
UNIVERSITY OF BEIRA INTERIOR
Engineering

Usage of KINECT to detect walking problems of elder
people

Pedro Alexandre Lopes de Jesus

Dissertion for obtaining the degree of Master of Science in
Computer Science and Engineering

(2nd Cycle of Studies)

Advisor
Prof. Dr. Nuno Garcia

Co-Advisor
Prof. Dr. Nuno Pombo

Covilhã, October 2017

2

Dissertation prepared at University of Beira Interior and at ALLab, submitted for defense in a
public examination session at University of Beira Interior. Work partially financed by the Por-
tuguese Science and Technology Foundation within Strategic Project PEst-OE/EEI/LA0008/2013
and UID/EEA/50008/2013 Project.

3

4

Acknowledgements

First of all, I would like to dedicate this thesis to my parents for their continuous support and
strength, even when I was thinking of giving up they encouraged and cheered to never give up and
continue until the end.

To my parents, even when I was about to give up they always cheered me on and encouraged
me to finish this one last effort on achieving a higher academic degree.

To my brother, for all the jokes and funny moments when I was developing the application and he
could find the weirdest details to make me laugh and motivate me in correcting them.

To my love Danissa, presently or by the distance, you always gave me the strength to endure
the hardest and most monotonous parts of my dissertation, for all your help on gathering articles
and information about work done in this area from different countries in order to have a more
global approach.

To my Professors, Nuno Garcia and Nuno Pombo, for the scientific support, the teaching skills
and human character.

To my colleagues in the ALLab of the Universidade da Beira Interior, for all their help and good
working environment.

To all the unconditional support from my friends, suggestions and advices, laughs and distrac-
tions, which provided me with an awesome environment and desire to always move forward and
conclude my thesis.

Finally, I would also like to acknowledge the contribution of the COST Action IC1303 – AAPELE
– Architectures, Algorithms and Protocols for Enhanced Living Environments.

5

6

Resumo

A dissertação aborda o problema da análise e deteção de défice de mobilidade em pessoas idosas,
com vista a permitir uma intervenção rápida por parte de pessoas especializadas e capazes de
ajudar a melhorar a qualidade de movimentação.

Por forma a alcançar uma solução ao problema referido, foi utilizado o dispositivo de deteção
de movimentos e gestos Kinect, desenvolvido pela empresa Microsoft, que permitiu a gravação de
todo os movimentos realizados por um conjunto de pessoas idosas selecionadas aleatoriamente,
para efeitos de obtenção de dados que nos permitam a posterior análise e classificação das capaci-
dades motoras de cada indivíduo.

Adicionalmente foi necessário a criação de uma aplicação, capaz de extrair informações relevantes
dos vídeos gerados pelo Kinect, tratar essas informações de forma a ser possível realizar a classifi-
cação dos movimentos dos indivíduos.

Assim, a aplicação desenvolvida subdivide-se em três etapas principais:

- A obtenção das coordenadas XYZ, para um conjunto relevante de ossos do esqueleto do in-
divíduo, em todas as frames da gravação e a duração total do movimento em si;

- Tratamento dos dados extraídos e normalização dos mesmos, por forma a serem utilizados no
classificador;

- Criação de um classificador através de redes neuronais, capaz de utilizar os dados normaliza-
dos e classificar o movimento do idoso, de acordo com a qualidade do mesmo (existência de um
défice de mobilidade ou não).

Na dissertação será descrito todo o processo de desenvolvimento, desde a estruturação da solução
proposta até às classes desenvolvidas em código.

7

Resumo Alargado

Sem necessidade de recuar muito no tempo é possível constatar que a evolução do conhecimento
humano, aumentou exponencialmente ao longo do último século e que esta tendência tem tudo
para continuar no século que decorre.

Uma das grandes promessas de interligação da tecnologia é definida como a Internet of Things
(IoT) que representa a ligação entre todos os dispositivos capazes de receber, transmitir e com-
partilhar dados e informações, não só dispositivos como computadores, smartphones e tablets,
mas inclusive carros, eletrodomésticos, monitores de frequência cardíaca entre outras inúmeras
possibilidades, tudo graças à combinação de processadores cada vez mais rápidos e pequenos e
principalmente das tecnologias sem fios, que facilitam as comunicações a níveis excecionais.

Mas como é que a Internet of Things está a revolucionar a saúde?

A resposta a esta questão é muito simples. Pensando no exemplo de um hospital é imprescindível
manter o controlo a tempo inteiro dos sinais vitais dos pacientes numa enfermaria, máquinas que
mantém seres humanos vivos têm que se adaptar em tempo real às necessidades do mesmo, sem
necessitar de intervenção por parte dos médicos e enfermeiros e/ou assistência remota por parte
de um médico numa intervenção cirúrgica.

Já num contexto doméstico é de extremo valor um paciente ter sensores em sua casa que per-
mitam a deteção de qualquer problema, permitindo atempadamente auxílio, dando como exemplo
o caso de um ataque cardíaco, problemas respiratórios, queda violenta. Estes são apenas alguns
exemplos do quão importante e revolucionária tem sido a Internet of Things e as vastas possibili-
dades que estão ainda por descobrir/aplicar.

