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Resumo 

 

Entre muitas necessidades que o crescimento populacional acartou, energia elétrica é uma 

delas. Esta é um bem presente em todas as necessidades associadas com o nosso dia-à-dia. 

Cada vez é mais comum a maquinaria presente na nossa vida ser alimentada através de 

eletricidade. Este é um aspeto positivo relativamente ao ambiente, uma vez que esta é uma 

energia ecológica. De forma a manter a quantidade necessária, é preciso aproveitar o maximo 

de cada fonte de energia disponível, uma vez que, atualmente, uma só não consegue responder 

a todas as necessidades existentes. Uma das formas mais viáveis de obter energia, é através 

das energias renováveis. Entre as quais, esta presente a energia eólica, sendo manifestada 

através do ar, fornecendo uma incalculável quantidade de energia à nossa disposição. A forma 

mais eficiente de transferir esta energia para eletricidade, é através dos Geradores Eólicos. 

Estas maquinas, tirando proveito da sua dimensão e configuração, permitem utilizar o vento 

para girar as suas pás, de forma a converter energia cinética em mecânica. 

Esta tecnologia permite obter uma quantidade significante de energia, sendo uma industria em 

ascensão nos últimos anos. No entanto, estando estas estruturas exposta à fadiga, devido às 

condições extremas suportadas diariamente, devido ao sol, chuva, entre outras, limita 

drasticamente a duração de estes materiais, bem como a sua eficiência. Sendo este um grande 

número de fatores a ter em conta, a industria que as produz não consegue prever com precisão 

a data em que as mesmas devem ser reparadas, sendo necessário executar manutenção. No 

entanto, o tamanho destas estruturas constitui um entrave quando requisitada uma supervisão 

sem que seja necessário grande financiamento associado. 

Quadcopteros são um tipo de RPAS que possuem uma fantástica manobrabilidade, estabilidade 

e simplicidade. Devido a isto, é possível efetuar manutenção em diferentes tipos de estruturas, 

de uma forma comoda, mesmo em espaços perigosos e por vezes de difícil acesso. 

O trabalho atual apresenta uma solução face a esta adversidade, combinando as vantagens de 

um RPAS, Phantom 4 da DJI, com a linguagem de programação Java, fornecendo assim uma 

aplicação. Com esta, é permitido a todos os usuários produzir um percurso sobre Waypoints 

estabelecidos, através de localização geográfica, baseando-se em parâmetros definidos, de 

forma a adaptar-se às necessidades de cada utilizador.  

Ao melhorar o trabalho aqui apresentado, será possível obter uma trajetória autónoma, que ao 

não depender do técnico que a executa, aporta uma maior fiabilidade e repetibilidade ao 

processo, aumentando assim a eficiência dos Geradores Eólicos. 
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Abstract 

 

Over many requirements that population growth brought, electric energy is one of them. Energy 

is present on our everyday life needs. It is becoming common for machinery to be powered by 

electric energy. This is a positive aspect regarding environment, once this is a green energy. In 

order to keep the demand required, it is a must to share the most of every electric source 

available, once that it is impossible for one to fulfill all the supply needs.  

One of the most suitable solutions to obtain this energy, is through renewable energy. Between 

them, wind provides great benefits, being expressed through the air, providing uncalculated 

power at our disposition. The most efficient way known to transfer this energy into electricity, 

is by Wind Turbines. These machines, due to their height and layout, are able to use the wind 

to spin their blades, converting kinetic energy into mechanical power.  

This technology, granting notable incomes, being this an industry rising in the recent years. 

Although, being these structures exposed to fatigue, by the extreme conditions such as sun, 

rain, between others, drastically limits the material life endurance and their efficiency. Being 

this a wide combination of factors, the industry that produces these components, lacks the 

capacity of predicting accurately the time that the parts should be replaced. Thus, it is a must 

to provide maintenance over them. Furthermore, due to their dimensions, these structures 

constitute a hindrance to provide proper inspection without much pecuniary aspects involved.  

Quadrotors are a type of RPAS which possess great maneuverability, stability and simplicity. 

Owing to this, becomes possible to perform surveillance on different types of structures, 

presenting a comfortable way to execute it on dangerous and difficult access spaces. 

The current work presents a solution to this problem statement, combining the RPAS, Phantom 

4 of DJI, with the programming language Java, providing an application. With this, every user 

is allowed to produce a trajectory where the requirements can adapt to his needs, incorporating 

essential parameters to define a path over the Waypoints established, relying on geographic 

localization, producing a path through them. 

Improving this work to a completely autonomous inspection would bring total independency 

from the technician executing the maintenance, providing a viable and repeatable process, 

increasing the income of energy from Wind Turbines. 
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Chapter 1: Introduction 

1.1 Motivation 
 
On the recent years, Earth has experienced a huge population growth. Over many supply issues 

it has brought, energy is one of them. The demand for this core asset, is a must to sustain 

people’s needs. Thus, it is a must to share the best of each energy source, once it is very 

difficult for a single one to support the whole world needs’. Moreover, this process should also 

be sustainable, since the most efficient fuels, like fossil, possess limited resources, not to 

mention the pollution associated with the process. With this, urges the need to empower 

renewable energies, aiming for a long-term prosperity.  

Nevertheless, actions can be taken regarding processes that are doubtlessly hazard. Choosing 

renewable energies over the fossil ones, is surely a greater step towards sustainability. Among 

renewable energy sources, wind is used in large-scale electricity generation. This technology, 

has been rising in the recent years. [1] Aspects like providing a mature technique, plus 

commercial prospects have enhanced the large-scale implementation. This can be proved by 

Global Wind Statistics, which shows that just in the year of 2016, 13.926 wind turbines were 

installed in Europe. [3] 

Based on Global Wind Statistics, it is known that 486.749 wind turbines were installed 

worldwide by the end of 2016, that corresponds to a 54.600 MW generated by the whole world, 

just during the year of 2016. [3]  

Although, this also comes with some issues. The big structures maintenance represents a 

difficult task for human action to achieve since the height requires numerous support, effort 

and time to accomplish. Allied with composed materials, big structures can have higher 

efficiency than with conventional materials, but also harder to conduct inspections though 

devices, such as cameras. 

Wind turbines blades, due to their dimensions, constitute a difficult structure to conduct 

maintenance on. Since these devices are power by wind, taller structures enable to access 

stronger winds, that are intrinsically related with power generation. [4] Moreover, their energy 

harvesting is cubicle related with their height [5], being this the main reason for their 

dimensions.  

To make renewable energies competitive with the traditional energies sources, it is a must to 

run them as efficient as possible. A key aspect that compromises their efficiency, is the state 

of the blades, once their return of power generation can be compromised up to 30% regarding 

their efficiency. [2] This implies a continuous monitoring and repairing. As it can be seen, it is 

important to make their maintenance more accessible as possible, giving repeatability to the 

process and being independent of the wind turbine height.  



Paulo Antunes – Semi-Autonomous Wind Blade inspection by a RPAS 

 

 2 

Nowadays, most of the inspection methods existent for this end are either inadequate, 

outdated or expensive. The traditional methods are: Rope Inspection, Service Platform, ground 

based inspection and Hydraulic crane. Most of these are either safety hazard, rope inspection, 

unviable for reasons of low quality image inspection, ground based inspection or even too much 

expensive, hydraulic crane. 

With this crisis, RPAS appear as an innovative vehicle, with great potential, providing the 

desired tools for the development of solutions, that can be extended on a wide range of civil 

structures, presenting a comfortable way to execute it on dangerous and difficult access 

spaces. In particular, provides fast and accurate inspections, enabling to improve the viability, 

with the plus of lower expenses. [6] [81] 

With the use of RPAS, to execute visual inspections, becomes possible to provide repeatability 

to the process. By obtaining pictures from the same position, a correlation can be established 

between previous photos, helping to determine the state of the blade. It is believed that this 

process can be highly advantageous, once wind farms with 100 wind turbines, can significant 

increase revenue. Related to this issue, the maintenance strategies, to maximize his lifecycle, 

should be executed continuously, otherwise, the cost of repair will increase significantly, as it 

can be seen on Figure 1. 

 

Figure 1: Maintenance cost of Wind Turbines. (Obtained from [7]) 

 

Additionally, when all the inspection data is collected, the question of obtaining a report can 

be expedited, providing better scheduled tasks to minimize overall operations and maintenance 

costs. 
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1.2 Introduction to the project 
 
In cooperation with the Universitat Politècnica de València (UPV), it was proposed to develop 

a creative solution, facing the traditional ways of Wind Turbine’s inspection. This would provide 

an efficient and safer inspection by bringing technology and qualified technicians together.  

On this project, it is generated an application, over which are defined waypoints on a 2D map, 

that represent the localization of Wind Turbines. Over these, is defined a trajectory that 

incorporates the blades, from root to tip. With this, is possible to capture photos producing a 

visual inspection. The flight proposed is design for a velocity of 0,75 m/s on which would start 

and rest at the center of the Wind Turbine. The model selected to provide the measures of the 

blades and the tower was the GE 1.5sle, shown of Figure 2.  [8] 

  

 

Figure 2: Wind Turbine model GE 1.5sle. 

 

Over a wide range of possible vehicles, for this research was used the RPAS Phantom 4. It 

contains numerous advantages, that will be mentioned below, such as complex sensors and 

widgets that can be adapted to singular purposes by implementing simple methods. These 

parameters were included on the code, to provide a better approximation for the reality. 

The Phantom 4 flight controller, has the capacity of store critical data from each flight on the 

on-board storage device. This vehicle has a Vision Positioning System when flying indoors or 

environments without GPS, enhancing the hovering state. Regarding precision, it has 

incorporated dual IMUs and compasses, granting redundancy.  

The gimbal provides a 3-axis steady platform for the camera, which can be tilted within 120º 

range. It also includes safety modes as Failsafe, air braking features and Return-to-Home. This 

minimizes the risk of accident associated with the RPAS, even if the control signal is lost. The 

flight data is automatically recorded into the internal storage of the aircraft. This includes 

telemetry, aircraft status information and other parameters. 

This RPAS is equipped with Obstacle Sensing System that constantly scans for obstacles. Thus, 

collisions can be avoided, once an object is detected, the RPAS will maintain a defined security 

distance, generating an alternative path. His range of detention system is from 0.7m to 15m. 
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The DJI Vision Positioning System uses ultrasound and image data to help the aircraft to 

maintain its current position. This Vision Positioning System is constituted by two ultrasonic 

sensors and four monocular sensors. This Vision Position is activated automatically when the 

aircraft is turned on. The GPS Positioning has a vertical hover accuracy of 0.5m and horizontal 

hover accuracy of 1.5m. The visual position system has a vertical hover accuracy of 0.1m and 

horizontal hover accuracy of 0.3m. [9] 

Parameters of Phantom 4  

MTOW RPAS  1380 g 

Propellers 240 x 127 mm 

Diagonal Size (Propellers excluded) 350 mm 

Maximum ascendant speed  6 m/s 

Maximum descendant speed 4 m/s 

Maximum speed 20 m/s 

Maximum Service Ceiling Above Sea Level  6000 m 

Maximum Wind Speed Resistance 10 m/s 

Maximum flight time 28 min 

Photo quality  12 MP 

Satellite Positioning Systems GPS/GLONASS 

Video quality 4k at 120 fps (frames per second) 
 

Table 1: Specifications of Phantom 4. [9] 

 

1.3 Project aim and document structure 
 
The main objectives of this projects are: 

- The trajectory must obey to the restrictions established by the dynamics and input of 

the RPAS. 

- The control law applied to this system must be able to re-plan the trajectory at each 

control update, and apply the new inputs. 

- The application developed has an aim for semi-autonomous inspection over a diversified 

number of structures. Although, once it is on the first stage of development, that with 

the right development, will enable to improve inspections to a whole new level of 

quality. [10] 

- The application must be general, enabling to be used for other types of structures. 

On the Chapter 1, will be presented the motivation regarding this project, the description of 

the RPAS used, as well the basics of each state that took part while developing it. 

On the Chapter 2, will be presented a state of art referring the actual techniques used for wind 

turbines inspection, the means to achieve it and also the basic aspects regarding Java language. 

On the Chapter 3, will be described all the steps along the creation of the Android application, 

as well the requirements associated with it. 
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On Chapter 4, will be presented the MATLAB experiment, defining the model used to simulate 

a trajectory on this software, and how it is planned to associate it, with the Android application. 

On Chapter 5, will be shown the results regarding the Android application and the MATLAB 

simulation. 

On Chapter 6, will be presented the conclusions retained from this project, some future works 

which can be developed regarding further investigation. 
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Chapter 2: Framework for Wind Blade inspection 
 
Wind turbines are exposed to extreme conditions, as strong wind, sun, rain and erosion. Even 

though, composite materials manufacture is taken in highly consideration, they possess a life 

endurance associated. Thus, to avoid the replacement of these structures, several inspections 

are taken, regarding the detection of initial damaged areas, enabling his reparation, saving 

huge amounts of money and avoiding energy harvesting losses.  

Since these problems are produced over a wide range of environments factors, there was 

created in 2010 the Blade Reliability Collaborative (BRC). [11] 

With this, was possible to obtain essential data from the supervision of these surfaces, relating 

it to the non-destructive inspection techniques, either while their manufacturing or in the field. 

With the creation of this organization, limitations regarding the current inspections techniques 

and how to develop improvements were possible. Simulating their defects propagation, 

information related to the inspections and even establish cooperation between different 

agencies and industries was possible. This result in a maximization of the lifecycle of wind 

turbines. [11] 

2.1 Inspection Strategies 
 
Wind turbines are manly composed by fibre-reinforced composite. Due to their variable 

thickness and multilayers, it requires high qualified technicians to provide good control over 

these materials. In order to maximize their lifecycle, some non-destructive techniques were 

defined, enabling to execute them on site monitoring. [12] 

Most of the times, the initial damaged areas, are due to defected manufacturing. As so as, the 

first inspection should be done is on the factory. 

Factory inspections [13], are a fundamental part of the production, once there are some 

processes that should be supervised, to guarantee that their execution was flawless. The blade 

has two shells, to which should be bonded correctly. Thus, being this a critical aspect to detect, 

precise methods are required, such as ultrasonic scanner and thermography. These demand 

precise machinery, that can only be used properly off-line. This inspection allows to detect 

fibre wrinkles, dry and weak areas, porosity, among other defects. Other materials, like the 

receptors, should be supervised in order to his correct installation.  

Another aspect that should be taken in consideration is the rotor balancing. [13] Every structure 

must be in balance, otherwise it works his way until it reaches this stage. In practical terms, 

by assembly a rotor on these structures producing uneven distribution of his mass or blades 

with an angle deviation, might cause sever disturbances. To avoid it, methods like reflectorless 

lase distance measurement shall be used. 
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Thermography [14] 

This is a quite common method among inspections that are only applied when the structure is 

off-line. It takes use of infrared cameras in order to detect variations on the blades 

temperature, which is directly related with the cracks origin.  

Ultrasonic testing techniques [14] 

This technique allows to detect defects and guarantee the quality of the surface and the under-

surface layers’ present on the blade. By beaming ultrasonic waves, their propagation over the 

material allow to determine quite precisely the place where the material suffers from a 

discrepancy. With this is possible to indicate anomalies, either related to bad adherence 

between layers, or even defects of delamination. The ultrasonic signals are based on time 

algorithms. 

Vibration Analysis [13] 

This technique is most used for the crack detection and growth. Making use of sensors operating 

between 0,01 – 100 kHz. Usually this range is divided in three, so the position transducers work 

at low-frequency, velocity sensors work at middle-frequency and the accelerometers at the 

high-frequency.  

2.2 Inspection Methods 
 

After the assembly, to examine this type of structures some methods are considered, such as 

helicopter, RPAS, platform or even ground inspection. 

Helicopter Inspection [13] 

Regarding to this type of inspection, it requires a significant number of wind turbines, such in 

the case of wind farms. This is due to the huge cost associated to the helicopter consumption. 

By taking advantage of this inspection high resolution cameras and thermography can be 

combined to provide a more accurate idea of the wind blade state. 

Drone Inspection [15] [13] 

This type of vehicles can execute the same type of supervision as the helicopters, with the 

advantage of being a cost-efficient solution. Low-cost services, that incorporate high-

performance vision sensors that take advantage of aerial sensing platforms are some of the 

highlights that this type of vehicles offer, which allow to overcome certain boundaries, in order 

to achieving autonomous visual inspection. They can execute two types of inspection, static 

and dynamic.  

