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Resumo 

 

Satélites artificias são uns dos componentes cruciais da vida moderna. O estudo do controlo 

da atitude e estabilização de um satélite é necessário para assegurar uma missão bem-

sucedida. Existem dois tipos de métodos de estabilização: os métodos passivos e os métodos 

ativos. 

Nesta dissertação é investigado a dinâmica de um satélite tipo giróstato, sujeito a um 

método semi-passivo de estabilização, nomeadamente o momento gravítico e as 

propriedades giroscópicas de rotores, ao longo de uma órbita circular. 

No caso particular, quando o vetor de momento girostático está ao longo de um dos 

principais planos de inércia do satélite. Para resolver este problema é proposto um modelo 

matemático numérico-analítico para determinar todos as posições de equilíbrio de um 

satélite giróstato, em um sistema coordenado orbital em função das componentes 

adimensionais do vetor de momento girostático (𝐻𝑖  𝑖 = 1,2,3) e do parâmetro inercial 

adimensional 𝑣. As condições de existência das soluções de equilíbrio são obtidas. As 

condições suficientes de estabilidade para cada grupo de soluções de equilíbrio são 

derivadas, a partir da análise do integral de energia generalizado como uma função de 

Lyapunov. 

O estudo da evolução da bifurcação do equilíbrio foi realizado em detalhe em função do 

parâmetro 𝑣. Também, a evolução das soluções de equilíbrio em função dos ângulos do 

satélite é analisada e é verificado a existência de pequenas regiões de 12 e 16 posições de 

equilíbrio referidas em [14] e [20]. 

Este trabalho mostra que o número de posições de equilíbrio de um satélite tipo giróstato, 

neste caso particular, não ultrapassa 24 e não é inferior a 8. O estudo da bifurcação do 

equilíbrio revela a existência de regiões de 12 posições de equilíbrio que se aproximam, para 

valores infinitos de 𝐻3 e que nunca desaparecem, estas regiões sugerem ter uma relação 

com as regiões referidas por Santos [14] e Santos et al.[20]. 

O estudo da evolução da estabilidade para cada solução de equilíbrio em função de 𝑣 e 𝐻3 

revela que o número de posições de equilíbrio estáveis varia entre 2 e 6. 

Palavras-chave 

 

Satélite tipo giróstato, equilíbrio, estabilidade, girostático e inércia.  
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Abstract 

 

Artificial satellites are one of the most crucial components of modern life. The study of 

attitude control and stabilization of satellite is necessary to ensure a successful operation. 

There are two types of stabilization schemes: the passive methods and active methods. 

In this dissertation is investigated the dynamics of a gyrostat satellite, subjected to a semi-

passive method of stabilization, namely the gravitational torque and the gyroscopic 

proprieties of rotating rotors, along a circular orbit.  

In a particular case, when the gyrostatic moment vector is along one of satellite’s principal 

central planes of inertia. To solve the problem is proposed a mathematical analytical-

numerical method for determining all equilibrium positions of the gyrostat satellite in the 

orbital coordinate system in function of dimensionless gyrostatic moment vector 

components (𝐻𝑖 𝑖 = 1,2,3) and the dimensionless inertial parameter 𝑣. The conditions of 

existence of the equilibrium solutions are obtained. Sufficient conditions of stability for 

each group of equilibrium solutions are derived from the analysis of the generalized integral 

energy used as a Lyapunov’s function. 

The study of the evolution of equilibria bifurcation of the gyrostat is carried out in function 

of parameter 𝑣 in detail. Also, the evolution of equilibrium solutions in function of 

spacecraft angles is analyzed and it is verified the existence of small regions of 12 and 16 

equilibrium positions referred in [14] and [20]. 

This work shows that the number of equilibria of a gyrostat satellite, in this particular case, 

does not exceeds 24 and does not go below 8. The study of the equilibria bifurcation shows 

that there are small regions of 12 equilibrium positions that approach each other for infinite  

𝐻3 and never vanish, these regions seems to have a relation with the regions referred by 

Santos in [14] and Santos et. al. [20].  

The study of the evolution of stability for every equilibrium solution in function 𝑣 and 𝐻3, 

shows that the number of stable equilibria varies between 2 and 6. 

 

Keywords 

 

Gyrostat-satellite, equilibria, stability, gyrostatic and inertia. 
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Nomenclature 

 

𝑂: Gyrostat Center of Mass. 

𝑂𝑋1𝑋2𝑋3: Orbital Reference Frame. 

𝑂𝑋1: Axis aligned with the orbital plane, with positive direction in the direction of speed. 

𝑂𝑋2: Axis normal to the orbital plane. 

𝑂𝑋3: Axis that connects the center of mass of the planet with center of mass of the gyrostat. 

𝑂𝑥1𝑥2𝑥3: Gyrostat’s fixed reference frame. 

𝑂𝑥𝑖  (𝑖 = 1,2,3): Gyrostat’s principal axes of inertia. 

𝛼, 𝛽 and 𝛾: the spacecraft angles between the gyrostat’s fixed reference frame and orbital 
reference frame. 

𝑎𝑖𝑗: direction cosines between the principal axis and gyrostat axis. 

𝐴, 𝐵 and 𝐶: principal moments of inertia in relation to the gyrostat’s center of inertia. 

𝑝, 𝑞 and 𝑟: absolute angular velocity of the gyrostat. 

ℎ�̅� (𝑖 = 1, 2, 3): projections of the gyrostatic moment vector onto axes 𝑂𝑥𝑖. 

𝜔0: angular velocity of motion of the gyrostat’s center of mass along the circular orbit. 

𝐻: Hamiltonian. 

𝑣: inertia dimensionless parameter of the gyrostat satellite. 
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Chapter 1 

 

Introduction 

Artificial satellites are one of the most crucial components of modern life. Communications 

satellites lets billions of people connect with each other all over the world. The Global 

Positioning System (GPS) satellites constellation gives geolocation and time information to a 

GPS receiver leading to many civilian and military applications, such as accurate real-time 

navigation, clock synchronization, target tracking, among others. Meteorological satellites give 

us information about Earth’s environment. Finally, there are the scientific satellites, they allow 

scientists to study Earth, the solar system and even our universe in great detail and accuracy. 

These types of satellites have two big advantages compared to Earth-based solutions, like radio 

and optical telescopes: (a) observing celestial objects without the interference of gases, lights 

and magnetic fields produced on earth and (b) orbiting around other celestial objects, like sun, 

moon and other planets. 

The attitude control and stabilization of an artificial satellite needs to be studied to ensure a 

successful operation, for example, in the case of a GPS satellite, its antenna must be pointing 

towards Earth. There are many methodologies that can be used in this case and they can be 

separated in two categories: passive methods can employ properties of the gravitational and 

magnetic fields, atmospheric drag, solar radiation pressure and gyroscopic properties of 

rotating bodies; and active methods, more accurate than the passive ones, using reaction 

wheels, thrusters and/or magnetic torques. Passive orientation systems own an important 

advantage comparing with active ones, as they can operate for a long time without energy 

and(or) a working body, and the last ones have a limited quantity of fuel and(or) need to ensure 

the reliability of the flywheels. 

The motivating problem considered in this dissertation is the dynamics of the rotational motion 

of an artificial satellite, namely the gyrostat satellite family, in a circular orbit. This satellite 

is subjected to a gravitational torque and is equipped with internal rotors, as a semi-passive 

attitude stabilization. The internal rotors rotate at constant angular velocity relative to the 

satellite body and the gyrostatic moment vector lies along the Principal Plane of Inertia (𝐻1 =

0) leading to new equilibrium positions that can be interesting in practical applications. 
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1.1 Important Concepts 

In this section, it is introduced three important concepts related to the current work, which 

are: the gyrostat satellite, the relative equilibria of a gyrostat satellite and the Lyapunov’s 

stability of a gyrostat satellite. 

A gyrostat satellite is mechanical system composed of a rigid body with one or more 

symmetrical rotors, whose spin axes are fixed in the rigid body and which can rotate about 

their axes of symmetry; it is also a satellite that is in orbit about a massive body. The gyrostat 

does not model several effects including flexible structures, bearing friction and dynamic and 

static imbalance. An example of a gyrostat motion in a circular orbit is given in figure 1.1. 

 

Figure 1.1 – Gyrostat’s orbital scheme [1]. 

The relative equilibria of a gyrostat satellite is when the satellite rotates about the normal 

vector of the gyrostat’s orbital plane at the orbital rate, in a motionless way with respect to 

an observer in an orbit-fixed reference frame.  

The Lyapunov’s stability of a gyrostat satellite is when the satellite motion remains always 

within a specific interval, i.e., an equilibrium position is stable when in reaction to small 

disturbances, there is small changes in its state of motion. The method used is the second 

method of Lyapunov, which makes use of a constant Lyapunov’s function. In this case, the 

system is stable when the Lyapunov’s matrix is positive definite and if a Lyapunov’s function is 

not dependent from time, it can be said that it remains time-invariant.  
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1.2 Literature Review 

Since the ending of the 20th century until now, a widespread of studies in Celestial Mechanics 

were conducted about the problems of gyrostat-satellites and its dynamics. The problem of 

controlling the motion of this type of rigid body with either internal or external torques was 

one of them. Among several studies, this dissertation has focused in gyrostat satellites with 

internal rotors attached to their principal axes of inertia. Exists two types of internal rotors 

applied to gyrostat satellites platforms, with freely spinning rotors and with constant-spin 

rotors. 

The focus of this work is not on the case of freely spinning rotors but is important to have a 

wide view about the subject, so in 1998, El-Gohary [2], one relevant author, studied 

successfully how to reach asymptotic stability of relative programmed motion of a gyrostat-

satellite using control moments applied on three internal rotors attached to its principal axes 

of inertia. In another study [3], the problem of exponential stability of the permanent rotational 

motion of a gyrostat satellite was investigated, but now stabilizing servo-control moments were 

applied to internal rotors. The equations of motion in this study are used without any 

approximations and the servo-control moments are obtained exactly. The same author in 2000 

[4] proposed a control scheme that guarantee an optimal stabilization of a given rotational 

motion of a symmetric gyrostat on circular orbit. The control action is generated by rotating 

internal rotors. The asymptotic stability of this motion is proved using Barbachen and Krasovskii 

theorem and, as a particular case, for the equilibrium position of the gyrostat. In [5], a new 

control scheme is proposed for a gyrostat satellite, but in comparison with previous studies, 

this one has the advantage of choosing the time needed for stabilizing an arbitrary position to 

an equilibrium position. 

For the next decade, the interest in dynamics of a gyrostat satellite moving along a circular 

orbit with constant speed rotors led to studies focused in different orientations of the vector 

of gyrostatic moment: in 2001, Sarychev and Mirer [6], show the special case when the vector 

of gyrostatic moment is collinear to the principal axis of inertia of the gyrostat and obtained a 

new analytical solution for equilibria. The authors concluded that the number of isolated 

equilibria is shown to be no less than 8 and no more than 24. Afterwards, in 2005, Sarychev et 

al. [7] investigated the same case but now shows the evolution of the regions of validity of the 

conditions of stability of the gyrostat and all bifurcation values of the parameters when these 

regions changes were obtained. In 2008, the same authors, focused their work in a different 

special case [8], when a gyrostatic moment vector lies on one of the satellite’s principal central 

planes of inertia. For this case, the equilibria were determined, and conditions of their 

existence were analyzed. A numerical-analytical method was used to study the evolution of the 

regions where the number of equilibria positions changes and to study the regions of validity of 

the conditions of stability. Other authors studied the problem of equilibria and stability of a 
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gyrostat satellite in circular orbit around a spherical planet or with a symmetry axis [9], and 

the problem of stabilization of a rigid body motion with internal friction rotors, achieving new 

control laws. 

In recent years, there was a change of focus and several authors start to discuss the general 

case of equilibria and stability of a gyrostat satellite subjected to gravitational torque, i.e. 

when all gyrostatic moment vector’s parameters are non-zero. The knowledge about the special 

cases [6], [7] and [8] added to new improvements in numerical computation led to deeper 

analysis of this case. The most relevant authors were Sarychev et al. In 2012 [10], it was 

determined the equilibria of a gyrostat satellite and was shown the number of equilibria is not 

less than 8 and no more than 24, like in previous cases. A year after [11], the same authors 

confirmed that for the same case the number of stable equilibria changes from 4 to 2 with 

increasing of the gyrostatic torque. A new symbolic-numerical method of computer algebra was 

proposed, in 2014, to study equilibrium positions of a gyrostat satellite [12-13]. The method 

uses an algorithm of constructing the Groebner bases and it results in a conversion of the system 

of 9 equations of 9 variables into a single algebraic equation of the 12th order with one variable. 

This study reconfirms the same conclusions of previous studies about the maximum and 

minimum number of equilibria positions of gyrostat satellite. 

In 2015, Luís Santos conducted a deep analysis into the dynamics of a gyrostat satellite in a 

circular orbit [14-15], specifically the general case of equilibria and stability. The author used 

the concepts and knowledge from [10-13], like the symbolic-numerical method from [12], which 

led to a vastly number of equilibria and stability configuration analysis, also unveiling the 

complete bifurcation of equilibria. In addition, it led to a deep understanding of the equilibria’s 

bifurcation curves, which corresponds to changes in number of equilibrium positions and to the 

study of its stability. This work unveiled small regions of 16 and 12 equilibrium positions near 

𝐻1 = 0, which up to date were unknown; these conclusions will be analyzed later in the present 

study. Henceforward, the conclusions of this study were reconfirmed in [16-17]. 

In [18], Gutnik and Sarychev investigated the proprieties of a non-linear algebraic system that 

determines equilibria of a gyrostat satellite. It is proposed a computer algebra method similar 

to last studies, which converts a very complex system into a simpler one. The focus of this work 

was when the gyrostatic moment vector lies in one of the satellite’s principal central planes of 

inertia (Case 𝐻1 = 0, 𝐻2 and 𝐻3 non-zero; Case 𝐻2 = 0, 𝐻1 and 𝐻3 non-zero; Case 𝐻3 = 0, 𝐻1 

and 𝐻2 non-zero). Equilibria and the bifurcation curves were all obtained symbolically. It is 

again reconfirmed for this cases that the number of equilibria ranges from 24 to 8 with 

decrement of 4 upon successive increase of the vector of gyrostatic moment. 

Lastly, in 2017, a particular case (𝐻1 = 0, 𝐻2 and 𝐻3 non-zero) [19] of equilibria of an 

asymmetrical inertial distribution gyrostat satellite was studied using the same symbolical-

numerical method previously referred in [14]. The bifurcation curves in function of system 
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dimensionless parameters at which there was a change in number of equilibrium positions were 

determined. The study confirmed the existence of the small equilibria regions near 𝐻1 = 0 

shown on the general case of equilibria in [14] and [20]. In this dissertation, this special case 

will be analyzed furtherly. 

1.3 Objectives 

Many authors discussed the problem of attitude dynamics of a gyrostat satellite with constant 

spin-rate internal rotors, in different inertial distributions and different orientations of the 

gyrostatic moment vector. It was found in [14] and [20], small regions of 12 and 16 positions of 

equilibria which appear when one of component of gyrostatic moment vector is near zero (𝐻1 ≈

0). Similarly, there are many studies about equilibria and stability of a gyrostat satellite when 

the gyrostatic moment vector lies in one of the satellite’s principal central planes of inertia 

(𝐻1 ≠ 0, 𝐻2 = 0, 𝐻3 ≠ 0) in [8] and [18]; or when it is parallel to one of the satellite’s principal 

central axes of inertia (𝐻1 = 0, 𝐻2 ≠ 0, 𝐻3 = 0) in [6], [7] and [18]; but there are no published 

results when 𝐻1 = 0, 𝐻2 ≠ 0, 𝐻3 ≠ 0. 

This dissertation has the objective of providing a detail equilibria and stability study of a 

gyrostat satellite when the gyrostatic moment vector is along the principal plane of inertia 

(𝐻1 = 0, 𝐻2 ≠ 0, 𝐻3 ≠ 0) using an analytical-numerical method. The study will be in function of 

a dimensionless inertia parameter and dimensionless gyrostatic moment vector components. 

To verify the appearance of the regions spoken above and for comparing purposes with [8], the 

complete bifurcation of equilibria with the bifurcation curves will be obtained and discussed. 

The evolution of the regions where sufficient conditions of stability is valid will be also 

investigated. 

1.4 Dissertation overview 

The present work is organized in five chapters: Introduction, Gyrostat’s Dynamics, Results and 

Discussion, and Conclusions and Future Work.  

Chapter 2 develops an analytical-numerical approach to the mathematical problem of 

determining the equilibria and stability of the gyrostat satellite. All the equilibrium positions 

and the conditions of their existence are determined. The bifurcation curves equations and the 

sufficient conditions of stability of equilibria are also derived. The chapter also sets the 

assumptions, nomenclature and conventions used throughout the dissertation. 

Chapter 3 discusses the results of equilibria and stability, in function of system parameters 𝑣, 

𝐻2 and 𝐻3, obtained using the mathematical model. The evolution of equilibria bifurcation is 

discussed, as the evolution of stability of each equilibrium positions. 
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For the final chapter – Chapter 4 – it is presented the main conclusions and results, but also 

discusses recommendations, in which the study can be continued. 
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Chapter 2 

 

Gyrostat’s Dynamics 

In this chapter, a mathematical model based on a numerical-analytical approach for the 

calculation of the equilibrium positions and the sufficient conditions of stability of the gyrostat 

satellite is described. The equations of motion and conditions of existence of equilibrium for 

the gyrostat are obtained.  

2.1 Equations of motion 

This section describes the equations of motion that rules a solid body with rotors inside that 

are balanced both statically and dynamically. It is assumed the angular velocity of rotation of 

these rotors to be constant relative to the satellite’s main body, while the center of mass of 

the satellite moves along a circular orbit in a central Newtonian field of force. 

It is introduced two right-handed Cartesian reference frames with an origin at the satellite’s 

center of mass 𝑂. 𝑂𝑋1𝑋2𝑋3 is the orbital reference frame whose axis 𝑂𝑋3 is directed along the 

radius vector connecting the center of mass of the satellite and the Earth; the 𝑂𝑋1 axis is 

directed along the linear velocity of the center of mass 𝑂.𝑂𝑥1𝑥2𝑥3 is the satellite-fixed 

reference frame; 𝑂𝑥𝑖 (𝑖 = 1, 2, 3) are the satellite’s principal axes of inertia. 

