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Abstract

In this paper we present a system for the detection of immunogold
particles and a Transfer Learning (TL) framework for the recognition
of these immunogold particles. Immunogold particles are part of a
high-magnification method for the selective localization of biological
molecules at the subcellular level only visible through Electron Mi-
croscopy (EM). The number of immunogold particles in the cell walls
allows the assessment of the differences in their compositions providing
a tool to analise the quality of different plants. For its quantization one
requires a laborious manual labeling (or annotation) of images contain-
ing hundreds of particles. The system that is proposed in this paper
can leverage significantly the burden of this manual task.

For particle detection we use a Laplacian of Gaussian (LoG) filter
coupled with a Stacked Denoising Autoencoder (SDA). In order to
improve the recognition, we also study the applicability of TL settings
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for immunogold recognition. TL reuses the learning model of a source
problem on other datasets (target problems) containing particles of dif-
ferent sizes. The proposed system was developed to solve a particular
problem on maize cells, namely to determine the composition of cell
wall ingrowths in endosperm transfer cells. This novel dataset as well
as the code for reproducing our experiments is made publicly available.

We determined that the LoG detector alone attained more than
84% of accuracy with the F-measure. Developing immunogold recog-
nition with TL also provided superior performance when compared
with the baseline models augmenting the accuracy rates by 10%.

1 Introduction

Immunogold electron microscopy is a high-magnification method for the
selective localization of biological molecules at the subcellular level. Anti-
bodies coupled to particles of colloidal gold, which are visible in the trans-
mission electron microscope, can reveal the localization and distribution of
biological molecules of interest. In this particular work, this technique was
used to determine the composition of cell wall ingrowths of maize (Zea mays

L.) endosperm transfer cells [27]. Wall ingrowths are uneven thickenings of
the cell wall that increase significantly the area of the plasmalemma, thus
enabling to sustain a high number of membrane transporters and produce
better plants. In addition, INCW2, a cell wall-bound invertase and an essen-
tial enzyme for passive sugar flow into the endosperm, is mostly located in
the wall ingrowths [19]. Therefore, wall ingrowths contribute significantly to
enhance transport capacity of assimilates into the endosperm, thus having
a significant impact on kernel yield.

Most basal maize endosperm transfer cells differentiate reticulate in-
growths in the outer periclinal wall and flange ingrowths in the inner per-
iclinal walls and anticlinal walls [27]. This unique feature has not been
reported in any other species and makes these cells a unique model to study
the differences and similarities of both types of ingrowths and underlying
primary cell wall.

In the process of analyzing the cell’s ultra-structure it is important to
have different magnifications. A wider field of view is achieved with lower
magnifications and a more detailed analysis of the cell’s ultra-structure is
achieved with higher magnifications. In less magnified samples it is more dif-
ficult to detect the immunogold particles that are easily confused with cell’s
ultra-structure, but enable the identification of the larger structures of the
cells, namely the ingrowths and adjacent walls (see Figure 1). Higher mag-
nification images provide a detailed analysis of the ultra-structure essential
to this study (see also Figure 1 in [34]).

The use of specific antibodies reveals the differences and similarities of
components of the walls and ingrowths throughout the development of trans-
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Figure 1: Representative images of our datasets illustrating different struc-
tures that can interfere in the recognition of the immunogold particles due
to: cellular overlapping, tissues and background noise. Each image has
4008 × 2670 pixels of dimension with particles’ diameter ranging from 8 to
20 pixels. In this particular image we have a sample with a magnification
of 15000 (scale of 1µm to the side of the image) with particles with a di-
ameter of 8 pixels. Right to the main figure, we have a magnification of a
cluster of immunogold particles with noise and background; in the bottom
a magnification of the cluster is also depicted in a 20× 20 patch containing
two particles.

fer cells. The automatic detection of immunogold particles is a valued tool
to facilitate the calculation of the amount of immunogold particles in the
walls and ingrowths studied and by that to determine the differences in their
composition. One drawback is that the quantification of immunogold parti-
cles is a very time-consuming and prone to error task [32] which can benefit
from an automatic detection and recognition tool.

Given an approximate size of the immunogold particles radius, we show
that the Laplacian of Gaussian (LoG) filter is tolerant to shape variations
and to noise that may occur during the image acquisition. The feasibility
of this approach is however limited by the quality of the image — see Fig-
ure 1. To overcome this constraint, we propose a framework that couples a
Stacked Denoising Autoencoder (SDA) to filter the detections of the LoG
filter and thus accelerate the whole process. This framework is tolerant to
false detections by the LoG filter and afterwards uses the capability of the
SDA to extract high representative features from our images towards the
improvement of the detection rates [13].