Neste caso em particular, apesar de existir o potencial de interligar o nosso trabalho com múltiplos
dispositivos, tal não foi considerado como sendo um objetivo pertinente durante o desenvolvimento
do projecto, no entanto é sem dúvida algo a ser considerado como trabalho futuro, em que por
exemplo se poderia desenvolver um servidor que interligasse os vários dispositivos involucrados e
facultasse informações on-demand sempre que solicitado.

Esta dissertação tem como objetivo aplicar todos estes avanços e inovações, com vista a desenvolver
um mecanismo capaz de captar/monitorar pessoas incluídas numa faixa etária, onde os problemas
têm maior nível de incidência devido a limitações físicas, conseguindo para tal identificar pacientes
que apresentem uma capacidade motora reduzia, para que sejam aplicados tratamentos e planos de
melhoria atempadamente, evitando assim um maior desconforto, proporcionando-lhes uma maior
qualidade de vida.

Para atingir este objetivo foi necessária a deslocação a lares de idosos locais (Caria e Ferro),
solicitando a sua cooperação, obtendo assim um conjunto de dados reais e fidedignos, referentes a
situações reais e pessoas que podem ou não apresentar problemas de locomoção.

Solicitou-se aos pacientes que se sentassem numa cadeira, se levantassem e caminhassem cerca
de 3 metros, em direção ao dispositivo de gravação, de seguida regressassem e voltassem a sentar

8

na cadeira, num total de 3 trajetos por pessoa.

A captura dos movimentos foi levada a cabo, utilizando as funcionalidades do dispositivo KINECT,
desenvolvido pela empresa Microsoft que possui as seguintes funcionalidades fundamentais: câmara
RGB (Red, Green, Blue), sensor de profundidade por infravermelhos que permite todo o mapea-
mento 3D do ambiente circundante e a deteção de 48 pontos de articulação do corpo humano.

Fazendo uso destas capacidades inerentes ao dispositivo KINECT, foi possível a identificação das
articulações dos pacientes nos vários momentos do seu movimento, obtendo a sua localização es-
pacial em coordenadas XYZ, o que permitiu efetuar alguns cálculos de velocidade e aceleração.
No entanto estes dados por si só não servem, ou melhor têm que ser transformados, adaptados e
normalizados, de modo a ser possível a sua inserção num classificador de redes neuronais. Este
classificador como qualquer outro do género, segue o procedimento de treino da rede neuronal e
posterior utilização para realização da classificação que se pretende. Neste caso em particular foi
utilizado um estilo de aprendizagem supervisionada uma vez que para cada conjunto de valores de
entrada é facultado o respetivo valor de saída associada.

Será utilizado um certo número das gravações realizadas para treinar a rede, que incluíam não
só casos de pacientes com défice de mobilidade, mas também outros em que o nível de mobilidade
esteja dentro dos valores aceitáveis. Sendo assim é extremamente importante fazer uma boa gestão
dos recursos disponíveis, uma vez que o número de pacientes e gravações realizadas é reduzido.

Como objetivo final pretende-se que todo este processo de recolha e tratamento de dados dos
pacientes, assim como a respetiva classificação dos mesmos, em relação aos níveis de mobilidade
dos vários pacientes, esteja de acordo com estudos realizados previamente sob os mesmos indiví-
duos, mas sem utilização de qualquer mecanismo ou dispositivo. Sendo que em caso afirmativo
temos então um mecanismo capaz de prestar um melhor auxilio e controlo acerca das condições de
saúde, orientadas à mobilidade dos pacientes, possibilitando um aumento da sua condição de vida.

9

10

Abstract

The dissertation addresses the problem in analyzing and detecting the lack of mobility in the el-
der population, while enabling a rapid intervention by specialized and able people that can help
improve their movement quality.

In order to achieve a solution to the problem above, we used the motion detection and gestures
device named Kinect, developed by Microsoft, which allowed the recording of all the movements
performed by a set of randomly selected people, for the purpose of obtaining data that will allow
us to further analysis and classification of motor skills on every person.

Additionally, it was necessary to create an application that can extract relevant information gen-
erated by the video Kinect and treat this information in order to carry out the person movements
classification.

Thus, the application is divided into three main steps:

-Obtaining the XYZ coordinates, for a relevant set of bones of the person skeleton, in all the
recorded frames as well as the total duration of the movement itself;

-Extracted data treatment and standardization, so it can later be used in the classifier;

-Creation of a classifier using neural networks methodology, which uses the standardized data
in order to classify the person movement, according to its quality (existence of a mobility deficit
or not).

Throughout the dissertation will be described every step of the development process, since the
proposed solution design until the code of the developed classes.

11

12

Keywords

Movement feature selection, movement analysis, neural network, Kinect, J2K, skeleton feature
extraction, data normalization

13

14

Contents

1 Introduction 23
1.1 Motivation and Scope . 23
1.2 Problem Statement and Objectives . 24
1.3 Adopted Approach for Solving the Problem . 25
1.4 Main Contributions . 26
1.5 Dissertation Overview . 27

2 State of the Art 29

3 Development 35
3.1 Application Workflow . 36
3.2 Video capturing using the Kinect device . 37

3.2.1 Joint Analysis and Identification . 39
3.2.2 Extracting joint coordinates . 41

3.3 Application organization and dataset preparation 43
3.3.1 Application orchestration . 43
3.3.2 Dataset handling . 44

3.4 Video data analysis and manipulation . 45
3.4.1 Input calculation . 45
3.4.2 Accessing the stored data . 46
3.4.3 Data normalization . 46
3.4.4 Data transformation . 47