 

 

Figure 2.1. – Relation between Orbital and Gyrostat’s reference frames [8]. 
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Let’s us define the orientation of the satellite-fixed reference frame relative to the orbital 

reference frame by the spacecraft angles 𝛼, 𝛽 and 𝛾 represented in Figure 2.1, consequently, 

the direction cosines 𝑎𝑖𝑗 = cos(𝑋𝑖 , 𝑥𝑗) are specified by the following expressions [8]: 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑎11 = 𝑐𝑜𝑠𝛼 × 𝑐𝑜𝑠𝛽

𝑎12 = 𝑠𝑖𝑛𝛼 × 𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛼 × 𝑠𝑖𝑛𝛽 × 𝑐𝑜𝑠𝛾

𝑎13 = 𝑠𝑖𝑛𝛼 × 𝑐𝑜𝑠𝛾 + 𝑐𝑜𝑠𝛼 × 𝑠𝑖𝑛𝛽 × 𝑠𝑖𝑛𝛾

𝑎21 = 𝑠𝑖𝑛𝛽

𝑎22 = 𝑐𝑜𝑠𝛽 × 𝑐𝑜𝑠𝛾

𝑎23 = −𝑐𝑜𝑠𝛽 × 𝑠𝑖𝑛𝛾

𝑎31 = −𝑠𝑖𝑛𝛼 × 𝑐𝑜𝑠𝛽

𝑎32 = 𝑐𝑜𝑠𝛼 × 𝑠𝑖𝑛𝛾 + 𝑠𝑖𝑛𝛼 × 𝑠𝑖𝑛𝛽 × 𝑐𝑜𝑠𝛾

𝑎33 = 𝑐𝑜𝑠𝛼 × 𝑐𝑜𝑠𝛾 − 𝑠𝑖𝑛𝛼 × 𝑠𝑖𝑛𝛽 × 𝑠𝑖𝑛𝛾

(2.1) 

The spacecraft angles 𝛼, 𝛽 and 𝛾 can be written in function of the above direction cosines as: 

{

𝛼 = cos−1(𝑎11 𝑐𝑜𝑠𝛽⁄ )

𝛽 = sin−1(𝑎21)

𝛾 = cos−1(𝑎22 𝑐𝑜𝑠𝛽⁄ )

(2.2) 

The equations of motion of a gyrostat satellite with respect to its center of mass are written in 

the form [6,8-19]: 

{

𝐴�̇� + (𝐶 − 𝐵)𝑞𝑟 − 3𝜔0
2(𝐶 − 𝐵)𝑎32𝑎33 − ℎ2̅̅ ̅𝑟 + ℎ3̅̅ ̅𝑞 = 0

𝐵�̇� + (𝐴 − 𝐶)𝑟𝑝 − 3𝜔0
2(𝐴 − 𝐶)𝑎33𝑎31 − ℎ3̅̅ ̅𝑝 + ℎ1̅̅ ̅𝑟 = 0

𝐶�̇� + (𝐵 − 𝐴)𝑝𝑞 − 3𝜔0
2(𝐵 − 𝐴)𝑎31𝑎32 − ℎ1̅̅ ̅𝑞 + ℎ2̅̅ ̅𝑝 = 0

(2.3) 

{

𝑝 = (�̇� + 𝜔0)𝑎21 + �̇� = �̅� + 𝜔0𝑎21

𝑞 = (�̇� + 𝜔0)𝑎22 + �̇�𝑠𝑖𝑛𝛾 = �̅� + 𝜔0𝑎22

𝑟 = (�̇� + 𝜔0)𝑎23 + �̇�𝑐𝑜𝑠𝛾 = �̅� + 𝜔0𝑎23

(2.4) 

Here, 𝐴, 𝐵, 𝐶 are the principal central moments of inertia of the gyrostat; 𝑝, 𝑞, 𝑟 are the 

absolute angular velocity of the gyrostat and ℎ�̅� (𝑖 = 1, 2, 3) the projections of the gyrostatic 

moment vector onto axes 𝑂𝑥𝑖; and 𝜔0 is the angular velocity of motion of the gyrostat center 

of mass along the circular orbit. The dots designate differentiation with respect to time. 
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2.2 Gyrostat’s equilibria 

Following [8] and others, for comparing reasons, it is used the same designations and 

parameters. First, it is introduced the designation ℎ�̅�/𝜔0 = ℎ𝑖 and the following system of 

equations is obtained: 

{

4(𝐴𝑎21𝑎31 + 𝐵𝑎22𝑎32 + 𝐶𝑎23𝑎33) + ℎ1𝑎31 + ℎ2𝑎32 + ℎ3𝑎33 = 0

𝐴𝑎11𝑎31 + 𝐵𝑎12𝑎32 + 𝐶𝑎13𝑎33 = 0

𝐴𝑎11𝑎21 + 𝐵𝑎12𝑎22 + 𝐶𝑎13𝑎23 + ℎ1𝑎11 + ℎ2𝑎12 + ℎ3𝑎13 = 0

(2.5) 

This system allows one to determine all equilibrium positions of the gyrostat in the orbital 

reference frame. 

In this case, 𝑎𝑖𝑗, as elements of an orthogonal matrix, satisfy the following conditions: 

{
 
 
 
 

 
 
 
 
𝑎11
2 + 𝑎12

2 + 𝑎13
2 = 1

𝑎21
2 + 𝑎22

2 + 𝑎23
2 = 1

𝑎31
2 + 𝑎32

2 + 𝑎33
2 = 1

𝑎11𝑎21 + 𝑎12𝑎22 + 𝑎13𝑎23 = 0

𝑎11𝑎31 + 𝑎12𝑎32 + 𝑎13𝑎33 = 0

𝑎21𝑎31 + 𝑎22𝑎32 + 𝑎23𝑎33 = 0

(2.6) 

At 𝐴 ≠ 𝐵 ≠ 𝐶 one can solve system (2.5) and (2.6) for 𝑎11, 𝑎12, 𝑎13, 𝑎21, 𝑎22, 𝑎23 and 𝑎23. As a 

result, we get [8]: 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑎11 =

4(𝐶 − 𝐵)𝑎32𝑎33
𝐹

𝑎12 =
4(𝐴 − 𝐶)𝑎33𝑎31

𝐹

𝑎13 =
4(𝐵 − 𝐴)𝑎31𝑎32

𝐹

𝑎21 =
4(𝐼3 − 𝐴)𝑎31

𝐹

𝑎22 =
4(𝐼3 − 𝐵)𝑎32

𝐹

𝑎23 =
4(𝐼3 − 𝐶)𝑎33

𝐹

(2.7) 

Here, 𝐹 = ℎ1𝑎31 + ℎ2𝑎32 + ℎ3𝑎33, 𝐼3 = 𝐴𝑎31
2 + 𝐵𝑎32

2 + 𝐶𝑎33
2  and direction cosines 𝑎31, 𝑎32 and 

𝑎33 are determined from the following three equations: 
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16[(𝐵 − 𝐶)2𝑎32
2 𝑎33

2 + (𝐶 − 𝐴)2𝑎33
2 𝑎31

2 + (𝐴 − 𝐵)2𝑎31
2 𝑎32

2 ] = (ℎ1𝑎31 + ℎ2𝑎32 + ℎ3𝑎33)
2 

4(𝐵 − 𝐶)(𝐶 − 𝐴)(𝐴 − 𝐵)𝑎31𝑎32𝑎33 + [ℎ1(𝐵 − 𝐶)𝑎32𝑎33 + ℎ2(𝐶 − 𝐴)𝑎33𝑎31 + ℎ3(𝐴 − 𝐵) ×

𝑎31𝑎32] × (ℎ1𝑎31 + ℎ2𝑎32 + ℎ3𝑎33) = 0           (2.8) 

𝑎31
2 + 𝑎32

2 + 𝑎33
2 = 1 

After solving system (2.8) formulas (2.7) allow one to determine the remaining six direction 

cosines. Notice that solutions (2.7) exist only when out of three direction cosines 𝑎31, 𝑎32 and 

𝑎33, none two vanish simultaneously. The cases 𝑎31 = 𝑎32 = 0, 𝑎32 = 𝑎33 = 0 and 𝑎33 = 𝑎31 = 0 

are special and they should be considered immediately addressing to system (2.5) and (2.6). 

The case 𝑎32 = 𝑎33 = 0 will be discussed later. 

2.2.1 Case 𝑯𝟏 = 𝟎,𝑯𝟐 ≠ 𝟎 and 𝑯𝟑 ≠ 𝟎 

In previous studies, it is analyzed the general case of the gyrostat (𝐻1 ≠ 0,𝐻2 ≠ 0 and 𝐻3 ≠ 0) 

[14] and many particular cases, the case when the gyrostatic moment vector is collinear to one 

of the satellite’s principal central axes of inertia (𝐻1 = 0,𝐻2 ≠ 0 and 𝐻3 = 0) [6] and the case 

when the gyrostatic moment vector is parallel to the satellite’s principal central planes of 

inertia (𝐻1 ≠ 0,𝐻2 = 0 and 𝐻3 ≠ 0) [8]. In this study, we deepen the knowledge about the case 

when the gyrostatic moment vector is along the satellite’s principal central plane of inertia, 

which parameter 𝐻1 is zero (𝐻1 = 0,𝐻2 ≠ 0 and 𝐻3 ≠ 0). 

The system (2.8) after introducing the dimensionless parameters: 

𝐻2 =
ℎ2

𝐶 − 𝐴
𝐻3 =

ℎ3
𝐶 − 𝐴

 𝑣 =
𝐴 − 𝐵

𝐶 − 𝐴
 (2.9) 

Takes on form: 

{

16[𝑎32
2 𝑎33

2 (𝑣 + 1)2 + 𝑎31
2 𝑎33

2 + 𝑎31
2 𝑎32

2 𝑣2] = (𝐻2𝑎32 + 𝐻3𝑎33)
2

𝑎31{−4𝑣(1 + 𝑣)𝑎32𝑎33 + [𝐻2𝑎33 + 𝐻3𝑎32𝑣] × (𝐻2𝑎32 + 𝐻3𝑎33)} = 0

𝑎31
2 + 𝑎32

2 + 𝑎33
2 = 1

 (2.10) 

Notice that the dimensionless parameters 𝑣, being an inertial parameter of the satellite, does 

not in itself determine the shape of its ellipsoid of inertia. 

When investigating system (2.10) it is necessary to consider three cases: (𝑎31 = 0, 𝑎32 ≠ 0 and 

𝑎33 ≠ 0), (𝑎31 ≠ 0 and 𝑎32 = 𝑎33 = 0) and (𝑎31 ≠ 0, 𝑎32 ≠ 0 and  𝑎33 ≠ 0). 
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2.2.1.1 Case 𝒂𝟑𝟏 ≠ 𝟎 and 𝒂𝟑𝟐 = 𝒂𝟑𝟑 = 𝟎 

The following system takes on the form: 

{

16[𝑎32
2 𝑎33

2 (𝑣 + 1)2 + 𝑎31
2 𝑎33

2 + 𝑎31
2 𝑎32

2 𝑣2] = (𝐻2𝑎32 + 𝐻3𝑎33)
2

−4𝑣(1 + 𝑣)𝑎32𝑎33 + [𝐻2𝑎33 + 𝐻3𝑎32𝑣] × (𝐻2𝑎32 +𝐻3𝑎33) = 0

𝑎31
2 + 𝑎32

2 + 𝑎33
2 = 1

 (2.11) 

From the second equation of system (2.11) it follows that, if 𝑎32 = 0, then also 𝑎33 = 0. The 

existence of a solution for which: 

𝑎32 = 𝑎33 = 0 (2.12) 

It is investigated by analyzing original equations (2.5) and (2.6): 

{

4𝐴𝑎21𝑎31 = 0

𝐴𝑎11𝑎31 = 0

𝐴𝑎11𝑎21 + 𝐵𝑎12𝑎22 + 𝐶𝑎13𝑎23 + ℎ2𝑎12 + ℎ3𝑎13 = 0

⇔ 

⇔ {

𝑎21 = 0

𝑎11 = 0

𝐵𝑎12𝑎22 + 𝐶𝑎13𝑎23 + ℎ2𝑎12 + ℎ3𝑎13 = 0

(2.13) 

{

𝑎12
2 + 𝑎13

2 = 1

𝑎22
2 + 𝑎23

2 = 1

𝑎31
2 = 1

(2.14) 

{

𝑎12𝑎22 + 𝑎13𝑎23 = 0

0 = 0

0 = 0

(2.15) 

In this case, equations (2.5) after conversion to dimensionless parameters (2.9) and 

orthogonality (2.6) leads to the system: 

{
(𝐵 − 𝐶)𝑎12𝑎22 + ℎ2𝑎12 + ℎ3𝑎13 = 0

𝑎12𝑎22 = −𝑎12𝑎22
 ⟺ 

⇔ {
−(1 + 𝑣)𝑎12𝑎22 + 𝐻2𝑎12 + 𝐻3𝑎13 = 0

−
(2.16) 
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In summary, the system becomes: 

{
 
 
 
 

 
 
 
 
−(1 + 𝑣)𝑎12𝑎22 + 𝐻2𝑎12 + 𝐻3𝑎13 = 0

𝑎31
2 = 1

𝑎11 = 0

𝑎21 = 0

𝑎12
2 + 𝑎13

2 = 1

𝑎22
2 + 𝑎23

2 = 1

𝑎12𝑎22 + 𝑎13𝑎23 = 0

(2.17) 

Analyzing the first equation of this system, we obtain: 

−(1 + 𝑣)𝑎12𝑎22 + 𝐻2𝑎12 + 𝐻3𝑎13 = 0 ⇔ 

⇔ 𝑎12(𝐻2 − 𝑎22(𝑣 + 1)) + 𝐻3𝑎13 = 0 ⇔ 

⇔ 𝑎12 = −
𝐻3𝑎13

𝐻2 − 𝑎22(𝑣 + 1)
 (2.18) 

From the last equation of system (2.17) and the expression for 𝑎12 obtained above (2.18), it 

can be achieved the following relationship: 

𝑎12𝑎22 + 𝑎13𝑎23 = 0 ⇔ 

⇔ 𝑎12 = −
𝑎13𝑎23
𝑎22

⇔ 

⇔ −
𝐻3𝑎13

𝐻2 − 𝑎22(1 + 𝑣)
= −

𝑎13𝑎23
𝑎22

⇔ 

⇔
𝑎23
𝑎22

=
𝐻3

𝐻2 − 𝑎22(𝑣 + 1)
(2.19) 

Introducing 𝑎23
2 = 1 − 𝑎22

2  and raising the previous relationship to the power 2, it is obtained an 

equation of fourth order in 𝑥1 = 𝑎22: 

(
𝑎23
𝑥1
)
2

= (
𝐻3

𝐻2 − 𝑥1(𝑣 + 1)
)
2

⇔ 

⇔
1− 𝑥1

2

𝑥1
2 =

𝐻3
2

(𝐻2 − 𝑥1(𝑣 + 1))
2 ⇔ 

⇔ −(𝑣 + 1)2𝑥1
4 + 2𝐻2(𝑣 + 1)𝑥1

3 + ((𝑣 + 1)2 −𝐻3
2 − 𝐻2

2)𝑥1
2 − 2𝐻2(𝑣 + 1)𝑥1 + 𝐻2

2 = 0 (2.20)  
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Two equilibrium positions of the gyrostat correspond to each real root of this equation. The 

direction cosines are defined in function of 𝑥1: 

𝑎12 = −
𝑎13𝑎23
𝑎22

 (2.21) 

𝑎12𝑎22 + 𝑎13𝑎23 = 0 ⇔ 

⇔
−𝐻3𝑎13𝑥1

𝐻2 − 𝑥1(𝑣 + 1)
+ 𝑎13𝑎23 = 0 ⇔ 

⇔ 𝑎23 =
𝐻3𝑥1

𝐻2 − 𝑥1(𝑣 + 1)
 (2.22) 

Using the 5th equation of (2.17) and equation (2.21), it is achieved: 

𝑎23
2 𝑎13

2

𝑥1
2 + 𝑎13

2 = 1 ⇔ 

⇔ 𝑎23
2 𝑎13

2 + 𝑎13
2 𝑥1

2 = 𝑥1
2 ⇔ 

⇔ 𝑎13
2 (𝑥1

2 + 𝑎23
2 ) = 𝑥1

2 ⇔ 

⇔ 𝑎13
2 = 𝑥1

2 ⇔ 

⇔ 𝑎13 = 𝑎31𝑥1 (2.23) 

𝑎12 = −
𝑎23
𝑥1
𝑎13 ⇔ 

⇔ 𝑎12 = −
𝑎23
𝑥1
𝑎31𝑥1 ⇔ 

⇔ 𝑎12 = −𝑎23𝑎31 (2.24) 

  



Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment along the Principal Plane of 
Inertia 

 

14 

 

Together, they form the group of solutions I: 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑎11 = 0

𝑎12 = −𝑎23𝑎31

𝑎13 = 𝑎31𝑥1

𝑎21 = 0

𝑎22 = 𝑥1

𝑎23 =
𝐻3𝑥1

𝐻2 − 𝑥1(𝑣 + 1)
 𝑎31 = ±1

𝑎32 = 0

𝑎33 = 0

(2.25) 

Let us determine boundaries in the plane of the parameters 𝐻2 and 𝐻3 that separate domains 

with different numbers of solutions of system (2.17). Bifurcation points are points in the plane 

(𝐻2,𝐻3) that simultaneously belong to the hyperbola branch that does not pass through the 

origin and to the circle; the tangent lines to the hyperbola and the circle coincide at the 

bifurcation points. The condition that the tangent lines coincide has the form [18]: 

𝑑(𝑎23)

𝑑(𝑎22)
=

𝐻3(𝑣 + 1)𝑎22

(𝐻2 − 𝑎22(𝑣 + 1))
2 +

𝐻3
𝐻2 − 𝑎22(𝑣 + 1)

=
(𝑣 + 1)𝑎23 + 𝐻3
𝐻2 − 𝑎22(𝑣 + 1)