Another proposal of this manuscript refers to how to handle datasets cor-
responding to immunogold particles captured with different magnifications:
one simple way is to devise independent Machine Learning (ML) techniques
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so we can analyze each one properly. Transfer Learning (TL) accelerates
this process by reusing a classifier designed for a given (source) problem on
another (target) problem, with some similarities with the original one [34].
The rationale to apply TL to immunogold particles detection is related to
the difficulty to identify these structures, especially in lower magnifications,
due to noise, complex structures and annotations with feeble quality. On
the other hand, with higher magnifications the distinction between artifacts
and structures can be conducted in a easier way due to clear boundaries.
For this reason, it is straightforward to explore the advantages of using TL
by transferring a model that was obtained on a higher magnification to a
dataset of a lower magnification.

The detection and recognition of Cellular Structures and Ultrastructure
(CSU) in Electron Microscopy (EM) is still in its infancy. We will still
outline some of the few works that have been presented in the literature in
Section 2. Our proposal for the detection of immunogold particles using our
combined approach with the LoG and SDA will be described in Section 3.
Since it is common to acquire samples in different magnifications we explore
our hypothesis on the benefits of using TL for immunogold recognition in
Section 4. Experimental study and discussion of the results are presented
in Section 5 and finally, conclusions are drawn in Section 6.

2 Previous Works

Automatic cellular structure and ultra-structure detection in microscopy
imaging has been evolving fast in the literature, mostly due to requirements
of processing massive data storages or the emergence of new microscopy
technologies [20]. For example, Fisker et al. in [12] explore the possibility
of automatically estimating particle sizes in immuno-microscopy imaging.
Their approach is based on deformable models that can be fitted to the
prior known shape of the particles. A different approach was presented
by Mallic et al. in [25] with the same goal as Fisker, where a cascade of
classifiers was employed.

Beyond these works, Ribeiro et al. in [32] contributed with an insight
review on the processing of images generated by electron microscopies and
the advantages of methodologies. Obviously, experimental speed-ups and
reproducibility are some of the most mentioned valuable aspects of these
tools. In the limit, and since complex structures viewed in EM acquisitions
entail a manual analysis of such images by one (or several) experts (which
can take several hours or even years to conclude — see page 7 in [20]),
this strengthens the motivation for (semi-) automated tools for EM image
analysis.

On cryo-electron microscopy images (a technology similar to EM), Voss,
Woolford and co-workers [38, 40] applied a Difference of Gaussian (DoG)
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and LoG filters as a first step to detect biological structures. However, they
were not tailored for immunogold particles. For the detection of biological
structures, there is an algorithm entitled Spot Detector (SD) [28] that is
included in the well-known Icy bioimaging software (Icy, in short) [7]. SD
is based on the non-decimated wavelet transform allowing the detection of
spots that can be organelles or other biological structures [28]. This ap-
proach aggregates a response for each magnification and scale of the image
providing detailed information of the objects. A major drawback is con-
cerned with the number of parameters required to function properly (e.g.,
the identification of a trade-off between particles and background; the defi-
nition of a scale and sensibility that controls both size of the particles to be
detected and a threshold for noise removal), which may be infeasible for a
non-expert user. In a work more closely related to ours, Wang et al. [39]
explored a DoG approach, a computational cost optimization of LoG, for
the detection of immunogold particles on EM images.

Note that automatic organelle detection and identification (segmentation
and classification), especially in EM imaging, is relatively recent (see for
instance refs. Straehle et al., 2011; Kreshuk et al., 2011 in [20]). For this
reason, there are very few works that tackle explicitly the biomedical analysis
on EM images. For the segmentation of mitochondria an extension of the
super-pixel approach was proposed in Fua et al. (see [23] and ref. 17 in [15])
or, as Ciresan et al. proposed using Deep Neural Networks (DNNs) [8, 9].
More recently, Huang and co-workers have tackled the detection of other
cellular structures based on a symmetry transform [14].

In this paper we will address the detection and recognition of immuno-
gold particles. A major difference from the aforementioned proposals is
that organelles are irregular (e.g., in shapes and intensities) and with dis-
tinct aspects between themselves. This work is focused on an intuitive tool
for the detection of immunogold particles with regular spherical shape, thus
avoiding the adoption of a highly parameterized formalism. Moreover, this
proposal combines a conventional LoG filter with a Machine Learning al-
gorithm (Transfer Learning with SDAs) improving the results produced by
the LoG alone. With the nonexistent (to the best of our knowledge) of an
equivalent approach, this work aims to provide a first approach to tackle
complex biological structures existing in EM imaging, thus paving the way
to other robust machine learning methodologies.

3 Immunogold Particles Detection

We present a cooperative approach for particle detection and recognition.
Our approach encompasses coupling the detection performed by a LoG filter
and a post-processing stage conducted by a deep learning approach (SDA).
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3.1 Immunogold Particle Detection using a LoG Filter

For the task of immunogold particle detection we used the LoG filter. This
filter was first introduced by Lindeberg [22] and is based on the image scale-
space representation that allows for the detection of blob-like structures in
images.