3.5 Data classification . 49
3.5.1 Handling the neural network . 49
3.5.2 Neural network implementation . 50

3.6 Conclusion . 51

4 Results and Conclusions 53
4.1 Results . 53
4.2 Conclusion . 57

5 Final Considerations 59
5.1 Difficulties and future work . 59
5.2 Conclusions . 60

Bibliografia 61

A Attachments 63
A.1 JAVA Kinect Functions . 63

A.1.1 Kinect Class . 63
A.1.2 Kinect method onDepthFrameEvent . 65
A.1.3 Kinect method onSkeletonFrameEvent . 65
A.1.4 Kinect method onColorFrameEvent . 66
A.1.5 Kinect method onInfraredFrameEvent . 66

A.2 Application Functions . 67

15

A.2.1 Application Class . 67
A.2.2 ManageData Class . 68
A.2.3 CalculateInput Class . 70
A.2.4 ReadTextFile method . 71
A.2.5 NormalizeData method . 73
A.2.6 TransformData method . 76
A.2.7 Classification Class . 78
A.2.8 Network Class . 79
A.2.9 TrainSet Class . 83
A.2.10 NetworkTools Class . 85

A.3 Application Console Outputs . 87
A.3.1 Console Output One . 87
A.3.2 Console Output Two . 87
A.3.3 Console Output Three . 87
A.3.4 Console Output Four . 88
A.3.5 Console Output Five . 88
A.3.6 Console Output Six . 88
A.3.7 Console Output Seven . 89
A.3.8 Console Output Eight . 89
A.3.9 Console Output Nine . 89
A.3.10 Console Output Ten . 90

16

List of Figures

3.1 Application Architecture . 35
3.2 The patient is sitting on the chair . 37
3.3 Gets up from the chair and walk towards the Kinect device 37
3.4 Turn back around towards the chair . 38
3.5 Walking back towards the chair . 38
3.6 Sitting back on the chair . 38
3.7 Patient skeleton sitting on the chair . 39
3.8 Patient skeleton walking towards the device . 40
3.9 Patient skeleton turning around facing the chair . 40
3.10 Patient skeleton walking back towards the chair . 40
3.11 Patient skeleton sitting back on the chair . 41

4.1 Console Output 1 . 53
4.2 Training phase mean square error . 54

A.1 Application console output one . 87
A.2 Application console output two . 87
A.3 Application console output three . 87
A.4 Application console output four . 88
A.5 Application console output five . 88
A.6 Application console output six . 88
A.7 Application console output seven . 89
A.8 Application console output eight . 89
A.9 Application console output nine . 89
A.10 Application console output ten . 90

17

18

List of Tables

2.1 Kinect and OptiTrack Specifications . 30
2.2 Distance Metric Comparison . 32
2.3 Classification Accuracy Comparison . 33
2.4 Application Results . 34

4.1 Results comparison - Run one and two . 54
4.2 Results comparison - Run three to six . 55
4.3 Results comparison - Run seven to ten . 56

19

20

List of Acronyms

UBI Universidade da Beira Interior
WWW World Wide Web
IoT Internet of Things
WHO World Health Organization
OOTB Out of the box
VR Virtual Reality
XYZ 3D Coordinates XYZ
RGB Red, Green and Blue
3D Three-dimensional
SDK Software Development Kit
J2K Java to Kinect Library
NN Neural Network
MSE Mean Square Error

21

22

Chapter 1

Introduction

1.1 Motivation and Scope

A technology wave invaded our lives and it is safe to say we can no longer live without it. In spite
of so many technology improvements a new concept arose, the "Internet of Things" (IoT).

The Internet of Things represents a technological evolution in which objects, devices, equipment
are connected to each other through the Internet allowing instant access to remote information.
From automobiles to appliances it is possible to connect any object to the Internet.

One of the main components of the IoT is using Off the Shelf devices, which includes the ver-
satile Kinect, that can be used for recreational purposes, but also integrates technology that may
have health-related purposes. For this reason, and doing a fusion of the fields, the motivation for
this work was precisely to use the Kinect in order to investigate the determination of the mobility
degree in elderly.

In the Health Care environment, it is known that most of the laboratory exams depend on tech-
nology, such as X-Ray, Tomography, Magnetic Resonance which are used on a regular basis on
hospitals for a long time. Furthermore, there other technologies associated with the Internet of
Things which have been really welcomed into the Health Care environment.

Recently, applications directed to smartphones have eased the access from healthcare profession-
als to important details and information, such as laboratory reference values, vaccines, medicine
packages and receipts, therapy conducts, and much more.

During surgeries, the patients are monitored through devices each day more sophisticated which
shown very precise and valuable data to the medical team.

Robotic surgery has also evolved at a fast pace as well, allowing surgical procedures to be more
effective and reducing possible risks.

All this, leads any human being with a capable mind and attitude to try and invest his time
into the Health Care environment, allowing himself not only to investigate and develop skills that
not only help him enhance his personal knowledge but at the same time creating technology and
applications that can help other people lives by giving them better support and life quality im-
provements.

23

1.2 Problem Statement and Objectives

The determination of the mobility degree in an elderly person is of the utmost importance as it
can serve to validate therapies and well-being, contributing to the enhancement of the person’s
active aging. Therefore, the design of new methodologies to address this problem is needed, as
these may bring innovations and thus contributing to the overall increase in the health of the elderly.