The static inspection includes all the methods mentioned on the Helicopter Inspection with the 

plus side of allowing to define Regions of Interest (ROI), establishing a more detailed comparting 

with future inspections. Although, it does not provide a drainage system inspection.  
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The dynamic inspection is done while the wind turbine is working, enabling to detect abnormal 

deformation or even signs of fatigue material.  

Blade Inspection Platform [13] 

This inspection requires a platform on the wind turbine, allowing to execute a full inspection. 

The installation of the platform is quite expensive, and requires considerable stopping time. 

This assures the same goals as the rope inspection. Although, it is quite dangerous. 

Blade Inspection Rope [13] [14] 

This type of inspection is relatively fast, allowing the technicians to perform “Tap test”, which 

help to determine the damage extension of hidden imperfections. It also allows to perform 

thermography inspections, lightning protection system and drainage system assessed. This is 

the method which provides the most complete inspection over these structures. Although, the 

conditions of work can be quite dangerous, promoting accidents among workers.  

Optical Blade inspection from ground [13] [14] 

This type of inspections has the advantage of reduced cost, since it is executed from a long-

distance lens. Being executed from ground, has a brief duration, which reflects on a short 

stopping time of the wind turbine. With the photos, it is possible to create a database, 

establishing comparison between others in a timeline. 

Although, this method has a wide range of limitations. Only noticeable cracks present on the 

blades are noticed, once the distance of the camera is quite far. Thus, small defects and small 

cracks will not be detected. Among other aspects, to determine the real state of the blade, 

this is not a viable method. 

Blade Internal Inspection [13] 

By taking advantage of solar light, UV lamp, thermography and others at a close distance, allows 

to detect core defects, delamination’s, structural defects, between other defects. This grants 

great accuracy to determine the state of the blade, although has cost associated and time to 

execute the maintenance.  
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Figure 3: Information path from the inspection with a RPAS, to the point where the inspection is re-

quired. 

2.3 Java Basics 
 

Once the product obtained was based on Java, it is essential to provide some basic 

understanding and clarify some fundamental aspects on which this project relies. 

2.4 What is Java? 
 

Java is a programming language. Based on the C++, C and Objective-C, arouses object-oriented 

programming model, that instead of being based in “actions” and logic, focus on objects and 

data. [16] Among other features, this language became so popular because of the portability 

that it offers in network, requiring only a Java virtual machine. Being an object-oriented 

language, provides a class of objects that can inherit the code common to the class related. It 

also offers flexibility, by executing on each client needs, not in a general server. [17] 

An object, can be defined as a software bundle characterized by his state and behavior. The 

state includes the name, version among others. The behavior is shown by the methods defined. 

[18] 

The objects are the first priority to define when designing a program. They must be identified 

and established relations between them. Since this software system is complex, diagrams can 

simplify their understanding, illustrating how the data flows and relates itself in the practical 
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way. This process is usually called “data modeling” [19]. Not only help’s the analysis of the 

project but also ensures that the requirements are fulfilled. This process can be divided in four 

stages: conceptual, enterprise, logical and physical. The conceptual data modeling is related 

to identification of high level relationships between entities. Enterprise data modeling is when 

the unique requirements are established. Logical data modeling is the base for the physical 

stage, being here defined entities, attributes and relationships involved. The physical data 

modeling is the implementation of the logical stage. [20]. 

Objects can also be described as units of code. They are categorized in classes or subclasses 

enabling to share models, methods and definitions simplifying the whole code. Classes can be 

defined as the blueprints from which objects are created, defining his state and behavior. [18] 

These objects are what is ran on the computer [21]. The classes on which they are divided are 

templated definitions that contain real values instead of variables. [22] The difference between 

the class and subclass is that the deeper it is, the more specific it becomes. Thus, subclasses 

can inherit some characteristics of the class, although they are different between them. 

A practical example of an Object is the Camera, that will be mention with more detail on the 

Methods section. This has associated with it a set of Methods, as an example, to start recording 

a video, as it can be seen on Figure 4. 

 

Figure 4: Methods for Camera, in order to record a video. 

 

Java is also a platform that contains a set of tolls, components and elements that allow the 

development of an application. An application program is the use of a technology combined 

with an operative system, designed to simplify his use. Applications can also transfer data 

between platforms. To this end, must be established an application program interface (API) 

which provides the requests and the means to obtain it. [23] 

In Java, the classes are defined only the data in needs to be deal with. Thus, when an object 

is run, it is not allowed for the code to access the whole program data, improving the standard 

security and avoiding data corruption. [24]  
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2.5 What is a Software Development Kit? 

With the exponential growth of applications, comes the need of providing tools like libraries 

that help a program to take shape in diverse platforms. By providing these tools, comes also 

the need to establish some procedures for the application to communicate with the operative 

system, setting aside the need to code the common functions. Since it is more common having 

ideas for an application, than possess the programming skills, most of these kits already include 

a saved sequence of commands, called Macro’s. A Macro can be defined as a statement that 

has been already implemented, that can be saved and called afterwards. Most of times, 

includes a variable parameter. This is quite useful, owing to defining a series of instructions 

that will be used multiple times along the project, not only saves time, but also makes the 

code more concise. This also plays as an advantage for another user’s that are working on the 

same project, or in a similar one. [25]   

In addition, it is common for the SDK provide a sample code, that can help user’s providing a 

base idea that can serve as a guide. These SDK, also require an IDE. This will provide essential 

items, as an editor for writing source code, debuggers and compiler. [26] 

 2.6 Android Overview 

Android takes part of most concepts of Linux, such as open source and the operating system. 

His main purpose was for smartphones and tables, devices controlled by a touchscreen. 

Nevertheless, it is also applied nowadays in others, such as TV’s, watches and other common 

electronic devices. Android started in the year of 2003 with Android Inc. being incorporated in 

Google in 2005. The first mobile device operating with the system of Android was sold in 

October 2008. [27] 

After the first version was released, the need to implement new functionalities and fix some 

issues created new versions. Each latest version is identified by an API Level. This is very 

important, since it helps to determine whether apps are compatible or not. [27] 

Thus, when creating an application, there are some fundamental points to consider, in order 

to ensure compatibility. Some of these points are: the API Level, which is directly related with 

the Android versions used, and the dimensions of screen that it will be used. Elements like 

statistics of the most common screen sizes and API Levels can be found online released by 

Google. [27] 

2.7 What is Android Studio? 

Android studio was the software used to process all the information developed allowing to 

produce the application. This is an IDE, that provides useful tools for application development. 

[28] 



Paulo Antunes – Semi-Autonomous Wind Blade inspection by a RPAS 

 

 13 

This software is composed by a flexible Gradle base building system, an emulator which enables 

to run the changes made on the application without a real device or even building a new APK. 

[28] 

Since it is a program used worldwide by a big range of people, comes the need to establish 

some security procedures such as the principle of minimal privilege. In simple words, it is 

descried as access only to the components that it will work with. By establishing this, empowers 

a secure environment since an application will not be allowed to access other parts without the 

user’s permission. [30] 

Lately, Android has become a very popular operating system. In order to maintain this vantage, 

Google is constantly developing tools for new programmers. This will assure less difficulties 

putting their ideas into practice. All these advantages are available in Android Software 

Development Kit, that enables people to code, test and debug their application. [27] 

These code files are compiled by Android SDK into APK, represented by the suffix .apk in the 

archives. These represent android packages that contain all the content of the application, 

which is also used to install it and are a variant of Java’s JAR format. [31] 

The application presented in operative systems run isolated from each other. This is possible 

by generating a VM for each process. [32] 

This software is constituted mainly by two bars. One that allows you to run and launch the 

applications, and a navigations bar, providing tools to edit the project. There is also an Editor 

Window, allowing modifications on the code. 

There are some default module files in Android applications that are essential, such as: 

Android Manifest: This is the main file of the projects in terms of being that essential 

information is defined, such as: minimal API Level, files and which of them will take part in 

main activity, software and hardware components that are requested by the application, and 

the API libraries that the application requires to be bound to. Components not defined here 

will be considered inexistent in the application. [33] [34] 

APP Resources: When it is required additional resources such as XML layout, UE stream, 

animations, images or even colors, these are placed in a file named “res”. Establishing this 

procedure, it is possible for the user to request different configurations. They will provide an 

interactive experience with the user when requested different configurations. [33] 

2.8 What is an App? 

App corresponds to the abbreviation of the word application. It can be defined as a software 

programs for computer’s, smartphone or another device. They are constituted by Java code 

and resources files from each app that takes part of the Android’s architecture. [31] 

As mentioned above, applications come as .apk files. These files are produced by using the tool 

AAPT (Android Asset Packaging Tool). This tool is part of Android SDK which compiles the code, 
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images and libraries. With this, they are optimized, enabling to execute in Android RunTime. 

[31] 

2.9 Android App permissions 

Android implements the principle of minimal privileges. This means that applications by default 

only have access to components they need to execute inside the application. With this is 

created a safe execution environment. However, sometimes applications need to access system 

services or access data from other applications. To achieve this, there are some alternatives. 

The most commonly used, is to ask the user’s permission to access data or use parts of the 

device. For example, the user must grant permissions when the application desires to access 

text messages, camera, or others when working in a part which is not granted previous 

permission to access it. [35]  

2.10 What is an API? 

An Application Program Interface is the series of subroutine definitions and protocols for 

building application software. [36]   

This is very important once it allows applications to access to functionalities that are already 

exist in others, saving time and simplifying the process. The API documentation is usually 

provided to facilitate usage. By incorporating the commands already defined, is possible to 

send them to programs running on the server that the application is working on. With this is 

possible to access to resources only available on the server, like logins and passwords. [37] 

To establish a contact between a class and the outside word, an interface must be created. 

This contact is built based on methods. An example can be given as the camera created for the 

RPAS application, shown on the Figure 5, more precise, the action to stop recording. 

 

Figure 5: API implementation to stop recording, regarding the camera. 
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2.11 Application Components 

 
Every Android application is constituted by components. These components can be described 

as essential building blocks which have entry points, allowing the system or users to access it. 

These can be divided in: Activities, Services, Broadcast receivers and Content providers. Each 

one has a distinct lifecycle that defines how they are created and destroyed. [38] 

Activities 

Activities are actions that allow the user to interact with the application, being the entry point 

for it. During activities transaction, they also store the data. Thus, this is a very important 

aspect of an application.  

Each activity is assigned a window. An application is constituted by large number of activities, 

that working together avoid inconsistences, being each one independent from the others. [39] 

As the application is initiated, the main activity shows up. From the main activity is it possible 

to launch others, although, as mentioned above, all independent from another’s.  

This part of the application can be seen as a state machine, once launched, stays pendent for 

user actions. Even though the programmer has now the capacity of controlling the way this 

starts, the steps executed on each stage can be defined. 

The stages take part of an application are: Creation, Execution, Redundancy, Pause, Stop and 

Destroy. To the whole stages is called Life Cycle, as represented on Figure 6, and it is controlled 

by the Activity Manager. 

 

Figure 6: Activity life cycle, where grey color represents invisible states, green color the active states 

and the yellow one, partial visible states. (Based on [40]) 

 

Each transaction between states represents a “callback” on the activity. Some of these methods 

are overwritten automatically in the projects of Android Studio, a good example is the 

onCreate. This method happens when there is a transaction starting when the user clicks on 

the icon of the activity, till his execution. An example can be seen on Figure 7, although the 

whole code related to this method will not be displayed due to his length. 
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Figure 7: Example of a onCreate method. 

 

The states of the life cycle illustrated on Figure 6 are described as: [39] 

onCreate(): This callback fires when the system creates the activity. The onCreate() method 

sets up some fundamental parts of the activity. Some of those are the declaration of the users’ 

interface and configure some of the User Interface (UI). Once this is done, the activity enters 

the Started state, meaning that has been created, although is not visible yet.  

onStart(): This callback appears when the Activity enters the Started state. This callback makes 

the activity visible and becomes interactive. Sometimes, the broadcast receiver is registered 

on this stage. After this, the activity enters in Resume stage.  

onResume(): On this stage, the application is enabled to interact with the user. The application 

will stay on this stage until another action is trigged. When this interruption occurs, the 

application enters in the on the Paused stage.  

onPause(): This callback is considered a signal that the user is leaving the activity. This method 

is used so activities like music of animation associated with the application being executed are 

not displayed anymore.  

onStop(): This callback is triggered when the activity is no longer visible to the user. On this 

method, usually the resources associated with it are released, such as unregister from the 

broadcast receiver.  

onDestroy(): This callback is used right before the activity is destroyed. [41] 

Even though the application can contain different activities on his structure, it must be defined 

a main activity, specifying it on the Android Manifest file. 

Services  

Services enable a task to be extended in the background of the system. These components of 

the application lack of graphical interface. They are a very important, once the user is allowed 

to perform long-running task on the background while using a different application.  

These services can be defined by their life cycle: [42] 

- Foreground: This type of service is set to run even if the user is not interacting with it. 

They also display a status bar icon. A common example is reproducing music on the 

background for the user.  

- Background: This type of service allows to execute an action, even though it is not 

being noticed by the user. An example can be completing a download. 
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- Bound: This type of service happens when one app requests another. Thus, it provides 

an API to another process. With this, is possible for the system to know where are the 

dependencies established between two processes. 

 

Nevertheless, a service can be defined as private, on the manifest file. This will prevent the 

access from another application. [42] 

Broadcast receivers 

Broadcast receivers, like services, lack of a graphic interface. Although, they might display an 

icon on the status bar. These are the components that alert the user of actions which the 

priority equals or overlaps the current activity.  They usually display alerts or notifications of 

events. Many of these occur from the system, such as an income call or system notifications. 

[41] 

The Broadcast receivers differ from services in different ways, but most for the reason that 

these wait for an event, in order to run, which does not happen on services. [43] 

Content providers 

Content providers manages the access of components to the data. This data can be stored in 

persistent locations from more than one application. With this, content provider manages the 

share of data between the applications. This is done with previously defined security 

mechanisms. [42] 

Moreover, this component also provides the implementation of a standard set of APIs. With 

these, is possible to perform transactions between app’s. This aspect provides a unique 

functionality to the Android system, which any app can start another app’s component. For 

example, if the user desire to take a photo from a distinct app from the camera, instead of 

developing an activity to capture a photo, it can simply start the activity in the camera app, 

allowing to capture a photo. Afterwards, by managing data, the photo is returned to the app 

which it was requested. By implementing this subroutine, it might give the sense as if the 

camera is a part of the app. This functionality of sharing files, simplify the code and eliminates 

the overlapping of the same activities. Although, they might not allow the application to modify 

the data. [44] [34] 

Intent 

An intent can be described as a general operation to be executed, that can be used by activities, 

services and broadcast receivers. Intents can be used to display a wide range of utilities, from 

transferring information or even objects, to send the order to launch applications. On this last, 

intents represent the passive data in order to display abstract actions to be performed. [45] 

Moreover, regarding broadcast receivers, intent will display useful information related to the 

state of an action, in order to maintain the user informed. Although, it must be mentioned that 
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for content providers, unlike the other application components, they are not triggered by 

intents, instead they require a ContentResolver. [46] 

Furthermore, detailed information will be provided on Methods’ section, Chapter 3. 

 

2.12 What is Gradle? 

 
Every application needs to rely on a building system in order to declare the project 

configuration. This is the part where Gradle is required. By defining a directed cycle graph 

(DAG), it is possible to prioritize actions, once multi-projects, many times required in 

application, can be quite extensive. By providing a multi-project build, it is possible to define 

which parts are up-to-date, assuring that the system will not become overloaded. This is an 

open source system, that took the basis from Apache Ant, although it uses Groovy-based 

domain-specific language (DSL) to declare the project configurations. [47] [29] 

 

Figure 8: Path followed in order to developed the present application. 
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Chapter 3: Drone Mission Maker 

 

In this section, will be described with detail the application created. The main reason for his 

creation is to take advantage of the capacities regarding the RPAS and connect them with wind 

turbines. This is an emergent subject which grants great advantages allowing also the 

implementation in an industrial scale. 

The difference between other projects, is that this one, takes advantage from low cost 

development, to the point of enabling independent people to generate it, requiring only a 

phone with Android operative system, the Phantom 4 and a computer. 

Below, will be defined the standards that must be fulfilled in order to grant sustainability and 

expand this application to the market. Technical aspects of the application previously studied 

and their inherent improved aspects of the functionalities currently offered within this 

application will also be explained. 

Another aspect that should be mentioned, is the flexibility and improvements that can be 

obtained in the near future, subject that will take part on the Chapter 6, part of future works.  

3.1 Previous licences required to the development 
 

To the accomplishment of this project it was required two licences, one from Google and 

another one from DJI. 

