)

Therefore the aerodynamic forces and their coefficients (lift, Lj, drag, Dj, lift coefficient, CLj

and drag coefficient, CDj
) are:

Lj =
Wi cos(γaj )

cos(ϕbj )
(3.24)

CLj
=

Lj
1
2ρV ave2j

(3.25)

CDj = f(CLj ) (3.26)

Dj =
1

2
ρV ave2jSCDj

(3.27)

whereWj is the aircraft weight, ϕbj is the bank angle, S is the wing area and ρ is the air density.
More over the drag coefficient is calculated as a function of the lift coefficient multiplied by
the values of the drag polar vector presented in Table 4.2. The next step of the analysis is to
calculate the average acceleration, aj, the average inertial force, QIFj and the average rolling
friction force, Fj. Those can be calculated by

aj =
V gaj+1

dtj
(3.28)

QIFj
=

Wj

g
aj (3.29)

Fj = µj(Wj − Lj) (3.30)

where µj is the coefficient of ground rolling friction. Then the average required thrust is given
by

Tj = Dj +Wj sin(γaj
) +QIFj

+ Fj (3.31)

and finally the average required power Preqj , the average electric power, Pej and the consumed
energy at each segment are calculated by
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Preqj = TjVaj (3.32)

Pelej = UjIj (3.33)

dEj = Pejdti (3.34)

where Uj and Ij are the input voltage and the motor current, respectively, and can be calculated
by an iteration process described in Section 3.4. Note that the energy here is the required energy
for each segment. The energy system distribution between the photovoltaic panels (PV panels)
and the battery is explained in Section 3.7.

3.2 Motor Performance Model

Electric motors, transform electrical power into mechanical torque and rotational speed. For
this work, it is very important to understand how an electric motor works, since the motor is
one of the major limitations of the aircraft.

The motor operating properties are defined by some independent parameters, usually specified
by the manufacturer, namely: the electric current, I; the no load current, I0, that represents
the electric current when there is no load attached to the motor; the electric resistance, R;
And the induced or effective voltage, Ueff [25].

Therefore, based on the model presented in [26], the induced voltage can be calculated as

Ueff = U −RI (3.35)

where U is the actual input voltage. Multiplying the induced voltage by the motor velocity
constant, results in the motor speed,

Ω = Kv Ueff (3.36)

thus, the induced voltage can also be represented by

Ueff =
Ω

Kv
. (3.37)

U is the overall voltage without considering losses due to resistance, and can be represented as
a function of motor speed, Ω, and input current, I, according to

U(Ω, I) = UeffΩ+ I R =
Ω

Kv
+ I R (3.38)

Likewise that there are some voltage losses, the same happens with the total input current.
Hence, the effective current, Ieff is given by

Ieff = I − I0 (3.39)
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where the no load current, I0, does not contribute to useful torque. So the input current, I,
can be represented as

I =
1

R

(
U − Ω

Kv

)
(3.40)

With the input current and voltage values known, it is possible to calculate the total electric
power consumed, Pele, as

Pele = U I (3.41)

Following the same logic and considering Ieff and Ueff , the effective power remaining after
the power losses, Peff , is given by

Peff = Ueff Ieff (3.42)

The available torque at the shaft, Qm, can be represented by Equation 3.43 based on the power
and torque relation.

Qm =
Peff

Ω
(3.43)

Lastly, the motor efficiency, ηmotor, is obtained by the ratio of the effective power and the
overall power converted.

ηmotor =
Peff

Pele
=

IeffUeff

I U
(3.44)

3.3 Propeller Performance Model

For the correct simulation of the propulsion system, it is necessary to consider a propeller per-
formance model, as complement to the electric motor performance model. For this purpose,
the propeller performance model presented in reference [26] was implemented.

To complement the electric motor performance model, it is necessary to calculate the pro-
peller efficiency, ηprop, and the power coefficient, Cp. These depend on the propeller advance
ratio, Jprop, which is a non-dimensional parameter and is defined by

Jprop =
60.V

Nd
(3.45)

where V is the linear velocity of the propeller, with respect to the flow field, N is the propeller
speed in revolutions per minute, and d is the propeller diameter. Notice that N/60 represents
the propeller speed in revolutions per second rps.

By knowing how the power coefficient Cp varies with the advance ratio Jprop, it is possible
to calculate the propeller shaft power Pshaft, as:

Pshaft = Cpρ

(
N

60

)3

d5 (3.46)
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For the calculation of the power coefficient, Cp, and the propulsive efficiency, ηp, as functions of
the propeller advance ratio, Jprop, for a single propeller with a fixed diameter, d, and pitch, p, a
polynomial approximation was used presented in reference [26]. This polynomial approximation
is defined by

Cp = Cp0
×

[
A0 +

4∑
i=1

(
Ai

(
Jprop
Jmax

)i
)]

(3.47)

ηp = ηpmax ×

[
B0 +

6∑
i=1

(
Bi

(
Jprop
Jmax

)i
)]

(3.48)

where Cp0 is the power coefficient at a null advance ratio, ηpmax is the maximum propeller
efficiency, Jmax is the maximum advance ratio, A and B are the coefficient vectors obtained
through the polynomial approximation. The coefficients used in this work are:

A =



0.9999747473830

0.0026886303943

−0.0542821394531

−0.8141198610786

0.2382888347204

−0.1060271581734

0.0222789611099


(3.49)

B =



0.0000000000000

2.8358158896651

−4.6740787983266

17.2094772778345

−45.734194221401

55.789219497612

−25.395785093511


(3.50)

Jmax, ηpmax and Cp0 are obtained by

Jmax = C1d+ C2p+ C3d
2 + C4dp+ C5p

2 + C6d
3 + C7d

2p+ C8dp
2 + C9p

3 (3.51)

Cp0
= D1d+D2p+D3D

2 +D4dp+D5p
2 +D6d

3 +D7d
2p+D8dp

2 +D9p
3 (3.52)

ηpmax
= E1d+ E2p+ E3d

2 + E4dp+ E5p
2 + E6d

3 + E7d
2p+ E8dp

2 + E9p
3 (3.53)
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where the coefficient vectors C, D and E are

C =



0.706462000000

−0.046405100000

0.074350100000

0.001069860000

−0.001664110000

−0.000007715000

−0.000006521000

0.000008688670

0.000002563530

−0.000000703183



(3.54)

D =



0.050916200000

−0.005511640000

0.007489280000

0.000144156000

−0.000239091000

0.000065509200

−0.000002407300

0.000005544700

−0.000003824100

0.000000875200



(3.55)

E =



0.375474000000

0.013321100000

0.014884800000

−0.000358479000

0.000020627100

−0.000189967000

0.000003644830

−0.000004047110

0.000004028760

−0.000000467311



(3.56)

Note that the coefficients were obtained from the model presented in [26], and refers to the
propeller of the UAV used to verify the mission planner software.

3.4 Mission’s Power and Energy Model

Based on Sections 3.2 and 3.3, this Section describes the model used to calculate the parame-
ters needed for the analysis and optimization of the mission. Those parameters are the motor
power setting, δset, the motor speed, Ω, and the input voltage, U.