= −
𝑎22
𝑎23

⇔ 

⇔ (𝑣 + 1)(𝑎23
2 − 𝑎22

2 ) + 𝑎22𝐻2 + 𝑎23𝐻3 = 0 (2.26) 

Substituting the expression for 𝑎23 from (2.25) into the sixth equation of (2.17) and equation 

(2.26), it is obtained the following system: 

{

𝑎22
2 + 𝑎23

2 = 1

𝑎23 =
𝐻3𝑎22

𝐻2 − 𝑎22(𝑣 + 1)

⇔ 

⇔ {
𝐻3
2𝑎22

2

(𝐻2 − 𝑎22(𝑣 + 1))
2 = 1 − 𝑎22

2

−

(2.27) 

{

(𝑣 + 1)(𝑎23
2 − 𝑎22

2 ) + 𝑎22𝐻2 + 𝑎23𝐻3 = 0

𝑎23 =
𝐻3𝑎22

𝐻2 − 𝑎22(𝑣 + 1)

⇔ 

⇔ {−𝑎22
2 (𝑣 + 1) +

𝑎22
2 𝐻3

2(𝑣 + 1)

(𝐻2 − 𝑎22(𝑣 + 1))
2 + 𝑎22𝐻2 +

𝑎22𝐻3
2

𝐻2 − 𝑎22(1 + 𝑣)
= 0

−

⇔ 
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⇔ 𝑎22
2 𝐻3

2(𝑣 + 1) − 𝑎22
2 (𝑣 + 1)(𝐻2 − 𝑎22(1 + 𝑣))

2
+ 𝑎22𝐻2(𝐻2 − 𝑎22(1 + 𝑣))

2

+ 𝑎22𝐻3
2(𝐻2 − 𝑎22(𝑣 + 1)) = 0 ⇔ 

⇔ 𝑎22(𝐻2 − 𝑎22(𝑣 + 1))
2
(𝐻2 − 𝑎22(𝑣 + 1)) + 𝑎22𝐻3

2(𝑎22(𝑣 + 1) + (𝐻2 − 𝑎22(1 + 𝑣)) = 0 ⇔ 

⇔
𝐻3
2𝐻2

(𝐻2 − 𝑎22(𝑣 + 1))
2 = −(𝐻2 − 𝑎22(1 + 𝑣)) (2.28) 

{
 
 

 
 

𝐻3
2𝑎22

2

(𝐻2 − 𝑎22(𝑣 + 1))
2 = 1 − 𝑎22

2

𝐻3
2𝐻2

(𝐻2 − 𝑎22(𝑣 + 1))
2 = −(𝐻2 − 𝑎22(1 + 𝑣))

(2.29) 

Dividing the first equation by the second equation from system (2.29), it is obtained: 

𝐻3
2𝑎22

2

(𝐻2 − 𝑎22(𝑣 + 1))
2

𝐻3
2𝐻2

(𝐻2 − 𝑎22(𝑣 + 1))
2

=
1 − 𝑎22

2

−(𝐻2 − 𝑎22(1 + 𝑣))
⇔ 

⇔
𝑎22
2

𝐻2
=

1 − 𝑎22
2

−(𝐻2 − 𝑎22(𝑣 + 1))
⇔ 

⇔ −𝑎22
2 𝐻2 + 𝑎22

3 (𝑣 + 1) = 𝐻2 − 𝐻2𝑎22
2 ⇔ 

⇔ 𝑎22 = (
𝐻2
𝑣 + 1

)

1
3⁄

(2.30) 

Ultimately, substituting the expression for 𝑎22 into the second equation (2.29), it is obtained 

the following astroid equation: 

−
𝐻3
2𝐻2

(𝐻2 − 𝑎22(𝑣 + 1))
2 = −(𝐻2 − 𝑎22(𝑣 + 1)) ⇔ 

⇔ 𝐻3
2𝐻2 = (𝐻2 − 𝑎22(𝑣 + 1))

3
⇔ 

⇔ −𝐻3
2 3⁄ 𝐻2

1 3⁄ = 𝐻2 − 𝑎22(𝑣 + 1) ⇔ 

⇔ −𝐻3
2 3⁄ 𝐻2

1 3⁄ = 𝐻2
1 3⁄ 𝐻2

2 3⁄ −𝐻2
1 3⁄  (𝑣 + 1)2 3⁄ ⇔ 

⇔ 𝐻2
2 3⁄ + 𝐻3

2 3⁄ = (𝑣 + 1)2 3⁄  (2.31) 
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Therefore, equation (2.20) has four roots at 𝐻2
2 3⁄ + 𝐻3

2 3⁄ < (𝑣 + 1)2 3⁄  and two roots at 𝐻2
2 3⁄ +

𝐻3
2 3⁄ > (𝑣 + 1)2 3⁄ . Consequently, the total number of equilibrium positions for case (2.12), i.e., 

the number of solutions of group I, can be either 8 or 4, depending on the relation between 

dimensionless parameters 𝐻2 and 𝐻3. 

2.2.1.2 Case 𝒂𝟑𝟏 ≠ 𝟎, 𝒂𝟑𝟐 ≠ 𝟎 and 𝒂𝟑𝟑 ≠ 𝟎 

Let us consider system (2.11) at 𝑎32 ≠ 0 and 𝑎33 ≠ 0. Dividing the second equation of this system 

by 𝑎33
2  and designating 𝑥2 = 𝑎32/𝑎33, it can be rewritten in the form: 

−4𝑣(𝑣 + 1)𝑎32𝑎33 + 𝐻2
2𝑎32𝑎33 + 𝐻2𝐻3𝑎33

2 + 𝐻2𝐻3𝑣𝑎32
2 + 𝐻3

2𝑣𝑎32𝑎33 = 0 ⇔ 

⇔ −4𝑣(𝑣 + 1)𝑎32 𝑎33⁄ + 𝐻2
2𝑎32 𝑎33⁄ + 𝐻2𝐻3 + 𝐻2𝐻3𝑣𝑎32

2 𝑎33
2⁄ + 𝐻3

2𝑣𝑎32 𝑎33⁄ = 0 ⇔ 

⇔ 𝐻2𝐻3𝑣𝑥2
2 + (𝐻2

2 + 𝐻3
2𝑣 − 4𝑣(𝑣 + 1))𝑥2 + 𝐻2𝐻3 = 0 (2.32) 

The solution to this equation has the form: 

𝑥2 =
−(𝐻2

2 + 𝐻3
2𝑣 − 4𝑣(𝑣 + 1)) ± √Δ

2𝐻3𝐻2𝑣
(2.33) 

Where: 

Δ = (𝐻2
2 + 𝐻3

2𝑣 − 4𝑣(1 + 𝑣))
2
− 4𝐻2

2𝐻3
2𝑣 (2.34) 

The first and third equations of system (2.11) after substitution in them 𝑎32 = 𝑥2𝑎33 leads to 

the following system: 

{
16[𝑥2

2𝑎33
4 (𝑣 + 1)2 + 𝑎31

2 𝑎33
2 + 𝑣2𝑥2

2𝑎31
2 𝑎33

2 ] = (𝐻2𝑎33𝑥2 + 𝐻3𝑎33)
2

𝑎31
2 + 𝑎32

2 + 𝑎33
2 = 1

⇔ 

⇔ {
16[𝑥2

2𝑎33
4 (𝑣 + 1)2 + 𝑎31

2 𝑎33
2 + 𝑣2𝑥2

2𝑎31
2 𝑎33

2 ] = 𝑎33
2 (𝐻2𝑥2 + 𝐻3)

2

−
⇔ 

⇔ {𝑎33
2 𝑥2

2(𝑣 + 1)2 + 𝑎31
2 (1 + 𝑣2𝑥2

2) =
(𝐻2𝑥2 + 𝐻3)

2

16
−

⇔ 

⇔ {
−

𝑎31
2 + 𝑥2

2𝑎33
2 + 𝑎33

2 = 1
⇔ 

⇔ {
𝑎33
2 𝑥2

2(𝑣 + 1)2 + 𝑎31
2 (1 + 𝑣2𝑥2

2) =
(𝐻2𝑥2 + 𝐻3)

2

16
𝑎33
2 (1 + 𝑥2

2) + 𝑎31
2 = 1

(2.35) 
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Resolving this system for 𝑎31
2  and 𝑎33

2 , it gets: 

{
 
 

 
 𝑎31

2 =
(𝐻3 + 𝐻2𝑥2)

2(𝑥2
2 + 1) − 16𝑥2

2(𝑣 + 1)2

16(𝑣𝑥2
2 − 1)2

𝑎33
2 =

16(𝑣2𝑥2
2 + 1) − (𝐻3 + 𝐻2𝑥2)

2

16(𝑣𝑥2
2 − 1)2

(2.36) 

In order for the found solution would correspond to an equilibrium solution of the gyrostat, the 

conditions Δ ≥ 0,  𝑎31
2 ≥ 0 and 𝑎33

2 ≥ 0 must be met. 

Let us consider the discriminant sign. It is clear that Δ ≥ 0 if 𝑣 ≤ 0. In order to determine the 

sign of Δ on the interval 𝑣 > 0, the discriminant can be written as: 

Δ = [(𝐻3 + 2√𝑣 + 1)
2
𝑣 − 𝐻2

2] × [(𝐻3 − 2√𝑣 + 1)
2
𝑣 − 𝐻2

2]  (2.37) 

Analyzing this expression, it can be concluded that Δ ≥ 0 at: 

{
(𝐻2 + 2√𝑣 + 1)

2
𝑣 ≥ 𝐻2

2

(𝐻2 − 2√𝑣 + 1)
2
𝑣 ≥ 𝐻2

2
  ∨   {

(𝐻2 + 2√𝑣 + 1)
2
𝑣 ≤ 𝐻2

2

(𝐻2 − 2√𝑣 + 1)
2
𝑣 ≤ 𝐻2

2
 (2.38) 

Now, the conditions 𝑎31
2 ≥ 0 and 𝑎33

2 ≥ 0 will be analyzed. Considering the following relationship 

obtained from the second equation of system (2.11)): 

𝑥2 + 𝐻3 =
4𝑣(𝑣 + 1)𝑥2
𝐻2 + 𝐻3𝑣𝑥2

 (2.39) 

And introducing that on (2.36), these conditions became: 

𝑎31
2 ≥ 0 ⟺ 

⟺
(𝐻3 + 𝐻2𝑥2)

2(𝑥2
2 + 1) − 16𝑥2

2(𝑣 + 1)2

16(𝑣𝑥2
2 − 1)2

≥ 0 ⟺ 

⇔ (𝐻3 + 𝐻2𝑥2)
2(𝑥2

2 + 1) − 16𝑥2
2(𝑣 + 1)2 ≥ 0 ⇔ 

⇔
16𝑣2(𝑣 + 1)2𝑥2

2(𝑥2
2 + 1)

(𝐻2 +𝐻3𝑣𝑥2)
2

− 16𝑥2
2(𝑣 + 1)2 ≥ 0 ⇔ 

⇔
16𝑣2𝑥2

2(𝑣 + 1)2(𝑥2
2 + 1) − 16𝑥2

2(𝑣 + 1)2(𝐻2 + 𝐻3𝑣𝑥2)
2

(𝐻2 + 𝐻3𝑣𝑥2)
2

≥ 0 ⇔ 

⇔ 𝑣2(𝑥2
2 + 1) − (𝐻2 + 𝐻3𝑣𝑥2)

2 ≥ 0 (2.40)  
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𝑎33
2 ≥ 0 ⇔ 

⇔
16(𝑣2𝑥2

2 + 1) − (𝐻3 + 𝐻2𝑥2)
2

16(𝑣𝑥2
2 − 1)2

≥ 0 ⇔ 

⇔ 16(𝑣2𝑥2
2 + 1) − (𝐻3 +𝐻2𝑥2)

2 ≥ 0 (2.41) 

In other way, the inequalities (2.40) and (2.41) can be grouped with the equation (2.32) forming 

the following system, similar to the one found in [8]: 

{

𝑎0𝑥2 + 𝑎1𝑥2 + 𝑎2 ≥ 0

𝑏0𝑥2 + 𝑏1𝑥2 + 𝑏2 ≥ 0

𝑐0𝑥2
2 + 𝑐1𝑥2 + 𝑐2 = 0

⇔ 

⇔

{
 
 

 
 
𝑎0𝑥2 + 𝑎1𝑥2 + 𝑎2 ≥ 0

𝑏0𝑥2 + 𝑏1𝑥2 + 𝑏2 ≥ 0

𝑥2 =
−𝑐1 ±√𝑐1

2 − 4𝑐0𝑐2
2𝑐0

⇔ 

⇔

{
 
 

 
 (−𝑐1 ± √𝑐1

2 − 4𝑐0𝑐2) (𝑎1𝑐0 − 𝑎0𝑐1) + 2𝑐0(𝑎2𝑐0 − 𝑎0𝑐2) ≥ 0

(−𝑐1 ± √𝑐1
2 − 4𝑐0𝑐2) (𝑏1𝑐0 − 𝑏0𝑐1) + 2𝑐0(𝑏2𝑐0 − 𝑏0𝑐2) ≥ 0

−

(2.42) 

Where: 

{

𝑎0 = 𝑣
2(1 − 𝐻3

2)

𝑎1 = −2𝐻2𝐻3𝑣

𝑎2 = −𝐻2
2 + 𝑣2

 

{

𝑏0 = 16𝑣2 − 𝐻2
2

𝑏1 = −2𝐻2𝐻3
𝑏2 = 16 − 𝐻3

2

 

{

𝑐0 = 𝐻2𝐻3𝑣

𝑐1 = 𝐻2
2 + 𝐻3

2𝑣 − 4𝑣(𝑣 + 1)
𝑐2 = 𝐻2𝐻3

 

A solution of system (2.11) only correspond to an equilibrium positions of a gyrostat when 

inequalities (2.42) and Δ = 𝑐1
2 − 4𝑐0𝑐2 ≥ 0 are valid. In this case, 𝑎32 = 𝑥2𝑎33, direction cosines 

𝑎31 and 𝑎33 are determined from (2.36), and the remaining direction cosines, taking (2.7) and 

(2.9) into account, take on the form: 
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{
 
 
 
 
 
 

 
 
 
 
 
 𝑎11 =

4𝑣𝑎32𝑎33
𝐻2𝑎32 + 𝐻3𝑎33

𝑎12 = −
4𝑎31𝑎33

𝐻2𝑎32 + 𝐻3𝑎33

𝑎13 = −
4𝑣𝑎31𝑎32

𝐻2𝑎32 + 𝐻3𝑎33

𝑎21 = 4𝑎31
𝑎33
2 − 𝑣𝑎32

2

𝐻2𝑎32 + 𝐻3𝑎33

𝑎22 = 4𝑎32
(𝑣 + 1)𝑎33

2 + 𝑣𝑎31
2

𝐻2𝑎32 +𝐻3𝑎33

𝑎23 = −4𝑎33
(𝑣 + 1)𝑎32

2 + 𝑎31
2

𝐻2𝑎32 + 𝐻3𝑎33

(2.43) 

It can be concluded that in this case, the number of possible equilibrium positions, forming the 

group of solutions II, does not exceed 8. 

2.2.1.3 Case 𝒂𝟑𝟏 = 𝟎, 𝒂𝟑𝟐 ≠ 𝟎 and 𝒂𝟑𝟑 ≠ 𝟎 

At last, let us consider systems (2.5) and (2.6) which leads to: 

{

4(𝐵𝑎22𝑎32 + 𝐶𝑎23𝑎33) + ℎ2𝑎32 + ℎ3𝑎33 = 0

0 = 0

0 = 0

 (2.44) 

{

𝑎11
2 = 1

𝑎22
2 + 𝑎23

2 = 1

𝑎32
2 + 𝑎33

2 = 1

(2.45) 

{

𝑎21 = 0

0 = 0

𝑎22𝑎32 + 𝑎23𝑎33 = 0

(2.46) 

Utilizing the first equation from (2.44) and the last equation from (2.46), we can obtain a 4th 

order equation in function of 𝑥3 = 𝑎22: 

 

𝑎22𝑎32 + 𝑎23𝑎33 = 0 ⟺ 

⟺ 𝑎32 = −
𝑎23𝑎33
𝑎22

(2.47) 

4(𝐵 − 𝐶)𝑎22𝑎32 + ℎ2𝑎32 + ℎ3𝑎33 = 0 ⇔ 

⇔ −4(𝑣 + 1)𝑎22𝑎32 + 𝐻2𝑎32 +𝐻3𝑎33 = 0 ⇔ 
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⇔ 𝑎32(𝐻2 − 4(𝑣 + 1)𝑎22) + 𝐻3𝑎33 = 0 ⇔ 

⇔ 𝑎32 = −
𝐻3𝑎33

𝐻2 − 4(𝑣 + 1)𝑎22
⇔ 

⇔ −
𝑎23𝑎33
𝑎22

= −
𝐻3𝑎33

𝐻2 − 4(𝑣 + 1)𝑎22
⇔ 

⇔ (
𝑎23
𝑎22

)
2

= (
𝐻3

𝐻2 − 4(𝑣 + 1)𝑎22
)
2

⇔ 

Introducing 𝑎23
2 = 1 − 𝑎22

2  and raising the previous relationship to the power 2: 

⇔
1− 𝑥3

2

𝑥3
2 =

𝐻3
2

(𝐻2 − 4(𝑣 + 1)𝑥3)
2
⇔ 

⇔ −16(𝑣 + 1)2𝑥3
4 + 8𝐻2(𝑣 + 1)𝑥3

3 + (−𝐻2
2 − 𝐻3

2 + 16(𝑣 + 1)2)𝑥3
2 − 8𝐻2(𝑣 + 1)𝑥3  + 𝐻2

2 = 0 (2.48) 

Similar to first case (2.2.1.1), two equilibrium positions of the gyrostat correspond to each real 

root of this equation. The direction cosines are defined in function of 𝑥3: 

𝑎22𝑎32 + 𝑎23𝑎33 = 0 ⇔ 

⇔ −
−𝑥3𝐻3𝑎33

𝐻2 − 4(𝑣 + 1)𝑥3
+ 𝑎23𝑎33 = 0 ⇔ 

⇔ 𝑎23 =
𝐻3𝑥3

𝐻2 − 4(𝑣 + 1)𝑥3
 (2.49) 

𝑎23
2 𝑎33

2

𝑥3
2 + 𝑎33

2 = 1 ⇔ 

⇔ 𝑎23
2 𝑎33

2 + 𝑎33
2 𝑥3

2 = 𝑥3
2 ⇔ 

⇔ 𝑎33
2 (𝑎23

2 + 𝑥3
2) = 𝑥3

2 ⇔ 

⇔ 𝑎33 = 𝑥3𝑎11 (2.50) 

𝑎32 = −
𝑎23𝑎11𝑥3

𝑥3
⇔ 

⇔ 𝑎32 = −𝑎23𝑎11 (2.51) 
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Together, they form the group of solutions III: 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑎11 = ±1

𝑎12 = 0

𝑎13 = 0

𝑎21 = 0

𝑎22 = 𝑥3

𝑎23 =
𝐻3𝑥3

𝐻2 − 4(𝑣 + 1)𝑥3
𝑎31 = 0

𝑎32 = −𝑎23𝑎11

𝑎33 = 𝑥3𝑎11

 (2.52) 

Similarly to (2.20), the equation is of fourth order and can have either 4 or 2 real roots. The 

number of roots changes on the surface are determined, using the same method as in the case 

(2.2.1.1), by the equation: 

𝐻2
2 3⁄ + 𝐻3

2 3⁄ = (4(𝑣 + 1))
2 3⁄
 (2.53) 

 Four roots exist at 𝐻2
2 3⁄ + 𝐻3

2 3⁄ < (4(𝑣 + 1))
2 3⁄

 and two roots at 𝐻2
2 3⁄ + 𝐻3

2 3⁄ > (4(𝑣 + 1))
2 3⁄

. 