The first licence allows the use of Geolocalization of our application on the mobile device, once 

that Phantom 4 has already incorporated his own. To obtain it, users must enter the developer’s 

website of Google, [48] on which a registration is required. There is also a pricing table 

available to consult, once that for successful applications, there are certain taxes involved with 

the service provided by Google. [49] 

On the second licence, from the company on which the RPAS had been produced and developed, 

DJI, is required. Thus, a registration as developer on the DJI website is required, in order to 

obtain a DJI key. [50] This, is generated based on the software platform, type of Software 

Development Kit and category of application being used.  

This key is completely free, although there is a possibility to make a registration as premium 

developer, providing additional tools and tutorials bringing possibilities of wider functionalities 

of the application, as well clarifying tutorials. 

Although this includes costs, that would provide the possibility to save hours of work and enable 

to be in touch with the latest advances on this area. Taken in consideration, subscribing the 

“premium developer” is a small investment to what might be a greater good. 

Another point that should be taken in consideration is that, this application is on its alfa stage. 

This means that every licence was obtained allowing the basic concepts to work with no 
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restrictions. Nevertheless, before uploading this application to Google Play Store, official 

application system for Android, some technical aspects should be taken in consideration. It 

must be assured that this is compatible for all clients’ devices. 

Thus, some aspects should be assured, more specifically, the ones that Google imposes, in order 

to avoid this application getting declined. [51] 

3.2 Previous knowledge 
 
In order to obtain a correct start to the creation of this applications, some previous knowledge 

is required. More specifically, being a user of Java language is strongly advices. Some basic 

aspects were already described earlier on the introduction section. 

To possess knowledge about Java is fundamental, regarding basic and complex structures. Thus, 

for some of these, will be explained in a very synthesized way. 

Nevertheless, to maintain an efficient work, it is required a team familiarized with this kind of 

tools. This is important, so it is possible to start from the idea that basic concepts are already 

acquired, such as functions hierarchy, methods, operators or even matrixial structures. These 

are basic elements necessary to grant coherency and cohesion between all the sub functions 

presented on this code. 

Having said that, the concepts more taken in account, on this code were: 

Code files  

These are the text files that assign value and structure the functions to project the application, 

that can be found on the left side of Android Studio on the Progress Bar, illustrated by a blue 

circle with the letter C by the middle of it, which represents a Class file, as it can be seen on 

Figure 9. 

 
 

Figure 9: Localization of the files on Android Studio. 
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Commonly, when it is obtained a correct initiation in the background of Android Studio, this is 

known. Nevertheless, it is useful to differentiate it from the Layouts. 

Layouts:  

These are also text files. Although, the contained code, is defined in a different way compared 

to Class files. This is due to their function on the program.  

Layout files are related to the graphic interface of the program, the one seen by the user, that 

have as base class the ViewGroup. This graphic interface is called on the main code of Java to 

be visualized later, according to the parameters defined on the Layout file, displayed on the 

screen. 

Figure 10: Visual Interface. 
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Figure 11: Code part in order to generate a visual interface. 

 
This analogy helps to understand the load of code Figure 11 that requires to generate the Figure 

10. Thus, to present this simple graphical interface, it is necessary to include different concepts 

like the location of the RPAS’ Gif, the text and as well use the different types of Layouts.  

The common types of Layouts used on this kind of applications are: 

- LinearLayout: On this type of Layout, it is given an automatic ordination of the 

graphical elements in a linear direction, that can be either horizontal or vertical. This 

is the simplest type of Layout. Although it is not recommended if the objects need to 

be at a certain location, once it already includes a predefined disposition for the 

elements. [52] 

- RelativeLayout: On this type of layout, it is allowed to locate an element at a define 

position aligned either with the border of the screen or with a relative position based 

on a previously defined element. It is commonly used which enables to eliminate nested 

view groups and also maintain the layout hierarchy equal, improving the application’s 

performance. [53] [54] 

- FrameLayout: This is the most complex type of Layout, from the three mentioned here. 

Most of the times, it is only used when it is required to block a part of the screen, 

enabling to display a single item or a specified activity. In this case, was used to the 

map. [55] 

For these reasons, to create graphical interfaces containing a diversified number of buttons, 

reserve a place to display the map and the option to be switched for the camera of the RPAS, 
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it is needed to establish a diversified number of combinations and mix the different types of 

Layout provided inside of a “.xml” file, that are the once which contain this type of code. It is 

also required to use the options of visibility that will be explained later. 

To the initial of the tutorial it is a must to separate the Layout in two sections: 

- The top section, which will have a sequence of slides with information, that can be 

switched by sliding the screen to the side.  

- The lower section that will contain the progress state, to let know the current slide the 

user is, providing an idea of the total number of existent informative slides. 

This introduction tutorial requires another additional code file, that comes with the need to 

relate different kinds of Layouts, the ones moving on the top section with the ones settled on 

the base of the screen, as it can be seen on Figure 12. 

 

Figure 12: Interface separated from the tutorial. 

 

3.3 Visibility options 
 
This option will not be illustrated, for the simple fact that his complexity does not require it. 

Nonetheless, it is necessary to keep it in mind, once it has a huge set of advantages. On this 

case, it was used to add up the cameras and map interface to a single one, like has been said 

before, just by the usage of one button. 

This, will include or exclude the visibility of some buttons in function of the part of the interface 

that is requested.  

This is possible with the command $AnyObject.setVisibility(View.VISIBLE/INVISIBLE)$. From this 

is possible to activate or disactivate.  
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Figure 13: Visible interface regarding the Map part. 

 

 

Figure 14: Visible interface regarding the Camera part. 

 

As a result of this functionality it has been possible to combine the two interfaces with a very 

simple procedure, avoiding the exchange of files within the code between interfaces and 

methods, also known as Intents, which will be explained on the next section. 

3.4 Exchange between Class code files: Intent 
 
The command Intent, is based on a simple structure as it is possible to obverse on Figure 15, 

that enables to exchange information between the file that is being executed, to the one that 

is desired to execute, with secondary tasks, until they are required. [45] 

 

Figure 15: Intent structure. 

 

This action shall not be mistaken by the one that is received when it is established an 

interaction with an element, like a button. On this particular analogy, it is obtained a feedback 

from the function assigned to the button inside of the code. Although the information accessed 

is located in the general Class file. With the Intent, it is possible to access to other Class file 

between the ones available on the Java folder, that can be seen on Figure 15, as well the basic 

divisions and Class files needed on a project of medium scale. 
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3.5 Exchange between Class code files: Intent 
 
The application icon is a fundamental aspect of every project, that most of the times, is not 

given the deserved importance once coders focus only on the code. 

This small detail is the one which will provide the first impression to the users. Given the state 

of this project, the icon was projected for different sizes, once different devices may require 

it. Thus, resorting to the Launcher Icon Generator [56], it was possible to create an icon based 

on a photo provided. The result was the Figure 16. 

 

Figure 16: Application icon. 

 

The existent sizes for website icons are: [57] 

- Low Density Pixel Image (LDPI): This format is not provided from the website once it 

does not have a common use, contains 36 x 36 pixels 

- Medium Density Pixel Image (MDPI): This format is provided by the website, contains 

48 x 48 pixels. 

- High Density Pixel Image (HDPI): This format is provided by the website, contains 72 x 

72 pixels. 

- Extra High Density Pixel Image (XHDPI): This format is provided by the website, contains 

96 x 96 pixels 

- Extra Extra High Density Pixel Image (XXHDPI): This format is provided by the website, 

contains 144 x 144 pixels. 

- Extra Extra Extra High Density Pixel Image (XXXHDPI): This format is provided by the 

website, contains 192 x 192 pixels. 

3.6 Launcher: Manifest file 
 
As mentioned on the introduction of this document, there is a file named Android Manifest 

which contains the essential information that this application will require before being 
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launched, such as permissions, package identifiers, activities, passwords, that include the ones 

provided by DJI and Google Maps. 

Nevertheless, on this part will be focus the Activities. These, must be mentioned on the 

Manifest file and possess the following layout as shown on Figure 17. 

 

Figure 17: Launcher activity of the application. 

 

The declaration of an Activity as Launcher, may seem as obvious but should only be defined on 

the activity being launched first, although not being this linear. 

On the application, for reasons opposed by the producer and the small macros that are allowed 

to use, it is required to connect first before being launched. This can be solved by opening the 

code with the software Android Studio, and declare the activity that it is desired to open and 

examine the mobile device. 

As it can be seen, Manifest provides us a quick overlook on all the essential parts of the code 

that are restricted by the development stage, other than their usual function. [58] 

3.7 Click Events 
 
The method onClick [59] is directed to the buttons. Can be executed directly from the main 

loop, in order to avoid delays, since one of the main priorities of every app should be instant 

feedback when a button in clicked. This method will be mentioned later on, to a better 

understanding of the Switch-Case command. 

 

Figure 18: Code related to the onClick method. 
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On the other hand, this method only cares about the functionalities activated when a click is 

made on the buttons, although these need to be defined and enable Listener on them, so that 

the action can be saved and transfer this to the method onClick. 

Defining a button is a very simple process, that can be found in innumerous webpages for all 

the formats and needs. Although will be shown how to provide the listener, as it can be seen 

on Figure 19. 

 

Figure 19:  Enabling the functionality Listener on a button. 

 

The button mRecordBtn corresponds to the btnrecord identifier. 

This simple method can be implemented on regular button, and also more complex ones, such 

as Toggle Button. Toggle Button is a two states button, which possess his own code outside this 

method, despite being a click event. Nevertheless, this button has been developed with 

relatively low effort, and is based on the definition of the Listener, although it possesses many 

similar aspects with the onClick method.  

Once the method onCheckedChanged [60] is quite similar with the one mentioned above. A 

typical sample of an example is provided on Figure 20. 

 

Figure 20: Toggle button. 

 

By having a close look to the Figure 18, can be noticed that the Else statement is missing, on 

which should be included the functionalities when a button is deactivated. However, it can not 

be shown once the code which includes the button is far extensive to be displayed on a figure.  

Finally, with all the basic concepts being mentioned above on this section, becomes easier to 

explain the more complex aspect when it comes to “click” events, that is the onMapClick. [61] 

The difficulty associated with this method is not related with the load of code required, but 

with the different type of specific commands that are needed. 

To start, it is a must to define the map as a $private$ $GoogleMap$ OurMap. This is not a 

compatible format file with Android Studio, to which should be imported some tools, like 



Paulo Antunes – Semi-Autonomous Wind Blade inspection by a RPAS 

 

 28 

$import$ $com.google.android.gms.maps.GoogleMaps;$ between another ones. Fortunately, 

Google tries to minimize the effort to this task by providing additional messages that advice to 

click “Alt + Enter” on the issued part of the code to incorporate any additional library.  

In addition, it was created a delay method in order to give extra time, enabling the map to 

load completely, in case of requiring any additional files than the usual ones. This will provide 

the listener of the map, as it can be seen on Figure 21. 

 

 

Figure 21: Map listener. 

 

Finally, with the Listener mode activated, it is possible to load the method onMapClick, on 

which, by clicking on the Map button, becomes possible to define Waypoints. In cooperation 

with GoogleMaps, it is possible to convert these to geographic coordinates. 

As it can be seen on the Figure 21, Altitude is defined manually, once it can not be obtained 

with $point.altitude$, as it is made for the latitude and longitudinal coordinates. This is due to 

the Waypoints being defined in 2D. Thus, in order to obtain different altitudes over the 

Waypoint’s, was implemented the Setting Dialog, defined especially for this application. 

 
 

 

Figure 22: Menu that establishes the required the Altitude over each Waypoint created. 
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3.8 Command Switch-Case 
 
This is a very well-known statement, which exists in other languages than Java. Being is a very 

simple statement, becomes useful while defining the actions attributed to each button. This 

will be explained based on Figure 23, in a brief way be taking on segments of the code. 

 

Figure 23: Structure of Switch-Case. 

 

As it can be seen next to switch, there is the command $v.getId()$, which will select among all 

button’s identifiers present on the Class file, the one requested. Once identified, it passes to 

the case part, on which for every identifier there is an action defined. As an example, there is 

Figure 23, which represents the Capture button, that when pressed, has assigned the action of 

taking a photo, next to the break statement, which assured that once this action is concluded, 

the onClick method is stopped in order to avoid internal issues. 

3.9 Setting Dialog 
 
This section will mention the process of incorporating the data related to the Waypoints. This 

do not possess a specific code, but a combination of known concepts that will help to better 

understand how this section was projected minding of the general application. 

Although, the functionalities of this application were not mentioned, first should be introduced 

the Waypoints related to a defined task with the onMapClick, previously explained. With this, 

should be assigned restrictions on which Waypoint that the RPAS should complete. This is 

possible with Setting Dialog, shown on Figure 22, which includes all the variables which can be 

defined. These allow to define a specific altitude over different point velocity over the path, 

action executed when reached the final point and the pitch mode. With more detail, will be 

mentioned again on the section of Functionalities, thus will be given more attention to the 

creation of this menu. 

To start, it is required to define a method to be executed when pulsing the “CONFIG” button. 
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Figure 24: Action of the configuration button. 
 

 

Furthermore, the code related to $showSettingDialog()$ will be initiated as it is shown on Figure 

24. 

 

Figure 25: Initiation of Setting Dialog. 

 

To start, it is used the Layout inflate which allow to display the menu over the principal layout 

of the application, on which will be introduced the data. [62] 

As done before, the Listeners and EditText statements will be explained in a brief way. The 

EditText are text’s that can be modified with the keyboard by the user. These statements are 

the parameters required from the user in order to produce actions based on them. 

The following step will enable to process this data over the variables used, on which most of 

them are in a direct mode. An example is when it is desired to return home, the function “Go 

Home” should be called as in Figure 26. 

 

Figure 26: Example of the option related to Waypoints. 

 

These libraries provided by DJI, include a large quantity of methods, such as the one shown on 

Figure 26, like $WaypointsMissionFinishedAction$. This makes possible for developers to save 

time on the creation of new applications without having to implement basic procedures to 

exchange information with the RPAS. Although a well understanding and experience is required, 

once the information lack detailed explanation, being this a quite closed surrounding. This 

requires the user to search for different sources of knowledge in order to play this defined 

libraries and methods in his favor. 

To conclude, all this saved and processed information by the external methods is managed by 

the loop $configWayPointMission()$. On this, is called the list of WayPoints previous requested 

on the event onMapClick, on which is established this data, be taking on 

waypointMissionBuilder. 

In order to provide a better understanding over this, Figure 27 shows the direct functionality: 
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Figure 27: Final stage of the acquisition of data to start the flight. 

 

It is possible to understand where the data is set by looking to the variables defined previously: 

$mFinishedAction$, $mHeadingMode$, $mSpeed$, $altitude$. 

The Builder, will be responsible for the usage of these variables defined on the list of Waypoints 

at his time. 

When analyzing the part of the altitude, it is quite different, once that this parameter is 

constant on the macro provided by DJI. Thus, it has been modified so it can be adjusted over 

different purposes for the application usage, more specifically, on this surveillance of Wind 

Turbine blades, height is variable. [63] 

3.10 External Methods 

 
On the application that has been developed, a diversified number of functionalities were 

implemented. Although a valuable aspect that should be mentioned is the complex macro 

provided by the developers, which was a huge help to this achieve. Thus, much of this 

information presents itself as a hard aspect to understand by just a quick overview. Although, 

some aspects will be exposed of higher interest and convenience. 

Flight Controller 

Through basic commands, it is possible to access the functionalities of localization of our RPAS, 

since it is already implemented the functionalities of localization and stabilization of flight 

parameters. 
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Waypoint Class  

These are the options that allow to establish communication with the RPAS. To be more precise, 

onMapClick, is in fact, the point where a certain type of proprieties will be applied, not the 

point that it should pass. 

Camera 

With the $getInstanceCamera()$ and the respective callback, which is a method that will be 

executed after a certain action, between a whole diversity of internal methods, like 

$startShootPhoto$, will establish essential internal procedures. These are required to maintain 

communication and activate the camera of the RPAS, enabling to capture images and store 

them on the SD card, that the RPAS has the capacity to possess.   

In a similar way, with other methods, is possible to execute a video with the camera by 

implementing the respective code, that enable to manage these functionalities.  

Although being an effort to gather different macro’s and resolve compatibility issues between 

them, DJI developers page provide good topics about the MacroCam. [64]  

Connection 

Previously has been shown a tutorial to the creation of this application, that will be launched 

through the Class ConnectionActivity. 

This will block the contain of the application for a security reason, in order to assure aspects 

like compatible internal methods, official RPAS and version used are subjects that should be 

validated so it can be assured that the product is projected correctly providing regular 

performance while working. 

This aspect should not be taken in deep consideration, once it is explained in detail on almost 

every tutorial of the page, such as the one mentioned above regarding the camera application. 