For the propeller’s and motor’s proper matching, the power absorbed by the propeller must
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equal the motor shaft power. Given an assumed δ, this subroutine allows the calculation of
the input voltage, the motor speed and the motor shaft power, Pshaft, by adjusting the motor
current, I, through an iterative process, in order to match the condition of the propeller-motor
matching. For a minimum electric power required, the propeller must assume a value that
equals the required power calculated by Equation 3.32. By these means, the motor setting
is corrected and adjusted through an iterative process, to match the condition of a minimum
electric power required, where the propeller must assume a value as minimum as possible, con-
sequently equalling the required power for levelled flight.

This subroutine is called after the calculation of the segment required power, Preqj , Equation
3.32. When this subroutine finishes, the mission analysis process can proceed to the calculation
of Pelej and Ej. Equations 3.33 and 3.34, based on this subroutine it can be written as

Pelej =
(
UI + (RESCI

2 +RUI
2)
)
j
nmotor (3.57)

(3.58)

where RU , is the battery resistance and RESC, is the motor speed controller resistance. These
must be considered due to the energy losses in the consumed electric power.

Note that the energy used by the aircraft’s electrical systems must be added to Equation 3.57
to calculate the total electric power in each segment.

PTj
= Pelej + Psysj (3.59)

dEj = PTjdt (3.60)

E =

n∑
1

(dEj) (3.61)

Where n is the number of segments.

3.5 Ground Elevation Model

One of the most important features of a mission planner is to be able to detect an obstacle and
be able to make the necessary corrections to avoid the obstacle. Thus, the ground elevation
model is responsible for providing the necessary ground elevation data to the analysis routine.
With this purpose, a free and open-source Application Programming Interface (API) database
was choosen to map the ground elevation. All public API instructions documentation is available
in [27].

The latitude and longitude of a point on earth (input data) is sent to the API as a request and
consequently, it will return the elevation at this point (output). The algorithm that achieves
this is described bellow. It starts by defining the boundaries, the user needs to define two points
that represent the initial and ending point of the diagonal of the desired map.

Q11(Qlat1 , Qlon1) (3.62)

Qmm(Qlatm , Qlonm
) (3.63)
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where Q11 and Qm are the initial and the ending point of one of the map’s diagonals. Notice
that,

{φ1, φ2, . . . , φn} ⊂]Qlat1 , Qlatm [ (3.64)

{λ1, λ2, . . . , λn} ⊂]Qlon1 , Qlonm [ (3.65)

where φ1, φ2, . . . , φm and λ1, λ2, . . . , λm are the latitudes and longitudes of the mission’s way-
points, respectively, n is the number of waypoints and assuming the map as a matrix m × m,
so m is the number of points requested by column of the map, and so representing the resolu-
tion of the map. Once n is defined it is created a 2D matrix, where Qlat1 and Qlatn define the
North → south boundaries as well as Qlon1 and Qlonn are the West → East boundaries of the
map. Then n2 number of points will be sent to the database as a request for each elevation,
resulting in a grid with n2 three-dimensional points QElevation(Qlati , Qloni , Qelei). The data is
saved as a list of the points in three columns, each line representing a three dimensional point
QElevation. Finally, the file is saved as earth elevation in a .txt format. Now that the elevation
data is known and saved, the main program has access to this through a subroutine, where the
data is read from the earth elevation file and saved in a three dimensional vector. With all the
necessary data from elevation API saved in the program, the process that achieves the elevation
of a pair of coordinates is simple, firstly the vector is searched to find the four nearest points
to the input coordinates P = (x, y). This is represented graphically in Figure 3.4.

Figure 3.4: The four red dots show the data points and the green dot is the point at which we want to
interpolate.

Notice in Figure 3.4 and in the following description of the interpolation’s algorithm x and y

represent the latitude and longitude of the ground points, respectively. Secondly having four
points, Q11 = (x1, y1), Q12 = (x2, y1), Q21 = (x1, y1) and Q22 = (x1, y1), and knowing the
elevation value correspond to each of the four points Qii, f(P (x, y)) can be interpolated by
first doing a linear interpolation in the x-direction. This is
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f(x, y1) ≈
x2 − x

x2 − x1
f(Q11) +

x− x1

x2 − x1
f(Q21) (3.66)

f(x, y1) ≈
x2 − x

x2 − x1
f(Q12) +

x− x1

x2 − x1
f(Q22) (3.67)

and then proceeding with the interpolation in the y-direction to obtain the desired estimate:

f(x, y) ≈ y2 − y

y2 − y1
f(x, y1) +

y − y1
y2 − y1

f(x, y2)

=
y2 − y

y2 − y1

(
x2 − x

x2 − x1
f(Q11) +

x− x1

x2 − x1
f(Q21)

)
+

y − y1
y2 − y1

(
x2 − x

x2 − x1
f(Q12) +

x− x1

x2 − x1
f(Q22

)

=
1

(x2 − x1)(y2 − y1)
(f(Q11)(x2 − x) + f(Q21)(x− x1)(y2 − y) + f(Q12)(x2 − x)(y − y1)

+ f(Q22)(x− x1)(y − y1))

=
1

(x2 − x1)(y2 − y1)

[
x2 − x x− x1

] [f(Q11) f(Q12)

f(Q21) f(Q22)

][
y2 − y

y − y1

]
. (3.68)

Note that if the interpolation had started through the y-direction and then through the x-
direction we would have reached the same result. Once the interpolation is done the subroutine
returns the interpolated elevation to the main program.

3.6 Atmospheric Data Model

To make the mission planner viable the atmospheric data model is used to provide the mission’s
atmospheric data (wind speed, wind direction, temperature deviation and the cloud cover). To
achieve that, we choose the OpenWeatherMap API [28], which returns a five days forecast by
geographic coordinates. This model is very similar to the ground elevation model, the method
to request the data from the database is the same with a particularity: the database instead
of returning three-dimensional points QElevation(Qlati , Qloni

, Qelei), it returns six-dimensional
pointsQWeather(Qlati , Qloni

, Qwindspeedi
, Qwinddirectioni

, QTempi
, Qcloudsi). At this point, the data

is read through a subroutine responsible for the weather data and each variable of atmospheric
data is interpolated for the mission’s analysis by the same method of 2D interpolation described
on the ground elevation model Section. It is important to note that the database does not
have data of vertical wind or the variation of the weather parameters through the altitude.
So, this work considers the weather parameters constant in altitude, except for temperature,
that is estimated calculating the temperature deviation referent to the International Standard
Atmosphere (ISA) model.
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3.7 Solar Model

The solar energy that the PV panel can harvest depends on its area, SPV , on the solar irradia-
tion J (or solar power per unit area) reaching it, and on its efficiency, ηPV . The atmosphere
is a strong influence on it, as well as the percentage of clouds. The Irradiation varies with the
location on earth (mostly with latitude), with the orientation of solar panels and with the so-
lar zenith angle (defined by the angle between the direction of the Sun’s centre and the local
zenith). The zenith angle vary with the day of the year and hour of the day.