Given an input image I(x, y), the Gaussian scale-space representation at
a certain scale t is represented as:

L(x, y, t) = g(x, y, t) ∗ I(x, y) (1)

g(x, y, t) = 1

2πt
e−

x
2
+y

2

2t ,

where ∗ is the convolution operator. Given this, the scale normalized LoG
operator is defined as:

▽
2L(x, y, t) = t2(Lxx(x, y, t) + Lyy(x, y, t)), (2)

where Lxx and Lyy are the image second derivatives in x and y respectively,
and t is the scale parameter so that t = r/1.5 for a particle radius r [11, 13].

It is known that the ▽2L has a strong positive response for dark blobs of
size t and strong negative responses for bright blobs of similar size. However,
and since possible variations on the immunogold particle structure can occur
during the acquisition of the digital image of the biological sample (Figure 1),
we have applied the LoG filter over a range of possible scale responses. Given
the expected range of the immunogold particles radius, r, we filtered the
images over the range t = {ri/1.5 | ∀ri ∈ {r − δ, . . . , r + δ}}. Setting δ = 1
provided the best results for our experiments [13]. We then perform the
detection of immunogold particles by detecting local maxima in both spatial
and scale dimensions over all LoG responses (Figure 2—center) in the input
image (Figure 2—left). The detected maxima enabled us to estimate the
position of immunogold particles (Figure 2—right). A sample of the LoG
performance is depicted in Figure 2 for all datasets of this work: db1 for
the dataset of magnification 15000, db2 for the dataset of magnification of
20000, db3 for the dataset of magnification of 30000 and finally, db4 for the
dataset of magnification of 50000. Among the LoG filter response and the
respective detections, the erroneous detections provided by the LoG are also
visible in Figure 2.

It can be claimed that other approaches can lead to similar (or even
better results) than LoG. Such approaches encompass the Circular Hough
Transform [24, 31] or variants of the Wavelets Transform [28]. One variant of
the wavelets transform is publicly available in the bioimaging software iden-
tified as Spot Detector (SD) and which we have already mentioned above.
The Circular Hough Transform is a particular case of the Hough Transform
specially tailored for the detection of circular objects. In a nutshell, this
method consists on fitting a circle for a given interest point. Applying these
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2: Immunogold particle detection based on the LoG filter. From
top to bottom we have different detections from images with magnifications
15000 (db1), 20000 (db2), 30000 (db3) and 50000 (db4), respectively. For
each row, on the left we have the original image followed in the center by the
LoG response and finally on the right, the detections overlaid in the original
image. In these samples we also show some false positive detections (in red)
illustrating the difficulties of using the LoG filter alone (better viewed on
color). Different sizes of the immunogold particles are related to the cropped
region of the original image.

approaches to the immunogold particle detection problem rendered however
a significant reduction of performance in comparison to the LoG. For these
reasons, and since this sole approach can induce significant detection errors,
we have focused on coupling a robust ML technique to the LoG filter.
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3.2 Immunogold Recognition using Stacked Denoising Au-

toencoders

In order to speed-up the detection and recognition processes, the first step
of our framework is performed by the LoG filter. We then processed the
detections provided by the LoG, by employing a deep learning algorithm.

An AutoEncoder (AE) is, in the simplest form, a Neural Network (NN)
with one hidden and one output layer that is designed to reconstruct its
own input. As exemplified in Fig. 3(a), it is subject to two restrictions: the
weight matrix of the output layer is the transposed of the weight matrix of
the hidden layer and the number of output neurons is equal to the number
of inputs [2].

The values of the hidden layer neurons, called the encoding, are obtained
via Equation 3, where x is the input vector, s denotes the sigmoid function, b
is the vector of hidden neuron biases, andW is the matrix of hidden weights.
The values of the output neurons, called the decoding, are computed as in
Equation 4, where c is the vector of output neuron biases. One advantage
of the AEs is their ability to capture relevant information of the underlying
distribution of the samples [33].

h(x) = s (b+Wx) (3)

x̂(h(x)) = s
(

c+WTh(x)
)

(4)

Though AEs attain sparse features with good generalization capabili-
ties, it is still required to have a model that captures good representations
of the data. To achieve this goal the Denoising AutoEncoder (DAE) has
been presented as a robust generalization of the AE. DAEs models are still
designed to rebuild the original data but now from input data corrupted
with noise. In practice, a small percentage of random components of x are
set to zero [36]. Reconstruction of the input data is achieved by minimizing
the reconstruction loss while allowing the DAEs to avoid a direct copy of
the data [37]. These models had their robustness augmented by stacking
(denoising) autoencoders (Fig. 3(b)). SDA gives the model the advantage
of learning hierarchical features with low-level features represented at lower
layers and higher-level features represented at upper layers [5, 37, Section
3]. One limitation of these “deep” models is concerned with the number of
layers that one has to train and the total amount of time that it would take.

