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Summary. Computer-Aided Detection/Diagnosis (CAD) tools were created to assist the de-
tection and diagnosis of early stage cancers, decreasing false negative rate and improving radi-
ologists’ efficiency. Convolutional Neural Networks (CNNs) are one example of deep learning
algorithms that proved to be successful in image classification. In this paper we aim to study
the application of CNNs to the classification of lesions in mammograms. One major problem
in the training of CNNs for medical applications is the large dataset of images that is often re-
quired but seldom available. To solve this problem, we use a transfer learning approach, wich
is based on three different networks that were pre-trained on the Imagenet dataset. We then
investigate the performance of these pre-trained CNNs and two types of image normalization
to classify lesions in mammograms. The best results were obtained using the Caffe reference
model for the CNN with no image normalization.

1 Introduction

The interpretation of mammographic images can be very difficult to radiologists and, accord-
ing to [4], they fail to detect 10 to 30% of breast cancers, mainly because screening is a repeti-
tive and fatiguing task [8]. Therefore, Computer-Aided Detection/Diagnosis (CAD) tools were
created to assist the detection and diagnosis of early stage cancers, decreasing false negative
rate and improving radiologists’ efficiency [4, 1, 9, 3].

Since 2006, deep learning algorithms have become an important tool in the field of big
data and artificial intelligence [6]. These methods simulate the human visual system and are
able to apprehend complex relationships between labeled data samples; their fields of appli-
cation include, but are not limited to, image understanding, speech recognition and natural
language processing [1, 6].

Convolutional Neural Networks (CNNs) are one example of deep learning algorithms that
proved to be successful [6]. They were introduced by Fukushima and later improved by LeCun
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et al. and are considered the most successful deep learning algorithm in image understanding
[1]. After development of computer power and optimization methods, CNNs have been used in
complex tasks such as visual object recognition and image classification [6]. In the biomedical
image processing field, CNNs are applied in several areas such as electron microscopy images,
breast histology images, mammography images and magnetic resonance images of the brain
[6, 1].

In this paper we applied CNNs to the problem of mammographic lesion classification into
benign or malign. Fig. 1 shows the difference between both types of lesions mentioned before,
note that regular contours are compatible with benign lesions while an irregular form are
associated with malignancy [7]. Therefore, we studied the use of three different types of CNN
implementations and also studied their behaviour when used with images that were, or were
not, normalized in order to understand the impact of normalization on the lesion classification
results.

Fig. 1. Example of benign lesion on the left and malign lesion on the right.

The paper is organized as follows: the next section presents the related work, Sections 3
and 4 present our proposal and the results obtained, respectively, the final section contains the
conclusions.

2 Related Work

Deep learning-based approaches have recently shown potential for applications in digital
pathology. Since 2012, these methods are used in major computer vision competitions, for
example the ImageNet Large Scale Visual Recognition Competition (ILSVRC), showing the
best performance in its class [11]. In [12], it is mentioned that ConvNet has proved to be the
best technique for image classification and that it was used by the top 10 teams in ILSVRS-
2014.

Convolutional Neural Networks have already been used by other researchers in the medi-
cal image field and specifically in the mammographic image field. Our study has been initially
guided by the work of Arevalo et al. [1], who proposed a new method that was applied to
the BCDR-F03 (Film Mammography Dataset Number 3) dataset from Breast Cancer Digital
Repository. The method includes baseline descriptors, such as Handcraft features (HCfeats),
Histogram of oriented gradients (HOG) and Histogram of gradient divergence (HGD), in a
supervised feature learning approach that incorporates a CNN. For image classification, the
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activations from the penultimate layer were extracted and used as input of an Support Vec-
tor Machine (SVM). The authors also used different CNN models (CNN2, which consists
in a single connected layer combined with a fully connected layer, CNN3, which consists in
two convolutional layers and a fully connected layer and DeCAF - a pre-trained model with
ImageNet) obtaining AUC values of 0.821, 0.860 and 0.836, respectively, when combined
with HCfeats, and nearly 0.76, 0.82 and 0.79, respectively when used standalone. Wichakam
et al. [12] published another study that combined deep convolutional networks, used as an
automatic feature extraction tool, and SVM, used as classifiers, for mass detection on digi-
tal mammograms and applied them to the INBreast dataset. Different approaches at the deep
convolutional networks allowed reaching the best performace of 98.44% accuracy (with the
SVM-FC1 of the A3 architecture).

3 Lesion Classification using CNNs with Transfer Learning

3.1 Transfer Learning for Lesion Classification

In this paper, we propose to study the application of several classification models and pre-
processing strategies for mass detection in digitized mammograms.