3.7.1 Estimated Solar Irradiance

Based on Ref. [29], the Solar Power per unit area can be estimated by

J = J0nτ sin(ζ), (3.69)

where τ is the transmittance factor, which is the ratio of the total radiant or luminous flux
transmitted by a transparent object to the incident flux, ζ is the zenith angle and J0n is the
intensity of the extraterrestrial normal solar radiation which is given by

J0n = JSC

(
rES,0

rES

)2

, (3.70)

where JSC is the extraterrestrial normal solar radiation constant, rES,0 and rES are the mean
and real distances between the Earth and the Sun respectively. rES is a function of rES,0, the
eccentricity of Earth’s orbit, ε, and the true anomaly, v, which represents an angular param-
eter that defines the position of a body moving along a Keplerian orbit. So, the real distances
between the Earth and the Sun is expressed as

rES = rES,0

(
1− ε2

1 + ε cos(v)

)
, (3.71)

and the true anomaly, v, can be calculated by

v = 2π
dn − 4

365
(3.72)

where dn is the day of the year, counting from the first of January (day 1). With J0n Known it is
necessary to calculate the zenith angle, which is given by

ζ =
π

2
− arccos(sin(φ) sin(δs) + cos(φ) cos(δs) cos(µH)), (3.73)

where φ is the latitude of the location and δs and µH are the solar declination angle and the
hour angle respectively, which are calculated by

δs =
23.45π

180
sin

(
360

284 + dn
365

)
, (3.74)
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and

µ(H) = π − π
H

12
(3.75)

where H is the hour of the day. The constants used in this model are listed in Table 3.1.

Table 3.1: The constant values used in Eqs. above.

Symbol Value/unit

τ 0.85
JSC 1367 W/m2

rES,0 149,597,896 km
ε 0.0167

It is important to note that before sunrise and after sunset some output values for solar irradi-
ance may be negative, so in this case they will be set to zero.

3.7.2 Cloud Cover Effect

As written in the previous Subsection, the energy that a PV panel can harvest is influenced by
the clouds. Clouds are one of the largest attenuating factors of solar irradiance. Cloud cover
is a useful predictor of solar resource. If the sky is cloudless, irradiance can be predicted from
the solar geometry, surface albedo, and optical properties of aerosols, ozone and water vapour
using a radiative transfer calculation. Alternatively, several clear-sky models exist in the liter-
ature which are empirical relationships between one or more atmospheric variables [30]. The
statistics of clear-sky index can be used to determine solar irradiance when the theoretical clear
sky irradiance and the cloud cover are known. Based on clear-sky index model on Ref. [30],
there is an empirical relationship between the clear-sky index Kc and cloud cover, Cc in (oktas),
thus the clear-sky index - cloud cover relationship is,

KC(Cc) = 1− 0.75(Cc/8)
3.4 (3.76)

The solar irradiance harvested, considering the cloud effect, is given by

Jcloud = J KC (3.77)

3.7.3 Solar Power with Tilt Angles

With the solar irradiance and the cloud cover effect known, aircraft attitude must be considered,
because the energy that the PV panels can harvest varies with angle of incidence of the sun,
on the panels. Based on models from reference [31], we can find the relation between sun
incidence and the PV panels. Knowing the solar declination angle δs, the hour angle H and the
zenith angle given by the model in Section 3.7.1, it is necessary to calculate the Azimuth angle
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Az, that is given by Equation 3.78 from reference [32].

Az =
sin(ω) cos(δs)

sin(θZ)
(3.78)

The scheme used to calculate the sun’s Azimuth is illustrated in Figure 3.5.

Figure 3.5: Illustration of the sun’s position.

Then with the solar azimuth angle known, the angle of incidence θi of the Sun on a surface tilted
at an angle from the normal to the centre of the Earth, β and with any surface azimuth angle
AZS (Figure 3.6 ) can be calculated from (when AZS is measured clockwise from north):

cos(θi) = cos(90− ζ)cos(Az −Azs) sin(β)− cos(ζ) cos(β)

Figure 3.6: Illustration of the problem.

Then the solar irradiance on a tilted surface is given by

JTS = J cos(θi) (3.79)

Note that if θi > 90° at any point the Sun is behind the surface and the surface will be shading
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itself. Finally, the total energy that the PV panels can harvest is given by

Esolar|total =

∫ tf

t

J KC SPV ηPV cos(θi) dt. (3.80)

3.7.4 Management of Electric Power Flow

The UAV used in this thesis has a parallel systems installation. The systems power distribution
is described in Figure 3.7.

Figure 3.7: Systems Power distribution.

In this type of installation, the battery power is only used to compensate the lack of energy
harvested by the PV panels. In the case of the total required power (motor required power plus
the systems required power) being greater than the solar power, the used battery power is equal
to

Pbat = Pmotor + Psystem − Psolar (3.81)

on the other hand

Psolar = Pmotor + Psystem − Pbat (3.82)

This energy management is assured by a subroutine called SystemsElectricManagement(). The
subroutines algorithm is described in the following pseudocode.
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Figure 3.8: Pseudocode for the management of the electrical Systems.

Notice that, when the solar power is greater than the required power, the battery consumption
gets a negative value, this means that the battery is being charged.

3.8 Mission Optimization

The calculation of a optimal mission for aerial vehicles is the main objective of this dissertation.
The mission planner was created based on FORTRAN Feasible Sequential Quadratic Programming
(FFSQP) optimization algorithm. With the aircraft data and the design parameters stated in
Equation 3.1 known, the program will be able to calculate the objective function and then
proceed with its optimization. The three available options are the mission time, the mission
energy and the mission distance. So, minimizing one of the three, is the objective function,
which directly depends of the design variables and the mission constraints set at the beginning.
Once the design parameters and the mission constraints are defined, the program proceeds
with the analysis of a pre-defined mission, described in Section 3.1 to calculate the value of
the objective function. After that, it is all set to the application of the optimization software.
Figure 3.9 describes this process.

Figure 3.9: Iterative process flowchart.

3.8.1 FFSQP Subroutines

For the optimization stage, a set of FORTRAN subroutines are used for the minimization of the
objective functions, subject to general smooth constraints (if there is no objective function, the
goal is to simply find a point satisfying the constraints) [33]. These set of constraints may be
nonlinear or linear equality and inequality constraints, where the design variables are limited
by these boundaries. FFSQP applies the Sequential Quadratic Programming methodology for

28



nonlinear optimization problems, which solves optimization problems in the form [33]

min/max{fi(xn)} , x ∈ X and i ∈ I (3.83)

where fi(xn) represents the objective function at each iteration i,X is the whole feasible space,
where a set of design parameters, x, are constrained by a lower boundary and upper boundary
according to a set of inequality constraints defined as

gj(xn) ≤ gref (xn), j = 1, 2, ...,m (3.84)

gj(xn)− gref (xn) ≤ 0 (3.85)

where gref (xn) is the reference constraint value which is set by the user and m is the total
number of constraint functions [34]-[33].

In this optimization, the SQP uses the forward finite differences for estimating the gradients
of the constraint function. For better understanding this is presented by a simplified scheme in
Figure 3.10, ∆x is the algorithm increment set by the user.

Figure 3.10: Simplified scheme of the forward finite differences method used to estimate the gradient at
point x [34].

The algorithm, at each iteration, calculates the gradients of the functions with the objective to
find the step direction, pi. Then, in order to achieve the right direction inner product between
pi and the functions gradients, ▽f(xi), has to be negative to minimize the objective function.
This is due to the negative of a non-zero gradient is always the descent direction [34] [33]. This
can be represented as

[pi,▽f(xi)] < 0 (3.86)

Knowing what the correct step direction to take, the algorithms calculates the step length (αi).
The validation of this step is given by

f(xi + piαi) < f(xi) (3.87)

The algorithm increment, ∆x, is a fixed step used to calculate the gradients, rather than the
step length, αi, that is a variable step used to advance to xi+1 where which f(xi+1) is minimized.
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If the condition in Equation 3.87 is satisfied, then xi+1 value is updated to

xi+1 = xi + piαi, (3.88)

The next iteration of the optimization process begins, the algorithm calculates the forward
finite differences of the design variable, obtaining its gradients in order to update it to a new
design variable. When the Hessian matrix of the objective function, ▽f(xi), converges to zero
or to a tolerance value, defined as ε, the final solutions is obtained [34]. Figure 3.11 illustrates
the overall SQP procedure.