The breakthrough for training these models was achieved by conduct-
ing a layer-by-layer unsupervised training to find the proper initialization
weights. This scheme allows the learning model to escape from local min-
ima that is so common when training such networks [36]. This unsuper-
vised training approach of the SDAs is usually referred to as pre-training
(Fig. 3(b)). To perform a classification task, we add to the top of the net-
work a logistic layer (Fig. 3(c)) and the entire network is then “fine-tuned”
in order to minimize some classification loss function [2, 5].
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(a) (b) (c)

Figure 3: (a) An auto-encoder, (b) Pre-training of hidden layers of a deep
network using auto-encoders. (c) A complete deep network with two hidden
layers and an output layer. (Based on [21]).

SDAs are a very promising ML tool for the recognition of the circular
shaped immunogold particles. A representative sample of the images that
we used to train the SDA is depicted in Figure 4.

a

b

c

d

Figure 4: Different types of patches for all databases: (a) db1, (b) db2, (c)
db3 and (d) db4. In each, the top row shows background, noise and artifacts
and the bottom row shows immunogold particles.

Given the particular features of the immunogold particles, it is expected
that an SDA captures relevant representations from these samples and eas-
ily discriminates the immunogold particles from the remaining artifacts or
cellular structures. A far more complex scenario occurs when multiple im-
munogold particles are present in the same patch (i.e, a small window), (see
Figure 4), especially in low magnifications such as in the 15000 magnifica-
tion. In this case an SDA has to be able to deal with a variable number of
particles in the same patch. Thereby, an SDA is trained to recognize par-
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ticles belonging to a given magnification. To strengthen the robustness of
this model to noise and other artifacts we train it by corrupting the training
samples with noise. Once the best model is obtained it will consider the
estimates provided by the LoG. The SDA thus considers a patch of the
image centered in the location given by LoG to output the final prediction.

4 Transfer Learning for the Recognition of Im-

munogold Particles

TL aims to transfer a learning model that was acquired in one problem, the
source problem, onto another problem, the target problem, dispensing with
the bottom-up construction of the target model [34]. With this, TL algo-
rithms aim to overcome one of the major drawbacks of ML: limited labelled
data. There is another advantage of using TL algorithms: reduction of de-
velopment and computational times for learning (training) models for new
(target) problems. TL algorithms embedded in DNNs have already shown
interesting features such as better generalization capabilities and reduced
training times as shown in other works [18] (and references therein).1

As it was clear in the previous Section, our models’ performance is also
bounded by the quality of the dataset (and its annotations). For instance,
on datasets with low-magnifications (i.e., 15000) we have noise and complex
structures. Ergo, we obtain a feeble performance or high variances for the
recognition of particles on such low-magnifications mostly because of those
artifacts. For this scenario the advantage on using TL should be obvious: to
transfer a model that was obtained on a higher magnification to a dataset
of a lower magnification. Consequently, TL presents itself as an appealing
alternative. Under this broad topic there has been a diverse set of methods
being proposed: Never-ending learning [35], covariate shift (ref. [20] in [29]),
weighting instance (ref. [6] in [29]) and unsupervised TL (ref. [26] in [29, 26])
are just a small set of methodologies presented in the literature. See [29] for
a broader analysis. DNNs have raised some interesting questions within this
research topic. Concretely, how can we devise DNNs for TL and what are the
best strategies for these algorithms [17, 34]. On the other hand, Patricia et

al. proposed in [30] a single Support Vector Machine formulation to solve the
different types of TL settings. Beker et al. in [4] worked on the application of
TL to Microscopy Imaging and presented a covariate shift approach for the
recognition of Cellular Structures using a set of week classifiers. However,
the experimentations and adaptability of TL has been limited to the analysis
of Mitochondria.

In this Section we will describe our framework under TL consisting on
the following points: (a) An SDA is first trained to distinguish immuno-
gold particles from cluttered background; (b) This model is then reused on

1Check also the website: http://www.deepnets.ineb.up.pt
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another problem (with a different magnification); and, (c) Models are then
assessed for the detection task.