[64] 

 

3.11  Functionalities 
 
This application was developed regarding the inspection of aerogenerator blades, to which must 

include a whole range of functionalities that can be adapt to different clients. 

On this alfa stage of the application, it is provided the services of the camera to take photos 

and to record videos, which can be processed afterwards, and also a movement system of the 

RPAS that can be followed on the map displayed on the mobile screen, with the manually 

defined altitude on each Waypoint, allowing a whole range of trajectories. Furthermore, it also 

includes a “Panic” button, that can be activated, blocking every previous defined action, 

allowing the return of the RPAS to the “home” position in case of something wrong or just a 

need to redefine the trajectory assigned. 
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3.12 Accessibility 
 
This application was created aiming to keep the user’s interest on short tutorials, providing an 

fundamental concepts, in order to make effortless to establish the connection between the 

mobile device and the RPAS enabling it to fly. Once these steps are completed, when connected 

correctly, the file ConnectionActivity, will assure it. The Map will appear on the interface 

displayed on the mobile device which contains some buttons on the top of the screen that allow 

the execution of defined actions. 

 

Figure 28: Interface of the Map. 

 

 

Figure 29: Interface of the camera. 

 



Paulo Antunes – Semi-Autonomous Wind Blade inspection by a RPAS 

 

 34 

It is shown a simple interface, on which the Map buttons are in different displacements. The 

switch between interfaces can be obtain as mentioned before with the Toggle Button that is 

shown on the top right of the screen. The “Panic” button will never turn invisible for security 

reasons, that will be described later on.  

This interface will also return informative Toasts, that are short duration messages displayed 

near the bottom of the screen, as it can be seen on Figure 29 in a grey balloon. This provide 

useful information that let us know if the action has been completed successful or not. 

 

Figure 30: Toast code example. 

 

Furthermore, since this application has an industrial purpose, it is important to mention that it 

is provided three different languages, so that messages on this application can be executed in 

English, Spanish and Portuguese. [65] This is possible modify them or even incorporate more by 

accessing the strings.xml file, that can be accessed as shown in Figure 31. 

 

 

Figure 31: Location of different languages provided to this application. 

 

Then, by opening the file strings.xml, will be clicked the option “Open editor”. 
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Figure 32: Option that allows to edit the languages displayed on the application. 

 

Once inside of the editor, a language must be selected to translate all the defined texts to the 

language desired. It is of higher importance to locate all the text’s that will be used on the 

application on the string.xml file, as well to call them on the code by their identification, either 

being Class files or layout.xml files, so that the change between languages is possible.  

3.13 Camera utilities 
 
On the beginning, for the functionalities section, was introduced the functionality of the 

camera, as well the explication of the code based on previous knowledge. Thus, remains to 

mention his behavior. As seen on the Accessibility section, the camera interface contains the 

buttons presented on the Figure 29.  

The relevant buttons are: camera mode, video mode, recording and capture. 

It is required to establish on the application, which mode is being used, the camera or the video 

mode. Furthermore, to start it is clicked the mode that is desired to use, so when the 

informative messages, Toast, appears it is ready to press the button “capture” or “record”, 

depending on the mode that is being used. 

Moreover, it was introduced the functionality over the video mode, that show’s bellow the 

“record” button, a timer so that the user can have an idea of the duration of this action. In the 

end, all these files will be saved on the SD card of the RPAS. 

3.14 Mission Maker and GPS 

On this section, will be explained how does the mission maker works, in other terms, the steps 

that the user should complete, once that the code has been explained already. 

The explication shown below was previously included in a brief way over the tutorial displayed 

at beginning of the application. Furthermore, it is shown the buttons of the interface that take 

part on the Map, as it can be seen on Figure 28. 

The procedure, is that once the RPAS is connected with the application, the use must take 

place where GPS signal is strong, once that all the trajectory generated with this application is 

based on GPS signal, if this parameter is not fulfilled, a message will be displayed by an internal 

library which will not allow to continue the execution. Once the GPS signal is strong, the button 

“Locate” should be pressed, that will establish the RPAS position over the map. This position is 
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manually defined by the latitude and longitudinal parameters on the DJI Assistant 2, available 

for free on the DJI website. [66] 

Moreover, after having a defined location of the RPAS, to define Waypoints should be pressed 

the button “ADD” that will provide the onMapClick method, the button can be seen on Figure 

33. These way, it is possible to define the Waypoints by pressing the Map. After the points over 

which it is desired to complete a circuit are established, the same button should be pressed, 

although it will have the Exit word on it while being onMapClick mode, so this action is finished 

successfully. 

 

Figure 33: Assignation of the waypoints manually. 

 

Secondly, the button “Config” should be pressed, which will request the menu to introduce 

data, Setting Dialog, that enables to defined different altitudes over each Waypoint, velocity, 

pitch and final action desired. This process was explained with higher detail in the section of 

“Previous knowledge”, that for more information should be consulted above. 

The last steps are to press the “Upload” button, which will load the data into a list of 

Waypoints, that after this, it is ready to press the “Start” button, in order to initiate the 

mission. 

During this, the button “Stop” operates to pause the mission, and also use the camera mode 

while the Map mode is executed on background, without any issue. 

It is also possible to see the “Clear” button, that allows to clear the mission established. This 

is useful once if any Waypoint was misplaced, it can be changed. 
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3.15 Security regarding adverse conditions 

During the automated mission of the RPAS, it will execute all the parameters that the user 

defines. Nevertheless, errors might have been placed, and the fact of pressing the “Stop” 

button will not be enough to return the RPAS to a safe place, once after this another mission 

to return to the initial position, also called “Home” is required. Since the action “Go Home” 

will not have defined “Home” position as the start position of the mission, but the position 

where the “Stop” button was used. These small details generated by the Macro provided by DJI 

MacroMap, must be taken in concern when evaluation the safeness of the RPAS regarding the 

human error. [67] With the goal of avoiding these issues, a “Panic” button was developed, 

located on the top left corner of the screen, visible whether in Camera or Video mode. 

 

Figure 34: Panic button. 

Moreover, will be explained the procedure in order to bring the RPAS to the initial position. 

First, the functionality over the “Locate” button was added, that in addiction of his normal 

function, also allows to store the Latitude and Longitude of the initial position, but only for the 

first time it is pressed, that it is saved as a global variable. In other words, this initial position 

is saved until the application is exit. With this, even by pressing the “Stop” or “Clear” buttons, 

necessary to define the mission of returning home, it is possible to store the initial position, no 

matter what. 

Once this has been clarified, the mission can follow his normal course. First, it is pressed the 

“Stop” button, that instantly are included some Delays in order to prevent the system from 

collapsing and enabling itself to manage all the orders. This is required since when the data is 

introduced manually, it is given a certain time for the application between point to point. 

Nevertheless, when everything is instantly, and every data is inserted immediately, the 

application might collapse. 

The next command applied should be “Clean” so the list of Waypoints is cleared. After this, 

the “Locate” button should be pressed so the application can have the position where the drone 

is currently. Next, it can be executed a new mission, that contains as initial point and final 

point, the current location, the geographic coordinates saved previously as global variable. 

Once that every data was erased, it is advised to defined “AutoLand” as the final action when 

reach to the initial position, that commonly the user might want to land if anything went wrong 

during the trajectory. Moreover, should be defined “Low Velocity” to return and a automatic 
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pitch mode so that no actions from the user are required. All this trajectory will be executed 

at a 30 meters altitude, in order to avoid possible obstacles while returning.  

To summarize, this “Panic” button provided an additional security to the user that in case of 

fail, preventing the loss of the RPAS’ control, enabling to retrieve him safely. On the Results 

section, will be shown the functionality of this button. 
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Chapter 4: MATLAB Simulation Model 
 
On this chapter, will be presented the methods used to obtain the algorithm so it would be 

possible to generate a trajectory in MATLAB. The model used had incorporated the parameters 

of Phantom 4, such as the mass and arm length. Moreover, will be presented how it is planned 

to adapt this code to the Application produced in Java. 

4.1 Dynamic Model 
 
The robot’s movements can be defined by six degrees of freedom. In order to characterize 

them, the Inertial frame (a) and Body frame (i) frame were created. The Inertial frame is 

composed by a1, a2 and a3, being the positive part of a3 pointing upward. In addiction, was 

defined the body frame (i), which has the origin latch onto the Quadrotors centre of mass, as 

it is possible to see on the Figure 35. 

 

Figure 35: Referential systems. 

 

To characterize the system, will be used Z – X – Y Euler angles, modelling the rotation of the 

Quadrotor.  

In addition, to characterize the vehicles attitude, it is defined a rotation matrix, 𝑅𝑎
𝑖 , 

presented on the equation (1). It enables to describe a vector from the Inertial System, a, in 

the vehicles body system, i, multiplying the vector from the inertial by the rotation matrix, or 

vice versa. 

𝑅𝑎
𝑖 = [

𝑐𝜓𝑐𝜃 − 𝑠𝜙𝑠𝜓𝑠𝜃 −𝑐𝜙𝑠𝜓 𝑐𝜓𝑠𝜃 + 𝑐𝜃𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 + 𝑐𝜓𝑠𝜙𝑠𝜃 𝑐𝜙𝑐𝜓 𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑐𝜃𝑠𝜙

−𝑐𝜙𝑠𝜃 𝑠𝜙 𝑐𝜙𝑐𝜃
]  (1) 

The sθ and cθ, represent sin(θ) and cos(θ), respectively. This also applies for 𝜙 and ψ angles. 

Defining r, as the position vector with respect to the center of mass (i) from the inertial 

frame (a).  
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The primary forces on the system are the ones produced by gravity, on the – i3 direction, and 

the ones produced by the motors Fi, on the i3 direction. To summarize this, is provided 

equation (2) that represents the acceleration with respect to the center of mass.  

 𝑚�̈� =  [
0
0

−𝑚𝑔
] + 𝑅 [

0
0

𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

] (2) 

The angular velocities are defined as p, q and r, on equation (3). These are related with the 

derivatives of roll, pitch and yaw angles. 

 [
𝑝
𝑞
𝑟
] = [

𝑐𝜃 0 −𝑐𝜙𝑠𝜃
0 1 𝑠𝜙
𝑠𝜃 0 𝑐𝜙𝑐𝜃

] [

�̇�

�̇�
�̇�

] 

 

(3) 

4.2 Control Inputs 

 
Over the referential system established, the Quadrotors state is defined based on the 

longitudinal, transversal and vertical positions, first tree elements on equation (4). 

Nevertheless, his orientation over the tree axis should also be considered, last tree elements 

of equation (4). With this, is defined the quadrotors state. Regarding equation (5), is 

represented the state of the rigid body, which is composed by his six-dimension vector (q) 

and its rate of change (�̇�). 

 𝑞′ = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]𝑇 (4) 

 𝑥 = [𝑞′ �̇�′]𝑇 (5) 

On this model, a series of simplifications were made. It is assumed that the thrust produced 

by the rotors, can be swapped immediately. This is not completely accurate, once that a 

dynamical system is characterized for being a system on which the effects of actions do not 

occur immediately. It is also limited in terms of the vehicle’s body rate, by the gyroscopes 

and tracking controllers. In addition, the force produced by each motor, 𝑎𝑖 was limited, being 

the maximum value produced by all the rotors, 1,5 times of the Quadrotors weight. 

Being i = 1,2,3,4.  

 𝑎𝑚𝑖𝑛 ≤ 𝑎𝑖 ≤ 𝑎𝑚𝑎𝑥 (6) 

On which a represents linear acceleration. The value of 𝑎𝑚𝑖𝑛  is positive or zero, since these 

Quadrotors do not possess the ability to stop or reverse the direction of rotation of the 

propellers. [68] The maximum thrust is limited by peak motor torque. The total of vertical 

forces can be obtained by the sum of the forces produced by the motors plus the force of the 

gravity applied on the vehicle. 
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�⃗�𝑇𝑜𝑡𝑎𝑙 = �⃗�𝑚𝑜𝑡𝑜𝑟 + �⃗�𝑔𝑟𝑎𝑣𝑖𝑡𝑦 (7) 

Discretizing equation (7), it is possible to obtain equation (8), on which m represents the 

mass of the vehicle, g is the force of gravity, ω the angular speed of the motors and kF the 

proportionality constant of the force produced by the motors. [68] 

 𝑚𝑎 =  ∑𝑘𝐹𝜔𝑖
2

4

𝑖=1

+ 𝑚𝑔 (8) 

4.3 Equations of motion 
 

Related to the equations of motion, the ones regarding to the motors, creates moments over 

the three-referential axis established. Since motors 1 and 3 spin on the – i3 direction they will 

produce a positive moment. Motors 2 and 4 spin on the i3 direction, producing negative 

moments. The variable L represents the distance between the vehicle’ center of mass and the 

position of the motor. With this defined, the inertia matrix related to the moments produced 

by the components of the vehicle can be written as: [68] 

 I [
�̇�
�̇�
�̇�

] = [

𝐿(𝐹2 − 𝐹4)
𝐿(𝐹3 − 𝐹1)

𝑀1 − 𝑀2 + 𝑀3 − 𝑀4

] − [
𝑝
𝑞
𝑟
]×𝐼 [

𝑝
𝑞
𝑟
] (9) 

4.4 Motor model 

 
The motors were modeled by a test of steady-state fixed rotor in order to determine a 

constant of proportionality that multiplied by the angular speed would allow to estimate the 

force produced:  

 𝐹𝑖 = 𝑘𝐹𝜔𝑖
2 (10) 

Experimentation with a fixed rotor at steady-state show  𝑘𝐹 ≈  6.11 × 10−3 𝑁/𝑟𝑝𝑚. [69] 

With the same ideology, it is possible to determine a constant of proportionality, to estimate 

the moment produced: 

 𝑀𝑖 = 𝑘𝑀𝜔𝑖
2 (11) 

The constant, was determined to be about   𝑘𝑀 ≈  1.5 × 10−9 𝑁/𝑟𝑝𝑚. [69] 

The components of angular velocity, relative to the body frame, are defined as: 

 𝜔𝑖
𝑎 = 𝑝𝑖1 + 𝑞𝑖2 + 𝑟𝑖3 (12) 
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4.5 Control Model 
 

The rigid body dynamics have slower response compared to the motor dynamics. 

Incorporating them leads to a fifth order dynamic model that implies additional complexity 

without significant improvement in performance. [68] Using Euler angles, it is possible to 

parameterize the orientation, position and velocity of the center of mass. 