Figure 3.11: Sequential Quadratic Programming (SQP) optimization procedure [34].

Note that in this dissertation, assuming a mission with a specified number of segments (for
example a takeoff segment, a climbing segment, a cruise segment, a descending segment and a
landing segment). The method to calculate this objective function given the design parameters
is described through Equations3.3 to 3.21. The constraints boundaries are defined by the user
at the beginning of the analysis. The values and the conditions of the constraints considered in
in this work will be explain in the next Subsection.

3.8.2 Objective Functions

The objective of a this mission planning problem is to maximize or to minimize some numerical
value. This numerical value is called objective function and it attempts to maximize profits or
minimize losses based on a set of constraints and the relationship between one or more design
variables. Regarding the present work, there are three options for the objective function. They
include, the mission time, mission energy and mission distance. The user is responsible for
choosing the most appropriate objective function for its mission planning.

3.8.3 Constraint Functions

The set of parameters that satisfy the equality and inequality constraints is called the feasible
set of the nonlinear optimization problem. Its important to note that, for the mission planner
program, each iteration solution is the same as a mission’s simulation, so the constraint functions
to considered in each iteration were chosen so that the simulation are as closest to the real as
possible. In this work, there were not considered any equality constraints, yet as inequality
constraints it has the design setting condition, which limits the motor setting to its maximum
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value or to a value defined by the user, this is given by

δsetj ≤ δref , δref ∈ ]0, 1] (3.89)

where δref reference value of the motor setting constraint function, the maximummotor current
condition that is defined as

Ij ≤ Imax (3.90)

where Imax is the maximum current of the motor, the stall speed condition, by the means to
prevent the stall effect, which is represented as

CLj

(
Vaj

Vstall

)2

≤ CLmax (3.91)

where Vsafety is the safety speed factor, and Vstall is de stall speed; the height condition, which
limits the minimum altitude to a reference value above the ground, this specific constraint is
verified in each waypoint and also in a extra number of points generated automatically by the
program included in each segment, this is given by

hp ≥ href , href > 0 (3.92)

where p index refers to the waypoints in flight, not including the take off or landing segment
and href is the the reference value of the minimum height constraint function; the minimum
required power constraint, that due to the impossibility of an airplane to break, the mission
planner software has to consider only positive values of required power. It is given by

Preqj < 0 (3.93)

and finally the battery energy left condition, with the purpose of preventing the battery energy
to be lower than a reference value, Bref , defined by the user,

Eleft ≥ Bref (3.94)

where Eleft is the energy remaining in the battery.

The constraints reference values used to test the program are defined in Chapter 4.
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Chapter 4

Practical Application and Results

The development of this work was an evolutionary process with respect to the addition of the
various models necessary for the analysis. This chapter: first, describes the input data of the
LEEUAV (Long endurance electric unmanned aerial vehicle) which is used to test the program;
second, it presents the constraints applied to the tests and then, describes the evolution of
the mission planner presenting and analysing several tests that have been done throughout
the development of the program. These tests are divided by cases of study. The first case
is discussed in Section 4.2. At this phase, the program was not complete and two tests were
performed, in order to verify the well functioning of the mission planer. The next cases of
study are presented in Section 4.3. The first case described in Section 4.3 has the objective
of verifying if the mission planner is able to avoid trajectories crossing terrain. The second
one, has the purpose of analysing the solar model behaviour, by presenting and comparing tests
with uniform cloud cover through the flight. Then, another case, is presented with the goal of
understanding how the optimization algorithm behaves, regarding the position of the waypoints,
when there is a variation of the cloud cover through the map, followed by a case of study that
presents tests with real weather forecast data in order to obtain results closer to those of a
realistic mission. For last, a test is presented to show the full capacity of the mission planner.
To better understand this chapter, a code that serves to name each test is described in Table
4.1, also waypoint 1 will be identified in each trajectory figure. Note that the take-off segment
in every figure is much shorter than the rest of the segments, so, waypoint 1 and 2 may look
coincident.

Table 4.1: Code to name the tests.

Code Section Name Number of tests
pre Preliminary tests 2
TA Terrain Avoidance tests 3
SM Solar Model Behaviour 4
NU Non Uniform Cloud Cover 2
RW Real Weather Forecast Data 4
FC Mission Across Portugal 1

4.1 LEEUAV Input Data

The LEEUAV, as its name suggests, is a long endurance electric UAV and is solar powered by a
PV panel installed in its wings.the LEEUAV, motor, battery and propeller specifications for the
Mission Planner are presented in the Tables 4.2, 4.3 and 4.4.
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Table 4.2: LEEUAV Input Specifications

LEEUAV

Mass
Total Mass

[kg]

Systems
Mass
[kg]

PV Systems
Mass
[kg]

Structure
Mass
[kg]

Payload Mass
[kg]

5.506 0.459 0.801 2.624 0.200

Areas
Wing Area

[m2]

Fuselage Cross
Section Area

[m2]

Fuselage
Wetted Area

[m2]
1.485 0.0144 0.2

Lift Coeficients CLmax CLTO

1.5 0.8

Drag Coeficient CD1 CD2 CD3 CD4 CD5

0.0575979 -0.133823 CL 0.2420812C2
L -0.151927C3

L 0.4183674C4
L

Table 4.3: LEEUAV Motor Specifications

LEEUAV Motor - Scorpion SII-4025-520KV
M

[g]
Kv

[rpm/V ]
Imax

[A]
R

[Ω]
I0[A]

Umax

[V ]
RESC

[Ω]
353 520 100 0.09 1.40 25.20 0.05

Table 4.4: LEEUAV Battery Specifications

LEEUAV battery - SLS APL 3S1P 10000mAh

Ucell

[V ]
Number
of cells

Battery
Pack

Umax[V ]

Battery
Pack

RU [Ω]

Battery
Pack

Imax[A]

Battery
Pack
M[g]

4.20 3 12.60 0.003 150 750

Table 4.5: LEEUAV Propeller Specifications

LEEUAV Propeller
M
[g]

d
[in]

p
[in]

Number
of blades

72 19.09 15.43 2

The data in Tables 4.2 to 4.5 are considered in the following Sections where the results of the
tests that were conducted through the development of the mission planner are discussed.

4.2 Preliminary tests

In a preliminary phase of the mission planner code, when the ground elevation model was pro-
grammed, tests were conducted to analyse the well functioning of the algorithm itself. These
tests were done with common design variables for different flight conditions. The design vari-
ables used for the tests presented in this Section are described in Table 4.6.
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Table 4.6: Preliminary Tests design variables

Mission Design Variables Input
Waypoint
number

Latitude
[deg]

Longitude
[deg]

Altitude
[m]

Airspeed
[m/s]

1 40.29563 -7.43693 0 0
2 40.29546 -7.43750 0 8
3 40.20458 -7.44433 1000 10
4 39.96362 -7.49178 1000 10
5 39.85038 -7.44293 0 8

Note that neither the atmospheric data model nor the solar model were programmed yet, so in
each of the following tests the atmospheric data is defined and fixed for each waypoint and the
harvested solar energy is considered zero.