Our goal with this thesis is to be able to read data generated by a Kinect device that repre-
sents the motion of several elderly people and being able to judge and classify that person as
having walking difficulties or not.

The person’s motion is taken right from the moment they get up from a chair, walk a few meters in
the direction of the Kinect device, and go back to sit on the chair again thus ending the captured
movement.

This data comes in the form of a large set of movie frames taken by the Kinect device. Then
it is required to manipulate the data and extract valuable information such as the total number
of frames, the total movie and frame time interval respectively, detect and store the human bones
and joints locations in every frame.

With this information, we can then calculate the person position during his entire movement
(getting up from the chair, walking towards the device, walking back to the chair or sitting on the
chair), and calculate his speed and acceleration.

Using the this generated information we can then achieve our real objective which is to clas-
sify the person’s movement.

24

1.3 Adopted Approach for Solving the Problem

In order to resolve the problem stated above it is necessary to talk about the technologies and
theoretical information that helped us in the entire development process of our application:

The first and most important one is the Kinect [1] device originally codenamed Project Natal
during its development phase. It is a motion sensing input device created by Microsoft for Xbox
360 and Xbox One video game consoles and Microsoft Windows PCs. Based around a webcam-style
add-on peripheral, it enables users to control and interact with their console/computer without the
need for a game controller, through a natural user interface using gestures and spoken commands.
Until now there have been two generations of the Kinect device, the first-generation Kinect was
first introduced in November 2010. A version for Microsoft Windows was released on February
1, 2012. And the second-generation Kinect was released with the Xbox One platform starting in
2013. Microsoft released the first Beta of the Kinect software development kit for Windows 7 on
June 16, 2011. This SDK was meant to allow developers to write Kinecting apps in C++/CLI,
C Sharp, or Visual Basic.NET. On our thesis, we used an adaptation of this framework into the
JAVA language which eased all of our code development.

In terms of theoretical information, we had to search the Internet for previous work on working
with the Kinect device and how to manipulate the data it generates. For this part, we used the Java
for Kinect library [2] provided as an open-source project. In terms of information on how to create
and implement a Neural Network [3] application we had to do some further research around the
subject but plenty of information was found which made it easier to adjust and adapt to our needs.

It is also important to refer the chosen JAVA programming IDE, IntelliJ. Which provided with all
the tools and required classes to implement our code, in order to create an interface that could
provide the future users of the application with an easier way to access all of its functionalities and
also simplifying the way they could perceive the final results.

It is also extremely important to mention one of the tools that were indispensable to the whole
work, which is the movie DATASET of every person containing all the graphical representation
of the person movement, without them, it would be impossible to do our thesis. The analysis of
each individual person DATASET became possible by only having in mind the bones and joints
3D coordinates through time. With this information, we were to identify the exact person position
as well as calculate his velocity and acceleration through the entire movement thus leading to a
better final classification.

25

1.4 Main Contributions

The development process of our application can be divided into 5 major steps:

The first one being the manipulation and extraction of all the relevant information from the
provided DATASET videos that were generated by the Kinect device when storing each person’s
movements. Here we used the J4K Java Library in order to read the data from the Kinect gen-
erated files so we could identify the total number of frames, the individual frame time, detect the
bone and joint structure of the person for every each frame detailing the XYZ coordinates, and
store all the gathered information in a new file. This procedure had to be done for each and every
provided Kinect video.

The second one being is to read the files containing the gathered information in order to iden-
tify the person‘s position during his entire movement using the coordinates XYZ into one of the
following situations: getting up from the chair; walking towards the device; walking towards the
chair; sitting on the chair. Beyond that, the person‘s average speed and acceleration per frame is
calculated and used to detect any anomalies or big oscillations during the entire movement.

The third one is the creation of the Neural Network, setting the number of input and output
neurons, the number of hidden layers to be used and the activation function to be used. When
all this is done we proceed to the network training phase using some percentage of the input data
generated in step two.

The fourth one is the Neural Network classification phase where we use the remaining input data
generated in step two to classify the persons in to having a movement disorder or not.

The fifth and last one is where we compare the classification output obtained from step four
with the correct classification that has been given to us by a previous study on the same person
using methods other than Kinect. in order to verify if our solution is fit for our primary goals and
objectives.

26

1.5 Dissertation Overview

The body of this dissertation is constituted by four main chapters, preceded and succeeded by the
Introduction and Conclusions and Future Work, respectively. There is an Appendix at the end of
this dissertation. The compilation of the bibliographic references used along this work is included
after Chapter 6. The contents of each one of the chapters of this dissertation can be summarized
as follows:

Chapter 1 elucidates the context for the subject on which this dissertation is going to elabo-
rate on, identifying the main objectives and the problem to be solved. In this chapter, it is also
included the description of the main contributions resulting from this dissertation.

Chapter 2 provides an overview of the current state of the art regarding the subjects of inter-
est of this dissertation. The two main subjects of interest reviewed in this chapter were Health
Care problems, algorithms and techniques, and the comparison between the goals of our applica-
tion and other solutions for similar problems that have been addressed by other persons in previous
works, but also how can the data recorded by the Kinect device can be interpreted and manipu-
lated according to our needs, in order to satisfactorily classify elderly people movements as having
a quality deficit or not.