It is well known that CNNs require large amounts of data to be properly trained. In the
medical field it is usually difficult to obtain such large datasets, which is due not only to the
limited number of exams produced in a single facility, but also to the amount of work that is
needed for hand labeling of the samples. So, our work will be based on a transfer learning
approach; we will re-use convolutional neural networks that were previously trained for a
different task, and fine-tune them to our current problem.

The three different pre-trained models used in this paper were previously used to perform
classification in the ImageNet ILSVRC challenge data: CNN-F (Fast, imagenet-vgg-f) and
CNN-M (Medium, imagenet-vgg-m) models [2] and Caffe reference model [5]. We have then
fine-tuned the networks in order to achieve the classification of benign or malign lesions from
the mammographic images.

In order to apply the pre-trained models to our problem, we have adapted the software
MatConvNet [10] available for Matlab. We also emphasize that we have only used CNNs as
classifier, which means that, for this work, we did not use SVMs or handcrafted features.

3.2 The network

As mentioned before, three different pre-trained models were used in this work: CNN-F, CNN-
M and Caffe. Table 1 presents the differences between each model. In Convolutional Layers,
the ’num×size×size’ set indicates the number of convolution filters and their receptive field
size. The indications ’st.’ and ’pad.’ represent the convolution stride and the spatial padding,
whereas the LRN is the Local Response Normalization with or without max-pooling down-
sampling factor. In the fully connected layers (’Full’), the number indicates their dimension-
ality; besides, ’Full6’ and , ’Full7’ are regularized using dropout and the last layer is the soft-
max classifier. Except for the last layer, the Rectification Linear Unit (RELU) is the activation
function for all weight layers [2].

The architecture of the CNN-F model consist in 8 learnable layers (5 convolutional layers
and 3 fully-connected layers), and the fast processing is guaranteed by the 4 pixel stride in the
first convolutional layer [2].
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In the first convolutional layer, the CNN-M architecture has a decreased stride and smaller
receptive field and in the second convolutional layer has a larger stride keeping the computa-
tion time reasonable [2].

The Caffe reference model, like the others mentioned before, has a complete set of layers
that are used for visual tasks such as classification and trains models by the fast and standard
stochastic gradient descent algorithm [5].

Table 1. Convolution Neural Network pretrained models (adapted from [2])

Archit. Conv1 Conv2 Conv3 Conv4 Conv5 Full6 Full7 Full8

CNN-F 64×11×11
st.4,pad.0
LRN,
×2pool

256×5×5
st.1,pad.2
LRN,
×2pool

256×3×3
st.1,pad.1

256×3×3
st.1,pad.1

256×3×3
st.1, pad.1
×2poll

4096
drop-
out

4096
drop-
out

1000
soft-
max

CNN-M 96×7×7
st.2,pad.0
LRN,
×2pool

256×5×5
st.2,pad.1
LRN,
×2pool

512×3×3
st.1,pad.1

512×3×3
st.1,pad.1

512×3×3
st.1,pad.1
×2poll

4096
drop-
out

4096
drop-
out

1000
soft-
max

Caffe 96×11×11
st.4,pad.0
LRN,
×2pool

256×5×5
st.1,pad.2
LRN,
×2pool

384×3×3
st.1,pad.1

384×3×3
st.1,pad.1

256×3×3
st.1,pad.1
×2pool

4096
drop-
out

4096
drop-
out

1000
soft-
max

3.3 Dataset

We used the BCDR-FM dataset (Film Mammography Dataset) from Breast Cancer Digi-
tal Repository (http://bcdr.inegi.up.pt), which includes 1125 studies with 3703 medio-lateral
oblique (MLO) and craniocaudal (CC) images of 1010 patient cases, mostly female gender
(998), from 20 to 90 years old. The dataset also contains 1044 identified - and clinically de-
scribed - lesions, 1517 manually-made segmentation’s and BI-RADS classification carried out
by specialized radiologists [1].

The downloaded dataset, named BCDR-F03 - ”Film Mammography Dataset Number 3”,
which is a subset of the BCDR-FM, comprises 736 grey-level digitized mammograms (426
benign and 310 malign mass lesions) from 344 patients. These are distributed into MLO and
CC views with image size of 720×1168 (width×height) pixels and a bit depth of 8 bits per
pixel in TIFF format; included are also clinical data and image-based descriptors. Although
a digital dataset is available, we used the digitized dataset to enable the comparison with the
work of [1]; furthermore, digital images have a bigger bit depth of 14 bits per pixel.

