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ABSTRACT
RNA interference-based technologies have emerged as an attractive and effective therapeutic
option with potential application in diverse human diseases. These tools rely on the development of
efficient strategies to obtain homogeneous non-coding RNA samples with adequate integrity and
purity, thus avoiding non-targeted gene-silencing and related side-effects that impair their
application onto pre-clinical practice. These RNAs have been preferentially obtained by in vitro
transcription using DNA templates or via chemical synthesis. As an alternative to overcome the
limitations presented by these methods, in vivo recombinant production of RNA biomolecules has
become the focus in RNA synthesis research. Therefore, using pre-miR-29b as a model, here it is
evaluated the time-course profile of Escherichia coli and Rhodovolum sulfidophilum microfactories to
produce this microRNA. As the presence of major host contaminants arising from the biosynthesis
process may have important implications in the subsequent downstream processing, it is also
evaluated the production of genomic DNA and host total proteins. Considering the rapidly growing
interest on these innovative biopharmaceuticals, novel, more cost-effective, simple and easily
scaled-up technologies are highly desirable. As microRNA recombinant expression fulfills those
requirements, it may take the leading edge in the methodologies currently available to obtain
microRNAs for clinical or structural studies.
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RNA interference technology and pre-miR-29b in
Alzheimer disease

The discovery of functional small noncoding
RNAs such as microRNAs (miRNA or miR), small
interfering RNAs and piwi-interacting RNAs as
novel agents for regulating gene expression in dif-
ferent eukaryotic cellular processes has opened
new opportunities to develop RNA-based therapies
for diverse diseases.1,2 This process is termed RNA
interference (RNAi) and involves many small
RNAs that act as regulators of mRNA expression
for therapeutic knockdown of disease-causing
genes.1,3 The discovery of RNAi has enabled
researchers to exploit various small RNA tools to
control target gene expression, to delineate gene
function, and investigate cellular signaling and

networks.2 In particular, increasing evidences in
literature suggest that miR-29 expression is
involved in several regulatory actions, namely in
tumor-suppressing and immune-modulating pro-
cesses, as well as in the regulation of pathways of
neurodegenerative diseases.4-6 Previously, our
research group reported an integrated strategy for
the biosynthesis,7 purification8 and delivery9 of
recombinant pre-miR-29b, demonstrating in vitro
that pre-miR-29b preparations downregulate ß-site
amyloid precursor protein cleaving enzyme 1
(BACE1) and Aß42 levels.10 Together, these results
showed that recombinant pre-miR-29b improved
the outcome regarding the currently available
methodologies of microRNA-based therapeutics in
Alzheimer disease.10
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Advantages and drawbacks of different sources
of RNA biopharmaceuticals

Systematic studies of the structure and function of
RNA and the establishment of RNA-based therapeu-
tics usually require large quantities of the target RNA
with adequate integrity, purity and biological activity.2

The required RNA for biomolecular applications has
mostly been obtained by two distinct methods11: the
longer oligoribonucleotides by in vitro transcription
from DNA templates using T7 RNA polymerase12

whereas short oligoribonucleotides are preferentially
obtained via chemical synthesis by phosphoamidite
chemistry.13 Despite recent improvements, these sour-
ces of agents for RNA research remain costly, labori-
ous and have their limitations with respect to
sequence requirements, variations in yield, non-tem-
plated nucleotide additions and/or the maximum
length of the oligonucleotide.11,14 Also, although these
methods are efficient in miRNA production, several
purification protocols need to be used to remove pro-
cess-associated impurities (plasmid DNA, incomplete
transcripts, enzymes, salts and others) once they can
lead to non-targeted gene-silencing. Actually, this fact
still restricts the application of these RNAs onto pre-
clinical or clinical trials.15,16 In particular, beyond the
fact that large-scale chemical synthesis of RNA
remains technically difficult and expensive, these
RNAs are traditionally purified by preparative electro-
phoresis followed by gel extraction, a procedure that is
time-consuming and leads to acrylamide-associated
impurities within the RNA.17