Chapter 3 is the core of this dissertation, doing a precise a description of how our application
was created and all of its functionalities, together with this it will be discussed the development
of our Kinect movies manipulation and data extraction algorithms, as well as our Neural Network
implementation and how it uses the given data to produce the desired results.

Chapter 4 presents the whole process of interpreting the various obtained results validating them,
or in other words, all the progress since the very first results either being conclusive or not, un-
til the last ones which have attained the correct classification according to the person’s movements.

Chapter 5 wraps up the most important conclusions of this dissertation, while also providing
some directions for future research and work.

27

28

Chapter 2

State of the Art

One of the major problems and challenges the world is facing nowadays is the physical disability
[4] concern. It requires rigorous exercises and lots of training from such persons in order to achieve
a situation as close to normal life as possible. Recent studies [5] from World Health Organization
(WHO) media center that were announced on their website indicated that over a billion people or
in other words close to 15 percent of the world’s population have some form of disability, which
covers any form of impairment, activity and participation limitations.

It is found that physical disability is one of the most neglected social obligations regardless of
whether the country is developed, developing or underdeveloped. Such people have the right and
need to support in terms of rehabilitation in order to maintain their capacities. The effectiveness of
such rehabilitation depends highly on the person’s motivation, however, they are often non-linearly
related, or in other words, the usual rehabilitation therapy process is generally monotonous which
does not help at all towards the patient’s motivation. Moreover, disabled people living in rural
areas and therefore with less access to health makes the whole process of rehabilitation more demo-
tivating due to inadequate skills and lack knowledge compared to those of hospitals and specialized
clinics professionals. Plus the excessive costs of such health services offered by premium hospitals
make this health care needs unmet.

As the human beings grow older they are susceptible to attain motor deficiencies and experi-
ence dramatic limitations in performing everyday activities such as walking, bathing, dressing,
and eating. Motor deficiencies can be at least partially compensated for or recovered through
physical rehabilitation, however, conventional rehabilitation training programs typically involve
extensive repetitive range-of-motion and coordination exercises and require professional therapists
to supervise the patient’s movements and assess the progress. In the last decade, there have been
some innovations and successful approaches to making use of Virtual Reality (VR) technology and
video games to create a new generation of tools specialized in advanced rehabilitation programs.
The main contributions of the VR technology to the physical therapy and rehabilitation area is
the ability to use sensing devices capable of capturing and quantitatively assess the movements of
patients under treatment, tracking their overall progress more accurately, whereas the video games
are capable of motivating and encourage the patients towards their rehabilitation.

Various motion capture system has been developed so far: On one side we have devices capa-
ble of a precise tracking of the patient’s movements which consist on attaching reflective markers
to their bodies and limbs, however, this type of approach is normally cumbersome, uncomfortable
and usually inhibits the patient’s already limited movement, not to mention their expensive cost;
On the other side they are relatively low-cost approach which consists of using game interfaces
capable of capturing mechanical motions. Popular motion capture devices include SMART-DX
[6], Optoelectronic Plethysmography System [7], OptiTrack [8], Xsens MVN [9], Vicon [10], Au-
todesk MAYA [11], Microsoft Kinect, and more on the gaming side the Nintendo Wii Remote and
PlayStation Move.

29

On this project, we focused on using the low-cost side of motion capture systems, in particu-
lar, the Microsoft Kinect device [1], which is overall inexpensive, easy to set up and can be used
in either home or clinical environments. It includes an RGB camera and a depth sensor, which
together provide full-body 3D motion capture and joint tracking capabilities without markers or
handheld controllers [12]. Moreover, its interface is nonintrusive and requires minimal interaction
with the patients themselves.

The software libraries available right out-of-the-box (OOTB) provided by Microsoft Software De-
velopment Kit [13] (SDK) as well as other third party middleware implementations and toolkits for
those who prefer different programming languages instead of C Plus Plus and/or C Sharp such as
JAVA, an excellent example of these is the J4K Java Library [2]. All of them have a huge set of fea-
tures and capacities which enable the reception of 3D positions of skeletal joints through streams of
skeletal frames in real-time, hence Kinect can be used in areas far beyond the scope of video games.

By far, the most interesting data provided by Kinect is the skeletal data provided by the skeletal
data streams and by registering an event handler responsible for receiving and processing the var-
ious skeletal frames. Each of these frames is capable of containing data for up to 6 users, however
only 2 can be fully tracked. The users which are fully tracked, their 3D positions (x, y, z) on a total
of 26 joints are reported, including: head, shoulder center, left/right shoulder, left/right elbow,
left/right wrist, left/right hand, spine, hip center, left/right hip, left/right knee, left/right ankle
and left/right foot. All these Kinect features and technologies enable a large set of applications to
be developed far beyond the original gaming scope, covering other areas such as: 3D construction,
physical therapy, fall detection, medical operation, education, training, sign language, recognition,
retail, natural language interface, robotics control and much more.