4.2.1 Preliminary Test 1

The design variables were chosen in order to have approximately a North-South flight direction
with a curve of approximately 5 km, which had the objective of setting more easily the wind
direction variable.

Table 4.7: Fixed data for Mission planning - Test pre 1.

Mission Data Input
Waypoint
number

Ground/
Air

Loiter
Windspeed

[m/s]
Wind direction1

[deg]
Temp.Dev.2

[K]
1 G N 0.00 0.00 3.337
2 G N 5.00 0.00 3.348
3 A N 5.00 0.00 3.366
4 A N 5.00 0.00 4.581
5 G N 5.00 0.00 3.009

S - add a loiter segment to that position;
N - do not add a loiter segment to that position;
G - waypoint located in ground; A - waypoint located in air;
1 - Wind direction North-East orientation; 2 - ISA Temperature deviation

For each test, the user has to choose the objective function option, define the design parameters
as well as, choose which waypoints the aircraft is at ground, where these waypoints coordinates
are set fixed, and the altitude of each waypoint is set equal to the terrain elevation value au-
tomatically. Then, if there are any waypoints where it is required to add a loiter step, it has
to be defined in the input data as well. For this case, the mission time was chosen as objective
function, with the wind in the same direction as the flight. So, as the pre-defined trajectory
has approximately a North-South direction, the wind direction and the wind speed were set to 0
deg and to 5 m/s respectively, except for waypoint 1, where the wind speed was set to 0. The
temperature deviation was set as a normal value based on real weather forecast data in the day
of the test.

The following Figures, 4.1 to 4.3, show the initial trajectory in red and in black is the optimized
trajectory.
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Figure 4.1: 3D View of the output mission -the black trajectory refers to test pre 1 and the yellow
trajectory refers to test pre 2.

The flight direction as well as the wind direction are represented from the right to the left (-Y),
in Figure 4.2. We can see that, compared to the initial trajectory, the optimized one has a
longer climb and descent phases, resulting in a shorter cruise, maintaining approximately the
same altitude. This occurred resulting in a trajectory with a shorter distance, in order to obtain
a shorter duration of flight, as the wind has the same direction of the flight.

Figure 4.2: YZ View of the output mission - the black trajectory refers to test pre 1 and the yellow
trajectory refers to test pre 2.

In Figure 4.3, it is noticed that the red ”curved” trajectory is optimized to a rectilinear black
trajectory to the ending point, that confirms the idea of the previous paragraph, and also due to
the optimized trajectory having the same direction as the wind it minimizes the lateral forces
in the aircraft, as the resulting force applied by the wind in the aircraft has approximately the
same direction of the flight.
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Figure 4.3: XY View of the output mission - the black trajectory refers to test pre 1 and the yellow
trajectory refers to test pre 2.

The output design variables are described in Table 4.8. The coordinates values of the waypoints
1, 2 and 5 were fixed because at these points the aircraft is on the ground. The airspeed is only
fixed at waypoint 1 as the aircraft initial airspeed is 0 m/s.

Table 4.8: Output Design Variables - test pre 1

Output Design Variables
Latitude 03

[deg]
Latitude 04

[deg]
Longitude 03

[deg]
Longitude 04

[deg]
Altitude 03

[m]
40.1696 40.0119 -7.4390 -7.4409 1063.7
Altitude 04

[m]
Airspeed 02

[m/s]
Airspeed 03

[m/s]
Airspeed 04

[m/s]
Airspeed 05

[m/s]
1030.5 13.9 14.0 14.2 14.1

With the results it can be seen that the airspeed was increased in each waypoint. As shown in
Figure 4.3, the distance in the optimized trajectory decreased from the initial trajectory, which
led to an energy saving that was used to increase the airspeed through the waypoints.

Figure 4.4: Objective Function Convergence - Test pre 1

A significant decrease of the mission time on first iteration can be noticed in Figure 4.4, ap-
proximately 1000 seconds (16.7 minutes). In the next 60 iterations the decrease of the mission
time was much less significant, converging to a value of 2600 seconds (43 minutes). The whole
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optimization process had an overall decrease of 1300 seconds (21.6 minutes).

4.2.2 Preliminary Test 2

The objective of this second test is to analyse the same conditions of the first test changing only
the wind direction of all waypoints to 90 degrees.

Table 4.9: Fixed data for Mission planning - test pre 2.

Mission Data Input
Waypoint
number

Ground/
Air

Loiter
Windspeed

[m/s]
Wind direction1

[deg]
Temp.Dev.2

[K]
1 G N 0.00 90.00 3.337
2 G N 5.00 90.00 3.348
3 A N 5.00 90.00 3.366
4 A N 5.00 90.00 4.581
5 G N 5.00 90.00 3.009

S - add a loiter segment to that position;
N - do not add a loiter segment to that position;
G - waypoint located in ground; A - waypoint located in air;
1 - Wind direction North-East orientation; 2 - ISA Temperature deviation

In figure bellow, Figure 4.1, looking to the results, where the Yellow trajectory is the optimized
one, the first thing that becomes clear comparing with test pre 1 is the low altitude of flight.
Looking to Figure 4.2, the first idea of a low altitude of flight is confirmed, that occurs due to
that, in this test, there is no wind in the same direction of the flight, so the ground speed, in
this case, is lower than the first test, and, because of that, the UAV needs more energy to climb
further or accelerate. On other hand, Figure 4.3, shows the Yellow trajectory almost coincident
with the black one in the horizontal plane, which represent the same distance shortening as
discussed in test pre 1. It represents that the design variables, latitude and longitude, were fully
optimized in both tests. The airspeed results, shown in Table 4.10, show an almost constant
airspeed during flight. Although test pre 2 has the same energy available than test pre 1 (battery
energy), it needs more power to accelerate, as the wind speed component of the y axis is
approximately zero, which does not increase the ground speed as it happens in test pre 1. So
the UAV can not accelerate in order to have enough energy to reach the ending point.

Table 4.10: Output Design Variables - test pre 2

Output Design Variables
Latitude 03

[deg]
Latitude 04

[deg]
Longitude 03

[deg]
Longitude 04

[deg]
Altitude 03

[m]
40.1634 40.008 -7.4388 -74403 836.1
Altitude 04

[m]
Airspeed 02

[m/s]
Airspeed 03

[m/s]
Airspeed 04

[m/s]
Airspeed 05

[m/s]
789.8 11.0 11.1 11.0 10.9

To better understand the algorithm behaviour, the objective function gradients calculated through
each iteration are shown in Figure 4.5. The first idea that comes clear is that the airspeed has
a larger influence on the objective function than the rest of the design variables. This seems
correct as, in the same path, a higher speed reduces the time of flight, and as the airspeed
gradients are negative, it means that an increase of the airspeed results in a minimization of
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the objective function. By observing the graph it is noticed that the position (latitude, longitude
and altitude) design parameters are fully optimized, as their gradients converged to 0. The air-
speed gradients did not converge to 0 due to the active constraint functions, such as minimum
remaining energy in the battery of 20% of full capacity, maximum motor setting and maximum
current at design conditions. Also, it comes clear that 40 iterations are necessary to find a good
solution. Yet it takes another 60 iterations to fulfil the convergence criteria.