 𝑥 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 �̇� �̇� �̇� 𝑝 𝑞 𝑟]𝑇 (13) 

Neglecting the parameterization by the position and velocity of the center of mass, rotation 

matrix and angular velocity, can be simplified to: [68] 

 𝑢 = [𝑢1 𝑢2 𝑢3 𝑢4]𝑇 (14) 

Where 𝑢1 is the force from all the propellers and 𝑢2, 𝑢3, and 𝑢4 are the moments related to the 

body frame axis. [68] 

 

Figure 36: Nested control loop for the position and attitude control. (Obtained from [69]) 

 

This nested loop, has an inner loop that corresponds to the attitude control and an outer loop 

that corresponds to the position control. On the inner loop is specified the orientation either 

with the rotation matrix or a series of roll, pitch and yaw angles. From the angular rates, will 

be calculated 𝑢2. This is a function of the thrust and the moments that provide from the motor 

speeds. It will be calculated based on the desired attitude. On the outer loop, its aim is to 

obtain the position vector. This, will be compared with the actual position and actual velocity 

that enables us to obtain 𝑢1. [68] 

4.6 Attitude Control  
 
Since this is an initial approach, the waypoints are defined so the Quadrotor completes an 

itinerary that contains all the blades in order complete a visual survey with photos on them. To 

obtain a quality inspection, it is needed a high-quality photo, which requires a stable flight, no 

aggressive maneuvers, and mostly considered on near hover state. Thus, it is presented a 

control based on small angles. This controller is based on a linearization of the equations of 

motion and motor models, at an operating point that corresponds to the nominal hover state: 

[68] 
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 θ ≈ 𝜙 ≈ 0 (15) 

 ψ  ≈ ψ0 (16) 

 

Considering small angles of pitch and roll: 

 𝑐ϕ ≈ 1, 𝑐θ ≈ 1, 𝑠ϕ ≈ 0 , 𝑠θ ≈ 0 (17) 

So, it is possible to deduce the nominal values at hover state for the first two inputs defined, 

the thrust of the motors, u1, and the Quadrotor attitude, 𝑢2: 

𝑢1,0 = 𝑚𝑔 (18) 

 𝑢2,0 = 0 (19) 

By this, it is possible to assume that each rotor produces a quarter of the total thrust needed 

to maintain hover, so: 

 

 

 

𝐹𝑖,0 =
𝑚𝑔

4
 (20) 

And so, it is possible to deduce that the nominal angular velocity produced by the motors are: 

[68] 

 𝜔𝑖,0 = 𝜔ℎ = √
𝑚𝑔

4𝑘𝐹
 (21) 

Thus, it is possible to determine the desired rotor speeds using the desired (𝑢1,𝑑𝑒𝑠) and the 

moments (𝑢2,𝑑𝑒𝑠 , 𝑢3,𝑑𝑒𝑠 and 𝑢4,𝑑𝑒𝑠 ): 

𝑢𝑑𝑒𝑠 = [

𝑘𝐹 𝑘𝐹 𝑘𝐹 𝑘𝐹

0 𝑘𝐹𝐿 0 −𝑘𝐹𝐿
−𝑘𝐹𝐿 0 𝑘𝐹𝐿 0
𝑘𝑀 −𝑘𝑀 𝑘𝑀 −𝑘𝑀

]

[
 
 
 
 
𝜔2

1,𝑑𝑒𝑠

𝜔2
2,𝑑𝑒𝑠

𝜔2
3,𝑑𝑒𝑠

𝜔2
4,𝑑𝑒𝑠]

 
 
 
 

 (22) 

4.7 Trajectory Tracking 
 
For the position control, will be presented two position methods, based on roll and pitch 

angles as inputs. Both methods are based on the linearization of the equations of motion, as 

shown above. The first method is for the nominal state, hover, used for maintaining the 

position. The second is designed to track and follow a desired trajectory, r(t), over the three 

directions. On these two methods, the position control algorithm will determine the desired 

roll and pitch angles, 𝜙𝑑𝑒𝑠 and  𝜃𝑑𝑒𝑠, that can be used to compute the commanded 
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accelerations. [68] This yaw angles, can be constant, 𝜓0 , or variable with time, 𝜓𝑐(𝑡). It is 

a similar method to a backstepping approach. [70]  

On this case, the position and orientation are fixed, which implies that all velocities and 

acceleration are zero, as well the roll and pitch angles. The input 𝑢2, must be close to zero, 

as well the rates p, q and r. The yaw angles can be non-zero if it is fixed, 𝜓𝑐(𝑡) =  𝜓0. [69] It 

is assumed that 𝑢1 is very close to the weight. 

With these assumptions, is now possible to define expressions to determine the accelerations 

over the three axes from Equation (2): 

 �̈�1 = 𝑔(∆𝜃𝑐𝑜𝑠𝜓0 + ∆𝜙𝑠𝑖𝑛𝜓0) (23) 

 

 
�̈�2 = 𝑔(∆𝜃𝑐𝑜𝑠𝜓0 + ∆𝜙𝑠𝑖𝑛𝜓0) (24) 

 �̈�3 =
1

𝑚
𝑢1 − 𝑔 (25) 

Related to the products of inertia, once the axes are close to the principal ones, it is possible 

to assume that:  

 𝐼𝑥𝑥 ≈ 𝐼𝑦𝑦 (26) 

Since the Quadrotor is symmetric, it is possible to write the rates of change based on the 

linearization of the equations (2) and (3): [68] 

 �̇� =  
𝑢2

𝐼𝑥𝑥
=

𝐿

𝐼𝑥𝑥

(𝐹2 − 𝐹4) (27) 

 �̇� =  
𝑢3

𝐼𝑦𝑦
=

𝐿

𝐼𝑥𝑥

(𝐹3 − 𝐹1) (28) 

 �̇� =  
𝑢4

𝐼𝑧𝑧
=

𝛾

𝐼𝑧𝑧
(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4) (29) 

The error related to the position, is defined as the different between the desired state and 

the actual state: 

 𝑒𝑖 = (𝑟𝑖,𝑑𝑒𝑠 − 𝑟𝑖) (30) 

Furthermore, will be incorporated a PD controller. This contains a proportional gain that 

produces oscillations when the system is far from the desired state plus the derivative gain, 

which predicts system behaviour and helps to stabilize it. Thus, can be written the following 

equation, in order that the error goes exponentially to zero: 

 (�̈�𝑖,𝑑𝑒𝑠 − �̈�𝑖,𝑐) + 𝑘𝑑,𝑖(�̇�𝑖,𝑑𝑒𝑠 − �̇�𝑖) + 𝑘𝑝,𝑖(𝑟𝑖,𝑑𝑒𝑠−𝑟𝑖) = 0 (31) 
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4.8 Hover stage 
 
On this state, it is desired for the Quadrotor to maintain a defined position, which means that 

the acceleration and velocity are zero: 

 �̈�𝑖,𝑐 = �̇�𝑖,𝑐 = 0 (32) 

Moreover, it must be established that this condition is guaranteed. Thus, applying equation 

(31), lead to: [68] 

 �̈�𝑖,𝑑𝑒𝑠 + 𝑘𝑑,𝑖�̇�𝑖,𝑑𝑒𝑠 + 𝑘𝑝,𝑖(𝑟𝑖 − 𝑟𝑖,𝑑𝑒𝑠) = 0 (33) 

Based on equation (23-25), and reminding the fact that pitch and roll angles must be 

maintained at a constant value, in order the achieve this state, the equation can be 

simplified to: 

 �̈�1,𝑑𝑒𝑠 = 𝑔(𝜃𝑑𝑒𝑠𝑐𝑜𝑠𝜓𝑇 + 𝜙𝑑𝑒𝑠𝑠𝑖𝑛𝜓𝑇) (34) 

 

 
�̈�2,𝑑𝑒𝑠 = 𝑔(𝜃𝑑𝑒𝑠𝑠𝑖𝑛𝜓𝑇 + 𝜙𝑑𝑒𝑠𝑐𝑜𝑠𝜓𝑇) (35) 

 �̈�3,𝑑𝑒𝑠 =
1

𝑚
𝑢1 − 𝑔 (36) 

Moreover, with a PD controller, as written in the equation (31), the error shall go exponentially 

to zero and also satisfy a second order differential equation (33). Related to this equation, 

there is a set of terms related to the specified trajectory, �̈�𝑖,𝑑𝑒𝑠, �̇�𝑖,𝑑𝑒𝑠 and  𝑟𝑖,𝑑𝑒𝑠, and a set of 

terms related with the actual trajectory, �̇�𝑖 and  𝑟𝑖. Thus, it is from our interest to calculate the 

commanded sum of the thrusts from the motors, that will define the force that is desired to 

produce on the Quadrotor, in order to maintain his position: 

 𝑢1 = 𝑚𝑔 + 𝑚�̈�3,𝑑𝑒𝑠 = 𝑚𝑔 − 𝑚(𝑘𝑑,3�̇�3 + 𝑘𝑝,3(𝑟3,𝑑𝑒𝑠−𝑟3) (37) 

The commanded roll and pitch angles can be obtained once known the desired acceleration in 

the x and y directions, as shown below: 

 𝜙𝑐 = 
1

𝑔
(�̈�1,𝑑𝑒𝑠𝑠𝑖𝑛𝜓𝑑𝑒𝑠 − �̈�2,𝑑𝑒𝑠𝑐𝑜𝑠𝜓𝑑𝑒𝑠)  (38) 

 𝜃𝑐 = 
1

𝑔
(�̈�1,𝑑𝑒𝑠𝑐𝑜𝑠𝜓𝑑𝑒𝑠 + �̈�2,𝑑𝑒𝑠𝑠𝑖𝑛𝜓𝑑𝑒𝑠)  (39) 
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The desired roll and pitch angles are defined as shown on the equation (40) and (41): 

 𝜙𝑑𝑒𝑠 = 
1

𝑔
(�̈�1,𝑐𝑠𝑖𝑛𝜓𝑑𝑒𝑠 − �̈�2,𝑐𝑐𝑜𝑠𝜓𝑑𝑒𝑠)  (40) 

 𝜃𝑑𝑒𝑠 = 
1

𝑔
(�̈�1,𝑐𝑐𝑜𝑠𝜓𝑑𝑒𝑠 + �̈�2,𝑐𝑠𝑖𝑛𝜓𝑑𝑒𝑠)  (41) 

Furthermore, the pitch and roll velocities are defined as zero since these angles are constant 

through all the hover state: 

 𝑝𝑑𝑒𝑠 = 0 (42) 

 𝑞𝑑𝑒𝑠 = 0 (43) 

 𝑟𝑑𝑒𝑠 = �̇�𝑇(𝑡) (44) 

For the feedback loop, it is assumed that the commanded roll, pitch and yaw angles are 

known, as well their derivatives. Thus, all it is required for attitude feedback control are the 

actual values of roll, pitch and yaw angles plus their derivatives to determine 𝑢2: 

 𝑢2 = [

𝑘𝑝,𝜙(𝜙𝑑𝑒𝑠 − 𝜙) + 𝑘𝑑,𝜙(𝑝𝑑𝑒𝑠 − 𝑝)

𝑘𝑝,𝜃(𝜃𝑑𝑒𝑠 − 𝜃) + 𝑘𝑑,𝜃(𝑞𝑑𝑒𝑠 − 𝑞)

𝑘𝑝,𝜓(𝜓𝑑𝑒𝑠 − 𝜓) + 𝑘𝑑,𝜓(𝑟𝑑𝑒𝑠 − 𝑟)

] (45) 

This model was projected to have a faster feedback by the attitude controller, than the 

position controller loop, as it can be seen in the Figure 36. 

4.9 3D Trajectory 
 
Since nominal state has already been defined, now it is going to be defined a controller that 

will enable to follow a three-dimensional trajectory, with the acceleration being close to 

near-hover state. This model follows the same assumptions made above, with the difference 

that �̈�𝑖,𝑐 and  �̇�𝑖 are no longer zero. 

It is considered near-hover state, assumptions of linear equations hold. To generate the 

desired acceleration, it is used equation (31), so the error goes exponentially to zero.  

From the equation (23), it is possible to determine the commanded state over the longitudinal 

and transversal directions, respectively: 

 �̈�1,𝑐 = �̈�1,𝑑𝑒𝑠 − 𝑘𝑑,1(�̇�1,𝑑𝑒𝑠 − �̇�1) − 𝑘𝑝,1(𝑟1,𝑑𝑒𝑠−𝑟1) (46) 
 

 �̈�2,𝑐 = �̈�2,𝑑𝑒𝑠 − 𝑘𝑑,2(�̇�2,𝑑𝑒𝑠 − �̇�2) − 𝑘𝑝,2(𝑟2,𝑑𝑒𝑠−𝑟2) (47) 
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Yet, since this model has some errors and limitations relating to the input thrusts, 

commanded trajectory may present some oscillations when sharp turns are encountered. 

With this restriction, comes the need to provide a modification to better describe the 

trajectories. Defining �̂� as the trajectory’s unit tangent vector and �̂� as the normal unit 

vector, the binormal vector, �̂�, is obtained by cross product of the trajectory’s unit tangent 

vector and the normal unit vector, �̂� =  �̂� × �̂�. With this, is possible to define position and 

velocity errors: [69]  

 𝑒𝑝 = ((𝑟𝑖,𝑑𝑒𝑠 − 𝑟𝑖) ∙ �̂�) �̂� + ((𝑟𝑖,𝑑𝑒𝑠 − 𝑟𝑖) ∙ �̂�)�̂� (48) 

 

 

 

𝑒𝑣 = �̇�𝑖,𝑑𝑒𝑠 − �̇�𝑖 (49) 

Only the position error, over the normal plane to the curve’s closest point is considered. The 

position error in tangential direction is ignored. With the expression defined in equation (31), 

it is possible to calculate the commanded acceleration, �̈�𝑖,𝑑𝑒𝑠: 

 (�̈�𝑖,𝑑𝑒𝑠 − �̈�𝑖) + 𝑘𝑑𝑒𝑣 + 𝑘𝑝𝑒𝑝 = 0 (50) 

All the other assumptions made for hover state hold, plus with the exceptions clarified on this 

section, it becomes possible to generate a trajectory on 3D. [68] 

4.10 Trajectory generation 
 
To the generation of trajectory, will be presented some equations depending on the precision 

required, their order will increase. Below is presented an equation for minimum snap 

trajectory, that requires a 7th order polynomials. Each polynomial piece travels between two 

waypoints, taking a stipulated amount of time, 𝑇𝑖. [68] 

Being 𝑝𝑖 the polynomial between positions, 𝜔𝑖 and 𝜔𝑖+1, that take,𝑇𝑖, time to complete. 

The total amount of time is represented by: 

 𝑆𝑖 = ∑ 𝑇𝑘

𝑖−1

𝑘=0

 (51) 

The polynomial that represents the restrictions through the waypoints is: [68] 

 𝑝𝑖(𝑡) = 𝛼𝑖0 + 𝛼𝑖1

𝑡 − 𝑆𝑖

𝑇𝑖
+ 𝛼𝑖2 (

𝑡 − 𝑆𝑖

𝑇𝑖
)
2

+ ⋯+ 𝛼𝑖7 (
𝑡 − 𝑆𝑖

𝑇𝑖
)
7

 (52) 



Paulo Antunes – Semi-Autonomous Wind Blade inspection by a RPAS 

 

 48 

To complete this equation, it is required to determine all the coefficients 𝛼𝑖𝑗. For this end, it 

is needed to establish some constraints. First, it must go through all the waypoints: [68] 

 

 
𝑝0(0) = 𝜔0 = 𝛼00 (53) 

 

 
𝑝𝑖(𝑆𝑖) = 𝜔𝑖+1 for all 𝑖 = 0…𝑛 (54) 

 

Second, must be defined that the Quadrotor will start and stop at rest: [68] 

 𝑝𝑛
(𝑘)(0) = 0 for all 0 ≤ 𝑘 ≤ 3 (55) 

   

 𝑝𝑛
(𝑘)(𝑆𝑛) = 0 for all 0 ≤ 𝑘 ≤ 3 (56) 

It must also be defined that the four derivatives are continuous between the waypoints: [68] 

 𝑝𝑖−1
(𝑘) (𝑆𝑖) = 𝑝𝑖

(𝑘)(𝑆𝑖) for all 𝑖 = 1…𝑛 and 𝑘 = 1…7 (57) 

With this, is possible to convert the constraints and unknown coefficients, 𝛼𝑖𝑗, into an 

equation, being A matrix build based by the restrictions and b, matrix composed by the 

waypoints: [68] 

 𝐴𝛼 = 𝑏 (58) 

Where 𝛼 contain all the unknown coefficients, and A and b represent all constraints. 

4.11 Gain tuning: Ziegler-Nichols method 
 

Since there are twelve gains to tune, half for the position, the other half for the attitude. A 

trial and error method approach becomes inefficient. Thus, urges the need to define a more 

systematic approach to gain tuning, the Ziegler-Nichols method. [68] [71] 

The Ziegler-Nichols method is used to tune Proportional, Proportional Integrative, Proportional 

Derivative and Proportional Integrative and Derivative controllers. On this case, it will be 

applied for a Proportional Derivative control. 

This method has a set of steps that should be followed: 

1 Set the proportional and derivative gains to zero. 

2 Increase the proportional gain until the system outputs sustained oscillations that will 

be denominated as Ultimate Gain, 𝐾𝑢. 

3 Measure the period, 𝑇𝑢, described by the oscillations. 

4 Define the proportional gain as 𝐾𝑝 = 0,8×𝐾𝑢 
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5 Define the derivative gain as   𝐾𝑣 = 𝑇𝑢/8 

Sometimes, even after this procedure, the controller response is too slow. To increase it, it is 

advised to scale the proportional and derivative gains by small increments until it is obtained 

a good response. [68] [72] 

4.12 MATLAB to Java 
 
After developing this algorithm, a thought urged in order to adapt it for the Java application, 

provide a more complete inspection. 

Among some solutions founded, here will be presented the most viable regarding to make the 

files compatible with Java language. 

MATLAB have incorporated many features, on which provides small applications inside of the 

software, very useful for the common needs, in order to minimize the effort of user. Among 

them, there is Compiler SDK. Sharing the advantages that this software provides to the users in 

areas such as Control Design, Image processing and others, incorporating Application 

Deployment, becomes possible to share ideas outside MATLAB, with the advantage of being 

able to pack it into another language, without the need to recode the algorithm. 

The MATLAB Compiler SDK [73] can be found by accessing APPS > Library Compiler > Java 

Package. 

 

Figure 37: Localization of Java Package, on the MATLAB environment. 

 

It is also important to say, changes on this code after converted to Java are not possible to 

execute, once it is only available for use. 