The pre-processing stage of our work is similar to the one used in [1], namely: cropping a
ROI of 150×150 pixels using the information of the bounding box of the segmented region, the
aspect ratio is always preserved, even when the lesion’s dimensions are bigger than 150×150.
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However, when the lesion is next to the border of the image we translate the square crop, thus
changing image coordinates and including the surrounding breast pattern, instead of zero-
padding the outer portion of the crop; data augmentation using a combination of flipping and
90, 180 and 270 degrees rotation transformations.

3.4 Image Normalization

The data normalization procedure used in this work is similar to the one proposed by [1]; it
consists in a Global Contrast Normalization (GCN), obtained by subtracting the mean of the
intensities in the image (calculated per image and not per pixel) to each pixel, and a Local
Contrast Normalization (LCN) [1]. We assessed if the use, or not, of a data normalization
procedure has impact on the classification results.

3.5 Experiments

Following the authors’ indications in [1], we divided images into three groups: 50% for train-
ing, 10% for validation and 40% for testing. The images’ input size for the different models
was 224×224 pixels; the parameters’ exploration space comprised three fully connected lay-
ers, 50 epochs, fc8 is a initially-randomized layer, five learning rate values (1e-2, 1e-3, 1e-4,
5e-2, 5e-3 and 5e-4), the three pre-trained models (vgg-f, vgg-m and caffe) and the use, or not,
of normalized images; see Fig. 2.

After the fine tuning of the three networks using the train and the validation sets (which
comprise 2800 and 560 images, respectively) with and without normalization, we chose the
best parameters to apply to the test set (comprised of 2240 images); this time, the training set
comprised 3360 images due to the merge of the initial training and validation.

Fig. 2. Examples of 150×150 crop images. On the left two images without normalization and
on the right images with normalization.

4 Results and Discussion

The results of the parameters’ exploration are shown in Tables 2 and 3. With normalized
training and validation sets, the best mean AUC was achieved by the Caffe reference model
(AUC mean = 0.7753, std = 0.0135), followed by the CNN-F model (AUC mean = 0.7520 std
= 0.0003) and the CNN-M (AUC mean = 0.7392, std = 0.0032).

Relatively to the training and validation sets without normalization, the best AUC mean
was achieved by the CNN-M model (AUC mean = 0.7846, std = 0.0034), followed by the
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Table 2. CNN parameter exploration, with five repetitions, using normalized images (only the
train and validation sets were used).

Network Batch Size Learning
Rate

Top1err
Train
Mean

Top1err
Validation
Mean

AUC
Mean

AUC
Std

CNN-F 256 1e-2 0.2083 0.2668 0.7515 0.0017
CNN-F 256 1e-3 0.3022 0.3596 0.7201 0.0058
CNN-F 256 1e-4 0.3714 0.5000 0.6377 0.0069
CNN-F 256 5e-2 0.3714 0.5000 0.6463 0.0369
CNN-F 256 5e-3 0.2310 0.2518 0.7520 0.0003
CNN-F 256 5e-4 0.3562 0.4786 0.6779 0,0000

CNN-M 64 1e-2 0.1116 0.3043 0.7335 0.0080
CNN-M 64 1e-3 0.1862 0.2857 0.7317 0.0012
CNN-M 64 1e-4 0.3206 0.3811 0.7379 0.0078
CNN-M 64 5e-2 0.3308 0.3586 0.7388 0.0395
CNN-M 64 5e-3 0.1332 0.2896 0.7392 0.0032
CNN-M 64 5e-4 0.2116 0.2629 0.7433 0.0053

Caffe 256 1e-2 0.2045 0.2514 0.7577 0.0009
Caffe 256 1e-3 0.2983 0.3422 0.7162 0.0044
Caffe 256 1e-4 0.3714 0.5000 0.6869 0.0135
Caffe 256 5e-2 0.3293 0.3343 0.7753 0.0137
Caffe 256 5e-3 0.2239 0.2511 0.7533 0.0004
Caffe 256 5e-4 0.3368 0.4582 0.6963 0.0358

Caffe reference model (AUC mean = 0.7688, std = 0.0019) and the CNN-F model (AUC
mean = 0.7626, std = 0.0044).

Once the best combination of parameters to each model was determined, new results were
obtained using the testing set (and the new merged training set); these are presented in Table 4.
It is possible to see that we achieved the best AUC mean of 0.8126 (std=0.001) with Caffe
reference model with no normalized images, surpassing the result in [1] of 0.79 obtained
with DeCAF (an old version of Caffe) with normalized images (and with a SVM instead of a
softmax layer, since they consider that the former has better performance as classifier than the
latter.