Low-magnifications (e.g., magnification of 15000) are usually used by a
life-scientist for identifying regions of interest in EM. Even though these
acquisitions are afterwards discarded to perform a more in-depth analysis,
they contain rich information that can expedite many of the quantifications
that have to be conducted for a given experiment. By directly exploring
images obtained at lower magnifications we can attain reduced experimen-
tation costs, image acquisition and labelling times. However, an automatic
learning model is prone to misclassify a large set of patches due to the noise
and artifacts present in the dataset (we will see some of these effects shortly).
To overcome this undesirable outcome, we can build a learning model using
a dataset with a high magnification as source problem (e.g., 50000, contain-
ing well defined immunogold particles and without clusters of immunogold
particles), and transfer it to a target problem of a dataset with a low magni-
fication (e.g., 15000). Putting it simply, layer weights for the target model
are initialized with the values of the source model. Learning (of the target
problem) can be conducted in several ways: (a) by fixing the layer weights
of the network or by letting them readjust through the minimization of the
reconstruction error (pre-training); (b) by fixing or letting the network re-
learn and thus letting it to readjust the decision function (fine-tune); or (c)
a mixture of both [18, 16, 1, 5, 3] (and references therein) — see Algorithm 1
for a brief presentation.

For the purpose of this work, we considered the (b) approach above
described. In our experimental work we have analyzed the impact of the
reusability of the different hidden layers. In fact, and for the immunogold
particle recognition, one may argue that the major changes will occur at a
feature level thanks to the changes of the magnification of the immunogold
particles. Looking carefully at Figure 1 we can see that this seems to be the
case. Therefore, the recognition performance of the immunogold particles
through TL would have significant impact by relearning only the first layers
of the network. The analysis of the effects of relearning specific parts of the
network architecture will be addressed in more detail in Section 5.

5 Experimental Study for Immunogold Detection

and Recognition

In this Section we will thoroughly describe the experimental work that we
have conducted as well as a detailed discussion on the results that were
obtained. The code is publicly available2. Our study is split into two halves:
first, the detection by coupling the SDA with the LoG filter and second, the
recognition of immunogold particles.

2Available at http://www.deepnets.ineb.up.pt
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Algorithm 1: Pseudocode for training a TL model using an SDA for
the recognition of immunogold particles.

1: Input: MS, an SDA model trained on a source problem and hTL, the
hidden layers that one wishes to reuse.

2: Output: MT, an SDA model obtained through TL for the target
problem.

3: MT ←MS /* Copy the source model */

4: Let H be the set of hidden layers of MS (or MT) and h = hTL \H;
5: Discard the hidden-layers h of the SDA target model, MT;
6: MT ← FineTuneNetwork (MT ,h);

Immunogold Particles Dataset: This novel dataset results from a study
of the composition of cell wall ingrowths of maize endosperm transfer cells
via the detection and quantification of immunogold particles. As previously
stated, images with lower magnification allow a wider field of view but the
detection of the immunogold particles is much more difficult than with higher
magnifications. The purpose was to develop an automated system that could
be able to detect particles in lower magnification images with a comparable
performance to that obtained with higher magnification images. The dataset
contains 100 images with 4008 pixels wide and 2670 pixels tall. All images
were acquired using a Transmission Electron Microscopy (TEM) JEOL JEM
1400 with a GATAN Orius SC10000A2 CCD. These images were recorded in
four different magnifications: 15000 (scale of 1µm to the size of the image),
20000 (0.5µm), 30000 (0.5µm) and 50000 (200nm) from different biological
samples (see Figure 1) whereas a manual annotation was conducted with the
plugin ‘manual counting’ provided by Icy software [7]. Each magnification
corresponds to a single dataset (see Table 1). The datasets are publicly
available on our website.

Performance Measures: The detection performance of the LoG filter
was conducted by assigning a ground-truth to a given detection if the Eu-
clidean distance between the ground-truth and the detected point positions
is below the size of the particle radius r. Of course, we ensure that there is
a one-to-one mapping between detection and ground-truth. To measure the
performance of the automatic detections we used the following metrics:

• True Positive (TP): number of correctly detected immunogold parti-
cles;

• False Positive (FP): number of falsely detected immunogold particles;

• False Negative (FN): number of immunogold particles which were not
detected.

12



The performance of our method was plotted in a Precision-Recall curve [10]
as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(5)

We will also summarize the performance results of our methods by using the
F-measure which combines both precision and recall. This measure is given
as follows:

F-measure = 2 ·
Precision · Recall

Precision + Recall
(6)