Another solution to convert these files into compatible ones with Java language, there is 

MATLABcontrol [74], that is a Java API. [75] This software allows to interact with a MATLAB 

code by calling it with Java. 
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Chapter 5: Simulation Results 

 

On this section, will be displayed the results obtained by the methods described earlier 

regarding the simulation.  

First will be shown the part related to the Android Application, taking advantage of the DJI 

equipment, in order to validate all the methods established. This simulation will have the base 

of three points established. On these waypoints, the RPAS will generate a linear trajectory 

between them. Nearby the end, will be triggered the Panic button, proving its functionality 

defined earlier. Moreover, will be displayer the MATLAB simulation, on which was defined a PD 

controller to stabilize the flight, providing a good trajectory over the Wind turbine blades. 

5.1 DJII Application 
 
Due to the flight restrictions established in Spain [76] [77], to fly an RPAS became very 

restrictive. Nevertheless, DJI provides a realistic simulator that allows people to learn how to 

manage this vehicle, and test applications, without the risk of damaging the equipment. Thus, 

this became the most viable solution to produce an autonomous trajectory based on the 

parameters requested on the application. The downside of this simulator is that is only available 

when connected with the RPAS.  

Among the 8 possible waypoints, there were defined 3, as it can be seen on Figure 33. Based 

on the waypoints defined, some parameters shall be established, in order to produce an 

adequate trajectory for the user needs. These parameters can be seen on Figure 22. 

After these parameters are established, a trajectory will be generated. The main parameters 

to describe the state of the RPAS are shown in the bottom left of the DJI Simulator, as it can 

be seen on Figure 38. A blue line was incorporated on the simulation, in order to have a clear 

view over the direction that the vehicle is heading, once the environment provided by the 

simulator does not possess particular reference points to orientate the viewers. 
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Figure 38: Simulation with the DJI Assistant 2 based on the parameters of the Phantom 4. 

 

Moreover, the Panic button, shown on Figure 34 is activated successfully, which allows the user 

to return to the “Home” position, where stands the user with the remote control. This can be 

noticed because the RPAS ascends to 30 meters, as it can be seen on Figure 39. This was defined 

as a safe height that would allow the vehicle to avoid obstacles on the generated trajectory to 

return home. This safety height can be modified on the code. 

 

Figure 39: Service ceiling of Phantom 4 established for the “Panic” Mission. 
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5.2 MATLAB Simulations 
 

5.2.1  MATLAB Simulation: Direct inspection 
 

On this first simulation, will be presented the results obtained from the simulation idealized to 

be described on each waypoint established on the Application presented on Section 5.1. 

The points defined to represent the Wind Generator blades, were based on the model GE 1.5sle, 

presented on the Introduction section. Moreover, this path was established as the waypoint 

defined would contain the blades from the wind turbine, from root to the tip. Thus, the 

waypoints defined are presented below, which were calculated based on trigonometric rules. 

The values shown on the matrix are in meters. The velocity of this trajectory is 0,75 m/s. 

 

𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 =  [
0 0 0 −33,34 0 33,34 0
0 0 0 0 0 0 0
80 118,5 80 60,75 80 60,75 80

] 

 

On Figure 40 is possible to see the actual trajectory, represented by the red colour, and the 

desired trajectory, represented by the blue colour. This contains the trajectory described by 

the RPAS. Since there is not a clear distinction between the desired and actual trajectory, plus 

it is able to provide a clear overview of the whole structure, it is possible to conclude that 

these are good results. 
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Figure 40: 3D trajectory over the Wind Turbine blades. 

 

On the Figure 41, the colour red represents the actual described values and the blue colour, 

represents the desired ones. The first row represents the trajectory over the x axis, the second 

row represents the trajectory over the y axis and the third one represents the trajectory over 

the z axis. Since the type of polynomial equation used to describe this trajectory was of first 

order, each change of coordinates is represented as a corner on the graph. A small oscillation 

can be seen over the longitudinal axis, x. Although, being on the 10-6 order, this can be 

despised. Over the other axis, an accurate trajectory is described, over the one desired.  
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Figure 41: Oscillations between the desired and actual position described. 

 

On Figure 42, the red colour represent the actual values described and the blue colour the 

desired values. On the velocities, it is possible to see that some values are with higher errors 

compared with the ones presented on the Figure 41. The most notorious oscillations are 

presented on the third column, which represents the vertical axis, since it is the one which has 

more variations associated. Although, it is considered that these are good values to be 

described by the RPAS.  

 

Figure 42: Oscillations between the desired and actual velocity described. 
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5.2.2  MATLAB Simulation: Random starting point 

 

On this second simulation, will be presented the results obtained from the one idealized to be 

described from a random waypoint established, which would not require defining the height 

which the waypoint require the RPAS go through, as shown on the Application. This was also 

developed based on the idea that the waypoint was separated from the wind turbine, that in 

this case was considered the distance of 20m. 

The points defined represent the Wind Generator blades, were based on the model GE 1.5sle, 

presented on the Introduction section. Moreover, this idealization was established as the 

waypoint defined would contain the blades of the wind generator, from the root to the tip. 

Thus, the waypoints defined are presented below, which were calculated based on 

trigonometric rules. The velocity of this trajectory is 0,75 m/s. 

 

𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 =  [
0 0 0 0 0 −33,34 0 33,34 0 0 0
0 0 20 20 20 20 20 20 20 0 0
0 30 80 118,5 80 60,75 80 60,75 80 30 0

] 

 

On Figure 43 it is possible to see the desired trajectory, represented by the blue color, and the 

actual trajectory, represented by the red color. This contains the trajectory described by the 

quadcopter. Since there is not a clear distinction between the desired and actual trajectory, 

plus it is able to provide a clear overview of the whole structure, can be concluded that these 

are accurate results facing the desired inspection.  
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Figure 43: 3D trajectory from a random point, over the wind blades. 

 

On Figure 44, it is represented by the red color the actual trajectory and in blue the desired 

trajectory. The first row represents the trajectory over the x axis, the second row represents 

the trajectory over the y axis and the third one represents the trajectory over the z axis. Since 

the type of polynomial equation used to describe this trajectory was of first order, each change 

of coordinates is represented as a corner on the graph. A small oscillation can be seen over the 

longitudinal axis, x. Although, the deviation is despised. Over the other axis, an accurate 

trajectory is described, over the one desired. 
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Figure 44: Desired and actual values related to the position of the trajectory. 

 

On Figure 45 can be seen the red and blue color, which represent the actual and desired values, 

respectively. On the velocities, it is possible to see that some values are with higher errors 

compared with the ones presented on the position described, Figure 44. The more notorious 

oscillations are presented on the third column, which represents the vertical axis, since it is 

the one which has more variations associated. Although, it is considered that these are good 

values to be described by the RPAS. 

 

 
 

Figure 45: Desired and Actual values of velocity during the trajectory. 
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5.2.3  MATLAB Simulation: Round trajectory over the Blades 

 
 

On this simulation case, the trajectory is generated based on the equations of Sin and Cosine 

to describe the longitudinal and transversal position, respectively, as shown below, where the 

r represents the radio of the circumference described in the trajectory. 

 

𝑥 = 𝐶𝑜𝑠(2𝜋)× 𝑟 

𝑦 = 𝑆𝑖𝑛(2𝜋)× 𝑟 

 

With this, is possible to define the starter point as a corner of the Wind Turbine, creating a 

circular trajectory, with a radio of 40m, which in this case, the initial longitudinal coordinate 

is 40. The initial height was defined as 60m, once with the layout presented on Figure 2, this is 

the minimum height that a blade from this model of Wind Turbine can be displaced. This path 

was developed so the RPAS could execute three laps, starting at 60m and finishing at 118,5m 

which is the maximum height of the Wind Turbined. 

On Figure 46 it is possible to see the desired trajectory, represented by the blue color, and the 

actual trajectory, represented by the red color. This contains the trajectory described by the 

quadcopter. Since there is not a clear distinction between the desired and actual trajectory it 

is possible to conclude that these are accurate results facing the desired values. 
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Figure 46: Round trajectory developed with three laps over the Wind Turbine. 

 

On Figure 47, it is represented by the red color the actual trajectory and in blue the desired 

trajectory. The first row represents the trajectory over the x axis, the second row represents 

the trajectory over the y axis and the third one represents the trajectory over the z axis. On 

this case, no oscillations are seen. Thus, it is possible to say that the gains are properly 

developed in order to provide an accurate trajectory. 
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Figure 47: Position over time related to the path described. 

 

On Figure 48 can be seen the red and blue color, which represent the actual and desired values, 

respectively, regarding the velocities described by the RPAS. The first row represents the 

velocity over the x axis, the second row represents the velocity over the y axis and the third 

one represents the velocity over the z axis. On this case, no oscillations are shown. Thus, it is 

possible to say that the gains are properly developed in order to provide an accurate trajectory. 

 

 

Figure 48: Velocity over time related to the trajectory described. 
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Chapter 6: Conclusion 

 
The main purpose of this project was to create a semi-autonomous model for wind turbine 

blades resorting to visual inspection, by an Android application, taking advantage of DJI 

equipment. 

On the first stage, it was defined some basic goals to achieve, related to the mission 

development and to the restrictions of the RPAS. 

To define goals, is a fundamental part of every project, once it restricts general activities and 

crave for priorities on which the whole process will be developed. Based on these, among all 

the options available, was selected the Phantom 4. This RPAS possesses a wide range of sensors 

that enable to determine distance to objects, with a plus of a high stable camera, that provides 

high quality photos, minimizing the error associated with the visual inspections. 

Furthermore, was used Java commands to execute diversified options, enabling the user, to 

generate a trajectory based on his singular mission preferences, providing an accurate solution. 

Among these preferences, it was allowed to define the height over each waypoint, the velocity 

that the mission would be executed and also the end action. 

Moreover, was developed a MATLAB code, which was adapted from previous works. [68] This 

code has incorporated some of the data related to the Phantom 4, such his mass and arm length, 

fundamental parameters for the code developed on MATLAB. 

Being this a composite material surface, the data obtained can be misunderstood and lead to 

false damage detection, or even miss a defected part. Thus, this technique must be quite 

precise, in order to minimize errors. This was a primary requirement defined, establishing the 

control methods, only for small angles oscillations, near hover state.  

By making use of Java Package, it is known that the MATLAB code can complement the Android 

application, in order to provide a more complete surveillance. With it, was reached the main 

objective, by providing innovative solutions for wind turbine blades inspection, empowering 

renewable energies. 

Providing a semi-autonomous inspection, on which the user could control the gimbal, enables 

to capture photos from a desired angle, establishing a more accurate comparison, between 

previous inspections when overlapping the photos. 

Being this a project on the edge of the present technology, regarding wind turbine inspections, 

it is needed to say that, all the investment made, should be recovered within 2 to 3 years, due 

to the continuous improvements made on RPAS, becoming outrun by others. This means, 

projects that are taken in consideration for long term, as 10 years, are in risk of losing the 

profit of it. 
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6.1 Difficulties 
 

This project was a great challenge. From the start, it was known that would be based on a 

completely different language from the ones studied before. This means, a high importance 

and additional time had to be attributed to the learning of Java language. 

To the creation of applications, web research and online courses were made, in order to 

improve the knowledge relatively to object oriented programming, fundamental parts of the 

code and even familiarization with the Android environment. 

The request for permissions in order to use concepts created from different companies, such 

as Google and DJI, and incorporating it on the code was also a challenge. Although, some 

tutorials are provided in the DJI page. The fundamental information is quite restricted, on 

which only basic concepts are explained, requiring a self-learning, critical thinking and 

problem-solving skills to overcome a complex approach to the solution. 

The usage of the whole system is also not self-explanatory, to which several hours around the 

programing environment, web searching, professors specialized in Java plus a very self-

indulgent spirit to achieve this project were required.  

Nevertheless, Java is a well-defined language, enabling everyone that desires, to learn it. After 

taking the initial steps, it is possible to understand the main commands, which save several 

code lines, and avoid repetitively between objects.  

6.2 Results 
 

After overcoming the familiarization with Java, creating an application using Android Studio 

was very challenging and bracing. Being this an operative system used for most of the people, 

understanding how the basic concepts work behind the users’ interface can work as a great 

advantage to structure the code. 

By combining Java and DJI equipment, was possible to obtain a very efficient and interactive 

environment, diversifying his uses, requiring only several hours from the user to learn how to 

play in his advantage their functionalities, with a relatively low investment material. 

As it was mentioned, by having a proportional controller, the system has the capability to 

stabilize itself when its values oscillate from the desired ones. The derivative gain helps to 

predict the systems behavior.  

Even though it was generated a spline defined by a 7th order polynomial, the polynomial used 

to describe these waypoints was from first order, once that instead of a smooth trajectory it is 

preferred to maintain an accurate path that allows the quadcopter to pass by the middle of the 

blades, enabling the user to obtain more detailed information. 

It is possible to see that, the trajectory that resulted more accurate is the one which describes 

a round path across the blades. Although, due to the dimensions of the errors presented on this 
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type of structures, it might not be the most adequate when searching for small defects. 

Nevertheless, it gives a good overview of the whole structure. 

Although it was not possible to provide a simulation which incorporates the two codes, the 

results show great advantages comparted with the current inspection methods. 

6.3 Future works 
 

It is possible to see that this solution requires several manual data, such as geographic position 

of the wind turbines, length of the blades and so on. A proposal that is made, is to incorporate 

on the current code, a TapFly and active tracking missions. [78] With this, would be possible to 

obtain a visual inspection based on instructions given by the technician that is executing the 

inspection, which would not be limited by the coordinates previous defined in the code.  

Another proposal of future work would be a manual collection of photos from similar angles of 

a blade, in order to overlap them. With it, would be possible to create a study of this technique, 

and evaluating his precision regarding the photos obtained, before implementing it on a RPAS. 

This would give a better understanding of the angles that the photos should be obtained, 

providing extra information regarding the trajectory required for the inspection. 

A fundamental part of this inspection would be the creation of a database, that would allow 

the flowing of the data, from the RPAS to a storage. This would make possible for technicians 

to overlap the pictures and create a timeline between them in a more efficient way. This would 

allow to see the deterioration of the blades over time, obtaining a better idea where they occur 

and how to prevent them. A virtual model of the displacements of the Wind Turbines would 

provide a good extra on the software, in order to assignee, after the inspection of the photos, 

the ones that require maintenance.  

Associated with the detection of defects on wind turbines, a possible future work that could be 

developed is while the inspection is in progress, if a defect is detected, the RPAS would 

approach the respective region, in order to capture more photos, providing a better analysis 

over the failure present on the blade. With this, would be possible to determine with higher 

precision the time within which, the blade would have to be repaired. 

Regarding the Wind Farms, where numerous wind turbines are located, would be also a good 

project to implement the work of Paulo Neves. [82] By incorporating a Docking system, would 

allow the RPAS to perform a battery exchange when needed, allowing the inspection of various 

wind turbines without the need of the direct human intervention. In this case, it is supposed 

that the inspection is completely autonomous. 

On the MATLAB code, the velocity between waypoints should be weighted in order to obtain 

accurate data, allowing the capture of high quality photos, decreasing the inspection error. 

The trajectory should also be more complex, in terms that it should include the two sides of 

the blade, leading edge and trailing edge, instead of straight line between the tip and the root. 



Paulo Antunes – Semi-Autonomous Wind Blade inspection by a RPAS 

 

 66 

Upgrading this algorithm to a PID controller would make the system more accurate. The 

integrative gain would be able to have control over the magnitude and the duration of the 

error. Although it is a very limited method.  

The ultimate goal of this project, would be to provide a completely autonomous inspection. 

This would give total independency from the technician executing the maintenance. With it, 

would be attributed more viability to this action, plus repeatability, in order to prevent the 

deterioration of the blade and consecutively, his lower efficiency. Therefore, embracing semi-

autonomous inspection using RPAS is a way to empower renewable energies, equilibrating the 

competition with fossil fuels.  

Solutions like this are already available on the market from companies like Sky Specs [79] and 

Pro-Drone [80] which provide a completely autonomous and robust inspection. Projects like 

PITCH ME [83] promote and provide valuable prizes to the best projects presented in order to 

empower the inspection of wind turbines. 
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Abstract 

The big structures maintenance represents a difficult 

task for human action to achieve since the height 

requires numerous support, effort and time to 

accomplish. Allied with composed materials, big 

structures can have higher efficiency than with 

conventional materials, but also harder to conduct 

inspections though devices such as cameras. 

Quadcopter are a type of RPAS (Remotely Piloted 

Aircraft System) that take advantage of the 

exponential growth on technology and 

nanotechnology. Owing to this, has become possible 

to perform surveillance on different types of 

structures, presenting a comfortable way to execute 

this action on dangerous and difficult access spaces 

by providing safer methods, bringing experience, of 

qualified workers, and technology together.  