Thus, the number of solutions of group III can be either 4 or 8.  

2.3 Gyrostat’s stability 

In this section, the Lyapunov’s stability theory is reviewed and the sufficient conditions of 

stability for the equilibrium positions of a gyrostat satellite are obtained.  

Consider in this study a dynamical system which satisfies: 

�̇� = 𝑓(𝑥) 𝑥(𝑡𝑜) = 𝑥0 𝑥 ∈ ℝ𝑛 (2.54) 

According to [21], it is assumed that 𝑓(𝑥) is Lipschitz continuous with respect to 𝑥 and uniformly 

in 𝑡. A point 𝑥∗ ∈ ℝ𝑛 is an equilibrium position of (2.54) if 𝑓(𝑥∗) = 0. 

The equilibrium position 𝑥∗ is stable in the sense of Lyapunov, if for any 𝜖 > 0 there exists a 

𝛿(𝜖) > 0 such that 

‖𝑥(𝑡0)‖ < 𝛿 ⟹ ‖𝑥(𝑡)‖ < 𝜖,     ∀𝑡 ≥ 0 (2.55) 

This definition of stability does not require that trajectories starting close to the origin tend to 

the origin asymptotically, in other words, the solutions which start in a neighborhood of 𝑥∗ 

remain near 𝑥∗ for all time.   
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The case of asymptotic stability is different, as solutions that are near an equilibrium position 

tend to the equilibrium position itself. In a mathematical way, the equilibrium position 𝑥∗ is 

asymptotically stable if 𝑥∗ is stable in the sense of Lyapunov and 𝑥∗ is attractive, i.e, there 

exists 𝛿 such that: 

‖𝑥(𝑡0)‖ < 0  ⟹    lim
𝑡⟶∞

𝑥(𝑡) = 0 (2.56) 

Figure 2.2 shows a comparison between stable and unstable equilibrium positions. 

 

Figure 2.2 – Phase portraits for stable and unstable equilibrium positions [21] 

There is another method developed by Lyapunov called Lyapunov’s direct method (or second 

method of Lyapunov). In the literature in general, the method is seen as the most reliable in 

the study of stability of aerospace guidance systems, which typically contain strong 

nonlinearities. The method assumes that the energy of a system can be measured, therefore 

can be defined as a Lyapunov’s function. The study of the rate of change of the energy of the 

system can ascertain the stability of an equilibrium position. 

As in previous studies [8] and [14], the generalized energy integral is continuous, therefore it 

can be used as Lyapunov’s function: 

1

2
(𝐴�̅�2 + 𝐵𝑞2 + 𝐶�̅�2) +

3

2
𝜔0
2[(𝐴 − 𝐶)𝑎31

2 + (𝐵 − 𝐶)𝑎32
2 ] +

1

2
𝜔0
2[(𝐵 − 𝐴)𝑎21

2 + (𝐵 − 𝐶)𝑎23
2 ] −

𝜔0[ℎ1̅̅ ̅𝑎21 + ℎ2̅̅ ̅𝑎22 + ℎ3̅̅ ̅𝑎23] = 𝐻 

Remembering the dimensionless parameters: 

𝑣 =
𝐴 − 𝐵

𝐶 − 𝐴
𝐻𝑖 =

ℎ𝑖
𝐶 − 𝐴

ℎ𝑖 =
ℎ�̅�
𝜔𝑜
 (2.58) 

(2.57) 
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It can be deducted that: 

{
 

 ℎ𝑖 =
ℎ�̅�
𝜔0

𝐻𝑖 =
ℎ𝑖

𝐶 − 𝐴

⟺ 

⇔ {
−

ℎ𝑖 = 𝐻𝑖(𝐶 − 𝐴)
⟺ 

⇔ {𝐻𝑖(𝐶 − 𝐴) =
ℎ�̅�
𝜔0

−

⟺ 

⇔ {ℎ�̅� = 𝜔0𝐻𝑖(𝐶 − 𝐴)
−

(2.59) 

Handily manipulating (2.57), the integral of energy can be presented as: 

1

2
(𝐴�̅�2 + 𝐵𝑞2 + 𝐶�̅�2) +

3

2
𝜔0
2[(𝐴 − 𝐶)𝑎31

2 + (𝐵 − 𝐶)𝑎32
2 ] +

1

2
𝜔0
2[(𝐵 − 𝐴)𝑎21

2 + (𝐵 − 𝐶)𝑎23
2 ] −

𝜔0
2(𝐶 − 𝐴)(𝐻2𝑎22 + 𝐻3𝑎23) = 𝐻 ⇔ 

⇔
1

2
(𝐴�̅�2 + 𝐵𝑞2 + 𝐶�̅�2) +

1

2
𝜔0
2[3[(𝐴 − 𝐶)𝑎31

2 + (𝐵 − 𝐶)𝑎32
2 ] + [(𝐵 − 𝐴)𝑎21

2 + (𝐵 − 𝐶)𝑎23
2 ] −

2(𝐶 − 𝐴)(𝐻2𝑎22 + 𝐻3𝑎23)] = 𝐻  

Now, it will be introduced in this equation small variations in the direction angles, these 

variations might be interpreted as orbital disturbances, since the main purpose is to check how 

the system will respond to such disturbances near �̅�, �̅� and �̅�. Thus, let us represent 𝛼, 𝛽 and 

𝛾 in the form: 

{

𝛼 = 𝛼0 + �̅�

𝛽 = 𝛽0 + �̅�

𝛾 = 𝛾0 + �̅�

(2.61) 

Where �̅�, �̅� and �̅� are small deviations from the satellite’s equilibrium position with 𝛼 = 𝛼0 =

𝑐𝑜𝑛𝑠𝑡, 𝛽 = 𝛽0 = 𝑐𝑜𝑛𝑠𝑡 and 𝛾 = 𝛾0 = 𝑐𝑜𝑛𝑠𝑡. Then the energy integral can be written in the 

following form: 

1

2
(𝐴�̅�2 + 𝐵𝑞2 + 𝐶�̅�2) +

1

2
𝜔0
2(𝐴𝛼𝛼�̅�

2 + 𝐴𝛽𝛽�̅�
2 + 𝐴𝛾𝛾�̅�

2 + 2𝐴𝛼𝛽�̅��̅� + 2𝐴𝛽𝛾�̅��̅� + 2𝐴𝛼𝛾�̅��̅�)

+ ∑ = 𝑐𝑜𝑛𝑠𝑡 

Where ∑ designates the terms of higher than second order of smallness with respect to �̅�, �̅�, 

�̅�.  

(2.60) 

(2.62) 
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Expanding the direction cosines according to a Taylor series [14]: 

𝑎𝑖𝑗(𝛼, 𝛽, 𝛾) = 𝑎𝑖𝑗(𝛼0 + �̅�, 𝛽0 + �̅�, 𝛾0 + �̅�) = 𝑎𝑖𝑗(𝛼𝑜, 𝛽0, 𝛾0) + (
𝜕𝑎𝑖𝑗̅̅ ̅̅

𝜕𝛼
�̅� +

𝜕𝑎𝑖𝑗̅̅ ̅̅

𝜕𝛽
�̅� +

𝜕𝑎𝑖𝑗̅̅ ̅̅

𝜕𝛾
�̅�) +

1

2
(
𝜕2𝑎𝑖𝑗̅̅ ̅̅

𝜕𝛼2
�̅�2 +

𝜕2𝑎𝑖𝑗̅̅ ̅̅

𝜕𝛽2
𝛽2 +

𝜕2𝑎𝑖𝑗̅̅ ̅̅

𝜕𝛾2
�̅�2 + 2

𝜕2𝑎𝑖𝑗̅̅ ̅̅

𝜕𝛼𝜕𝛽
�̅��̅� + 2

𝜕2𝑎𝑖𝑗̅̅ ̅̅

𝜕𝛼𝜕𝛾
�̅��̅� + 2

𝜕2𝑎𝑖𝑗̅̅ ̅̅

𝜕𝛽𝜕𝛾
�̅��̅�) 

In order to study the stability of small displacements, it must be applied the expanded Taylor 

series above to the system of direction cosines (2.1), then when applied the small 

displacements described in (2.61), the system (2.1) is transformed into: 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑎11̅̅ ̅̅ = 𝑐𝑜𝑠𝛼0 × 𝑐𝑜𝑠𝛽0

𝑎12̅̅ ̅̅ = 𝑠𝑖𝑛𝛼0 × 𝑠𝑖𝑛𝛾0 − 𝑐𝑜𝑠𝛼0 × 𝑠𝑖𝑛𝛽0 × 𝑐𝑜𝑠𝛾0

𝑎13̅̅ ̅̅ = 𝑠𝑖𝑛𝛼0 × 𝑐𝑜𝑠𝛾0 + 𝑐𝑜𝑠𝛼0 × 𝑠𝑖𝑛𝛽0 × 𝑠𝑖𝑛𝛾0

𝑎21̅̅ ̅̅ = 𝑠𝑖𝑛𝛽0

𝑎22̅̅ ̅̅ = 𝑐𝑜𝑠𝛽0 × 𝑐𝑜𝑠𝛾0

𝑎23̅̅ ̅̅ = −𝑐𝑜𝑠𝛽0 × 𝑠𝑖𝑛𝛾0

𝑎31̅̅ ̅̅ = −𝑠𝑖𝑛𝛼0 × 𝑐𝑜𝑠𝛽0

𝑎32̅̅ ̅̅ = 𝑐𝑜𝑠𝛼0 × 𝑠𝑖𝑛𝛾0 + 𝑠𝑖𝑛𝛼0 × 𝑠𝑖𝑛𝛽0 × 𝑐𝑜𝑠𝛾0

𝑎33̅̅ ̅̅ = 𝑐𝑜𝑠𝛼0 × 𝑐𝑜𝑠𝛾0 − 𝑠𝑖𝑛𝛼0 × 𝑠𝑖𝑛𝛽0 × 𝑠𝑖𝑛𝛾0 

(2.64) 

After applying the Taylor series described in (2.63) to the system of direction cosines only for 

the relevant direction cosines 𝑎21, 𝑎22, 𝑎23, 𝑎31and 𝑎32, it is obtained the following expressions: 

𝑎21 = 𝑎21̅̅ ̅̅ + 𝑐𝑜𝑠𝛽0�̅� +
1

2
(−𝑎21̅̅ ̅̅ �̅�

2) 

𝑎22 = 𝑎22̅̅ ̅̅ + (−𝑎21̅̅ ̅̅ 𝑐𝑜𝑠𝛾0�̅� + 𝑎23̅̅ ̅̅ �̅�) +
1

2
(−𝑎22̅̅ ̅̅ �̅�

2 − 𝑎22̅̅ ̅̅ �̅�
2 + 2𝑎21̅̅ ̅̅ 𝑠𝑖𝑛𝛾0�̅��̅�)  

𝑎23 = 𝑎23̅̅ ̅̅ + (−𝑎22̅̅ ̅̅ �̅� + 𝑎21̅̅ ̅̅ 𝑠𝑖𝑛𝛾0�̅�) +
1

2
(2𝑎21̅̅ ̅̅ 𝑐𝑜𝑠𝛾0�̅��̅� − 𝑎23̅̅ ̅̅ �̅�

2 − 𝑎23̅̅ ̅̅ �̅�
2)  

𝑎31 = 𝑎31̅̅ ̅̅ + (−𝑎11̅̅ ̅̅ �̅� + 𝑎21̅̅ ̅̅ 𝑠𝑖𝑛𝛼0�̅�) +
1

2
(−𝑎31̅̅ ̅̅ �̅�

2 − 𝑎31̅̅ ̅̅ �̅�
2 + 2𝑎21̅̅ ̅̅ 𝑐𝑜𝑠𝛼0�̅��̅�)  

𝑎32 = 𝑎32̅̅ ̅̅ + (𝑎22̅̅ ̅̅ sin 𝛼0�̅� − 𝑎12̅̅ ̅̅ �̅� + 𝑎33̅̅ ̅̅ �̅�) +
1

2
(2𝑎11̅̅ ̅̅ 𝑐𝑜𝑠𝛾0�̅��̅� − 𝑎21̅̅ ̅̅ 𝑠𝑖𝑛𝛼0𝑐𝑜𝑠𝛾0�̅�

2 + 2𝑎23̅̅ ̅̅ 𝑠𝑖𝑛𝛼𝑜�̅��̅� −

𝑎32̅̅ ̅̅ �̅�
2 − 𝑎32̅̅ ̅̅ �̅�

2 − 2𝑎13̅̅ ̅̅ �̅��̅�)  

  

(2.63) 

(2.65) 
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Adding the above calculated expanded Taylor’s coefficients into the integral of energy (2.60), 

it is obtained the following coefficients: 

𝐴𝛼𝛼 = 3[(𝐴 − 𝐶)(𝑎11̅̅ ̅̅
2 − 𝑎31̅̅ ̅̅

2) + (𝐵 − 𝐶)(𝑎12̅̅ ̅̅
2 − 𝑎32̅̅ ̅̅ 2)] 

𝐴𝛽𝛽 = (𝐵 − 𝐶)[3(𝑎22̅̅ ̅̅
2 sin2 𝛼0 − 𝑎32̅̅ ̅̅ 𝑎21̅̅ ̅̅ 𝑐𝑜𝑠𝛾0𝑠𝑖𝑛𝛼𝑜) + 𝑎21̅̅ ̅̅

2 sin2 𝛾0 − 𝑎23̅̅ ̅̅
2]

+ (𝐵 − 𝐴)(cos2 𝛽0 − 𝑎21̅̅ ̅̅
2) + (𝐴 − 𝐶)[3(𝑎21̅̅ ̅̅

2 sin2 𝛼0 − 𝑎31̅̅ ̅̅
2) − 𝐻2𝑎22̅̅ ̅̅ − 𝐻3𝑎23̅̅ ̅̅ ] 

𝐴𝛾𝛾 = (𝐵 − 𝐶)[(𝑎22̅̅ ̅̅
2 − 𝑎23̅̅ ̅̅

2) − 3(𝑎32̅̅ ̅̅
2 − 𝑎33̅̅ ̅̅

2)] − (𝐴 − 𝐶)(𝐻2𝑎22̅̅ ̅̅ + 𝐻3𝑎23̅̅ ̅̅ ) 

𝐴𝛼𝛽 = 3(𝐴 − 𝐶)(𝑎21̅̅ ̅̅ 𝑎31̅̅ ̅̅ 𝑐𝑜𝑠𝛼0 − 𝑎11̅̅ ̅̅ 𝑎21̅̅ ̅̅ 𝑠𝑖𝑛𝛼0) + 3(𝐵 − 𝐶)(𝑎11̅̅ ̅̅ 𝑎32̅̅ ̅̅ 𝑐𝑜𝑠𝛾0 − 𝑎12̅̅ ̅̅ 𝑎22̅̅ ̅̅ 𝑠𝑖𝑛𝛼0) 

𝐴𝛽𝛾 = (𝐵 − 𝐶)[𝑎21̅̅ ̅̅ (𝑎23̅̅ ̅̅ 𝑐𝑜𝑠𝛾0 − 𝑎22̅̅ ̅̅ 𝑠𝑖𝑛𝛾0) + 3𝑠𝑖𝑛𝛼0(𝑎22̅̅ ̅̅ 𝑎33̅̅ ̅̅ + 𝑎23̅̅ ̅̅ 𝑎32̅̅ ̅̅ )]

+ (𝐴 − 𝐶)𝑎21̅̅ ̅̅ (𝐻2𝑠𝑖𝑛𝛾0 + 𝐻3𝑐𝑜𝑠𝛾0) 

𝐴𝛼𝛾 = −3(𝐵 − 𝐶)(𝑎12̅̅ ̅̅ 𝑎33̅̅ ̅̅ + 𝑎13̅̅ ̅̅ 𝑎32̅̅ ̅̅ ) 

Where  

𝑎𝑖𝑗̅̅̅̅ = 𝑎𝑖𝑗(𝛼𝑜, 𝛽𝑜, 𝛾0) 

Sarychev et.al [8] [14] referred that from the Lyapunov’s theorem, it follows that the 

equilibrium solution 𝛼 = 𝛼0, 𝛽 = 𝛽0 and 𝛾 = 𝛾0 is asymptotically stable, if the quadratic form: 

𝐴𝛼𝛼�̅�
2 + 𝐴𝛽𝛽�̅�

2 + 𝐴𝛾𝛾�̅�
2 + 2𝐴𝛼𝛽�̅��̅� + 2𝐴𝛽𝛾�̅��̅� + 2𝐴𝛼𝛾�̅��̅� (2.67) 

is positive definite, i.e., at: 