As it happened with validation set, the best AUC results were achieved using images with-
out normalization, namely 0.7764 with CNN-M and 0.7671 with CNN-F, which are similar
values to the ones obtained during the fine-tuning stage. The AUC results with normalized
images are lower than those obtained with the validation set, especially the results of Caffe
that was substantially lower, AUC=0.5842 (previous one was 0.7753).
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Table 3. CNN parameter exploration, with five repetitions, using images with no normalization
(only the train and validation sets were used).

Network Batch
Size

Learning
Rate

Top1err
Train
Mean

Top1err
Validation
Mean

AUC
Mean

AUC
Std

CNN-F 256 1e-2 0.2028 0.3261 0.7626 0.0044
CNN-F 256 1e-3 0.2544 0.3614 0.7477 0,0179
CNN-F 256 1e-4 0.3714 0.5000 0.6857 0.0133
CNN-F 256 5e-2 0.3701 0.4825 0.7447 0.0047
CNN-F 256 5e-3 0.2060 0.3096 0.7618 0.0060
CNN-F 256 5e-4 0.3360 0.4204 0.6958 0.0125

CNN-M 64 1e-2 0.0945 0.2654 0.7565 0.0189
CNN-M 64 1e-3 0.1501 0.2653 0.7809 0.0049
CNN-M 64 1e-4 0.2322 0.3529 0.7647 0.0030
CNN-M 64 5e-2 0.2029 0.3336 0.7420 0.0399
CNN-M 64 5e-3 0.1065 0.2700 0.7597 0.0091
CNN-M 64 5e-4 0.1695 0.2697 0.7846 0.0034

Caffe 256 1e-2 0.1766 0.3225 0.7674 0.0034
Caffe 256 1e-3 0.2295 0.3757 0.7645 0.0041
Caffe 256 1e-4 0.3714 0.5000 0.6796 0,0209
Caffe 256 5e-2 0.3449 0.4246 0.7397 0.0133
Caffe 256 5e-3 0.1903 0.3246 0.7688 0.0019
Caffe 256 5e-4 0.2810 0.3811 0.7563 0.0031

Table 4. CNN applied to images with and without normalization. Training on the training plus
validation sets and testing on the test set.

Network Batch
Size

Epochs Learning
Rate

Norm Top1err
Train Mean

Top1err
Test Mean

AUC
Mean

AUC Std

CNN-F 256 50 5e-3 Yes 0.1964 0.3782 0.7206 0.0008
CNN-F 256 50 1e-2 No 0.1714 0.2955 0.7671 0.0022

CNN-M 64 50 5e-4 Yes 0.1727 0.3554 0.7332 0.0021
CNN-M 64 50 5e-4 No 0.1460 0.2876 0.7764 0.0059

Caffe 256 50 5e-2 Yes 0.3235 0.4883 0.5842 0.0038
Caffe 256 50 5e-3 No 0.1902 0.2507 0.8126 0.0010

5 Conclusions

In this paper we studied the application of CNNs to the problem of mammogram lesion classi-
fication. We evaluated three different implementations of CNNs and two approaches of image
normalization.
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In terms of the results obtained with the three different CNNs implementations, in the case
of the normalized images with the validation set, the best result was obtained with the Caffe
model, followed by the CNN-F and then the CNN-M. This is somewhat surprising given that
the CNN-M is a more powerful model (the filters are larger) than the CNN-F. The difference
is not large though (0.0087). However, when we applied the networks to the testing set, the
results decreased substantially, mostly in Caffe model with a AUC of 0.5842.

When the images where fed to the networks without normalization, with the validation
set the results were better for the Caffe and CNN-M but were worse for the CNN-F (again a
small difference). The CNN-M did improve by a significant amount (from an AUC of 0.7433
to 0.7846). In the testing set, the Caffe model achieved the best AUC (0.8126), followed by
CNN-M and CNN-F, 0.7764 and 0.7671, respectively.

Regarding the image normalization, the results reveal that the normalization process pro-
posed in [1] decreases the performance of networks’ classification. The fact that all images
were composed by the surrounding breast pattern (instead of being painted black, for exam-
ple) and, in some cases that the lesion was not centered, may have been an advantage for the
CNN learning process without confounding factors.

As future work we intend to explore other normalization approaches, the combination of
CNNs with SVMs and also the inclusion of handcraft features to see if they can help increase
the classification accuracy.
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