This paper will provide the methods for a 

trajectory relying on the specification of a 

Phantom 4, providing a code that might be 

adapted for a more complex algorithm. Therefore, 

the main objective will be to establish a path over 

previously defined waypoints, incorporating the 

whole blade. The results were satisfying once this 

was achieved. Nevertheless, some subjects might 

be improved, like the velocity between waypoints 

and the polynomial selected to defined the 

trajectory.  

KEYWORDS: QUADCOPTERS, MAINTENANCE, 

RPAS, WAYPOINTS, NANOTECHNOLOGY, 

SIMULATION, COMPOSED MATERIALS. 

Introduction 

The quadcopter is a type of Remotely Piloted Aircraft 

System (RPAS) that can perform Vertical Take Off and 

Landing (VTOL). This provides the maneuverability 

that most of RPAS lack off, not only for VTOL but also 

for his dimensions that allow to incorporate onboard 

sensors. It is an under-actuated system with four inputs 

(roll, pitch, yaw and throttle) and six outputs. [1]  

With this, is possible to operate in constrained and 

difficult access spaces. With the technologic exponential 

increasing for this kind of machines, comes the interest 

of projecting them into our everyday life needs. 

Achieving big structure maintenance represent a 

difficult task for human action since the height requires 

numerous support, effort and time to accomplish. Thus, 

machines come to give the help that is demanded. This 

type of task not only are expensive, but dangerous since 

most of these techniques are either outdated or 

inadequate, like the rope descendent technique.  

 
Figure 1: Inspection on Wind Turbine conducted by rope 
descendent technique. [6] 

With the use of remotely controlled or semi-

autonomously operations, the monitoring and inspection 

of big structures like wind turbine blades, 

telecommunication antennas, buildings and others can 

be brought to a new level of quality and economy. [2] 

Thus, this article presents an efficient approximation, to 

what might be a solution for the next years. 

There is no doubt that removable energies are the road 

that humankind must pursue, in order to obtain 

sustainability on the near future. Wind blades are a 

particular structure. Not only by the airfoil used but also 

the irregular shape which is presented on the tip. So as 

to maintain these structures, presents a complex subject. 

More common than ever, these blades are produced in 

composite materials, that sometimes are difficult to 

predict his lifetime. [9] 

Adding the access problem, can minimize the power 

obtained. 

 
Figure 2: Damaged leading edge from a Wind Turbine blade. 
[12] 
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This paper summarizes a model created to describe the 

movements of a RPAS. This kind of task is possible by 

incorporating a GPS (Global Positioning System), IMU 

(inertial measurement units) allowing to travel between 

previously defined waypoints, to obtain a live inspection 

with a high-definition camera. Based on this model was 

created a simulation on Matlab. Since the cameras need 

to be steady to capture high quality photos, decreasing 

the error associated to the surveillance is a challenge, so 

as to only small angle were considered a model for small 

angles control.  

Quadcopters can have diverse applications such as: 

Precision Farming, Archeology, Photography and Robot 

First Response. [7] 

In this paper, it is adapter a trajectory generation 

methodology, developed by [5] on which is possible to 

plan a trajectory from an initial point to a desired one. 

The main objectives of the methodology of this paper 

are: 

- This trajectory must present an approach to a 

real-world surveillance. 

- The trajectory must obey to the restrictions 

established by the dynamics and input of the 

quadcopter. 

- The control law applied to this system must be 

able to re-plan the trajectory at each control 

update, and apply the new inputs to the first 

section of the loop. 

- Approximate a trajectory to a desired one to 

obtain good visual tracking for the captures of 

the photos. 

Therefore, will be presented a dynamic model used, 

which will provide an idea of the control inputs and their 

function when controlling the system. 

Moreover, will be defined control laws, the nested loop 

which allows us to control the position an attitude of the 

quadrotor and some assumptions made in order to 

optimize the trajectory for the end it was created. 

Based on these principles, will be defined the equations 

used to obtain a trajectory tracking based on a desired 

position. To end, will be presented a problem proposal 

definition and the results obtained, which will be 

commented with some future improvements. 

1. Dynamic Model 

The robot’s movements can be defined by six degrees of 

freedom. In order to characterize them, the Inertial frame 

(a) and Body frame (i) frame were created. The Inertial 

frame is composed by a1, a2 and a3, being the positive 

part of a3 pointing upward. In addiction, was defined the 

body frame (i), which has the origin latch onto the 

quadcopters center of mass, as it is possible to see on the 

Figure 3. 

 
Figure 3: Coordinate systems of the quadcopter. 

To characterize the system, will be used Z – X – Y Euler 

angles, modeling the rotation of the quadcopter.  

In addition, to characterize the vehicles attitude, it is 

defined a rotation matrix, 𝑅𝑎
𝑖 , presented on the equation 

(1). It enables to describe a vector from the Inertial 

System, a, in the vehicles body system, i, multiplying 

the vector from the inertial by the rotation matrix, or vice 

versa. 

𝑅𝑎
𝑖 = [

𝑐𝜓𝑐𝜃 − 𝑠𝜙𝑠𝜓𝑠𝜃 −𝑐𝜙𝑠𝜓 𝑐𝜓𝑠𝜃 + 𝑐𝜃𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 + 𝑐𝜓𝑠𝜙𝑠𝜃 𝑐𝜙𝑐𝜓 𝑠𝜓𝑠𝜃 − 𝑐𝜓𝑐𝜃𝑠𝜙

−𝑐𝜙𝑠𝜃 𝑠𝜙 𝑐𝜙𝑐𝜃
]  (1) 

 

The sθ and cθ, represent sin(θ) and cos(θ), respectively. 

This also applies for 𝜙 and ψ angles. 

Defining r, as the position vector with respect to the 

center of mass (i) from the inertial frame (a).  

The primary forces on the system are the ones produced 

by gravity, on the – i3 direction, and the ones produced 

by the motors Fi, on the i3 direction. To summarize this, 

is provided equation (2) that represents the acceleration 

with respect to the center of mass.  [1] 

 

𝑚�̈� =  [
0
0

−𝑚𝑔
] + 𝑅 [

0
0

𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

] (2) 

The angular velocities are defined as p, q and r, on 

equation (3). These are related with the derivatives of 

roll, pitch and yaw angles. 

 

 [
𝑝
𝑞
𝑟
] = [

𝑐𝜃 0 −𝑐𝜙𝑠𝜃
0 1 𝑠𝜙
𝑠𝜃 0 𝑐𝜙𝑐𝜃

] [

�̇�

�̇�
�̇�

] 

 

(3) 

1.1 Control Inputs 

Over the referential system established, the quadcopters 

state is defined based on the longitudinal, transversal 

and vertical positions, first tree elements on equation 

(4). Nevertheless, his orientation over the tree axis 

should also be considered, last tree elements of equation 

(4). With this, is defined the quadrotors state. [1] 
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 𝑞′ = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]𝑇  (4) 

   

 𝑥′ = [𝑞′ �̇�′]𝑇  (5) 

   

Regarding equation (5), is represented the state of the 

rigid body, which is composed by his six-dimension 

vector (q’) and its rate of change (�̇�′). 

On this model, a series of simplifications were made. It 

is assumed that the thrust produced by the rotors, can be 

swapped immediately. This is not completely accurate, 

once that a dynamical system is characterized for being 

a system on which the effects of actions do not occur 

immediately. It is also limited in terms of the vehicle’s 

body rate, by the gyroscopes and tracking controllers. In 

addition, the force produced by each motor, 𝑎𝑖  was 

limited, being the maximum value produced by all the 

rotors, 1.5 times of the quadcopters weight.  

Being i = 1,2,3,4.  

 𝑎𝑚𝑖𝑛 ≤ 𝑎𝑖 ≤ 𝑎𝑚𝑎𝑥  (6) 

On which a represents linear acceleration. The value of 

𝑎𝑚𝑖𝑛   is positive or zero, since these quadcopters do not 

possess the ability to stop or reverse the direction of 

rotation of the propellers. [8] 

The maximum thrust is limited by peak motor torque. 

The total of vertical forces can be obtained by the sum 

of the forces produced by the motors plus the force of 

the gravity applied on the vehicle. 

 

 
�⃗�𝑇𝑜𝑡𝑎𝑙 = �⃗�𝑚𝑜𝑡𝑜𝑟 + �⃗�𝑔𝑟𝑎𝑣𝑖𝑡𝑦  (7) 

Discretizing equation (7), it is possible to obtain 

equation (8), on which m represents the mass of the 

vehicle, g is the force of gravity, ω the angular speed of 

the motors and kF the proportionality constant of the 

force produced by the motors. [5] 

 𝑚𝑎 =  ∑𝑘𝐹𝜔𝑖
2

4

𝑖=1

+ 𝑚𝑔 (8) 

1.1 Equations of motion 

Related to these forces, the one regarding to the motors, 

creates moments over the three-referential axis 

established. Since motors 1 and 3 spin on the – i3 

direction they will produce a positive moment. Motors 2 

and 4 spin on the i3 direction, producing negative 

moments. The variable L represents the distance 

between the vehicle’ center of mass and the position of 

the motor. With this defined, the inertia matrix related to 

the moments produced by the components of the vehicle 

can be written as: [5] 

 

 I [
�̇�
�̇�
�̇�

] = [

𝐿(𝐹2 − 𝐹4)
𝐿(𝐹3 − 𝐹1)

𝑀1 − 𝑀2 + 𝑀3 − 𝑀4

] − [
𝑝
𝑞
𝑟
] ×𝐼 [

𝑝
𝑞
𝑟
] (9) 

1.2 Motor model  

The motors were modeled by a test of steady-state fixed 

rotor in order to determine a constant of proportionality 

that multiplied by the angular speed would allow to 

estimate the force produced:  

 

 𝐹𝑖 = 𝑘𝐹𝜔𝑖
2 (10) 

 

Experimentation with a fixed rotor at steady-state show 

𝑘𝐹 ≈  6.11 × 10−3  𝑁/𝑟𝑝𝑚. [5] 

With the same ideology, it is possible to determine a 

constant of proportionality, to estimate the moment 

produced: 

 𝑀𝑖 = 𝑘𝑀𝜔𝑖
2 (11) 

 

The constant kM, was determined to be about 1.5 ×
 10−9 𝑁/𝑟𝑝𝑚. [4] 

The components of angular velocity, relative to the body 

frame, are defined as: 

 

 𝜔𝑖
𝑎 = 𝑝𝑖1 + 𝑞𝑖2 + 𝑟𝑖3 (12) 

2. Control 

2.1 Control Model 

The rigid body dynamics have slower response 

compared to the motor dynamics. Incorporating them 

leads to a fifth order dynamic model that implies 

additional complexity without significant improvement 

in performance.  [5]  

Using Euler angles, it is possible to parameterize the 

orientation, position and velocity of the center of mass. 

 

𝑥 = [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 �̇� �̇� �̇� 𝑝 𝑞 𝑟]𝑇  (13) 

 

Neglecting the parameterization by the position and 

velocity of the center of mass, rotation matrix and 

angular velocity, can be simplified to: [5] 

 

 𝑢 = [𝑢1 𝑢2 𝑢3 𝑢4]𝑇 (14) 

Where 𝑢1 is the force from all the propellers and 𝑢2, 𝑢3, 

and 𝑢4 are the moments related to the body frame axis. 

[5] 

 

Figure 3: Nested control loops for position and attitude 
control. [7] 
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This nested loop, has an inner loop that corresponds to the 

attitude control and an outer loop that corresponds to the 

position control. On the inner loop is specified the 

orientation either with the rotation matrix or a series of 

roll, pitch and yaw angles. From the angular rates, will be 

calculated 𝑢2. This is a function of the thrust and the 

moments that provide from the motor speeds. It will be 

calculated based on the desired attitude. On the outer loop, 

its aim is to obtain the position vector. This, will be 

compared with the actual position and actual velocity that 

enables us to obtain 𝑢1. [5]. 

1.1 Attitude Control 

Since this is an initial approach, the waypoints are defined 

so the quadcopter completes an itinerary that contains all 

the blades in order complete a visual survey with photos 

on them. To obtain a quality inspection, it is needed a 

high-quality photo, which requires a stable flight, no 

aggressive maneuvers, and mostly considered on near 

hover state. Thus, it is presented a control based on small 

angles. This controller is based on a linearization of the 

equations of motion and motor models, at an operating 

point that corresponds to the nominal hover state: [5] 

 

 θ ≈ 𝜙 ≈ 0 (15) 

 ψ  ≈ ψ0 (16) 

Considering small angles of pitch and roll: 

 

 𝑐ϕ ≈ 1, 𝑐θ ≈ 1, 𝑠ϕ ≈ 0 , 𝑠θ ≈ 0 (17) 

 

So, it is possible to deduce the nominal values at hover 

state for the first two inputs defined, the thrust of the 

motors, u1, and the quadcopter attitude, u2: 

 

 𝑢1,0 = 𝑚𝑔 (18) 

  𝑢2,0 = 0 (19) 

 

By this, it is possible to assume that each rotor produces a 

quarter of the total thrust needed to maintain hover, so: 

 

 

 
𝐹𝑖 ,0 =

𝑚𝑔

4
 (20) 

And so, it is possible to deduce that the nominal angular 

velocity produced by the motors are: [5] 

 

 𝜔𝑖 ,0 = 𝜔ℎ = √
𝑚𝑔

4𝑘𝐹
 (21) 

Thus, it is possible to determine the desired rotor speeds 

using the desired (𝑢1,𝑑𝑒𝑠 ) and the moments 

(𝑢2,𝑑𝑒𝑠  , 𝑢3,𝑑𝑒𝑠  and 𝑢4,𝑑𝑒𝑠  ): 

 

𝑢𝑑𝑒𝑠 = [

𝑘𝐹 𝑘𝐹 𝑘𝐹 𝑘𝐹

0 𝑘𝐹𝐿 0 −𝑘𝐹𝐿
−𝑘𝐹𝐿 0 𝑘𝐹𝐿 0
𝑘𝑀 −𝑘𝑀 𝑘𝑀 −𝑘𝑀

]

[
 
 
 
 
𝜔2

1,𝑑𝑒𝑠

𝜔2
2,𝑑𝑒𝑠

𝜔2
3,𝑑𝑒𝑠

𝜔2
4,𝑑𝑒𝑠 ]

 
 
 
 

 (22) 

2. Trajectory Tracking 

For the position control, will be presented two position 

methods, based on roll and pitch angles as inputs. Both 

methods are based on the linearization of the equations of 

motion, as shown above. The first method is for the 

nominal state, hover, used for maintaining the position. 

The second one is designed to track and follow a desired 

trajectory, r(t), over the three directions. On these two 

methods, the position control algorithm will determine the 

desired roll and pitch angles, 𝜙𝑑𝑒𝑠  and  𝜃𝑑𝑒𝑠 , that can be 

used to compute the commanded accelerations [5]. This 

yaw angles, can be constant, 𝜓0, or variable with time, 

𝜓𝑐(𝑡). This method is similar to a backstepping approach. 

[10] 

On this case, the position and orientation are fixed, which 

implies that all velocities and acceleration are zero as well 

the roll and pitch angles. The input 𝑢2 must be close to 

zero, as well the rates p, q and r. The yaw angles can be 

non-zero if it’s fixed, 𝜓𝑐(𝑡) =  𝜓0.[3] It is assumed that 𝑢1 

is very close to the weight. 