{

𝐴𝛼𝛼 > 0

𝐴𝛼𝛼𝐴𝛽𝛽 − 𝐴𝛼𝛽
2 > 0

𝐴𝛼𝛼𝐴𝛽𝛽𝐴𝛾𝛾 + 2𝐴𝛼𝛽𝐴𝛽𝛾𝐴𝛼𝛾 − 𝐴𝛼𝛼𝐴𝛽𝛾
2 − 𝐴𝛽𝛽𝐴𝛼𝛾

2 − 𝐴𝛾𝛾𝐴𝛼𝛽
2 > 0

(2.68) 

2.3.1 Solutions of Group I 

First, taking (2.25) into account, it can be achieved that: 

{

𝑎11 = 0
𝑎21 = 0
𝑎32 = 0
𝑎33 = 0

⟺ 

  

(2.66) 
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⇔ {

𝑐𝑜𝑠𝛼0𝑐𝑜𝑠𝛽0 = 0
𝑠𝑖𝑛𝛽0 = 0
𝑐𝑜𝑠𝛼0𝑠𝑖𝑛𝛾0 + 𝑠𝑖𝑛𝛼0𝑠𝑖𝑛𝛽0𝑐𝑜𝑠𝛾0 = 0
𝑐𝑜𝑠𝛼0𝑐𝑜𝑠𝛾0 − 𝑠𝑖𝑛𝛼0𝑠𝑖𝑛𝛽0𝑠𝑖𝑛𝛾0 = 0

⇔ 

⇔ {

𝑠𝑖𝑛𝛽0 = 0
𝑐𝑜𝑠𝛼0 = 0 ∨ 𝑐𝑜𝑠𝛽0 = 0
𝑐𝑜𝑠𝛼0 = 0 ∨ 𝑐𝑜𝑠𝛾0 = 0
𝑐𝑜𝑠𝛼0 = 0 ∨ 𝑠𝑖𝑛𝛾0 = 0

⇔ 

⇔ {
𝑠𝑖𝑛𝛽0 = 0
𝑐𝑜𝑠𝛼0 = 0

 (2.69) 

Therefore, the coefficients of the quadratic form (2.67) take on the form: 

𝐴𝛼𝛼 = 3[(𝐴 − 𝐶)(−𝑎31̅̅ ̅̅
2) + (𝐵 − 𝐶)(𝑎12̅̅ ̅̅

2)] 

𝐴𝛽𝛽 = (𝐵 − 𝐶)[3(𝑎22̅̅ ̅̅
2 sin2 𝛼0) − 𝑎23̅̅ ̅̅

2] + (𝐵 − 𝐴)(cos2 𝛽0)

− (𝐴 − 𝐶)[3(𝑎31̅̅ ̅̅
2) + 𝐻2𝑎22̅̅ ̅̅ + 𝐻3𝑎23̅̅ ̅̅ ] 

𝐴𝛾𝛾 = (𝐵 − 𝐶)[(𝑎22̅̅ ̅̅
2 − 𝑎23̅̅ ̅̅

2)] − (𝐴 − 𝐶)(𝐻2𝑎22̅̅ ̅̅ + 𝐻3𝑎23̅̅ ̅̅ ) 

𝐴𝛼𝛽 = −3(𝐵 − 𝐶)(𝑎12̅̅ ̅̅ 𝑎22̅̅ ̅̅ 𝑠𝑖𝑛𝛼0) 

𝐴𝛽𝛾 = 0 

𝐴𝛼𝛾 = 0 

Thus, the sufficient conditions of stability are simplified to: 

{
𝐴𝛼𝛼 > 0

𝐴𝛼𝛼𝐴𝛽𝛽 − 𝐴𝛼𝛽
2 > 0

(2.71) 

Introducing the expressions (2.25) and transforming the sufficient conditions of stability into 

dimensionless, they take on the form: 

𝐴𝛼𝛼 > 0 ⇔ 

⇔
3[(𝐴 − 𝐶)(−𝑎31̅̅ ̅̅

2) + (𝐵 − 𝐶)(𝑎12̅̅ ̅̅
2)]

𝐶 − 𝐴
> 0 ⇔ 

⇔ 𝑎31̅̅ ̅̅
2 − (𝑣 + 1)𝑎12̅̅ ̅̅

2 > 0 ⇔ 

⇔ 1− (𝑣 + 1) (
𝐻3
2𝑥1

2

(𝐻2−𝑥1(𝑣+1))
2) > 0 (2.72)  

(2.70) 
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𝐴𝛼𝛼𝐴𝛽𝛽 − 𝐴𝛼𝛽
2 > 0 ⇔ 

⇔ 3[(𝐴 − 𝐶)(−𝑎31̅̅ ̅̅
2) + (𝐵 − 𝐶)(𝑎12̅̅ ̅̅

2)]

× [(𝐵 − 𝐶)[3(𝑎22̅̅ ̅̅
2 sin2 𝛼0) − 𝑎23̅̅ ̅̅

2] + (𝐵 − 𝐴)(cos2 𝛽0)

− (𝐴 − 𝐶)[3(𝑎31̅̅ ̅̅
2) + 𝐻2𝑎22̅̅ ̅̅ + 𝐻3𝑎23̅̅ ̅̅ ]] − [−3(𝐵 − 𝐶)(𝑎12̅̅ ̅̅ 𝑎22̅̅ ̅̅ 𝑠𝑖𝑛𝛼0)]

2 > 0 ⇔ 

⇔ 3[1 − (𝑣 + 1) (
𝐻3
2𝑥1

2

(𝐻2−𝑥1(𝑣+1))
2)] × [−(𝑣 + 1) [3(𝑥1

2 sin2 𝛼0) −
𝐻3
2𝑥1

2

(𝐻2−𝑥1(𝑣+1))
2] − 𝑣(cos

2 𝛽0) +

[3 + 𝐻2𝑥1 +
𝐻3
2𝑥1

𝐻2−𝑥1(𝑣+1)
]] − [9(𝑣 + 1)2 (

𝐻3
2𝑥1

4

(𝐻2−𝑥1(𝑣+1))
2 𝑠𝑖𝑛𝛼0)] > 0 

2.3.2 Solutions of Group II 

The study of the stability of the solutions of group II leads to a harder problem. In this case, 

the relations (2.33, 2.34 and 2.43) should be used to determine 𝑎31,𝑎32 and 𝑎33 and (2.43) for 

the rest of elements of the matrix of direction cosines. Then, the angles 𝛼0, 𝛽0 and 𝛾0 are 

determined explicitly and the coefficients of quadratic form (2.66) are calculated, as well as 

the conditions of its positive definiteness. 

2.3.3 Solutions of Group III 

Let us take (2.52) into account, so it can be achieved these: 

{

𝑎12 = 0
𝑎13 = 0
𝑎21 = 0
𝑎31 = 0

⟺ 

⇔ {

𝑠𝑖𝑛𝛼0𝑠𝑖𝑛𝛾0 − 𝑐𝑜𝑠𝛼0𝑠𝑖𝑛𝛽0𝑐𝑜𝑠𝛾0 = 0
𝑠𝑖𝑛𝛼0𝑐𝑜𝑠𝛾0 + 𝑐𝑜𝑠𝛼0𝑠𝑖𝑛𝛽0𝑠𝑖𝑛𝛾0 = 0
𝑠𝑖𝑛𝛽0 = 0
−𝑠𝑖𝑛𝛼0𝑐𝑜𝑠𝛽0 = 0

⇔ 

⇔ {

𝑠𝑖𝑛𝛽0 = 0
𝑠𝑖𝑛𝛼0 = 0 ∨ 𝑠𝑖𝑛𝛾0 = 0
𝑠𝑖𝑛𝛼0 = 0 ∨ 𝑐𝑜𝑠𝛾0 = 0
𝑠𝑖𝑛𝛼0 = 0 ∨ 𝑐𝑜𝑠𝛽0 = 0

⇔ 

⇔ {
𝑠𝑖𝑛𝛽0 = 0
𝑠𝑖𝑛𝛼0 = 0

 (2.74) 

  

(2.73) 
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Therefore, the coefficients of the quadratic form (2.67) take on the form: 

𝐴𝛼𝛼 = 3[(𝐴 − 𝐶)(𝑎11̅̅ ̅̅
2) + (𝐵 − 𝐶)(−𝑎32̅̅ ̅̅

2)] 

𝐴𝛽𝛽 = (𝐵 − 𝐶)[−𝑎23̅̅ ̅̅
2] + (𝐵 − 𝐴)(cos2 𝛽0) − (𝐴 − 𝐶)[𝐻2𝑎22̅̅ ̅̅ + 𝐻3𝑎23̅̅ ̅̅ ]  

𝐴𝛾𝛾 = (𝐵 − 𝐶)[(𝑎22̅̅ ̅̅
2 − 𝑎23̅̅ ̅̅

2) − 3(𝑎32̅̅ ̅̅
2 − 𝑎33̅̅ ̅̅

2)] − (𝐴 − 𝐶)(𝐻2𝑎22̅̅ ̅̅ + 𝐻3𝑎23̅̅ ̅̅ ) 

𝐴𝛼𝛽 = 3(𝐵 − 𝐶)(𝑎11̅̅ ̅̅ 𝑎32̅̅ ̅̅ 𝑐𝑜𝑠𝛾0) 

𝐴𝛽𝛾 = 0 

𝐴𝛼𝛾 = 0 

Thus, the sufficient conditions of stability are simplified to: 

{
𝐴𝛼𝛼 > 0

𝐴𝛼𝛼𝐴𝛽𝛽 − 𝐴𝛼𝛽
2 > 0

(2.76) 

Introducing the expressions (2.52) and transforming the sufficient conditions of stability into 

dimensionless, they take on the form: 

𝐴𝛼𝛼 > 0 ⇔ 

⇔ −(𝑎11̅̅ ̅̅
2) + (𝑣 + 1)(𝑎32̅̅ ̅̅

2) > 0 ⇔ 

⇔ −1 + (𝑣 + 1) (
𝐻3
2𝑥3

2

(𝐻2 − 4(𝑣 + 1)𝑥3)
2
) > 0 (2.77) 

𝐴𝛼𝛼𝐴𝛽𝛽 − 𝐴𝛼𝛽
2 > 0 ⇔ 

⇔ [3[(𝐴 − 𝐶)(𝑎11̅̅ ̅̅
2) + (𝐵 − 𝐶)(−𝑎32̅̅ ̅̅

2)]]

× [(𝐵 − 𝐶)[−𝑎23̅̅ ̅̅
2] + (𝐵 − 𝐴)(cos2 𝛽0) − (𝐴 − 𝐶)[𝐻2𝑎22̅̅ ̅̅ + 𝐻3𝑎23̅̅ ̅̅ ]]

− [3(𝐵 − 𝐶)(𝑎11̅̅ ̅̅ 𝑎32̅̅ ̅̅ 𝑐𝑜𝑠𝛾0)]
2 > 0 ⇔ 

⇔ [3 [−1 + (𝑣 + 1) (
𝐻3
2𝑥3

2

(𝐻2 − 4(𝑣 + 1)𝑥3)
2
)]]

× [(𝑣 + 1) (
𝐻3
2𝑥3

2

(𝐻2 − 4(𝑣 + 1)𝑥3)
2) − 𝑣(cos

2 𝛽0) + [𝐻2𝑥3 +
𝐻3
2𝑥3

𝐻2 − 4(𝑣 + 1)𝑥3
]]

− 9(𝑣 + 1)2 (
𝐻3
2𝑥3

2

(𝐻2 − 4(𝑣 + 1)𝑥3)
2) 𝑐𝑜𝑠𝛾0 > 0 

(2.75) 

(2.78) 
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Chapter 3 

 

Results and Discussion 

In this chapter, the mathematical model discussed in Chapter 3 is implemented to study the 

equilibria and stability of a gyrostat satellite. Several numeric computations are carried in 

function of different system parameters 𝑣, 𝐻3 and 𝐻2. First, in section 3.1 is shown the general 

behavior of equilibria for each group of solutions I, II and III. It is displayed the evolution of 

equilibrium positions in function of spacecraft angles 𝛼, 𝛽 and 𝛾 and the evolution of equilibria 

bifurcation, in subsection 3.1.1 and 3.1.2. Without forgetting that is also verified the existence 

of the small regions found by Santos in [14] and Santos et al. [20], in subsection 3.1.3. Finally, 

in section 3.2 is discussed the stability of the gyrostat satellite in function of system 

parameters. 

3.1 Gyrostat’s equilibria 

In this section, a study of the gyrostat’s equilibria bifurcation is conducted in function of 

dimensionless parameters 𝑣, 𝐻2 and 𝐻3. In general, a bifurcation curve is a boundary at which 

the number of equilibrium positions changes from a fixed value to another. A comparison 

between the results obtained by Sarychev et. al. in [8] and the results obtained in the present 

work is shown, in order to verify if there is any correlation when a different component of the 

gyrostatic moment vector is zero (𝐻1 = 0) and when a similar mathematical model is used. Also, 

the existence of small regions of 12 and 16 equilibrium positions near 𝐻1 = 0 revealed by Santos 

([14] and [20]) in his study of the general case is verified and compared to this study. 

The interval of values of inertial dimensionless parameter 𝑣 depends on the inertial 

configuration used. In the specific case of this study and for comparing purposes, the inertial 

configuration used is 𝐵 > 𝐴 > 𝐶, which means that 𝑣 > 0. The values analyzed are between 𝑣 =

0.1 (near 𝑣 = 0) and 𝑣 = 10, giving an overview of the influence of parameter 𝑣 on the results. 

For 𝑣 > 10, although, all equilibria regions increase in size, they remain in equal number and 

shape. There is also no appearance or disappearance of new regions. 

Solving the equations (2.20) and (2.48) in the plane (𝐻3, 𝐻2) represents the equilibria bifurcation 

for cases (𝑎31 = 0, 𝑎32 ≠ 0 and , 𝑎33 ≠ 0) and (𝑎31 ≠ 0 and 𝑎32 = 𝑎33 = 0), an example for 𝑣 =

1.5 is shown in Figure 3.1. For case (𝑎31 ≠ 0, 𝑎32 ≠ 0 and 𝑎33 ≠ 0) is a more difficult problem 

because solutions of system (2.11) only correspond to an equilibrium position of the gyrostat 

when inequalities (2.42) and Δ = 𝑐1
2 − 4𝑐0𝑐2 ≥ 0 are valid. The regions in the plane (𝐻3, 𝐻2) in 

which Δ = 𝑐1
2 − 4𝑐0𝑐2 ≥ 0 for 𝑣 = 1.5 are presented in Figure 3.2 by a light gray coloring.  
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Figure 3.1 – Bifurcation curves for group of solutions I and III for 𝑣 = 1.5. 

Analyzing the Figure 3.1, the curves (2.31) and (2.53) divide the plane (𝐻3, 𝐻2) in three sub-

regions. If  𝐻2
2 3⁄ + 𝐻3

2 3⁄ < (𝑣 + 1)2 3⁄ , exits 16 solutions (i.e. equilibrium positions), 8 solutions 

for each group of solutions I and III; if (𝑣 + 1)2 3⁄ < 𝐻2
2 3⁄ +𝐻3

2 3⁄ < (4(𝑣 + 1))
2 3⁄

, there are 12 

solutions, 8 solutions from group of solutions III and 4 solutions of group I; and if 𝐻2
2 3⁄ + 𝐻3

2 3⁄ >

(4(𝑣 + 1))
2 3⁄

, there are 8 solutions, 4 solutions from each group of solutions I and III. This result 

is like the ones found in [8]. 

 

Figure 3.2 – The regions of validity of conditions (2.38) for 𝑣 = 1.5. 
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As mentioned in [8], inequalities (2.42) needs a closer look since they can be valid either for 

both signs before the square root or only for one sign, which means the existence of equilibrium 

positions corresponding to both roots of (2.32) or only one root (𝑥2,1 or 𝑥2,2). The analysis of the 

regions of validity of inequalities (2.42) for each root of (2.32) at 𝑣 = 1.5, considering that 𝑣 >

0, are presented in Figures 3.3 and Figure 3.4. The dashed lines represent when the 

discriminant (Δ) (2.34) is equal to zero, which is reflected in more detail in Figure 3.2. 

 

Figure 3.3 – Regions of validity of the conditions 𝑎31
2 ≥ 0 and 𝑎33

2 ≥ 0 for the positive root of (2.32) at 
𝑣 = 1.5. 

 

Figure 3.4 – Regions of validity of the conditions 𝑎31
2 ≥ 0 and 𝑎33

2 ≥ 0 for the negative root of (2.32) at 
𝑣 = 1.5. 
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For each case presented in Figures 3.3 and 3.4, the full lines represent when expressions (2.42) 

are equal to zero. The areas delimited by full lines are regions where the conditions (2.42) are 

valid for each root of equation (2.32). In each of these regions, there are four solutions of 

Group II; and beyond their boundaries, there are no solutions, since one or both conditions 

(2.42) are invalid. Combining results in Figure 3.3 and 3.4, the study of equilibria bifurcation 

of Group II is achieved in Figure 3.5.  

 

Figure 3.5 – Bifurcation curves for solutions of Group II at 𝑣 = 1.5. 

The complete equilibria bifurcation study of the gyrostat at 𝑣 = 1.5, combining the study of 

bifurcation of solutions of Group I, II and III are presented in Figure 3.6. Notice that the plane 

(𝐻3, 𝐻2) are portioned into sub-regions, in each of them there are a certain fixed number of 

equilibrium positions and the curves are symmetric in relation to the origin of the coordinated 

axes, as mentioned in [14] and [20] by Santos. To help visualize the different conditions of each 

group I, II and III presented in Figure 3.6, a color notation is used (see table 3.1).  
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Table 3.1 – Color notation of Figure 3.6. 

Curve (2.31) Curve 𝑎31
2 = 0 (2.36) Curve 𝑎33

2 = 0 (2.37) Curve (2.53) 

Blue Orange Yellow Green 

 
 

 

Figure 3.6 – Gyrostat’s equilibria bifurcation at 𝑣 = 1.5. 