A list of examples, previous adaptations, and usages of Kinect, will be presented while referencing
their respective papers in the following paragraphs of this chapter, together with a comparison
table between all systems similar to Kinect and therefore capable of replacing him:

Kinect V1 Kinect V2 (Ours) OptiTrack
Resolution 640 x 480 1920 x 1080 640 x 480
Frame Rate 30 FPS 30 FPS 100 FPS
Sensing Range 1.2 to 3.5m 4.5m 20m

Field of View
Horizontal: 57o

Vertical: 43o
Horizontal: 70o

Vertical: 60o 360o

Number of Cameras 1 1 Multiple
Markers No No Yes
Number of Joints 20 26 Desired
Cost Low Low High
Environment Clinic, Home Clinic, Home Medical Center

Related to
[14] [15] [16] [17]
[18] [19] [20] [21]

[19] [22] [23] [24]
[25]

[14]

Table 2.1: Kinect and OptiTrack Specifications

Chien-Yen Chang, Belinda Lange, Mi Zhang, Sebastian Koenig, Phil Requejo, Noom Somboon,
Alexander A. Sawchuk, Albert A. Rizzo [14], investigated the Microsoft Kinect capabilities as
a robust tool for SCI rehabilitation, experimentally comparing its performance against the high
precision OptiTrack optical motion capture system, the table 2.1 lists both systems primary spec-

30

ifications. They developed a prototype game for SCI rehabilitation and integrated it with their
Kinect-based system to quantitatively assess patients’ rehabilitation performance and track their
progress in a clinic and home environments. According to their research, experimentation, and
testing between a low-cost single-camera and high-cost multi-camera system, they concluded that
the Kinect Device is a promising VR neurological rehabilitation tool if destined to be used in a
clinic and home environments and highly recommendable for movements tasks involved in rehabil-
itation interventions.

Anil K. Roy, Yash Soni, Sonali Dubey [15], in order to make the unexciting rehabilitation process
fun and rewarding they incorporated suitable motion-sensing serious games. Named the application
"Kinect-o-Therapy", which consists of a motor rehabilitation tool, that complements the existing
system of physical rehabilitation, targeting people suffering from motor disorders caused primarily
by cerebral palsy, spinal cord injury, post stroke or hereditary muscle ailments that significantly
affect limb movements and hinders a person’s range of motion and ability to make coordinated
movements. They tried to incorporate the three key elements of effective rehabilitation: Repeti-
tion, Motivation, and Feedback, in order to make their product as much effective and complete as
possible. In spite of Kinect device being such a very cheap device with low to zero maintenance
costs when compared to other clinic and laboratory machinery, they affirmed their system has a
high potentiality to be used as a viable replacement for physical rehabilitation centers, moreover
it also viable for a home environment as well and therefore the patient retains his privacy while
still enhancing his own physical capacities.

Wenbing Zhao, Hai Feng, Roanna Lun, Deborah D. Espy, M. Ann Reinthal [16] created a sys-
tem that demonstrates the correct way of doing a rehabilitation exercise, having a 3D avatar on
one side of the screen based on pre-recorded motion data, and another on the other side of the
screen, that reflects the actual patient movement. They also implemented a set of correctness
rules for each exercise and assesses the patient’s movement in real-time. The assessment results
are incorporated in the patient avatar in the form of visual guides to help the patient perform
the exercise correctly. The system also records vital data pertinent to the quality and quantity
of exercises such as correct iterations as well as detailed motion data for real-time feedback and
post-analysis. Concluding that their system can be of practical use for rehabilitation exercises due
to being low computationally intensive and having a real-time assessment, plus the definition of
correctness rules that serve as the invariance of the exercise independently from the size and form
of the users.

Hesham Alabbasi, Alex Gradinaru, Florica Moldoveanu, Alin Moldoveanu [22], presented a two
steps application: the first is to record a sequence sports exercises performed by a professional using
the Kinect sensor while using the recorded data to generate a 3D avatar character; the second step
is to record the imitative actions performed by the trainee in order to make a comparison between
them. The overall objective is to make real-time corrections on the screen through messages and
body part highlights, helping the user to correct his actions and self-learn the exercises sequence
by following the real-time visual feedback. At the end, a summary of the trainee’s performance
and a general total score is displayed on the screen. They noticed that the scores are much lower
as the complexity of the exercise rises. The capture from the Kinect sensor V2 has a real improve-
ment when compared to its previous version providing good support for real-time evaluation of
medical rehab or physical training exercises but still requires some improvements, however, their
own developed skeletal animation could be improved to attain better results.

31

Daniel Leightley, Moi Hoon Yap, Jessica Coulson, Yoann Barnouin, Jamie S. McPhee [17], created
a dataset of healthcare-related motions, named Kinect 3D Active (K3Da), by capturing balance,
walking, sitting and standing poses from a diversified population range of both young and older
adults. The motions were based on common clinical assessments used to assess movements in
disease and frailty. Their objective is to provide said dataset for others to use as a benchmark and
starting point of human movement detection, quantification, and recognition algorithms. Plus,
they even released a basic toolset to facilitate novel data capture, viewing and motion analy-
sis. They believe to have created the first dataset for Kinect One that enables benchmarking of
healthcare-based applications, methods, and techniques with diverse samples of both young and
elderly people. Despite having a large set of data our own application cannot make use of it since
our objective is to classify a particular group of people and therefore individual data has to be
retrieved, saved, transformed and classified independently of an existing dataset.