As an alternative to overcome these limitations,
huge efforts have been made in recent years to develop
recombinant RNA techniques to cost-effectively pro-
duce biologic RNA agents in vivo that can better retain
the structure, function and safety properties of natural
RNAs.2 In fact, the success of this strategy relies on
the fact that these recombinant RNAs are recognized
by cellular machinery, being precisely processed, post-
transcriptionally modified and not subjected to 30 pol-
yadenylation, which triggers RNA degradation.18

Recombinant RNA biosynthesis: General
considerations about the hosts and the RNA
design

The underlying principle of recombinant expression
of RNA is rather straightforward: the target RNA cod-
ing sequence is introduced into a vector and the

resulting plasmid is inserted into host cells grown in
appropriate conditions.19 Then, the host transcription
machinery will synthesize the RNA of interest that
should be accumulated in cytosol and finally, at the
end of culture, cells are pelleted, lysed and the RNA is
purified by standard chromatographic techniques.20

Recombinant RNA expression has been mostly
achieved using Escherichia coli (E. coli) as the host,
once it can be grown easily and economically and a
large number of plasmids and strains are available,
allowing the construction of a rational strategy.20 On
the other hand, the production of artificial RNAs in
the marine phototrophic bacterium Rhodovolum sulfi-
dophilum (R. sulfidophilum) was first achieved in 2010
by Suzuki and colleagues.21 In particular, as R. sulfido-
philum does not accumulate any RNases in the culture
medium, its ability to produce extracellular nucleic
acids21 opens new perspectives in the RNA recombi-
nant technology once their stability is greatly
enhanced. To achieve successful recombinant RNA
expression in E. coli, researchers usually use a strategy
of “camouflage” of the RNA of interest within a stable
RNA scaffold22 that may be achieved using
tRNA11,17,22 or rRNA.23 This strategy relies on
expressing the RNA of interest inserted in the place of
the anticodon stem of the tRNA and as it is hidden
within a standard tRNA structure, the recombinant
RNA escapes ribonucleases and is processed by the
standard E. coli tRNA processing enzymes.20 Then,
although for some studies, using the entire RNA chi-
mera might be acceptable, in other cases it might be
preferable to induce the cleavage of the desired RNA
off the scaffold, what may be achieved using ribozyme,
DNAzyme or by cleavage with RNase H using a pair
of guide DNA oligonucleotides - the method that
seems to work better.22 More recently, motivated by
the concept of “prodrug” and the idea to deploy bio-
logic RNAs to perform RNA actions, Chen and collab-
orators developed a novel optimal non-coding RNA
scaffold (OnRS)-based strategy to achieve a consistent
high-yield production of chimeric RNAs in E. coli.14

Indeed, they found that using a fusion tRNA/pre-
miRNA isolated from bacteria, the pre-miRNA is
selectively processed to biologically active miRNA in
human cells while the tRNA scaffold is degraded to
tRNA fragments.14 On the other hand, using R. sulfi-
dophilum as the expression host, a similar strategy to
the first used by Suzuki and colleagues in 201021 was
also applied by our research group7 where the target
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RNA is flanked by two hammerhead ribozyme
sequences that possess self-cleavage activities leading
to the releasing of the mature recombinant target
RNA. Another important issue for evaluating the ther-
apeutic effect of miRNAs is the target sequence cloned
into the plasmid. Indeed, to evaluate the biologic effect
of miR-29, the production of the pre-miRNA was cho-
sen instead of the mature miRNA since not only its
recognition and processing within the cell is more effi-
cient but also because its structural characteristics can
facilitate the purification of the target miRNAs.7,24

Choosing the appropriate recombinant microrna
microfactory: Escherichia coli and Rhodovolum
sulfidophilum