One can see from Figure 3.6 that there are no more than 24 equilibrium positions and no less 

than 8 equilibrium positions, the same conclusions were obtained in [6], [8], [14] and [20] for 

other configurations of the gyrostatic moment vector. It is important to mention the two regions 

of 12 equilibrium positions: (a) and (b). These regions are completely new in the study of this 

type of gyrostats, they head towards infinity by an oblique asymptote inside a region of eight 

equilibrium positions, the distance between the boundaries that define them decreases in 

direction to infinity and they seem to share a relation of parallelism between them. 

3.1.1 Evolution of equilibrium positions of the gyrostat at specific 𝒗 = 𝟏. 𝟓 

The evolution of equilibrium positions of the gyrostat along the plane (𝐻3, 𝐻2) described by the 

spacecraft angles 𝛼, 𝛽 and 𝛾 at a specific 𝑣 is relevant to show the relation between gyrostat’s 

equilibria bifurcation curves, shown in Figure 3.6, and the behavior of the spacecraft angles 

from these equilibrium solutions. Considering the straight line 𝑅(𝐻2 = 𝐻3) at fixed 𝑣 = 1.5, from 

the origin of coordinates axes along the 1st quadrant of plane (𝐻3, 𝐻2), for comparison with [8] 

and because it go through each type of region (24, 20, 16, 12 and 8), is represented in Figure 

3.7. 
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Figure 3.7 – Gyrostat’s equilibria bifurcation at 𝑣 = 1.5 and straight line 𝑅(𝐻2 = 𝐻3) with bifurcation 
values. 

Each equilibrium positions of group I (group III) is determined by choosing one of roots of 

equation (2.20) (equation (2.48)), selecting the sign of direction cosine 𝑎31 (𝑎11) and using the 

expressions (2.25) (expressions (2.52)). The roots can have 4 real roots or 2 real roots depending 

if the ordered pair (𝐻3, 𝐻2) is before or after the curve (2.31) (curve (2.53)). The equilibrium 

positions for group II are calculated in a more complex way: (a) choose one of roots of equation 

(2.32); (b) check the validity of conditions: 𝑎31
2 ≥ 0 and 𝑎33

2 ≥ 0; (c) select the signs of direction 

cosines 𝑎31 and 𝑎33; and  in last, (d) use expressions (2.43) to calculate the other direction 

cosines. The spacecraft angles 𝛼, 𝛽 and 𝛾 are determined using expressions (2.2). 

Table 3.2 – Equilibrium positions indexes for solutions of Group I, II and III. 

Group I Group II Group III 

Root 

(2.20) 

Sign 

𝑎31 

Index Root 

(2.32) 

Sign 

𝑎32 

Sign 

𝑎33 

Index Root 

(2.48) 

Sign 

𝑎11 

Index 

1 - 1.1 1 - - 2.1 1 - 3.1 

+ 1.2 - + 2.2 + 3.2 

2 - 1.3 + - 2.3 2 - 3.3 

+ 1.4 + + 2.4 + 3.4 

3 - 1.5 2 - - 2.5 3 - 3.5 

+ 1.6 - + 2.6 + 3.6 

4 - 1.7 + - 2.7 4 - 3.7 

+ 1.8 + + 2.8 + 3.8 
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Following this logic, it is built a chart describing the evolution of the spacecraft angles 

corresponding to 𝑅(𝐻2 = 𝐻3) shown in Figure 3.8, and it was introduced the equilibrium 

positions index (see Table 3.1). The notation used for the equilibrium indexes are adapted from 

[8], for the sake of comparison. The lines have three different colors: blue, orange and yellow 

and three chart markers: circle, square and triangle, corresponding to the solutions of group I, 

II and III, respectively. The horizontal dashed lines represent: 𝐻2 = 𝜋/4, 𝐻2 = 𝜋 2⁄ , 𝐻2 = 𝜋, 𝐻2 =

3𝜋 2⁄  and 𝐻2 = 2𝜋, when they are relevant in the chart. 

 

Figure 3.8 – Equilibrium positions of a gyrostat at 𝑣 = 1.5 and for 𝑅(𝐻2 = 𝐻3) described by angles 𝛼, 𝛽 
and 𝛾. 
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Figure 3.8 – Equilibrium positions of a gyrostat at 𝑣 = 1.5 and for 𝑅(𝐻2 = 𝐻3) described by angles 𝛼, 𝛽 
and 𝛾 (cont.). 

From analysis of Figure 3.8, there are four values (𝑅1 = 0.88, 𝑅2 = 0.94, 𝑅3 = 1.24 and 𝑅4 =

3.53), at which the fixed number of equilibrium positions changes. 

For 𝐻3 ∈ [0; 0.88], there are 24 solutions represented by the following indexes (1.(1-8); 2.(1-8) 

and 3.(1-8)), see Figure 3.8 for angle α; at the intersection of straight line 𝑅1 = 0.88 and curve 

(2.31), four solutions of group I (1.(5-8)) disappear when the angle γ corresponding to these 

solutions is 𝜋/4.  

For 𝐻3 ∈ [0.88; 0.94], there are 20 solutions (1.(1-4); 2.(1-8) and 3.(1-8)); at the intersection 

between straight line 𝑅2 = 0.94 and curve 𝑎31 (2.36), four solutions of group II disappear when 

the angle β corresponding to these solutions is 0 (2.(6,7)) or 2𝜋 (2(5,8)).  

For 𝐻3 ∈ [0.94; 1.24], there are 16 solutions (1.(1-4); 2.(1-4) and 3.(1-8)); at the intersection 

between 𝑅3 = 1.24 and curve 𝑎31 (2.36), the last four solutions of group II disappear when the 

angle β corresponding to these solutions is 0 (2.(1,4)) or 2𝜋 (2.(2,3)).  

For 𝐻3 ∈ [1.24; 3.53], there are 12 solutions (1.(1-4) and 3.(1-8)), at the intersection between 

𝑅4 = 3.53 and curve (2.53), four solutions of group III (3.(5-8)) disappear when the angle γ 

corresponding to these solutions is 𝜋/4.  

At 𝑅 > 3.53 until the end of the window of Figure 3.7, there are only 8 solutions (1.(1-4) and 

3.(1-4)), the values of angles α and β remains constant and the angle γ tends to a constant 

value with increase 𝑅, for each solution. 

A summary of the above analysis is shown in table 3.3.  
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Table 3.3 – Summary of equilibrium solutions and spacecraft angles 𝛽 and 𝛾 from Figure 3.8. 

 0 ↔ 𝑅1

∩ Curve (2.31) 

↔ 𝑅2

∩  curve 𝑎31 (2.36) 

↔ 𝑅3

∩  curve 𝑎31 (2.36) 

↔ 𝑅4

∩ Curve (2.31) 

→ 

Equilibrium 

solutions 

24 (1.(1-8), 

2.(1-8) and 

3.(1-8)) 

 

− 

20 (1.(1-4), 

2.(1-8) and 

3.(1-8)) 

 

− 

16 (1.(1-4), 

2.(1-4) and 

3.(1-8)) 

 

− 

12 (1.(1-4) 

and 3.(1-8)) 

 

− 

8 (1.(1-4) 

and 3.(1-4)) 

Angle 𝛽 0 (1.(1-8) 

and (3.(1-8)) 

− 0 (1.(1-4)) 

and (3.(1-8)) 

0 (2.(6,7)) or 2𝜋 

(2.(5,8)) 

0 (1.(1-4) 

and (3.(1-8)) 

0 (2.(1,4)) or 2𝜋 

(2.(2,3)) 

0 (1.(1-4) 

and (3.(1-8) 

− 0 (1.(1-4) 

and (3.(1-4)) 

Angle 𝛾 − 𝜋/4 (1.(5-8)) − − − − − 𝜋/4 (3.(5-8)) Tends to be 

constant 
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Now, let us analyze some peculiarities of the study of angles 𝛼, 𝛽 and 𝛾. One can see in 

Figure 3.8 for angle 𝛼, the solutions of group I overlap for the angle 𝛼 = 𝜋/2 and solutions 

of group III overlap for the angle 𝛼 = 0 and 𝛼 = 2𝜋, remembering expressions (2.2), (2.25) 

and (2.52), this can be easily demonstrated: 

Group I: 

𝑎21 = 0 ⟺ 

⇔ 𝛽 = 0 (3.1) 

𝑎11 = 0 

𝛼 = cos−1(𝑎11 𝑐𝑜𝑠𝛽⁄ ) ⇔ 

⇔ 𝛼 =
𝜋

2
(3.2) 

Group III: 

𝑎21 = 0 ⟺ 

⇔ 𝛽 = 0 (3.3) 

𝑎11 = ±1 

𝛼 = cos−1(𝑎11 𝑐𝑜𝑠𝛽⁄ ) ⇔ 

⇔ 𝛼 = 0 ∨ 𝛼 = 2𝜋 (3.4) 

For Figure 3.8 of angle 𝛽, solutions of group I and III overlap for 𝛽 = 0, this can be easily 

explained by looking to the above demonstrations (3.1-3.4). In the case of angle 𝛾, the 

solutions of group II overlap too but in a different way, 4 solutions (2.(1-4)) overlap in the 

form of a curve with the same equation and the other 4 solutions (2.(5-8)) overlap in the 

same manner but into different curve. This case can be demonstrated by remembering 

expressions (2.43) from group II: 

𝛼 = sin−1(𝑎21) 

𝛾 = cos−1(𝑎22 cos 𝛽⁄ ) 

𝑎32 = 𝑥2𝑎33 
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𝑎21 = 4𝑎31
𝑎33
2 − 𝑣𝑎32

2

𝐻2𝑎32 + 𝐻3𝑎33
⟺ 

⇔ 𝑎21 =
4𝑎31
𝑎33

×
(𝑣 + 1)𝑎33

2 + 𝑎31
2 𝑣

𝐻2𝑥2 + 𝐻3
 (3.5) 

 

𝑎22 = 4𝑎32
(𝑣 + 1)𝑎33

2 + 𝑣𝑎31
2

𝐻2𝑎32 + 𝐻3𝑎33
⟺ 

⇔ 𝑎22 = 4𝑥2
(𝑣 + 1)𝑎32

2 + 𝑎31
2 𝑣

𝐻2𝑥2 +𝐻3
 (3.6) 

For the same 𝐻3, 𝐻2 and 𝑣, the group II can have two roots 𝑥2. For the first root, taking the 

case (2.(1-4)), the value of 𝑎31
2 , 𝑎33

2  and 𝑎32
2 (see expression (2.36) and 𝑎32 = 𝑥2𝑎33) is always 

the same for the 4 solutions, therefore the direction cosine 𝑎22 is also the same for the 4 

solutions. In the case of direction cosine 𝑎21, it depends only on quotient 𝑎31/𝑎33; this 

remains the same in absolute value, but it alternates between positive sign and negative 

sign depending of the sign of 𝑎31 and 𝑎33. Remembering the unit circle, a positive or negative 

sine of arbitrary angle always corresponds to a positive cosine. As direction cosine 𝑎22 and 

𝑐𝑜𝑠𝛽 remains always constant for the 4 solutions, it can be concluded that the angle 𝛾 

remains always constant for the 4 solutions. This demonstration can be extended for the 

case of solutions (2.(5-8)). 

3.1.2 Evolution of equilibria bifurcation for different values of 𝒗 

In this section, a study of the evolution of the regions with a fixed number of equilibrium 

positions of a gyrostat along the plane (𝐻3, 𝐻2) is conducted for different values of parameter 

𝑣. The inertia parameters 𝑣 selected were: 𝑣 = 0.1 (near limit value 𝑣 = 0), 𝑣 = 0.2, 𝑣 =

0.3, 𝑣 = 0.5, 𝑣 = 0.7, 𝑣 = 0.9, 𝑣 = 1.0, 𝑣 = 1.5, 𝑣 = 2.0, 𝑣 = 4.0, 𝑣 = 5.0 and 𝑣 = 10.0. The 

results are shown along the Figures 3.9 to 3.20.  
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Figure 3.9 - Gyrostat’s equilibria bifurcation at 𝑣 = 0.1. 

 

 

Figure 3.10 - Gyrostat’s equilibria bifurcation at 𝑣 = 0.2. 
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Figure 3.11 - Gyrostat’s equilibria bifurcation at 𝑣 = 0.3. 

 

 

Figure 3.12 - Gyrostat’s equilibria bifurcation at 𝑣 = 0.5. 
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Figure 3.13 - Gyrostat’s equilibria bifurcation at 𝑣 = 0.7. 

 

 

Figure 3.14 - Gyrostat’s equilibria bifurcation at 𝑣 = 0.9. 
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Figure 3.15 - Gyrostat’s equilibria bifurcation at 𝑣 = 1.0. 

 

 

Figure 3.16 - Gyrostat’s equilibria bifurcation at 𝑣 = 1.5. 
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Figure 3.17 - Gyrostat’s equilibria bifurcation at 𝑣 = 2.0. 

 

 

Figure 3.18 - Gyrostat’s equilibria bifurcation at 𝑣 = 4.0. 
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Figure 3.19 - Gyrostat’s equilibria bifurcation at 𝑣 = 5.0. 

 

 

Figure 3.20 - Gyrostat’s equilibria bifurcation at 𝑣 = 10.0. 
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The results show that for every inertial configuration studied, there are no less than 8 

equilibrium positions and no more than 24. In a general way, in regions with small values of 

𝐻3 and 𝐻2, there are 24 equilibrium positions, with increase of 𝐻3 and/or 𝐻2, the 24 

equilibrium positions region gives place to 20 equilibrium positions region, then to 16 

equilibrium positions region, then to 12 equilibrium positions region and finally, to 8 

equilibrium positions region.  

There can be also found some peculiarities in this study: two small regions of 12 equilibrium 

positions, which tends to infinite, and two regions of 16 equilibrium positions inside one of 

12 equilibria positions, that exists outside of the main regions. For the upper region of 16 

equilibrium positions and 12 equilibria positions, they approach to an oblique asymptote, at 

which its slope is low for lower values of 𝑣 (𝑣 = 0.1), but increases with higher 𝑣. The 

difference between their borders increases with the value of 𝑣. On other hand, the lower 

region of 16 equilibria positions and 12 equilibria positions approach to an oblique asymptote 

too, almost in parallel way to the previous case, at which its slope is low for lower values 

of 𝑣 and high for higher values of 𝑣. The difference between the boundaries of these regions 

is the reverse of the previous case, reduces with higher values of 𝑣. 

A different case happens with a small region of 16 equilibria positions inside one of 20 

equilibria positions, similar  to the ones found in [8], derived from 𝑎31
2  expression, that exists 

near 𝐻3 = 0 and near 𝐻2 = 0.5 for 𝑣 < 0.3 and appears for 𝑣 ≥ 4 near 𝐻3 = 4 and near 𝐻2 =

0. These regions increase in size with lower values of 𝑣 (𝑣 < 0.3) and higher values of 𝑣 (𝑣 ≥

4). 

3.1.3 Validation of small regions of 12 and 16 equilibrium positions 

Santos in [14] and [20], as mentioned in Chapter 2, studied the dynamics of a gyrostat-

satellite in a circular orbit, namely the general case of equilibria and stability. The author 

found small regions of 16 and 12 equilibria positions outside their main regions near 𝐻1 = 0 

and for high values of 𝐻2. 

In this chapter, a study about the validation of these small regions in [14] and [20], is 

conducted, focusing in six cases: (a) 𝑣𝐿 = 0.1 and 𝐻3 = 0.4; (b) 𝑣𝐿 = 0.1 and 𝐻3 = 3.61; (c) 

𝑣𝐿 = 0.2 and 𝐻3 = 0.4; (d) 𝑣𝐿 = 0.2 and 𝐻3 = 3.264; (e) 𝑣𝐿 = 0.6 and 𝐻3 = 0.4 and (f) 𝑣𝐿 =

0.6 and 𝐻3 = 3.08. Taking note that in [14] and [20], inertial parameter 𝑣𝐿 =

(𝐵 − 𝐴) (𝐵 − 𝐶)⁄ , it is necessary to convert it to the parameter used in this work, 𝑣 = (𝐴 −

𝐵)/(𝐶 − 𝐴), which takes on form: 
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𝑣 = 𝑣𝐿 =
𝐵 − 𝐴

𝐵 − 𝐶
⇔ 

⇔ (𝐴 − 𝐵) = −𝑣𝐿(𝐵 − 𝐶) (3.7) 

𝑣 =
𝐴 − 𝐵

𝐶 − 𝐴
=
−𝑣𝐿(𝐵 − 𝐶)

𝐶 − 𝐴
⇔ 

⇔ 𝑣 = 𝑣𝐿(1 + 𝑣) ⇔ 

⇔ 𝑣𝐿 =
𝑣

1 + 𝑣
 (3.8) 

Converting the inertial parameters 𝑣𝐿 = 0.1, 𝑣𝐿 = 0.2 and 𝑣𝐿 = 0.6 using equation (3.8), the 

studied inertial parameters 𝑣 are 𝑣 = 0.11, 𝑣 = 0.25 and 𝑣 = 1.5, respectively. The results 

are shown side by side with figures from [14], the case (a) and (b) along Figures 3.21 to 

3.23.; the case (c) and (d) along Figures 3.24 and 3.26; and case (e) and (f) along Figures 

3.27 to 3.29. 
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Figure 3.21 – Equilibria Picture for 𝑣𝐿 = 0.1 and 𝐻3 = 0.4 [14]. 

 

Figure 3.22 – Equilibria Picture for 𝑣𝐿 = 0.1 and 𝐻3 = 3.61 [14]. 

 

Figure 3.23 – Gyrostat’s equilibria bifurcation at 𝑣 = 0.11 with straight lines 𝐻3 = 0.4 and 𝐻3 = 3.61. 
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Figure 3.24 – Equilibria Picture for 𝑣𝐿 = 0.25 and 𝐻3 = 0.4 [14]. 

 

Figure 3.25 – Equilibria Picture for 𝑣𝐿 = 0.25 and 𝐻3 = 3.264 [14]. 

 

Figure 3.26 – Gyrostat’s equilibria bifurcation at 𝑣 = 0.25 with straight lines 𝐻3 = 0.4 and 𝐻3 = 3.264. 
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Figure 3.27 – Equilibria Picture for 𝑣𝐿 = 0.6 and 𝐻3 = 0.4 [14]. 