Monalisa Pal, Sriparna Saha, Amit Konar [23], recorded the movements from a group of subjects
using the Kinect Sensor and later tried to find and identify frames where the angles corresponded
to gestures previously checked as disease related by several doctors of renowned medical colleges.
They achieved a high success, best showing an accuracy of 94.29 percent, responding in 3.83 mil-
liseconds to a query. Of all the seven similarity measures they used: Euclidean distance (DE),
Standardized Euclidean distance (DSE), City-block metric (DCB), Chebychev distance (DCC),
Mahalanobis distance (DM), Cosine distance (DCS) and Correlation distance (DCR) they con-
cluded that the one with the City-block metric outperforms the other metrics with respect to
almost all the performance measure expect Precision as shown in table 2.2

Method
Recall
(%)

Precision
(%)

Accuracy
(%)

F1 Score
(%)

Error
Rate (%)

Time
(ms)

DE 89.02 92.03 91.43 90.50 8.57 3.86
DSE 92.31 89.02 92.86 90.64 7.14 5.41
DCB 93.21 94.30 94.29 93.75 5.71 3.83
DCC 91.02 91.12 91.43 91.07 8.57 3.86
DM 86.41 89.90 90.00 88.12 10.00 5.20
DCS 79.38 97.02 92.86 87.32 7.14 4.08
DCR 88.39 86.63 94.29 87.50 5.71 4.41

Table 2.2: Distance Metric Comparison

Liang Liu, Sanjay Mehrotra [24], used the Kinect Sensor V2 in order to detect and prevent pneu-
monia by evaluating patient activities while in a hospital room. Studies indicate that ambulation
and/or walking is essential and therefore the patients are encouraged to walk as early as possible,
and this is where the Kinect Sensor comes into hand by controlling and monitoring the patients
in real time without any concerns or preoccupations on their side. They demonstrated that the
walk detector performance matches well with the ground truth observed on the recorded depth
images being a tool capable of evaluating a patient walk with an acceptable accuracy making it
viable for hospital room environments. Moreover, it is noninvasive, contact-free, low-cost, very
easy maintenance and protects the patient’s privacy since it does not require color information.

Pavia Bera, Reshma Kar, Amit Konar [18], in order to recognize problems related to specific lower
right side joints of the human body (ankle, knee, hip, and forefoot), used the Microsoft Kinect
device together with a gait analysis algorithm, which allowed them to identify patterns associated

32

with pain. They initially recorded human body gait patterns and processed this information for
data enhancement, retaining only the essential information. Then, when capturing the gait of a
person that suffered from a joint problem they try to match it with the previously recorded ones
thus being able to classify it into one of the four considered classes. They demonstrated exper-
imentally that their scheme of data enhancement increases recognition rate of the classifier used
as compared to a traditional feature selection method and obtaining the results displayed in the
table 2.3

Body Joint

Classification
Accuracy with
Traditional
Features (%)

Classification
Accuracy with
Proposed Data
Enhancement

(%)
Right Foot 57.99 77.84
Right Hip 88.77 90.12
Right Ankle 63.22 86.24
Right Knee 78.99 93.44
Average 72.24 86.91

Table 2.3: Classification Accuracy Comparison

Roanna Lun, Connor Gordon, Wenbing Zhao [19], focused on tracking the activities of daily living
(ADL), making use of multiple Microsoft Kinect sensors (chosen by it’s low-cost and excellent open
source programming support) linked to a dedicated server. Pairing it with smart watches equipped
with accelerometers and/or gyroscopes and magnetometers for the inertial sensing modality. Con-
cluding that both devices together provide an excellent user identification while delivering real
time feedbacks to the users. Plus, they designed their system in order to communicate over the
network with other systems and mobile/wearable devices making it possible to continuously track
each individual’s ADL in the indoor environment as well as outdoor. In resume, they managed to
create a system that integrates computer vision-based server, image sensors, mobile smartphones,
wearable devices and a cloud web server for motion tracking, however, they admitted as future
work that their solution could be further improved to enable the communication between multiple
Kinect servers federating them together to cover a large area and/or multiple rooms.

D. González Ortega, F.J. Díaz Pernas, M. Martínez Zarzuela, M. Antón Rodríguez [20], presented
a 3D vision-based marker-free system capable of monitoring the motion of multiple human body
parts for post assessment and rehabilitation of body scheme dysfunctions and left-right confusion
using the Microsoft Kinect device. Their aim was to monitor and extract the achievement level,
calculate temporal parameters such as reaction time, fulfillment time, or failure time, as well as
track the trajectories of human body parts in psychomotor exercises. Since the Kinect device does
not any illumination to extract the depth information and only needs some amount of illumina-
tion for the AdaBoost face detector, this characteristic was crucial to their work allowing them to
achieve a more robust and satisfactory performance on the cognitive rehabilitation exercises mon-
itoring compared to a 2D system. The Kinect device was proved to be very useful in developing
applications in many fields such as rehabilitation, easy to use and with optimal performance. being
quite capable of human limb monitoring. Their system was evaluated with 15 users, achieving a
successful monitoring percentage of 96.28%.

Yao-Jen Chang, Shu-Fang Chen, Jun-Da Huang [21], developed a Kinect based application to
assist therapists in rehabilitating school students with motor disabilities, which detects the stu-

33

dent’s joint position and uses the recorded data to determine whether the student’s movements
have reached the rehabilitation standard and/or if the number of exercises completed successfully
in a therapy session is good enough. Real time information is given to the student’s so they know
if they are doing fine, together with an interactive interface and video-audio feedback enhancing
their motivation, interest, and perseverance to maintain their rehabilitation exercises. All the
recorded data by the system is then handled automatically to therapists so they can assess and
review the student’s rehabilitation progress quickly. They presented results that were applied to
two students with a high which shown a high success rate as described in the table 2.4 and therefore
demonstrating the viability of the Kinect technology on physical rehabilitation.