Figure 4.5: Objective Function Gradients - Test pre 2

4.3 Final Program Tests

In this Section, all the models were implemented and the program was ready to start the final
tests. Firstly, tests were conducted to analyse the capability of terrain avoidance, as well as,
the impact of the solar model in the mission planner behaviour. Secondly, more tests were
performed to verify if the mission planer was capable of finding more energetic trajectories
(low cloud cover zones). Followed by tests with real forecast data and a final mission across
Portugal as an example of the full capability of the mission planner.

4.3.1 Terrain Avoidance

A mission, starting at 10:30AM from Covilhã to Aveiro, where the terrain is very irregular and in
some zones it reaches almost two thousand meters of elevation, was chosen in to better test
algorithms. Once the solar model was already implemented and the cloud cover was set to zero,
the harvested energy through the path increased in a significant way. So, it compensates the
UAV to climb to an higher level, where the thinner air at high altitudes reduces significantly
the drag such that for the same amount of thrust applied, the UAV will fly faster. In order to
avoid high altitude trajectories and better understand the capability of terrain avoidance, the
maximum altitude was set to 1800 meters for the following tests.
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After planning several missions, it was concluded that the model responsible for the terrain
avoidance is effective, by always flying around the mountains and never passing through them.
Test TA 1 and 2 presented in Figure 4.6, are two of the tests that confirm the capability of
avoiding to pass through the terrain. Despite the terrain avoidance is verified, it can be seen
that the test’s TA 1 optimized solution is a local minimum of the objective function. This is due
to when the problem is a non-convex function with multiple maximums or minimums, the FFSQP
algorithm finds the maximum or minimum closest to the first guess (Input trajectory). Then,
the trajectory in blue, whose initial design parameters (latitude, longitude and altitude) were
set to the left of the mountain, the optimization process found a lower minimum compared to
test TA 1.

Figure 4.6: Comparison between test TA 1 and test TA 2. Red and white trajectories correspond to the
first guesses of test TA 1 and TA 2, respectively. Pink and blue trajectories correspond to the solutions of

test TA 1 and TA 2, respectively

Also, it is important to note that the pink solution shown in Figure 4.6 stopped in a local minimum
as a consequence of the altitude limitations. In other words, the algorithm reached a constraint
boundary (altitude limitation) during the optimization and stopped when the following iterations
corresponded to feasible missions (design parameters) with the same objective function value.
This is verified by test TA 2, as the algorithm of optimization was able to find a solution (blue
one) that the initial trajectory is defined on the left side of the mountain. Furthermore, Figures
4.7a and 4.7b are a validation of this idea. As expected the test´s TA 2 objective function is
lower than test’s TA 1, and it can be noticed that test TA 1 stopped in a early iteration compared
to test TA 2, also due to the altitude limitation.
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(a) Objective function convergence of Test TA 1. (b) Objective function convergence of Test TA 2.

Figure 4.7: Test’s TA 1 and TA 2 Objective functions convergence.

4.3.2 Solar Model Behaviour

This Subsection has the purpose of understanding how the solar model with uniform cloud cover
distribution throughout the map, affects the mission planning, where the mission time was
chosen as objective function. The uniform cloud cover of the first test was set to 90%, the
second one to 50% and the last two it was set to 0%, where the fourth has the maximum altitude
limited to 1000 meters. The design variables used for the tests are defined in Table 4.11, also
the starting time of these tests is 12AM.

Table 4.11: Mission Design Variables Input - Solar Model Behaviour

Mission Design Variables Input
Waypoint
number

Latitude
[deg]

Longitude
[deg]

Altitude
[m]

Airspeed
[m/s]

1 40.29563 -7.43693 0.00 0.00
2 40.29546 -7.43750 0.00 14.00
3 40.20458 -7.44433 1000.000 14.00
4 39.96362 -7.49178 1000.000 14.00
5 39.85038 -7.44293 0.00 14.00

Table 4.12: Mission Fixed Data Input - Solar Model Behaviour

Mission Fixed Data Input
Waypoint
number

Ground/
Air

Loiter
Wind speed

[m/s]
Wind direction

[deg]
Temp. Dev.

[K]
1 G N 0.00 180 3.337
2 G N 10.00 180 3.348
3 A N 10.00 180 3.366
4 A N 10.00 180 4.581
5 G N 10.00 180 3.009

S - add a loiter segment to that position;
N - do not add a loiter segment to that position;
G - waypoint located in ground; A - waypoint located in air;
1 - Wind direction North-East orientation; 2 - ISA Temperature deviation
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Table 4.13: Mission Planner Results - Solar Model Behaviour

Mission Planner Results
Mission
Time
[s]

Av. Seg Solar
Power

[W]

Mission
energy left

[%]

Max. Altitude
[m]

Test SM 1 unfeasible 224.47 -1271 -
Test SM 2 7452.14 948.18 20 4471.58
Test SM 3 6835.77 1063.43 20 4769.35
Test SM 4 8075.50 1047.82 20 1000.00
1 - -127% at waypoint 4 and 0.28% at waypoint 3.

Table 4.14: Mission Planner Airspeed Results - Solar Model Behaviour

Mission Planner Airspeed Results
Waypoint
number

Test SM 2 Airspeed
[m/s]

Test SM 3 Airspeed
[m/s]

Test SM 4 Airspeed
[m/s]

2 14.12 14.40 15.69
3 15.39 15.89 16.03
4 17.55 18.27 16.15
5 20.24 21.22 18.01

(a) 3D view of test SM 1 (b) 3D view of test SM 2

(c) 3D view of test SM 3 (d) 3D view of test SM 4

Figure 4.8: Comparison between the four tests. The red trajectory is the initial one , the yellow
trajectory is the optimized one and the contour represents the terrain elevation.
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After the algorithm was applied in each test, the mission planner returned a better solution
compared to the first guesses, except for the Test SM 1 that there are no feasible solutions
found. Test SM 1 did not have feasible solutions due to the energy available, not being suffi-
cient for the UAV perform the mission. As described in Table 4.13, in the first guess analysis,
the energy available was not enough to reach waypoint 4, likewise the energy left is 0.28% at
waypoint 3. As the test has no solution, the output values are coincident with the first guess as
shown in Figure 4.8a.

Test SM 2, with a decrease of cloud cover, the average solar power harvested through the mission
increased, thus making possible to increase airspeed along the flight. The maximum altitude of
flight is 4471 meters, where the drag is minimized, being this a reason of the increased airspeed
too.

Test SM 3, has similar results compared to test SM 2, with lower value of cloud cover, the
average solar power also increased, and consequently a lower optimized mission time.

To validate that the higher altitude trajectories of test SM 2 and SM 3, have better results
than a lower altitude trajectory, test SM 4 was conducted with the same parameters of test SM
3, but with the maximum altitude limited to 1000 meters. So, looking at Figure 4.8d, it can be
seen that, comparing to test SM 3 in Figure 4.8c, the trajectory’s distance is lower than the test
SM 3 trajectory’s distance, to be precise, 1333.59 meters lower, and yet it has a mission time
higher than test SM 3. This validates the idea referred in the beginning of this paragraph.

4.3.3 Non Uniform Cloud Cover

This Subsection has the purpose of understanding how the optimization algorithm behaves, re-
garding the position of the waypoints, when there is a variation of the cloud cover through the
map.