 

Figure 3.28 – Equilibria Picture for 𝑣𝐿 = 0.6 and 𝐻3 = 3.08 [14]. 

 

Figure 3.29 – Gyrostat’s equilibria bifurcation at 𝑣 = 0.6 with straight lines 𝐻3 = 0.4 and 𝐻3 = 3.08. 
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For each case, the intersection points between the vertical 𝐻3 lines and the curves in the 

chart are shown.  

One can see from Figure 3.23, for case (a) the bifurcation points for regions 24, 20, 16 and 

12 correspond to the same bifurcation points of the same regions in [14] with a small 

displacement.  

For case (b), the first bifurcation point in [14] is for a 12 equilibrium positions region but, 

in this study, is a 16 equilibrium positions region, on other hand, the bifurcation point of 

the other 12 equilibrium positions region corresponds with a small displacement to the one 

here.  

For cases (c) and (d), in Figure 3.26, the scenario is similar, but the difference between the 

values of bifurcation points of the study [14] and this work, increases, so the displacement 

is higher.  

On other hand, the cases (e) and (f), in Figure 3.29, are very different from previous ones, 

the values of bifurcations points of equilibrium regions are very different from this work, 

only the region of 16 equilibrium positions is near (𝐻3 = 0.4 and 𝐻2 = 2.3 − 2.6).  

The results confirm the existence of the small regions referenced in [14], but for some 

conditions, the results do not coincide, in terms of accuracy, with the ones found in the 

general case. The displacement may be due to the fact that 𝐻1 = 0 is not considered in the 

general case, since in this case, the results are much higher than zero. 
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3.2 Gyrostat’s stability 

In this chapter, it will be analyzed the problem of stability of a gyrostat satellite, namely 

when the gyrostat has a component of the gyrostatic moment vector equal to zero (𝐻1 =

0). There is made a study in function of a fixed 𝑣, a fixed 𝐻3 and variable 𝐻2.  The method 

is similar to the one used in chapter 3.1.1, at which it is calculated the equilibrium positions 

for the three groups (Group I, II and III), then, remembering expressions (2.63) and  system 

(2.65) from Chapter 2.3, the sufficient conditions of stability of the equilibrium solutions 

are calculated and it is determined if the equilibrium solutions are stable or unstable. 

In the present case, and following the results from Chapter 3.1.1 and 3.1.2, the 

computations were made for the inertial parameters: 𝑣 = 0.1, 𝑣 = 0.5, 𝑣 = 1.0, 𝑣 = 1.5, 𝑣 =

5, 𝑣 = 10 and for three different values of  𝐻3, one in the beginning of the chart (𝐻3 = 0.1), 

one in the middle of the chart (𝐻3 = 2) and finally, one near the end of the chart (𝐻3 =

3.5 − 10), depending on the 𝑣 selected. The cases studied, although they are not part of 

exhaustive analysis, show an overall image of the behavior of the equilibrium positions 

stability along the plane (𝐻3, 𝐻2).  

The results are shown in Figures 3.30-3.47 in function of spacecraft angle 𝛾 and 𝐻2. The 

colored dashed lines represent when a specific equilibrium position is unstable and the 

colored full lines represent when a specific equilibrium position is stable (sufficient 

conditions of stability (2.65) are valid). The colors blue, orange and dark yellow represent 

equilibrium solutions of group I, II and III, respectively. The black vertical dashed lines (𝑅𝑖) 

in the stability chart correspond to intersection points (𝑖 = 1,2, …) between the green line 

and equilibria regions, in the equilibria chart. Finally, the black horizontal dashed line 

corresponds to notable points (𝜋 2⁄  and 𝜋) in the axis 𝛾[𝑟𝑎𝑑]. 
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Figure 3.30 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 0.1 and  
𝐻3 = 0.1. 
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Figure 3.31 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 0.1 and  
𝐻3 = 2. 
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Figure 3.32 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 0.1 and  
𝐻3 = 3.5. 
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Figure 3.33 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 0.5 and  
𝐻3 = 0.1. 
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Figure 3.34 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 0.5 and  
𝐻3 = 2. 
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Figure 3.35 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 0.5 and  
𝐻3 = 5. 

  



Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment along the Principal Plane of 
Inertia 

59 

  

 

 

 

Figure 3.36 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 1.0 and  
𝐻3 = 0.1. 
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Figure 3.37 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 1.0 and  
𝐻3 = 2. 
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Figure 3.38 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 1.0 and  
𝐻3 = 6. 
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Figure 3.39 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 1.5 and  
𝐻3 = 0.1. 
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Figure 3.40 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 1.5 and  
𝐻3 = 2. 
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Figure 3.41 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 1.5 and  
𝐻3 = 10. 
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Figure 3.42 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 5 and  
𝐻3 = 0.1. 
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Figure 3.43 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 5 and  
𝐻3 = 2. 
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Figure 3.44 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 5 and  
𝐻3 = 10. 
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Figure 3.45 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 10 and  
𝐻3 = 0.1. 
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Figure 3.46 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 10 and  
𝐻3 = 2. 
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Figure 3.47 – Stability in function of angle 𝛾 and 𝐻2 and respective equilibria chart for 𝑣 = 10 and  
𝐻3 = 10. 
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The results obtained for all cases, in first place, show that the angle 𝛾 can vary between 0 

and 𝜋; second, there is a minimum of two stable equilibrium solutions and a maximum of 

six stable equilibrium positions for each case analyzed, e.g., Figures 3.30 and 3.33.  

Remembering the chapter 3.1.1, each group of two consecutive equilibrium positions from 

group I and III have the same value of angle 𝛾. This means that each equilibrium curve in 

each chart represents two equilibrium positions.  

In the case of group II, it has also been proven that the eight equilibrium positions can be 

reduced to two equilibrium curves in each chart. Analyzing the stability of these solutions 

of group II, for the same value of angle 𝛾, a group of four solutions can have two solutions 

stable and two solutions unstable at the same time. An example can be seen in Figure 3.43 

between 𝑅4 and 𝑅5, a full line matches a dashed line. This discovery is entirely new in the 

study of the stability of the gyrostat satellite and should be further analyzed in future work.  

For lower values of 𝑣 (𝑣 = 0.1 and 𝑣 = 0.5), the regions defined by the upper oblique 

asymptote became very narrow, which also makes the equilibrium curves very narrow or 

even disappear, for instance Figures 3.30 and 3.34. For higher values of 𝑣 (𝑣 = 5 and 𝑣 =

10), in a similar way, the regions defined by the lower oblique asymptote became very 

narrow, which makes the equilibrium curves have small intervals or vanish, this can be seen 

in Figures 3.47 and 3.44. For high values of 𝐻3 (𝐻3 ≥ 10), both regions mentioned before 

became very narrow, which has the same consequence of previous cases. 

The increase of parameter 𝐻2, in the case of group I and III, makes the equilibrium curves 

converge to a certain angle 𝛾, and in the case of group II, can make the equilibrium curves 

vanish; this corresponds to the points of intersection (𝑅𝑖) of the vertical line 𝐻3 = 𝑐𝑜𝑛𝑠𝑡 with 

the borders of the regions with fixed number of equilibria. An example is shown in Figure 

3.46. 

Finally, analyzing the case when 𝑣 varies and 𝐻3 is constant (e.g. 𝐻3 = 0.1), the size of the 

stable lines of group of solutions I and III decreases, on other hand, the size of stable lines 

of group of solutions II increases. Other case is when 𝑣 is constant (e.g. 𝑣 = 1.5) and 𝐻3 

varies, the size of stable lines of group of solutions I and III increases, on other hand, the 

two stable lines of group of solutions II became one from 𝐻3 = 0.1 to 𝐻3 = 2 and vanish at 

𝐻3 = 10. 

  



Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment along the Principal Plane of 
Inertia 

 

72 

 

  



Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment along the Principal Plane of 
Inertia 

73 

  

Chapter 4 

 

Conclusions and Future Work 

The present dissertation investigated the dynamics of gyrostat-satellite subjected to 

gravitational torque and when the gyrostatic moment vector is along the satellite’s principal 

planes of inertia, namely the particular case when ℎ1 = 0, ℎ2 ≠ 0 and ℎ3 ≠ 0, along a circular 

orbit.  

A detailed and chronological literature review identified some topics which had not been 

analyzed in the published work yet. Most of the published work focus in the general case of 

the gyrostat satellite and some special cases: (a) (ℎ1 ≠ 0, ℎ2 = 0 and ℎ3 ≠ 0) and (b) (ℎ1 =

0, ℎ2 ≠ 0 and ℎ3 = 0). Santos in [14] and [20], discovered small regions of 16 and 12 

equilibrium positions that needed a more detailed analysis and properly substantiated, 

which are studied and given in the present work.  

The focus of this dissertation was the innovative study of equilibria and stability of a gyrostat 

satellite when  ℎ1 = 0, ℎ2 ≠ 0 and ℎ3 ≠ 0 and, on other hand, investigate the possibility of 

existence of the small regions found in [14] and [20] by Santos. 

A mathematical analytical-numerical method was used to determine all equilibrium 

positions, the conditions of their existence and the sufficient conditions of stability. It was 

found three groups of equilibrium solutions: I, II and III, each one describing up to eight 

equilibrium positions, totalizing the maximum value of 24 equilibrium positions.  The 

expressions of direction cosines are presented in the explicit form as function of system 

dimensionless parameters 𝑣, 𝐻2 and 𝐻3. The bifurcation curves of group of solutions I and III 

were determined analytically and the conditions of existence of equilibrium solutions of 

group II were obtained as function of parameters 𝑣, 𝐻2 and 𝐻3. 

A detailed study of the evolution of the equilibria bifurcation of the gyrostat satellite and a 

study of the evolution of the validity of the sufficient conditions of stability for each 

equilibrium were conducted by a numerical-analytical method as function of system 

parameters 𝑣, 𝐻2 and 𝐻3. It was shown that there is no less than 8 and no more than 24 

equilibrium positions for every studied case, specifically no less than 4 and more than 8 

equilibrium positions for each group of solutions I, II and III. The same conclusions were 

given in [6], [8], [14] and [20]. 
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It was confirmed two regions of 12 equilibria positions defined by oblique asymptote that 

tends to infinite and never vanish, they were not identified up to now by any author; other 

case was the small regions of 16 positions of equilibria inside one region of 20 for 𝑣 < 0.3 

and 𝑣 ≥ 4, similar to the ones in [8]. These regions exist near 𝐻3 = 0 and near 𝐻2 = 0.5 for 

𝑣 < 0.3 and, for 𝑣 ≥ 4, near 𝐻3 = 4 and near 𝐻2 = 0. These regions seem to increase in size 

for lower values of 𝑣 (𝑣 < 0.3) and for higher values of 𝑣 (𝑣 ≥ 4), but they need further 

analysis. 

The evolution of equilibrium positions for a specific 𝑣 (𝑣 = 1.5) as function of angles 𝛼, 𝛽 

and 𝛾 were analyzed by the same numerical-analytical method. It was verified, in the case 

of group of solutions II, that the angle 𝛾 has always the same value for each root of equation 

(2.32), which means that each group of four solutions of group II has the same angle 𝛾. 

The existence of small regions of 16 and 12 equilibria discovered by Santos in [14] and [20] 

were confirmed; the regions of 12 equilibrium positions defined by oblique asymptotes 

suggest being related to the small regions referred by Santos (the position of the small 

regions, in the general case, match the ones present in this work). For some conditions, the 

results do not coincide, in terms of accuracy, with the ones found in the general case, this 

can be explained by the fact that 𝐻1 = 0 is not considered in the general case 

About the stability of the gyrostat, it can be said that the angle 𝛾 varies between 0 and 𝜋. 

There is a minimum of two stable equilibrium positions and maximum of six stable 

equilibrium positions, for each studied case.  

In the case of group II, for the same angle 𝛾, a group of four equilibrium solutions can have 

two stable equilibria positions and two unstable equilibria positions at the same time. 

Analyzing the stability results, the case when parameters 𝑣 varies and 𝐻3 is constant (e.g. 

𝐻3 = 0.1), the size of the stable lines of group of solutions I and III decreases, on other hand, 

the size of stable lines of group of solutions II increases. Other case is when 𝑣 is constant 

(e.g. 𝑣 = 1.5)  and 𝐻3 varies, the size of stable lines of group of solutions I and III increases, 

on other hand, the two stable lines of group of solutions II became one from 𝐻3 = 0.1 to 

𝐻3 = 2 and vanish at 𝐻3 = 10. 

In the end, future investigations in other particular cases would expand the knowledge about 

the problem of a gyrostat satellite. First, it would be interesting to study the particular case 

of equilibria and stability, when ℎ1 ≠ 0, ℎ2 ≠ 0 and ℎ3 = 0. Second, and as an extension of 

the present work, it would be interesting solving the stability problem using the same 

approach as Sarychev [8] and analyze the stability problem of group of solutions II. For a 

more extensive work, it would be also interesting to study the dynamics of a gyrostat-

satellite in elliptic orbits.  



Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment along the Principal Plane of 
Inertia 

75 

  

Bibliography 

[1] K. H. Shirazi and M. H. Ghaffari-Saadat. “Chaotic motion in a class of asymmetrical 

Kelvin type gyrostat satellite.” International Journal of Non-Linear Mechanics, vol. 

39, no. 5, pp. 785-793, July, 2004. 

[2] A. El-Gohary. “On the Stability of Relative Programmed Motion of Satellite-Gyrostat.” 

Mechanical Research Communications, vol. 25, no. 4, pp. 371-379, 1998. 

[3] A. El-Gohary and S. Z. Hassan. “On the Exponential Stability of the Permanent 

Rotational Motion of a Gyrostat.” Mechanics Research Communications, vol. 26, no. 

1, pp. 479-488, 1999. 

[4] A. El-Gohary. “Optimal Control of a Rotational Motion of a Gyrostat on Circular Orbit.” 

Mechanics Research Communications, vol. 27, no. 1, pp. 59-67, 2000. 

[5] A. El-Gohary. “On the orientation of a gyrostat using internal rotors.” International 

Journal of Mechanical Sciences, 43, pp. 225-235, 2001. 

[6] V. A. Sarychev and S. A. Mirer. “Relative equilibria of a gyrostat satellite with internal 

angular momentum along a principal axis.” Acta Astronautica, vol. 49, no. 11, pp. 

641-644, 2001. 

[7] V. A. Sarychev, S. A. Mirer and A. A. Degtyarev. “The Dynamics of a Satellite-Gyrostat 

with a Single Nonzero Component of the Vector of Gyrostatic Moment.” Cosmic 

Research, vol. 43, no. 4, pp. 268-279, 2005. 

[8] V. A. Sarychev, S. A. Mirer and A. A. Degtyarev. “Dynamics of a Gyrostat Satellite with 

the Vector of Gyrostatic Moment in the Principal Plane of Inertia.” Cosmic Research, 

vol. 46, no. 1, pp. 60-73, 2008. 

[9] R. Molina and F. Mondéjar. “Equilibria and stability for a gyrostat satellite in circular 

orbit.” Acta Astronautica, 54, pp. 77-82, 2003. 

[10] V. A. Sarychev, S. A. Gutnik, A. Silva and L. Santos. “Dynamics of gyrostat satellite 

subject to gravitational torque. Investigation of equilibria.” Keldysh Institute of 

Applied Mathematics, Russian Academy of Sciences, Moscow, Russia, 2012. 

[11] V. A. Sarychev, S. A. Gutnik, A. Silva and L. Santos. “Dynamics of gyrostat satellite 

subject to gravitational torque. Stability Analysis.” Keldysh Institute of Applied 

Mathematics, Russian Academy of Sciences, Moscow, Russia, 2013. 

[12] S. A. Gutnik and V. A. Sarychev. “Symbolic-Numerical Methods of Studying Equilibrium 

Positions of a Gyrostat Satellite.” Programming and Computer Software, vol. 40, no. 

3, pp. 143-150, 2014. 

[13] S. A. Gutnik and V. A. Sarychev, “Symbolic-Numerical Investigation of Gyrostat 

Satellite Dynamics” 

[14] L. Santos. “Gyrostat dynamics on a circular orbit.” PhD thesis, Universidade da Beira 

Interior, Covilhã, Portugal, April, 2015. 



Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment along the Principal Plane of 
Inertia 

 

76 

 

[15] L. Santos, A. Silva, V. A. Sarychev and S. A. Gutnik. “Gyrostat dynamics on a circular 

orbit.” 3 EJIL – LAETA Young Researchers Meeting, ADAI, Coimbra, 7-8 May, 2015. 

[16] S. A. Gutnik, L. Santos, V. A. Sarychev and A. Silva. “Dynamics of a Satellite-Gyrostat 

Subjected to the Action of Gravity Moment: Equilibrium Attitudes and Their Stability.” 

Journal of Computer and Systems Sciences International, vol. 54, no. 3, pp. 469-482, 

2015. 

[17] L. Santos, A. Silva, V. Sarychev and S. Gutnik. “Gyrostat satellite – General case of 

bifurcation of equilibria and analytical expressions.” CEM 2016 – Mechanical 

Engineering Conference, Porto, Portugal, 1-3 June, 2016. 

[18] S. A. Gutnik and V. A. Sarychev. “Application of Computer Algebra Methods for 

Investigation of Stationary Motions of a Gyrostat Satellite.” Programming and 

Computer Software, vol. 43, no. 2, pp. 90-97, 2017. 

[19] L. Santos, P. Dias and A. Silva. “Equilibria of a Gyrostat Satellite when the gyrostatic 

moment vector is parallel to the satellite principal central planes of inertia.” 4 EJIL – 

LAETA Young Researchers Meeting, Covilhã, Portugal, 9-10 Nov., 2017. 

[20] L. Santos, R. Melício and A. Silva. "Gyrostat dynamics on a circular orbit: general case 

of equilibria bifurcation and analytical expressions" Proceedings of the International 

Symposium on Power Electronics, Electrical Drives and Motion — SPEEDAM 2018, pp. 

1084–1088, Amalfi, Italy, 20–22 June 2018. 

[21] R. M. Murray, Z. Li and S. S. Sastry. “A Mathematical Introduction to Robotic 

Manipulation” CRC Press, 1993. 