5.1 Detection and Recognition of Immunogold Particles

Our experimental study starts by first constructing an SDA model. We
extract patches with 20 × 20 pixels from 60% of our dataset (60 images,
15 samples per magnification) half of them containing all the immunogold
particles and the other half containing background, cellular structures or
other artifacts — see Table 1. A patch could contain more than one particle
and/or portions of several other particles (see Figure 4). Finally, patches
are labelled as containing at least one immunogold particle if the Euclidean
distance between the patch position (on the image) and the position of the
annotation is below the size of the patch. Pixel values of the patches were
normalized to be within [0, 1]. To find the best parametrization of the SDA
model we have performed a grid search on the pre-training learning rate
[0.01, 0.001] and fine-tune learning rate [0.1, 0.01]. We fixed the number of
neurons to 1000 units per layer and the number of hidden layers was also
fixed to 3. The grid search was conducted by carrying out a three-fold cross-
validation in the training set and performance assessed in the validation set.
The corruption level was set to 10% across all hidden layers. Pre-train and
fine-tune epochs were set to 1000 and 3000, respectively, and all models were
trained by batches. For the db1 we used 1000 patches per batch and for the
db2, db3 and db4 we used 100 patches per batch. For the execution of our
TL experiments, we had to resize by half the images of the datasets db3 and
db4 to afterwards use them as source problem (more details for this results
will be described thoroughly in Section 5.2). Note, however, that patches
used to train our models had the same dimension, i.e., 20 × 20 pixels. Our
models were developed and tested using the Theano framework [3, 6] with
simulations being executed on a GTX 980 GPU on a i7-5930K CPU with
16Gb of RAM. Test results of the SDA are depicted in Table 2.

Once we obtained the best SDA model, we proceeded with the develop-
ment of the LoG filter. LoG is solely controlled by the scale parameter which
we have set to vary between known values of the immunogold particles size:
[3, . . . , 13] pixels. For experimental swiftness, and since some particle radius
could not make sense for a given magnification, we trimmed the search space
for an “optimum” radius value. Thus, the radius range was set to {3, 4, 5},
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Table 1: Size and magnification of each dataset used to train our models.
Datasets are balanced being composed by the same number of immunogold
particles (objects) and cellular structures or other artifacts (background).

db1 db2 db3 db4

Number of instances 16556 10766 5060 1644
Magnification 15000 20000 30000 50000

Table 2: Baseline results for the recognition of immunogold particles with
SDAs. We also include the pre-training and fine-tuning times for training
this model (average time per repetition).

Dataset Accuracy Pre-
training
Time (sec.)

Fine-
Tuning
Time (sec.)

db1 79.1 ± 5.6 225.1± 44.5 30.0± 49.3
db2 96.0 ± 1.4 245.3± 51.0 367.8± 81.6
db3 87.1 ± 12.6 135.7± 18.6 183.5± 78.1
db4 91.5 ± 5.2 33.7± 10.0 54.3± 8.0

{3, 5, 7, 9}, {5, 7, 9, 11} and {9, 11, 13}, pixels, for images of the datasets db1
to db4, respectively.

We also measured the performance for each threshold applied to the fil-
ter response. This was done by ranging the values of the threshold between
5 and 55. The threshold set had to be adjusted for a given magnification:
{10, 15, 20, 25} for db1 and db2 and, {5, . . . , 45} with steps of 5 for db3 and
{5, . . . , 55} also with steps of 5 for the db4. To find the best parameteri-
zation we have performed a three-fold cross validation with the same 60%
of the total number of images (60 images, 15 samples per magnification) as
in with the SDA for training our LoG model and with the same 40% for
evaluating its performance. In other words, the learning process was con-
ducted independently from the LoG training, but using the same images.
The performance of the LoG is represented by a Precision-Recall curve on
the validation set [10] and results are shown in Figure 5.

This framework works as follows: Given a test image we first apply
the LoG filter to obtain the initial estimates of the immunogold particles
position. Afterwards, we extract a patch with 20× 20 pixels centered at the
position of the LoG detection. This patch is afterwards evaluated by the
SDA that we developed before. Finally, we assessed the variability of our
methods’ performance by repeating the experiment 20 times by shuffling the
dataset.

For the magnification of 15000 — see Figure 5a, we observed that the
expected immunogold particle radius tested during the detection of immuno-
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gold particles attained the best results (radius = 3 and 4). Comparing to
the other radius tested, with radius = 3 (or 4) it achieved a higher recall,
which means a higher number of immunogold particles were detected. A
similar analysis can be performed for the remaining figures stating the im-
portance of the size of the radius. Moreover, by having one single parameter
this method is intuitive and easy to use though prone to some error as it is
expressed by the low precision rates. Another important result is that when
using higher magnifications, 30000 and 50000, we can obtain very good re-
sults only with the LoG filter. This behavior is related to the quality of
the images which contain little noise and artifacts. Moreover, these datasets
also contain immunogold particles far apart from each other, making them
easy to detect. Unfortunately, when working with such high magnifications
(e.g., 50000) the field-of-view is reduced significantly. Thus, working with
such high magnifications may be useful only after determining the regions
of interest.

5.2 Evaluation of TL for the Recognition of Immunogold

Particles

As it was mentioned, one advantage of using TL algorithms is that it elimi-
nates the need to redesign learning models for a distinct, but related, prob-
lem. In our case, since we are using several magnifications of EM images,
we explore different TL settings for the recognition of immunogold particles
of Maize cells.