Table 4.15: Mission Design Variables Input - Non Uniform Cloud Cover

Mission Design Variables Input
Waypoint
number

Latitude
[deg.]

Longitude
[deg.]

Altitude
[m]

Airspeed
[m/s]

1 40.26700 -7.47760 0.00 0.00
2 40.26225 -7.47760 0.00 8.00
3 40.26225 -7.30000 1000.00 10.00
4 40.27687 -7.52311 1700.00 10.00
5 40.35347 -8.01060 1700.00 10.00
6 40.45000 -8.31060 1000.00 10.00
7 40.60000 -8.60000 0.00 10.00

The following two tests, represent a mission from Covilhã to Aveiro, (-x direction), starting at
10 AM. These tests were conducted with interpolated data from weather forecast data file, that
were modified in order to permit to achieve the purpose of this Subsection. The modifications
done were: the wind speed of the weather files was set to 0 m/s, to not affect the results, and
the weather data is considered constant in time. Both tests have the same design parameters
defined in Table 4.15, and the same objective function, mission time. Despite test NU 2 has
the same design parameters as test NU 1, it considers an extra waypoint in each segment. The
purpose of this is explained below.
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Table 4.16: Mission Planner General Results - Non Uniform Cloud Cover

Mission Planner Results - Test NU 1
Mission
Time
[s]

Mission
energy left

[%]

Max. Altitude
[m]

Test NU 1 6220.69 20.0 3925.50
Test NU 2 7216.08 20.0 5824.36

Table 4.17: Output airspeed by segment, cloud cover and solar power by segment - Test NU 1

Mission Planner Results - Test NU 1

Segment

number

Airspeed

[m/s]

Altitude

[m]

Cloud Cover

[%]

Solar Power

[W]

1 7.65 449.19 86 340.77
2 14.95 2119.67 50 939.02
3 15.37 3776.04 17 1064.75
4 16.30 3842.06 25 1056.80
5 16.87 3643.32 23 1065.53
6 18.63 1705.74 38 1028.58

Average 14.01 2589.3 39.83 915.91

Table 4.18: Output airspeed by segment, cloud cover and solar power by segment - Test NU 2

Mission Planner Results - Test NU 2

Segment

number

Airspeed

[m/s]

Altitude

[m]

Cloud Cover

[%]

Solar Power

[W]

1 2.78 450.8 86 340.77
2 8.34 447.3 86 341.22
3 11.52 1112.2 59 858.53
4 12.32 2445.0 26 1047.41
5 13.19 3515.8 38 1022.58
6 14.11 4324.7 60 863.38
7 14.58 5002.9 45 991.10
8 14.59 5550.5 42 1012.98
9 15.69 5729.5 58 887.50
10 17.87 5539.9 38 1028.68
11 19.95 4096.3 40 1012.34
12 21.91 1399.0 62 824.83

Average 13.90 3301.1 53.3 852.70
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Figure 4.9: Comparison between test NU 1 and test NU 2. The red trajectory is the initial one , the white
and the black trajectory are the test’s NU 1 and 2 solutions and the contour represents the cloud cover

variation.

Figure 4.10: Comparison between test NU 1 and test NU 2. The red trajectory is the initial one , the
white and the black trajectory are the test’s NU 1 and 2 solutions and the contour represents the cloud

cover variation.
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Test NU 1 results, presented in Tables 4.16 and 4.17 and in Figures 4.9 and 4.10, show that the
algorithm is effective in finding zones of low cloud cover. By looking at the optimized white
trajectory, in Figure 4.9, it is noticed that each waypoint was ”moved” to a position with lower
cloud cover than the initial, which validates the previous idea. Yet, it is important to note
that, as the analysis is done by segment, the cloud cover results are average values between
the initial and ending waypoint of each segment. So looking to the cloud variation between
the waypoints, these values are very different from the real. To solve this, the second test was
conducted with the same design variables but, automatically setting one waypoint (not a design
variable) between each segment of the mission. This allows the mission planner to have a bet-
ter estimation of the local weather data, but consequently resulting in a longer computational
time.

Regarding a realistic mission planning, test NU 2 has better results, presented in Tables 4.16
and 4.18 and in Figures 4.9 and 4.10, than test NU 1. Test NU 2 also validates the capabil-
ity of the algorithm to ”find” zones of low cloud cover, but with more realistic estimations of
values. Comparing with test NU 1, there is a higher average cloud cover, and consequently a
lower average solar power, during the flight. Even though test’s NU 2 weather estimations are
more realistic than test’s NU 1, they are not 100% real. It could be added more extra waypoints
in each segment, to achieve even better results, yet it would lead to an even longer time of
computation.

Comparing both in terms of processing time, test NU 1 took approximately 5 hours and 30 minutes
planning the mission. On other hand, test NU 2 took approximately 9 hours. Seeing that adding
another waypoint in each segment would take to much time to plan a mission.

4.3.4 Real Weather Forecast Data

This Subsection has the purpose of presenting two tests of a mission planning, considering real
unmodified weather forecast data, and a loiter phase. A mission from Covilhã to Viseu was
chosen to be tested, where at this point the UAV realizes a loiter phase at 65 meters from the
ground, for 1 hour, following then to Aveiro.

The weather data is a forecast from February 12th of 2019, where the missions starting time is
set to 8:00 AM. Tests RW 1 and 2 were conducted selecting different objective functions, mission
time and mission consumed energy respectively.

Table 4.19: Mission Design Variables Input - Real Weather Forecast Data

Mission Design Variables Input

Waypoint

number

Ground/

air
Loiter

Latitude

[deg.]

Longitude

[deg.]

Altitude

[m]

Airspeed

[m/s]

1 G N 40.26700 -7.47760 0.00 0.00
2 G N 40.26225 -7.47760 0.00 13.00
3 A N 40.35033 -7.35322 2000.00 13.00
4 A N 40.62418 -7.57809 2000.00 13.00
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Table 4.19: Mission Design Variables Input - Real Weather Forecast Data

Mission Design Variables Input

5 A S 40.65854 -7.91170 60.00 13.00
6 A N 40.67851 -8.19813 2000.00 13.00
7 G N 40.60000 -8.60000 0.00 13.00

Loiter

Waipoint

Time

[s]
3600

Airspeed

[m/s]
10.00

Radius

[m]
50.00

Table 4.20: Mission Planner General Results - Winter

Mission Planner Results
Mission
Time
[s]

Mission
energy

[J]

Mission
energy left

[%]

Max. Altitude
[m]

Test RW 1 12177.85 323635.75 20 2163.10
Test RW 2 18667.20 -513641.61 100 1285.79

Table 4.21: Output airspeed by segment - RW 1 and 2

Mission Planner Results

Segment

number

Test RW 1 Airspeed

[m/s]

Test RW 2 Airspeed

[m/s]

1 6.64 4.48
2 13.16 8.54
3 13.31 8.74
4 13.15 8.90
5 10.00 10.00
6 12.21 8.93
7 13.08 9.93

Average 13.77 8.50
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Figure 4.11: 3D view Real Weather Forecast Data Test RW 1.

Figure 4.12: Comparison between test RW 1 and test RW 2. The red trajectory is the initial one , the
yellow and blue trajectories are the test RW 1 and 2 and the contour represents the terrain elevation.