With these assumptions, is now possible to define 

expressions to determine the accelerations over the three 

axes from Equation (2): 

 

 �̈�1 = 𝑔(∆𝜃𝑐𝑜𝑠𝜓0 + ∆𝜙𝑠𝑖𝑛𝜓0) (23) 

 

 
�̈�2 = 𝑔(∆𝜃𝑐𝑜𝑠𝜓0 + ∆𝜙𝑠𝑖𝑛𝜓0) (24) 

 �̈�3 =
1

𝑚
𝑢1 − 𝑔 (25) 

Related to the products of inertia, once the axes are close 

the principal ones, it is possible to assume that:  

 

 𝐼𝑥𝑥 ≈ 𝐼𝑦𝑦  (26) 

Since the quadcopter is symmetric, it is possible to write 

the rates of change based on the linearization of the 

equations (2) and (3): [5] 

 

 �̇� =  
𝑢2

𝐼𝑥𝑥

=
𝐿

𝐼𝑥𝑥

(𝐹2 − 𝐹4) (27) 

 �̇� =  
𝑢3

𝐼𝑦𝑦

=
𝐿

𝐼𝑥𝑥

(𝐹3 − 𝐹1) (28) 

 �̇� =  
𝑢4

𝐼𝑧𝑧
=

𝛾

𝐼𝑧𝑧

(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4) (29) 

 

The error related to the position, is defined as the different 

between the desired state and the actual state: 
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 𝑒𝑖 = (𝑟𝑖,𝑑𝑒𝑠 − 𝑟𝑖) (30) 

 

Furthermore, will be incorporated a PD controller. This 

contains a proportional gain that produces oscillations 

when the system is far from the desired state plus the 

derivative gain, which predicts system behavior and helps 

to stabilize it. Thus, can be written the following equation, 

in order that the error goes exponentially to zero: 

 

(�̈�𝑖,𝑑𝑒𝑠 − �̈�𝑖 ,𝑐) + 𝑘𝑑 ,𝑖(�̇�𝑖,𝑑𝑒𝑠 − �̇�𝑖) + 𝑘𝑝 ,𝑖(𝑟𝑖,𝑑𝑒𝑠 −𝑟𝑖) = 0 (31) 

1.1 Hover state 

On this state, it is desired for the quadcopter to maintain a 

defined position, which means that the acceleration and 

velocity are zero: 

 

 �̈�𝑖 ,𝑐 =  �̇�𝑖 ,𝑐 = 0 (32) 

 

Moreover, it must be established that this condition is 

guaranteed. Thus, applying equation (31), leads to: [5] 

 

�̈�𝑖 ,𝑑𝑒𝑠 + 𝑘𝑑 ,𝑖 �̇�𝑖 ,𝑑𝑒𝑠 +  𝑘𝑝 ,𝑖(𝑟𝑖 − 𝑟𝑖 ,𝑑𝑒𝑠 ) = 0 (33) 

 

Based on equation (23-25), and reminding the fact that 

pitch and roll angles must be maintained at a constant 

value in order the achieve this state, the equation can be 

simplified to: 

 

 �̈�1,𝑑𝑒𝑠 = 𝑔(𝜃𝑑𝑒𝑠 𝑐𝑜𝑠𝜓𝑇 + 𝜙𝑑𝑒𝑠 𝑠𝑖𝑛𝜓𝑇) (34) 

 

 
�̈�2,𝑑𝑒𝑠 = 𝑔(𝜃𝑑𝑒𝑠 𝑠𝑖𝑛𝜓𝑇 + 𝜙𝑑𝑒𝑠 𝑐𝑜𝑠𝜓𝑇) (35) 

 �̈�3,𝑑𝑒𝑠 =
1

𝑚
𝑢1 − 𝑔 (36) 

Moreover, with a PD controller, as written in the Equation 

(31), the error shall go exponentially to zero and also 

satisfy a second order differential equation (33). Related 

to this equation, there is a set of terms related to the 

specified trajectory, �̈�𝑖 ,𝑑𝑒𝑠 , �̇�𝑖 ,𝑑𝑒𝑠  and 𝑟𝑖 ,𝑑𝑒𝑠 , and a set of 

terms related with the actual trajectory �̇�𝑖  and 𝑟𝑖 . Thus, it 

is from our interest to calculate the commanded sum of the 

thrusts from the motors, that will define the force that is 

desired to produce on the quadcopter, in order to maintain 

his position: 

𝑢1 = 𝑚𝑔 + 𝑚�̈�3,𝑑𝑒𝑠 = 𝑚𝑔 − 𝑚(𝑘𝑑 ,3�̇�3 + 𝑘𝑝 ,3(𝑟3,𝑑𝑒𝑠−𝑟3)     (37) 

The commanded roll and pitch angles can be obtained 

once known the commanded acceleration in the x and y 

directions, as shown below: 

𝜙𝑐 =  
1

𝑔
(�̈�1,𝑑𝑒𝑠 𝑠𝑖𝑛𝜓𝑑𝑒𝑠 − �̈�2,𝑑𝑒𝑠 𝑐𝑜𝑠𝜓𝑑𝑒𝑠 )  

 
(38) 

𝜃𝑐 =  
1

𝑔
(�̈�1,𝑑𝑒𝑠 𝑐𝑜𝑠𝜓𝑑𝑒𝑠 + �̈�2,𝑑𝑒𝑠 𝑠𝑖𝑛𝜓𝑑𝑒𝑠 )  

 
(39) 

 

The desired roll and pitch angles are defined as shown on 

the equation (40) and (41): 

 

𝜙𝑑𝑒𝑠 =  
1

𝑔
(�̈�1,𝑐𝑠𝑖𝑛𝜓𝑑𝑒𝑠 − �̈�2,𝑐𝑐𝑜𝑠𝜓𝑑𝑒𝑠 )  (40) 

𝜃𝑑𝑒𝑠 =  
1

𝑔
(�̈�1,𝑐𝑐𝑜𝑠𝜓𝑑𝑒𝑠 + �̈�2,𝑐𝑠𝑖𝑛𝜓𝑑𝑒𝑠 )  (41) 

 

Furthermore, the pitch and roll velocities are defined as 

zero since these angles constant through all the hover 

state: 

 𝑝𝑑𝑒𝑠 = 0 (42) 

 

 𝑞𝑑𝑒𝑠 = 0 (43) 

   

 𝑟𝑑𝑒𝑠 = 𝜓�̇�(𝑡) (44) 

For the feedback loop, it is assumed that the commanded 

roll, pitch and yaw angles are known, as well their 

derivatives. Thus, all it is required for attitude feedback 

control are the actual values of roll, pitch and yaw angles 

plus their derivatives to determine 𝑢2: 

 

 𝑢2 = [

𝑘𝑝 ,𝜙(𝜙𝑑𝑒𝑠 − 𝜙) + 𝑘𝑑 ,𝜙(𝑝𝑑𝑒𝑠 − 𝑝)

𝑘𝑝 ,𝜃(𝜃𝑑𝑒𝑠 − 𝜃) + 𝑘𝑑 ,𝜃(𝑞𝑑𝑒𝑠 − 𝑞)

𝑘𝑝 ,𝜓(𝜓𝑑𝑒𝑠 − 𝜓) + 𝑘𝑑 ,𝜓 (𝑟𝑑𝑒𝑠 − 𝑟)

] (45) 

 

This model was projected to have a faster feedback by the 

attitude controller, than the position controller loop, as it 

can be seen in the Figure 3. [1] 

1.2 3-D Trajectory 

Since nominal state has already been defined, now it is 

going to be defined a controller that will enable to follow 

a three-dimensional trajectory, with the acceleration being 

close to near-hover state. This model follows the same 

assumptions made above, with the difference that �̈�𝑖 ,𝑐  and 

�̇�𝑖  are no longer zero. 

It is considered near-hover state, assumptions of linear 

equations hold. To generate the desired acceleration, it is 

used equation (31), so the error goes exponentially to zero.  

From the equation (23), it is possible to determine the 

commanded state over the longitudinal and transversal 

directions, respectively: 

 

�̈�1,𝑐 = �̈�1,𝑑𝑒𝑠 −  𝑘𝑑 ,1(�̇�1,𝑑𝑒𝑠 − �̇�1) − 𝑘𝑝 ,1(𝑟1,𝑑𝑒𝑠−𝑟1) (46) 

�̈�2,𝑐 = �̈�2,𝑑𝑒𝑠 −  𝑘𝑑 ,2(�̇�2,𝑑𝑒𝑠 − �̇�2) − 𝑘𝑝 ,2(𝑟2,𝑑𝑒𝑠−𝑟2) (47) 
 

Yet, since this model has some errors and limitations 

relating to the input thrusts, commanded trajectory may 

present some oscillations when sharp turns are 

encountered. 
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With this restriction, comes the need to provide a 

modification to better describe the trajectories. Defining �̂� 

as the trajectory’s unit tangent vector and �̂� as the normal 

unit vector, the binormal vector, �̂�, is obtained by cross 

product of the trajectory’s unit tangent vector and the 

normal unit vector, �̂� =  �̂� × �̂�. With this, is possible to 

define position and velocity errors: [3] 

 

 𝑒𝑝 = ((𝑟𝑖,𝑑𝑒𝑠 − 𝑟𝑖) ∙ �̂�) �̂� + ((𝑟𝑖,𝑑𝑒𝑠 − 𝑟𝑖) ∙ �̂�)�̂� (48) 

 

 

 

𝑒𝑣 = �̇�𝑖 ,𝑑𝑒𝑠 − �̇�𝑖  (49) 

Only the position error, over the normal plane to the 

curve’s closest point is considered. The position error in 

tangential direction is ignored. With the expression 

defined in equation (31), it is possible to calculate the 

commanded acceleration, �̈�𝑖 ,𝑑𝑒𝑠 : 

 

 (�̈�𝑖,𝑑𝑒𝑠 − �̈�𝑖) + 𝑘𝑑𝑒𝑣 +  𝑘𝑝𝑒𝑝 = 0 (50) 

 

All the other assumptions made for hover state hold, plus 

with the exceptions clarified on this section, it becomes 

possible to generate a trajectory on 3D. [5] 

1. Trajectory generation 

To the generation of trajectory, will be presented some 

equations depending on the precision required, their order 

will increase. Below is presented an equation for 

minimum snap trajectory, that requires a 7th order 

polynomials. Each polynomial piece travels between two 

waypoints, taking a stipulated amount of time, 𝑇𝑖 . 

Being 𝑝𝑖  the polynomial between positions, 𝜔𝑖  and 𝜔𝑖+1, 

that take,𝑇𝑖 , time to complete. The total amount of time is 

represented by: 

 𝑆𝑖 = ∑ 𝑇𝑘

𝑖−1

𝑘=0

 (51) 

The polynomial that represents the restrictions through the 

waypoints is: [5] 

 

𝑝𝑖(𝑡) = 𝛼𝑖0 + 𝛼𝑖1

𝑡 − 𝑆𝑖

𝑇𝑖

+ 𝛼𝑖2 (
𝑡 − 𝑆𝑖

𝑇𝑖

)
2

+ ⋯ + 𝛼𝑖7 (
𝑡 − 𝑆𝑖

𝑇𝑖

)
7

 (52) 

 

To complete this equation, it is required to determine all 

the coefficients 𝛼𝑖𝑗 . For this end, it is needed to establish 

constraints. First, it must go through all the waypoints: [5] 

 

𝑝0(0) = 𝜔0 = 𝛼00  (53)  

𝑝𝑖(𝑆𝑖) = 𝜔𝑖+1for all 𝑖 = 0 …𝑛 (54) 
 

Second, must be defined that the quadcopter will start and 

stop at rest: [5] 

 

 𝑝𝑛
(𝑘)(0) = 0 for all 0 ≤ 𝑘 ≤ 3 (55) 

   

 𝑝𝑛
(𝑘)(𝑆𝑛) = 0 for all 0 ≤ 𝑘 ≤ 3 (56) 

 

It must also be defined that the four derivatives are 

continuous between the waypoints: [5] 

 

 
𝑝𝑖−1

(𝑘) (𝑆𝑖) = 𝑝𝑖
(𝑘)(𝑆𝑖) 

for all 𝑖 = 1 …𝑛 and 𝑘 = 1 … 7 
(57) 

 

With this, is possible to convert the constraints and 

unknown coefficients 𝛼𝑖𝑗 , into an equation matrix build 

based by the restrictions and the b matrix by the 

waypoints: [5] 

 

 𝐴𝛼 = 𝑏 (58) 

 

Where 𝛼 contain all the unknown coefficients, and A and 

b represent all constraints. 

2. Gain tuning - Ziegler–Nichols method 

Since there are twelve gains to tune, half for the position, 

the other half for the attitude. A trial and error method 

approach becomes inefficient. Thus, urges the need to 

define a more systematic approach to gain tuning, the 

Ziegler-Nichols method. [4][5] 

The Ziegler-Nichols method is used to tune Proportional, 

Proportional Integrative, Proportional Derivative and 

Proportional Integrative and Derivative controllers. On 

this case, it will be applied for a Proportional Derivative 

control. 

This method has a set of step that should be followed: 

1. Set the proportional and derivative gains to zero. 

2.  Increase the proportional gain until the system 

outputs sustained oscillations that will be 

denominated as Ultimate Gain, 𝐾𝑢 . 

3. Measure the period, 𝑇𝑢 , described by the 

oscillations. 

4. Define the proportional gain as 𝐾𝑝 = 0,8×𝐾𝑢  

5. Define the derivative gain as  𝐾𝑣 = 𝑇𝑢/8 

 

Sometimes, after this procedure the controller response is 

too slow. To increase it, it is advised to scale the 

proportional and derivative gains by small increments 

until it is obtained a good response.  [4] [5] 

6. Wind turbine blade modelling 

With the model presented above, it is proposed 

to generate a trajectory, going through 

waypoints defined based on the dimensions of a 
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the code, in order to provide a better approximation for the 

problem. Furthermore, was idealized a trajectory that 

would incorporate the root and the tip of the blade, 

enabling the camera to capture it and have a better general 

idea of his state. The flight proposed is design for a 

velocity of 0.75 m/s on which would start and rest at the 

origin of the referential. This flight would take 80 seconds 

to complete. The Wind Turbine was considered at 10 

meters from the initial position of the quadcopter. The 

model selected to provide the measures of the blades and 

the tower was the GE 1.5sle, shown of Figure 4. [11] 

 

 
Figure 4: Model used as model to define the waypoints 

These waypoints defined were obtain by concrete 

measurements based on trigonometric rules. 

𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 =

=  [
0 0 10 10 10 10 10 10 0 0 0
0 0 0 0 0 33,34 0 −33,34 0 0 0
0 30 80 118,5 80 60,75 80 60,75 80 30 0

] 
(59) 

On equation (59) the first row relates to the X direction, 

the second row related to the Y direction and the third row 

related to the Z direction. 

1. Results 

With the above problem statement, were obtained the 

results shown below, on which were tuned the gains, in 

order to improve the state estimation to his best.  

 

 
Figure 5: Trajectory described by the quadcopter 

On Figure 5 is possible to see the desired trajectory, 

represented by the red color, and the actual trajectory, 

represented by the blue color. These described the 

quadcopter path. A small deviation from the desired state 

can be seen on Figure 6. Nevertheless, it is possible to 

conclude that these are good results once that the 

trajectory incorporated all the blade, from the tip to the 

root at the desired velocity established. 

 

 
Figure 6: Desired trajectory (red) vs actual trajectory (blue) 

On the Figure 6, it is possible to see the deviation from the 

desired trajectory, red line, from the actual trajectory, blue 

line. The first row represents the trajectory over the x axis, 

the second row represents the trajectory over the y axis 

and the third one represents the trajectory over the z axis. 

Since the type of polynomial equation used to describe 

this trajectory was of first order, each waypoint is 

represented as a corner on the graph. 

 

 
Figure 7: Oscillations of velocity with respect of time. 

On the Figure 7 is possible to see the oscillation of 

velocity produced to move from one to another waypoint 

defined. 

2. Conclusion 

A model to define the trajectory of the RPAS to a wind 

blade maintenance has been proposed in this paper. 

Therefore, it is possible to conclude that Matlab 

can provide advantageous tools in order to 

generate precise trajectory’s simulation. 

Although it is also possible to see that this work 

has various limitations in terms of providing a 

direct application for a software once that, as 
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velocity between waypoints of the Wind blades. This 

should be slower in order to capture pictures with more 

quality, decreasing the error associated with the 

inspection. The trajectory should also be more complex, 

in terms that it should include the two sides of the blade, 

leading edge and trailing edge, instead of straight line 

between the tip and the root. The gains should also be 

more stable when changing from the straight lines. The 

rates of angular and linear velocity be upgraded perhaps 

with toolboxes from Matlab, like PD tuner. 

Even though it was generated a spline defined by a 7th 

order polynomial, the polynomial used to describe these 

waypoints was from first order, once that instead of a 

smooth trajectory it is preferred to maintain an accurate 

path that allows the quadcopter to pass by the middle of 

the blades, enabling the user to obtain more detailed 

information. 

As it was mentioned, by having a proportional controller, 

the system has the capability to stabilize itself when its 

values oscillate from the desired ones, being this a 

capacitance response. The derivative gain helps to predict 

the systems behavior, being this a resistance response. 

Upgrading to a PID controller would make the system 

more accurate, by stabilizing the system magnitude and 

time error. This is possible due to the associated with 

previous oscillations. 

Moreover, the velocity between waypoints should be 

weighted. The trajectory to the approach of the Wind 

Generator can be done with a bit higher velocity once the 

only goal on this segment, is to approach to the object 

being inspected. 

Although being a very limited method, it is known that 

current inspections solutions are either outdated, 

expensive or inadequate. Therefore, embracing 

automation using RPAS is a way to improve the 

renewable energies, equilibrating the competition with 

fossil fuels. 
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