  



Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment along the Principal Plane of 
Inertia 

77 

  

Attachment A – Paper published at 4 EJIL - LAETA 

Young Researchers Meeting 

  



Dynamics of a Gyrostat Satellite with the Vector of Gyrostatic Moment along the Principal Plane of 
Inertia 

 

78 

 

  



Equilibria of a Gyrostat Satellite when the gyrostatic moment vector is parallel to the e satellite principal central plains 

of inertia 

79 

  

Equilibria of a Gyrostat Satellite when the gyrostatic moment vector 

is parallel to the satellite principal central plains of inertia 

Luis Filipe Santosa,b*, Pedro Diasa, André Silvaa 

a) AeroG - LAETA, Calçada Fonte do Lameiro, 6201-001 Covilhã 

b) ISEC Lisboa, Alameda das Linhas de Torres 179, 1750-142 Lisboa 

* e-mail: perigeu@gmail.com 
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Abstract. The attitude control of a modern satellite is a crucial condition for its 

operation. In this work, is study the general case of equilibria of an asymmetrical 

inertial distribution gyrostat satellite, subjected to gravitational torque, moving along 

a circular orbit in a central Newtonian gravitational field. To solve this problem, other 

authors proposed a symbolic-numerical method, for determining all equilibrium 

orientations of an asymmetrical gyrostat satellite in the orbital coordinate system with 

given gyrostatic torque and given principal central moments of inertia. The conditions 

of equilibria were obtained depending on four dimensionless system parameters. The 

evolution of the domains in the study of equilibria was carried out in great detail, and 

all bifurcation values of parameters at which there was a change of numbers of 

equilibrium orientations were determined with great accuracy. In the present study is 

developed the complete set of analytical equations describing the evolution of the 

different bifurcation of equilibria, and is also achieved an accurate analytical 

expressions for the evolution of small equilibria regions near an axisymmetric 

configuration.  

In the present paper is obtained in great detail, near the axisymmetric configuration, 

where H1=0, and H2 and H3 different from zero, the evolution which confirm the 

existence on the general case of equilibria of the small equilibria regions near the 

axisymmetric configuration. 

The knowledge and understanding of this new case study will permit a deeper 

understanding which will permit to optimize the design and operation of future 

spacecraft’s. 

 

 

1 EQUILIBRIA ANALYSIS 

 

Consider the attitude motion of a gyrostat satellite, which can be defined as a rigid 

body with statically and dynamically balanced rotors inside its structure. The angular 

velocities of rotors relative to the satellite body are constant. The center of mass O  of 

the gyrostat satellite is located in a circular orbit around a central orbiting mass. We 

introduce now a two right-hand Cartesian coordinate system with origin in the center 

of mass O  of the gyrostat satellite. 

1 2 3OX X X  is the orbital coordinate system whose 
3OX  axis is directed along the radius 

vector connecting the centers of mass of the central orbiting body and of the gyrostat 
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satellite; the 
1OX  axis is directed along the vector of linear velocity of the center of 

mass O . 

1 2 3Ox x x  is the gyrostat-fixed coordinate system; ( 1, 2, 3)iOx i =  are the principal 

central axes of inertia of the gyrostat satellite. 

The orientation of the 
1 2 3Ox x x  coordinate system with respect to the orbital 

coordinate system is determined by Euler angles  ,   and   and the direction 

cosines of the axes 
iOx  in the orbital coordinate system cos( , )i jij X xa = can be written 

as: 

11 23

12 31

13 32

21 33

22

cos cos sin cos sin , cos sin ,

cos sin sin cos cos , sin sin ,

sin sin , sin cos ,

sin cos cos cos sin , cos .

sin sin cos cos cos ,

a a

a a

a a

a a

a

      

      

   

     

    

= − = −

= − − =

= =

= + =

= − +

 (1) 

Then equations of motion of the gyrostat satellite relative to its center of mass take the 

form: 

2

0 32 33 2 3

2

0 33 31 3 1

2

0 31 32 1 2

( ) 3 ( ) 0,

( ) 3 ( ) 0,

( ) 3 ( ) 0;

Ap C B qr C B a a H r H q

Bq A C rp A C a a H p H r

Cr B A pq B A a a H q H p







+ − − − − + =

+ − − − − + =

+ − − − − + =

&

&

&

  (2) 

31 0 21 0 21

32 0 22 0 22

33 0 23 0 23

cos ,

sin ,

.

p a a p a

q a a q a

r a a r a

    

    

   

= + + = +

= − + = +

= + + = +

&&

&&

& &

    (3) 

In equations (2), (3) 
1 2 3

1 1 1

, ,
n n n

k k k k k k k k k

k k k

H J H J H J     
= = =

= = =  & & &; 
kJ  is 

the axial moment of inertia of k-th rotor; , ,k k k    are the constant direction cosines 

of the symmetry axis of the k-th rotor in the coordinate system 
1 2 3Ox x x ; 

k& is the 

constant angular velocity of the k-th rotor relative to the gyrostat; , ,A B C  are the 

principal central moments of inertia of the gyrostat; , ,p q r  are the projections of the 

absolute angular velocity of the gyrostat satellite in the axes 
iOx ; 

0  is the angular 

velocity of motion of the center of mass of the gyrostat satellite along a circular orbit. 

Dots designate differentiation with respect to time t . 

Further it will be more convenient to use parameters 
0/ ( 1, 2, 3).i iH H i= =  

For the systems of Eq. 2 and Eq. 3 the generalized energy integral exists in the form: 

2 2 2 2 2 2

0 31 32

2 2 2 2

0 21 23 0 1 21 2 22 3 23

1 3
( ) [( ) ( ) ]

2 2

1
[( ) ( ) ] ( ) .

2

Ap Bq Cr A C a B C a

B A a B C a H a H a H a const



 

+ + + − + − +

+ − + − − + + =

 (4) 
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1.1 Equilibrium Orientations 

 

Setting in (2) and (3) 
0 0 0, ,const const const     = = = = = = , we obtain 

at A B C   the equations: 

22 23 32 33 2 23 3 22

23 21 33 31 3 21 1 23

21 22 31 32 1 22 2 21

( )( 3 ) 0,

( )( 3 ) 0,

( )( 3 ) 0,

C B a a a a H a H a

A C a a a a H a H a

B A a a a a H a H a

− − − + =

− − − + =

− − − + =

    (5) 

Allowing us to determine the gyrostat satellite equilibria in the orbital coordinate 

system. System (5) depends on four dimensionless parameters: 

1 2 3
1 2 3, , , .

H H H B A
h h h

B C B C B C B C


−
= = = =

− − − −
   (6) 

Eq. 5 can be rewritten in the equivalent form 

21 31 22 32 23 33 1 31 2 32 3 33

11 31 12 32 13 33

11 21 12 22 13 23 1 11 2 12 3 13

4( ) ( ) 0,

0,

( ) ( ) 0

Aa a Ba a Ca a H a H a H a

Aa a Ba a Ca a

Aa a Ba a Ca a H a H a H a

+ + + + + =

+ + =

+ + + + + =

    (7) 

or using dimensionless parameters (6) in the form 

21 31 23 33 1 31 2 32 3 33

11 31 13 33

11 21 13 23 1 11 2 12 3 13

4( ) ( ) 0,

0,

( ) 0.

a a a a h a h a h a

a a a a

a a a a h a h a h a







− + + + + =

+ =

+ − + + =

       

(8) 

Taking into account expressions (1), system (5) or system (8) can be considered as a 

system of three equations with unknowns 
0 0 0, , .    The second more convenient 

method to close Eq. 8 consists in adding six conditions of orthogonality for the 

direction cosines (1) 

2 2 2

11 12 13 11 21 12 22 13 23

2 2 2

21 22 23 11 31 12 32 13 33

2 2 2

31 32 33 21 31 22 32 23 33

1, 0,

1, 0,

1, 0.

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

+ + = + + =

+ + = + + =

+ + = + + =

            (9) 

Further, we will study the equilibrium orientations of the gyrostat satellite using 

systems (8) and (9). 

As it was shown in Sarychev and Gutnik (1984), the system of second equation in (8) 

and first, second, fourth, fifth and sixth equations in (9) can be solved for 

11 12 13 21 22 23, , , , ,a a a a a a  if A B C  , using dimensionless parameters (6) in the 

form: 
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2 2

11 32 33 21 32 33 31

2 2

12 33 31 22 31 33 32

2 2

13 31 32 23 31 32 33

4 , 4[ (1 ) ] ,

4(1 ) , 4( ) ,

4 , 4[(1 ) ] ,

a a a F a a a a F

a a a F a a a a F

a a a F a a a a F

 

 

 

= − = − −

= − = − +

= = − +

          (10) 

where 
1 31 2 32 3 33.F h a h a h a= + +  

 

Substituting Eq. 10 in the first and third Eq. 8 and adding the third Eq. 9 we get three 

equations: 

2 2 2 2 2 2 2 2 2 2 2 2

32 33 33 31 31 32 1 31 2 32 3 33 31 32 33

31 32 33 1 32 33 2 33 31 3 31 32 1 31 2 32 3 33

2 2 2

31 32 33

16[ (1 ) ] ( ) ( ),

4 (1 ) [ (1 ) ]( ) 0,

1

a a a a a a h a h a h a a a a

a a a h a a h a a h a a h a h a h a

a a a

 

   

+ − + = + + + +

− + − − − + + =

+ + =

 (11) 

For the determination of direction cosines 
31 32 33, ,a a a , if system (11) will be solved 

then relations (10) allow us to find the other six direction cosines. In (11) the right part 

of first equation was multiplied by 2 2 2

31 32 33 1.a a a+ + =  Note that solutions (10) exist 

only in the case when any two direction cosines of 
31 32 33, ,a a a  set do not vanish 

simultaneously. Specific cases 
31 32 32 33 33 310 0 0, , ,a a a a a a= = = = = =  must 

be examined by the direct investigation of systems (8) and (9).  

The problem has been solved for some particular cases when the vector of gyrostatic 

moment is located along the satellite's principal central axis of inertia 
2Ox , when  

1 2 30 0, 0,h h h=  =  in Sarychev and Mirer (2001) and Sarychev et al. (2005), 

Longman et al. (1981), and when the vector of gyrostatic moment locates in the 

satellite's principal central plane of inertia 
1 3Ox x of the frame 

1 2 3Ox x x  and  

1 2 30 0, 0,h h h =  , Sarychev et al. (2008), Longman (1971). Also, the General 

Case has been deeply investigated by Santos. L. in [10] to [13] were 𝐻1 ≠ 𝐻2 ≠ 𝐻3. 

The study of the General Case has brought very new and exciting innovative results in the 

study of gyrostat satellites.  

Let us introduce the values 
31 33 32 33,x a a y a a= =  and divide all terms of 

first equation in (11) by 4

33a  and second equation by 3

33a . Then we will have the 

system of two equations with unknown values , :x y  

2 2 2 2 2 2 2 2 2

1 2 3

1 2 3 1 2 3

16[ (1 ) ] ( ) (1 ),

4 (1 ) [ (1 ) ]( ) 0.

y x x y h x h y h x y

xy h y h x h xy h x h y h

 

   

+ − + = + + + +

− + − − − + + =
          (12) 

Now substituting expressions 
31 33 32 33,a xa a ya= =  in the last equation of the 

system (11), we receive: 

2

33 2 2

1
.

1
a

x y
=

+ +

                (13) 
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The Eq. 12 can be presented in such form: 

2

0 1 2

4 3 2

0 1 2 3 4

0,

0.

a y a y a

b y b y b y b y b

+ + =

+ + + + =
              (14) 

Where after introducing  𝐻1 = 0, the following coefficients can be found: 

𝑎0 = −ℎ2ℎ3𝜈𝑥 

𝑎1 = ℎ3 [4ν(1 − ν)− (1 − ν)ℎ2
2
− 𝑣ℎ3

2]𝑥 

𝑎2 = −(1 − ν)ℎ2ℎ3𝑥 

𝑏0 = ℎ2
2
          (15) 

𝑏1 = 2ℎ2ℎ3 

𝑏2 = (ℎ2
2 + ℎ3

2 − 16)+ (ℎ2
2 − 16ν2)𝑥2 

𝑏3 = 2ℎ2ℎ3(1 + 𝑥
2) 

𝑏4 = ℎ3
3
(1 + 𝑥2)−16(1 − ν)2𝑥2 

  

Using the resultant concept, we eliminate variable y  from the Eq. 14. Resultant 

( )R x  of Eq. 14 has the form 

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2 3 4

0 1 2 3 4

0 0 0

0 0 0

0 0 0
( )

0 0 0

0

0

a a a

a a a

a a a
R x

a a a

b b b b b

b b b b b

 
 
 
 

=  
 
 
 
 

 

 

Let us consider equation ( ) 0,R x =  which can be presented with the help of 

Mathematica symbolic matrix function in the form: 

𝑝0𝑥
8 + 𝑝1𝑥

6 + 𝑝2𝑥
4 = 0          (16) 

where: 

𝑝0 = −16ℎ2
2ℎ3

2𝑣2 [ℎ2
6(−1 + 𝑣)4 + (ℎ3

2 − 16(−1 + 𝑣)2)𝑣4(−4 + ℎ3
2 + 4𝑣)2

+ ℎ2
4(−1 + 𝑣)2𝑣 (−8(−1 + 𝑣)2(1 + 2𝑣) + ℎ3

2(−2 + 3𝑣))

+ ℎ2
2(−1 + 𝑣)𝑣2 (ℎ3

4(−1 + 3𝑣) + 16(−1 + 𝑣)3(1 + 8𝑣)

+ ℎ3
2(17 − 49𝑣 + 64𝑣2 − 32𝑣3))] 
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𝑝1 = −16h2
2 [ℎ2

8(−1 + 𝑣)6 − 2ℎ2
6(ℎ3

2(1 − 2𝑣) + 8(−1 + 𝑣)2)(−1 + 𝑣)4𝑣

− 2ℎ2
2(−1 + 𝑣)𝑣3 (−84ℎ3

2(−1 + 𝑣)3 + 128(−1 + 𝑣)5

+ 17ℎ3
4(−1 + 𝑣)𝑣 + ℎ3

6(−1 + 𝑣 − 2𝑣2))

+ 𝑣4(−4 + ℎ3
2 + 4𝑣)2 (−17ℎ3

2(−1 + 𝑣)2 + 16(1 − 𝑣)4

+ ℎ3
4(1 + 𝑣2))

+ ℎ2
4(−1 + 𝑣)2𝑣2 (96(1 − 𝑣)4 − 3ℎ3

2(−1 + 𝑣)2(3 + 8𝑣)

+ ℎ3
4(2 − 6𝑣 + 6𝑣2))] 

𝑝2 = −16ℎ2
2ℎ3

2 [ℎ2
6(−1 + 𝑣)4 + (ℎ3

2 − (−1 + 𝑣)2)𝑣4(−4 + ℎ3
2 + 4𝑣)2

− ℎ2
4(−1 + 𝑣)2𝑣 (ℎ3

2(2 − 3𝑣) + (−1 + 𝑣)2(8 + 𝑣))

+ ℎ2
2(−1 + 𝑣)𝑣2 (8(−1 + 𝑣)3(2 + 𝑣) + ℎ3

4(−1 + 3𝑣)

+ ℎ3
2(17 − 19𝑣 + 4𝑣2 − 2𝑣3))]  

 

Substituting the value of a real root of Eq. 16 into the Eq. 14, we can find roots of these 

equations.  

In [14], Santos L. et all verified that the General Case near  𝐻1 = 0 contained very small 

off-setted equilibria regions. The study of these regions cannot be properly made 

without studying the case where  𝐻1 = 0, which match to the gyrostatic moment 

parallel to the satellite principal central plain of inertia. In the General Case, the regions 

with 12 equilibria become smaller with the increase of 
3h  values. These regions are 

vanishing in the center of system of coordinates for 
3 4h = . For 

3 4h   there are 

small regions of 12 equilibria near 
2h  axis with the size along 

1h  and 
2h  axes less 

than 10-1. And as bigger the
3h value, the further from the center of coordinate system 

these small regions take position along the 
2h  axis.  

 

2 Equilibrium Orientations 

Santos L. et all demonstrate that with the use of (16), it is possible to determine 

numerically all equilibrium orientations of the gyrostat satellite in the orbital 

coordinate system and analyze their stability for the General Case. Dependence of the 

number of real solutions of (16) on the parameters analyzed numerically, using 

Mathematica factorization method. It was also have been proved that is possible to 

provide the numerical calculations, without breaking a generality for the case when 

.B A C   From these inequalities it follows that 0 1.   The parameters 

1 2 3,,h h h  can take on any nonzero values. 
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Figure 1 – General Case 𝜈 = 0.2 𝑎𝑛𝑑 𝐻3 = 0.5 

 

Figure 2 – Case 𝜈 = 0.2 𝑎𝑛𝑑 𝐻1 = 0 

Taking Figure 1 and Figure 2 as our first example, in the study of the small regions 

near 𝐻1 = 0 found during the study and analysis of the General Case [10][12][13][14], 

it can be clearly seen that for 𝐻3 = 0.5 a small region appears near 𝐻2 = 1.2. 

Regarding the main regions, it can also be noticed some clear resemblances between 

these regions. 
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Figure 3 – General Case 𝜈 = 0.2 𝑎𝑛𝑑 𝐻3 = 4 

 

 

Figure 4 – Case 𝜈 = 0.2 𝑎𝑛𝑑 𝐻1 = 0 

 

Checking Figure 3 taken from the General Case and Figure 4 from 𝐻1 = 0, it  can be 

verified that the small regions start around 𝐻2 = 0.7 and 𝐻2 = 3.1. For the case where 

𝜈 = 0.2 and 𝐻1 = 0 and making 𝐻3 = 4, can be verified that exists two small regions 

located in the proximity of coordinates as also verified in the General Case. 

 

3 CONCLUSIONS 

 

After analyzing the situation were 𝐻1 = 0, it is possible to ensure that the small regions 

found on the General Case exists, and can bring very new and excitement new satellites 

design configurations. These new regions need now to be more deeply analyzed and 

studied, particularly in the study of the Stability. 
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Also, the equilibria properties can be now more accurately understand and studied, 

which will also bring new results into the real applications.     
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