Previously, our group successfully reported the pro-
duction of recombinant human pre-miR-29b both
intra and extracellularly in R. sulfidophilum.7 Indeed,
higher extracellular pre-miR-29b levels were obtained
after 40 h of bacterial growth reaching a concentration
near 182 mg/L while total intracellular pre-miR-29b
was of about 358 mg/L at 32 h.7 Moreover, almost 87%
cells were viable at the end of the fermentation,
guaranteeing that the extracellular medium is not con-
taminated with intracellular RNases and endotoxins,
thus ensuring the integrity of the target RNA.7 Follow-
ing these results and to evaluate which host can be
more suitable for pre-miR-29b recombinant biosyn-
thesis, chemically competent E. coli DH5a cells were
transformed with pBHSR1-RM-pre-miR-29b by heat-
shock. Specifically, E. coli fermentation experiments
were performed in 500 mL shake-flasks containing
125 mL of TB medium (12 g/L tryptone, 24 g/L yeast
extract, 4 mL/L glycerol, 0.017 M KH2PO4, 0.072 M
K2HPO4) supplemented with 30 mg/mL kanamycin
and incubated at 37�C and 250 rpm. A typical growth
profile of E. coli DH5a harboring the recombinant
plasmid pBHSR1-RM-pre-miR-29b is shown in Fig. 1.
According to these results, cell growth was suspended
at the beginning of logarithmic decline phase (OD600

�5.4 after 8 h) and as it was expected, E. coli growth
kinetics was much faster than R. sulfidophilum, allow-
ing to perform a fermentation experiment in just one
day, compared with a 4-day period required by R.
sulfidophilum.

Samples were recovered every hour either to assess
cell growth or the levels of pre-miR-29b, genomic
DNA and total host proteins, according to the

experimental protocols described previously.7 For
intracellular fractions, the phenol-chloroform method
using TripleXtractor reagent (GRISP-Research Solu-
tions, Porto, Portugal) was applied to extract RNA,
followed by the synthesis of cDNA and the pre-miR-
29b levels were determined using RT-qPCR using a
specific probe.7 Initially, the extracted RNA samples
obtained during the course of fermentation were ana-
lyzed by polyacrylamide urea gel electrophoresis to
evaluate their integrity and quality. As shown in
Figure 2-A, it is possible to observe that E. coli-derived
pre-miR-29b was biosynthesized in a high quality and
intact form. Moreover, the same electrophoretic analy-
sis was performed in intracellular R. sulfidophilum
fractions (Fig. 2-B) and it was also confirmed the high
stability and integrity of pre-miR-29b samples.

In what concerns to E. coli intracellular fraction, pre-
miR-29b production is almost constant from 1 to 4 h of
cultivation, reaching a peak in late-log phase – 6 h
– with 1640 mg/mL�unit of OD600. These pre-miR-29b
production levels are much higher than those previ-
ously obtained intra (182 mg/L) and extracellularly
(358 mg/L) from R. sulfidophilum.7 Ponchon and col-
laborators,17 using the tRNA scaffold method in E. coli
with subsequent cleavage with RNAse H, reported
yields from 5 to 23 mg of RNA per liter of culture for
RNA oligonucleotide lengths between 91 and 376
bases, respectively. Despite it is difficult to perform a
proper and direct comparison as the results were not
presented in the same units and the experimental set-
up is different – target RNA, plasmid and promoter,
RNA construction design -, the experimental approach

Figure 1. Growth profile of E. coli DH5a harboring the plasmid
pHBSR1-RM-pre-miR-29b cultivated in TB medium at 37�C and
250 rpm (red line/primary scale). Time-course analysis of intracel-
lular pre-miR-29b production in E. coli DH5a cultures (black line/
secondary scale) measured by quantitative RT-PCR using a spe-
cific probe and as described previously9 Error bars indicate stan-
dard deviations calculated from 3 independent samples.
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here presented can be advantageous in the sense that it
isn’t necessary to perform any enzyme-mediated cleav-
age step post-production. As a matter of fact, the bacte-
rial origin of these enzymes may eventually raise safety
concerns regarding the employment of the target RNA
onto clinical applications. On the other hand, the
results obtained with R. sulfidophilum are far from
being unsatisfactory, particularly for the extracellular
RNA that is directly recovered from the culture
medium after the application of a desalting and con-
centration step, avoiding the use of hazardous chemi-
cals, while simplifying the RNA downstream
processing.