The experimental procedure to train the baseline models was conducted
as described above in Section 5.1. We then proceeded with the TL approach.
Images of the dataset db4 were resized to half (keeping the aspect ratio),
but maintaining the size of the patches (20 × 20). This led to immunogold
particles with a radius around 7 pixels (recall that the radius size of im-
munogold particles on the dataset db1, was 4 pixels). If we do not resize the
images of the source problem we do obtain some accuracy improvements but
lower than the ones when resizing the source problem. TL can be conducted
by reusing the first layer of the source model and by fine-tuning only the
remaining layers to the target model (coded [011]); another possibility is
reusing the first and second layers and fine-tuning the last layer ([001]). By
reusing the full source network ([000]) the model would not suffer changes,
and thus would have not been fine-tuned to the target problem. Results for
all variations of the TL settings are presented in Table 3.

Results in Table 3 show that all of the TL settings improve the baseline
result (79%). The accuracy improvement is at least 10%. As mentioned
before, the low accuracy rate of the target problem is related to the high
variability of the particles and image artifacts. This causes a severe under-
performance on the network. By learning the source problem dataset db4,
we are thus providing a better starting point for the model to learn the
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Table 3: Results of the application of TL to the recognition of immunogold
particles. The baseline model was trained in a standard ML way on the
dataset with magnification of 15000 (target problem). A model trained for
the dataset with magnification of 50000 (source problem, immunogold par-
ticles were resized) was obtained and reused on the target problem. Overall,
all TL approaches achieved an improvement of more than 10%. Each layer-
wise TL strategy is illustrated in the column TL setting (see main text).
Results were averaged over 20 repetitions.

Method Source
(re-
sized)

Target Reusability
and

Fine-Tuning
(TL) Setting

Accuracy
(± std.
dev)

Pre-Training
+ Fine-Tuning
Time (sec.)

Baseline - db1 - 79.1 ± 5.6 255.1 ± 83.0

TL db4 db1 [011] 90.9 ± 3.5 144.9 ± 82.9
TL db4 db1 [001] 89.9 ± 3.6 152.0 ± 55.7

TL db4 db1 [110] 91.8 ± 3.7 138.7 ± 89.1
TL db4 db1 [100] 91.0 ± 4.2 131.0 ± 84.0

TL db4 db1 [111] 91.8 ± 3.1 158.1 ± 90.8

target problem. In fact, transferring the model and letting all layer weights
be fine-tuned ([111]) to the target problem achieved the best result (approx.
92%). Another result from our experimental study is concerned with the rel-
evance of the feature representation that the network has captured. From
Table 3 we can infer that the first layers are the most relevant. In fact,
letting the first two layers of the network be re-learnt and fixing only the
last layer (TL setting [110]) achieved a higher performance (approx. 92%)
in comparison with only re-learning the last layer ([001] with an accuracy of
90%).

A similar experience was conducted when using db3 as source problem.
Once again, reusing and fine-tuning the full network (reusability setting
[111]) lead to the best results in comparison to the baseline: 13% improve-
ment of performance accuracy. Such results are depicted in Table 4. A
similar conclusion can be obtained when using the dataset db2 as source
problem (see Table 5). Reusing and fine-tuning all layers of the network
rendered the best results with 93.3% of accuracy performance. Overall, us-
ing any TL setting for learning the immunogold problem outperformed the
baseline (79% for the dataset db1).

We have also tested the applicability of the TL models over the detections
provided by LoG. In a first experiment db4 was defined as source problem
and db1 as target problem. Once the learning model for the source problem
was obtained, we have applied it to the detections provided by the LoG
filter. Results are depicted in Table 6.
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Table 4: Results of the application of TL to the recognition of immunogold
particles. The baseline model was trained in a standard ML way on the
dataset with magnification of 15000 (target problem). A model trained for
the dataset with magnification of 30000 (source problem, immunogold par-
ticles were resized) was obtained and reused on the target problem. Overall,
all TL approaches achieved an improvement of more than 10%. Each layer-
wise TL strategy is illustrated in the column TL setting (see main text).
Results were averaged over the 20 repetitions.

Method Source
(re-
sized)

Target Reusability
and

Fine-Tuning
(TL) Setting

Accuracy
(± std.
dev)

Pre-Training
+ Fine-Tuning
Time (sec.)

Baseline - db1 - 79.1 ± 5.6 255.1 ± 83.0

TL db3 db1 [011] 91.4 ± 5.9 166.1 ± 84.8
TL db3 db1 [001] 89.8 ± 8.2 119.5 ± 77.4

TL db3 db1 [110] 91.1 ± 6.3 152.2 ± 95.3
TL db3 db1 [100] 87.7 ± 12.8 121.2 ± 97.0

TL db3 db1 [111] 92.3 ± 4.6 220.1 ± 56.0

Table 5: Results of the application of TL to the recognition of immunogold
particles. The baseline model was trained in a standard ML way on the
dataset with magnification of 15000 (target problem). A model trained for
the dataset with magnification of 20000 was obtained and reused on the
target problem. Overall, all TL approaches achieved an improvement of
more than 10%. Each layer-wise TL strategy is illustrated in the column
TL setting (see main text). Results were averaged over the 20 repetitions.