These tests result, presented in Tables 4.20, 4.21, and in Figure 4.12, show the well functioning
of the mission planner. Test RW 1 optimized the mission time to approximately 12177 seconds
(3.4 hours), which required a 323635 J of consumed energy. On the other hand, test RW 2
optimized the mission consumed energy to a value of -513641 J (the negative sign means that
513641 J available were not used), in 18667 seconds (5.2 hours). Both of the tests took approxi-
mately one hour and thirty minutes long to plan the mission, which is a good time of processing,
compared to the tests presented in the previous Section. This is due to the tests RW 1 and 2
having the loiter waypoint fixed in one position (fewer design parameters), and mainly because
the initial trajectory is relatively close to its solution, as opposed to NU tests.

It was thought that it would be interesting to test the same mission planned in the Summer’s
solstice, in order to compare the results of a mission during Winter with the results of another
during the Summer. In spite that this Section is about tests with real weather forecast data,
due to that being impossible, at the time these tests were done, to predict weather data from
Summer, tests were conducted, considering the same weather data of the previous tests, except
for the temperature that was increased considering normal temperatures at summer.

Table 4.22: Mission Planner General Results - Summer

Mission Planner Results
Mission
Time
[s]

Mission
energy

[J]

Mission
energy left

[%]

Max. Altitude
[m]

Test RW 3 10377.38 341271.12 20 2614.54
Test RW 4 15730.76 -999993.73 100 2767.72
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Table 4.23: Output airspeed by segment - RW 3 and 4

Mission Planner Results

Segment

number

Test RW 3 Airspeed

[m/s]

Test RW 4 Airspeed

[m/s]

1 7.95 5.80
2 15.89 11.73
3 16.37 11.59
4 16.80 11.78
5 10.00 10.00
6 16.84 11.97
7 17.31 11.95

Average 13.77 8.50

Figure 4.13: Comparison between test RW 1 and test RW 2. The red trajectory is the initial one , the
yellow and blue trajectories are the test RW 3 (optimization of mission time) and 4 (optimization of

mission energy) and the contour represents the terrain elevation.

These tests results, comparing with tests RW 1 and RW 2 of this Section, represent what was
expected: a general increase in solar energy available which led to better performance of the
UAV during mission. Also, it can be noticed, that test RW 4 (optimization of mission energy)
compared to test RW 2, climbs the mountain instead of going around, what is due to the increase
of solar available energy. An interesting subject that must be mentioned is that the 4 only used
20 minutes of planning process, unlike test RW 3 that used 2 hours and 23 minutes. This indicates
that the time of processing depends in many factors, like which objective function was chosen,
or if the input design parameters are close from the solution. Other factors noticed during this
work, to affect the processing time are: if the terrain or the weather variation are to irregular;
or the number of segments to be analysed.
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4.3.5 Mission Across Portugal

For a final example of the mission planner it is presented a test of a mission starting at 6 AM,
from Chaves to Faro minimizing the mission time.

Table 4.24: Mission Design Variables Input - Mission Across Portugal

Mission Design Variables Input

Waypoint

number

Ground/

air
Loiter

Latitude

[deg.]

Longitude

[deg.]

Altitude

[m]

Airspeed

[m/s]

1 G N 41.72519 -7.46067 0.00 0.00
2 G N 41.71904 -7.46067 0.00 10.00
3 A N 41.72083 -7.68063 2000.00 10.00
4 A N 41.14165 -8.06910 2000.00 10.00
5 A N 40.47084 -7.78000 1700.00 10.00
6 A N 40.50403 -8.01680 1700.00 10.00
7 A N 39.84264 -8.04679 1700.00 10.00
8 A N 38.87701 -8.04783 1700.00 10.00
9 A N 37.47900 -8.04627 1700.00 10.00
10 A N 37.29412 -8.04121 1700.00 10.00
11 G N 37.01338 -7.95798 0.00 10.00

Table 4.25: Mission Planner General Results - Mission Across Portugal

Mission Planner Results - Test FC 1
Mission
Time
[s]

Mission
energy left

[%]

Max. Altitude
[m]

29829.8 20.0 3925.50

Table 4.26: Output airspeed by segment.

Mission Planner Results

Segment

number

Airspeed

[m/s]

Altitude

[m]

Cloud Cover

[%]

Solar Power

[%]

1 5.11 376.0 0.0 297.92
2 10.39 1813.0 0.0 304.14
3 11.32 3476.6 0.0 514.62
4 12.77 4355.0 0.0 696.66
5 13.80 6062.3 0.0 874.96
6 16.43 7742.0 0.0 994.27
7 19.20 9174.6 0.0 1048.67
8 21.87 9401.8 0.0 1062.46
9 22.28 8494.2 0.0 1023.95
10 22.67 4089.0 0.0 1007.13

Average 15.58 4558.3 0.00 782.5
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Figure 4.14: 3D view of the Mission Across Portugal. The red and yellow trajectories are the initial and
the optimized respectively.

The results presented in Tables 4.25, 4.26 and in Figure 4.14, show that at the first half of the
mission, when the sun was low, the solar power was much lower than the rest of the mission,
and because of that, the altitude and airspeed of flight are much lower than the rest of the
mission. From waypoint 5, the solar power available, due to the sun being higher, increased
which permits the UAV to flight at higher airspeed and altitude. It should be mentioned that
this test took 20 hours of computational time, which is mainly due to the design parameters
not being close to the solution, as we can see in Table 4.24 and 4.26, the design altitude and
airspeed of each waypoint are very different from the solution.
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Chapter 5

Conclusions

A program that allows to plan a mission in any part of the Earth and for any solar powered
UAV, by defining an initial mission and setting parameters regarding the UAV specifications and
mission type, was developed and verified through several mission planning tests. To achieve
the main goal of this work other tasks were also performed such as the implementation of vari-
ous mathematical models that allow the program to consider: real weather forecast, the solar
power harvested by the PV panels; the real terrain elevation; the correct energy management
by the systems and the propulsion performance.

In general the mission planner presents good results in terms of mission planning and optimiza-
tion. Regarding the terrain avoidance, it is efficient, respecting in any segment the defined
minimum height constraint. Yet the results are estimations different from the real. This dif-
ference can be minimized by setting extra waypoints in each segment, which leads to a longer
planning process, nevertheless, this time of processing depends on how far the first guess is
from the solution. Another way to have more realistic results is to request more points from the
databases, which is easier to do if the user has a paid subscription account in the databases.

Although the main objective has been achieved, some aspects need to be carefully analysed.
The long time to plan missions in a more realistic way is one of them. Yet, this is a first version
of the mission planner and some tasks to do in order to improve it are described in the next
Section.

5.1 Future Work

As discussed throughout the current thesis, some improvements should be performed. These
improvements focus mainly on improving the computational time and more realistic values.
Below, these aspects are described in detail:

• Implementation and verification of the Genetic Algorithm, which is also an optimization
algorithm, which is based on probability. It differs from the classical optimization algo-
rithm as it generates a population of points at each iteration, where the best point in the
population approaches an optimal solution and selects the next population by computation
which uses random number generators.

• Make the mission planner capable of optimizing two objective functions at the same time,
to be able to have a balance of energy and time in a mission plan;

• Selection of more complete weather database that considers the vertical wind and weather
variation with the altitude;

• Development of an intuitive interface.
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It is also interesting to develop a mission planner algorithm that plans a mission in real time to
correct the mission, during flight, if any parameter is different from the original pre-planned
mission.
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