The type of the host cells has important effects
on downstream processing when the product is
expressed intracellularly, since in this case the cel-
lular components are the major impurities.25

Therefore, it was also evaluated the concentration
of major host contaminants during the whole fer-
mentation period. Host proteins content in the
intracellular fraction recovered from E. coli is
depicted in Fig. 3 and ranged from 150 to 250 ng/
mL, being 197 ng/mL at 6 hours of fermentation,
the period where higher target RNA concentrations

were obtained. The R. sulfidophilum protein con-
tent was distinct, since the extracellular fraction
contained the lowest protein levels with approxi-
mately 20 ng/mL at the time-point where RNA pro-
duction was maximized - 40 h.7 According to
Fig. 4, in R. sulfidophilum intracellular fraction, the
protein values were in the interval of 159 to
398 ng/mL, but at 32 h of fermentation, the highest
protein levels were achieved, matching the period
where more pre-miR-29b was obtained.

The concentration of another major host impurity -
genomic DNA (gDNA) - was also assessed in each
RNA extracted fraction or directly from E. coli (Fig. 3)
or R. sulfidophilum cells (Fig. 4). The lowest levels
were obtained for R. sulfidophilum extracellular frac-
tion,7 indicating that a minor percentage of the cell
population is lysed and, consequently, the release of
intracellular gDNA to the culture medium is not sig-
nificant. As shown in Fig. 4, the R. sulfidophilum intra-
cellular fraction presented gDNA levels in the interval
20 to 40 ng/mL, reaching a peak of 40 ng/mL at 8 h of
production. Also, we evaluated gDNA levels directly
from R. sulfidophilum cells and higher values were
obtained, indicating that the RNA extraction method

Figure 2. Electrophoretic analysis of nucleic acids from intracellular fractions of E. coli DH5a (A) and R. sulfidophilum (B), both containing
the plasmid pHBSR1-RM-pre-miR-29b. Samples were recovered from cell suspensions at different periods of fermentation and the total
RNA fractions were obtained by the phenol-chloroform method using TripleXtractor reagent (GRISP-Research Solutions, Porto, Portugal).
Lanes, cultivation periods. Lane M, molecular weight marker.
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used within this work is highly efficient and allows the
removal of a high percentage of gDNA.

On the other hand, the E. coli gDNA profile
depicted in Fig. 3 was quite different once higher levels
– from 99 to 105 ng/mL – were obtained from 0 to 2 h,
and then the values were considerably reduced. This
result was somehow unexpected but the analysis of
gDNA directly extracted from E. coli also followed
this tendency.

Actually, although there are no specific regulations
for the use of RNA products onto pre-clinical and
clinical applications, some authors follow the criteria
defined from the regulatory agencies for the use of
DNA samples. Therefore, we should keep in mind
that although the downstream processing must be
able to remove the majority of the contaminants pres-
ent in the initial sample, the production conditions
greatly influence the levels of contaminants and can
eventually influence the final purity of the product. In

particular, host cell components may also be found as
impurities in secreted products, since cell lysis always
occurs to some extent during fermentation.25 Never-
theless, in the culture conditions that we set-up, this
problem is minimized, allowing to recover pre-miR-
29b from R. sulfidophilum culture medium with fewer
contaminants.

Intracellular microRNAs downstream processing
and assessment of RNA integrity and stability

In recombinant RNA technology, along with the target
heterologous RNA, other RNA species are also pro-
duced, emphasizing the need to develop accurate and
effective purification protocols to isolate the RNA of
interest from other contaminants, thus avoiding non-
targeted-gene silencing and immunologic responses.16

For intracellular RNA, prior the purification step, it is
necessary to perform the extraction of total soluble

Figure 3. Production of intracellular host cell proteins (black line - circles/primary scale), gDNA - assessed by RT-PCR in the extracted
RNA samples (red line - triangles/secondary scale) - and gDNA – assessed by RT-PCR after gDNA direct extraction from cells using the
Wizard� Genomic DNA Purification Kit Protocol (red line-squares/secondary scale) by E. coli DH5a bearing the pHBSR1-RM-pre-miR-29b
plasmid at different periods of fermentation. Each point represents the average of 3 independent experiments whereas the bars indicate
standard deviations.