Method Source Target Reusability
and

Fine-Tuning
(TL) Setting

Accuracy
(± std.
dev)

Pre-Training
+ Fine-Tuning
Time (sec.)

Baseline - db1 - 79.1 ± 5.6 255.1 ± 83.0

TL db2 db1 [011] 92.9 ± 2.9 304.3 ± 129.0
TL db2 db1 [001] 92.4 ± 2.9 194.9 ± 123.6

TL db2 db1 [110] 92.9 ± 3.3 290.6 ± 116.5
TL db2 db1 [100] 92.1 ± 4.0 251.3 ± 146.5

TL db2 db1 [111] 93.3 ± 2.9 326.1 ± 78.1
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Table 6: F-measure performance for the best Precision and Recall for LoG
and LoG coupled with SDA (see Figure 5). Best results are in bold and
presented in percentage. Results were averaged over the 20 repetitions.

LoG LoG+SDA LoG+SDA by TL [111]

- - Source Prob-
lem: db4

Source Prob-
lem: db3

Source Prob-
lem: db2

db1 84.2 (1.5) 83.9 (2.3) 85.4 (1.7) 85.2 (1.9) 85.4 (1.7)

As mentioned, the reduced training times is one of the many advantages
for using TL strategies. In particular for DNNs the gains can be significantly
high due to the time that it takes in such deep (big) networks. Training an
SDA for the baseline (target) problem (i.e., dataset db1) took on average
255 seconds. When using TL with the dataset db4 as source problem, the
training time is reduced to 158 seconds (reusing and fine-tuning all layers of
the network — see Table 3). In other words, we obtain a reduction of 38%
on the training time. This indeed shows the advantage on using TL as a
way to speed-up the training time. When using the dataset db3 as source
problem and, reusing and fine-tuning all layers of the network (see Table 4)
for the dataset db1 takes in average 220 seconds. In short, if one wishes
to solve the db1 one ought use the db4 as source problem. Solving db1 by
TL will take 239.8 seconds corresponding to the total time of training the
baseline model of db4 plus the TL training time. It still takes less time than
training the db1 baseline model and with an increased accuracy performance
improvement.

6 Conclusions

In this work we proposed a framework for the automatic detection of im-
munogold particles in different magnifications. We found that solely the
LoG filter attained results of over 84% of accuracy with the F-measure. Re-
garding TL for immunogold recognition, the conclusions of our study are
two-fold: a) there was a significant accuracy improvement when applying
TL (around 10% of improvement); and, b) a reduction in training times.
Overall, to solve the problem of immunogold recognition on low magnifica-
tions (i.e., magnification of 15000, db1) it is better to use as source problem
the dataset db4, magnification 50000.

These results show that these approaches are also resilient to the presence
of noise, artifacts and cluttered background and are easy to set-up based on
the few parameters of the framework (only dependent on the threshold pa-
rameter of the LoG filter response). These methods can help a bio-researcher
in the tedious and time-consuming task of identifying immunogold particles
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in large EM images.
We also make available the developed code and the dataset used such

that our work can be reproduced and improved by the community.
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Figure 5: Precision-Recall curves averaged over 20 repetitions for the LoG
on the validation set. Non-connected points correspond to the test results
for LoG and LoG+SDA. Upper right areas of interest in each graph is
zoomed in larger rectangles for visualization purposes.

24



This figure "auto-encoders-a.png" is available in "png"
 format from:

http://arxiv.org/ps/1712.02824v1

http://arxiv.org/ps/1712.02824v1


This figure "auto-encoders-b.png" is available in "png"
 format from:

http://arxiv.org/ps/1712.02824v1

http://arxiv.org/ps/1712.02824v1


This figure "auto-encoders-c.png" is available in "png"
 format from:

http://arxiv.org/ps/1712.02824v1

http://arxiv.org/ps/1712.02824v1

	1 Introduction
	2 Previous Works
	3 Immunogold Particles Detection
	3.1 Immunogold Particle Detection using a LoG Filter
	3.2 Immunogold Recognition using Stacked Denoising Autoencoders

	4 Transfer Learning for the Recognition of Immunogold Particles
	5 Experimental Study for Immunogold Detection and Recognition
	5.1 Detection and Recognition of Immunogold Particles
	5.2 Evaluation of TL for the Recognition of Immunogold Particles

	6 Conclusions
	7 Acknowledgements