Figure 4. Levels of intracellular host cell proteins (black line - circles/ primary scale), gDNA – assessed by RT-PCR in the extracted RNA
samples (red line - triangle/secondary scale) – and gDNA – assessed by RT-PCR after gDNA direct extraction from cells using the
Wizard� Genomic DNA Purification Kit Protocol (red line – squares/secondary scale) produced at different periods of fermentation by
R. sulfidophilum bearing the pHBSR1-RM-pre-miR-29b plasmid. Each point represents the average of 3 independent experiments
whereas the bars indicate standard deviations.
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RNA20 by direct phenol extraction of the cell suspen-
sion, based on the original tRNA purification protocol
by Zubay.26

Typically, the isolation of the target recombinant
RNA is achieved using a chromatographic step. Dual-
step chromatographic strategies applying gel-filtration
and anion-exchange chromatographic matrices have
been used at which a third hydrophobic-interaction
chromatography step may be added if the purity with
the first two steps is not the desired.17,20 More
recently, the downstream strategies based on affinity
chromatography evolved and actually represent a
highly efficient option for RNA purification to
increase not only the yields but also the selectivity in a
single chromatographic step.16 In particular, boronate,
RNA affinity tags and amino-acid based affinity chro-
matography have been extensively used for miRNA
purification and as the later relies on naturally-occur-
ring biologic interactions established within the cell, it
seems particularly promising in RNA purification.16

After extraction, total soluble RNA is ethanol pre-
cipitated and can be analyzed by polyacrylamide-urea
gel electrophoresis,20 useful to evaluate the integrity of
the RNA. On the other hand, quantification of RNA
has become increasingly important and is an essential
step before RNA-based assays, gene expression analy-
sis and RNAi applications.27 Actually, diverse ways
are available for miRNA detection including conven-
tional techniques such as Northern blotting, microar-
ray and RT-qPCR but also biosensor techniques that
include electrochemical-based detection or optical-
based detection.28 On the other hand, RNA quantifica-
tion is mainly achieved by ultraviolet absorbance,
microcapillary electrophoresis and fluorescence-based
quantification.27 In particular, RT-qPCR assays may
offer a highly precise and specific way to detect and
quantify microRNAs.29

Conclusions

The development of RNAi technologies opened new
avenues for treatment options in diverse human dis-
eases. An increasing number of experimental proto-
cols were developed to obtain small RNA molecules
for clinical and structural applications. These mole-
cules have been mostly obtained by chemical or enzy-
matic methods but recent developments on RNA
recombinant technology may be shifting the paradigm
in RNA synthesis research. Indeed, the lower cost

coupled to the higher efficiency and the possibility of
growing large-scale cultures turn the attention to the
production of RNAs using recombinant sources. In
principle, RNA recombinant production involves a
host and a plasmid bearing the desired DNA
sequence, and appropriate culture conditions need to
be set up. Therefore, as understanding the strengths
and pitfalls of different hosts can aid in their effective
use, here it was evaluated and compared the ability of
two distinct hosts to produce pre-miR-29b - the well-
characterized E. coli and the marine phototrophic bac-
terium R. sulfidophilum. Globally, we found that
higher pre-miR-29b concentrations were obtained
from E. coli intracellular fractions with shorter fer-
mentation periods. Moreover, as the presence of
impurities arising from the upstream stage can influ-
ence the final purity obtained after their downstream
processing, it was also assessed the production of host
cell proteins and genomic DNA. In this way, the E.
coli fraction seems to be more contaminated, particu-
larly regarding the proteins content, while R. sulfido-
philum extracellular fraction presented fewer
impurities. Therefore, we recommend working with E.
coli when the final aim is to maximize RNA titers. On
the other hand, direct recovery of RNA from the cul-
ture medium of R. sulfidophilum avoids time-consum-
ing and laborious extraction methods involving
hazardous chemicals while simultaneously ensures the
target RNA integrity since no host RNases are
secreted.
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