Days Phase
Daily Average

Correct
Movements

01-05 Non-Kinect 42
06-16 Kinect 136
17-22 Non-Kinect 44
23-34 Kinect 173

Table 2.4: Application Results

César Bernal Bravo, Juan Jesus Ojeda-Castelo, Jose Antonio Piedra-Fernandez [25], made use of
the Kinect full body gesture recognition capacity in order to help students with cognitive disabilities
to improve their movements. They adapted their application to three different types of exercises:
music, dance, and painting. In the music section, the students have to play a musical instrument
and try to achieve specific gestures, and whenever successful they receive a music note feedback.
For the dance section, they will have to follow a 3D avatar and follow its lead, accompanied by
an acoustic music to encourage the student to move, if they fail the dance restarts. Lastly, the
painting exercise where they have to follow painting pattern, controlling the color as well as the
thickness of the stroke, plus, they also allowed this exercise to be action free letting the students
use their own creativity. Comparing the usage and absence of the Kinect on the same exercises,
they concluded that the students pay way more attention and focus when the Kinect was present
which proved it to be a very useful tool for physical rehabilitation purposes.

34

Chapter 3

Development

The main objective of this dissertation is to use the capabilities of the Microsoft Windows Kinect
device in order to record the movement of people with walking disabilities, more specifically elderly
people, with post interpretation, analysis, and manipulation of the recorded data in a way that
allow us to identify walking quality deficit and difficulties.

The entire development phase can be subdivided into four iterative phases which will be pre-
sented and explained thoroughly in their respective order, accompanied with image examples and
code parts from our application: Video capturing using the Kinect device; Application organization
and dataset preparation; Video data analysis and manipulation; Data classification.

Figure 3.1: Application Architecture

35

3.1 Application Workflow

Before going deep into detail about what each of the implemented classes and their respective
methods do it is of the utmost importance to explain the overall workflow of our programs. The
diagram 3.1 already provides a high view of how we achieved our main objective however how
everything connects together has to be described as well.

It all starts with the provided Kinect videos which contain all the necessary information about
the patients’ movements, however, they had to be analyzed so that pertinent and relevant in-
formation could be extracted from them, more specifically the skeleton and joints of the human
body structure. The method "onSkeletonFrameEvent" from the class "Kinect" goes frame by
frame detecting the skeleton and identifying each of the 25 joints coordinates (still only 20 can be
detected in our case due to movements particularities), which are instantly saved in a log file to-
gether with the videos total time. This log files had to be stored locally accordingly to their dataset.

Having the datasets properly stored the developed application can be launched by running the
main method on the "Application" class. Firstly it will try to load the training dataset inputs and
outputs into memory and then the classification dataset. This is defined in the "ManageData"
class which has the list of every log file and its respective information separated by their respective
dataset. In order to fetch the data stored in each of the log files, plus handling the data normaliza-
tion and transformation, the class "CalculateInput" was built with the sole purpose of setting the
correct order of work for each of the log files, by calling respectively the "ReadTextFile", "Nor-
malizeData" and "TransformData" in this same order.

Only when both datasets have been loaded and processed the neural network can be initiated
and set to do fulfill its purpose. The class "Classification" is the one that orchestrates every pro-
cedure of the neural network, having the necessary methods which firstly initiate the "Network"
class and then use its public methods to train it and classify the desired dataset to obtain a group
of outputs which should be according to what we expected if everything went as expected.

36

3.2 Video capturing using the Kinect device

Two local elderly people houses were contacted, asking them for support on recording video ex-
amples from voluntary persons willing to help us with our investigations and work. Every one of
the persons involved was asked to do a particular set of five movements three times with intervals
between them:

• At the beginning of the movement, the patient is sitting on a chair, located approximately
three to four meters away from the Kinect device, figure 3.2;

• Then they have to get up from the chair and walk towards the Kinect device until reaching
approximately one meter away from it, figure 3.3;

• Next, they will turn back around towards the chair, figure 3.4;

• Walking back towards the chair, figure 3.5;

• Lastly, sitting back on the chair, thus ending the movement, figure 3.6.

Figure 3.2: The patient is sitting on the chair

Figure 3.3: Gets up from the chair and walk towards the Kinect device

37

Figure 3.4: Turn back around towards the chair

Figure 3.5: Walking back towards the chair

Figure 3.6: Sitting back on the chair

38

We counted with the help of twenty individuals, and a total of fifty-eight recorded videos overall.
Which we believe to be more than enough to for our thesis objectives and aims. Still, the Kinect
device is so much more than a simple recorder, it enables the user to work with the recorded
data. Its framework provides with an abundant set of tools that enables video analysis and data
extraction. On our case, we focused specifically on its amazing capability to read through the
recorded video frames while detecting and identifying 25 different bones and joints for each present
individual. Two tasks were considered on this part of our application development. The first one
being the joints analysis and identification followed by the second one which consisted on extracting
of their corresponding coordinates on a 3D axis XYZ on every video frame.

3.2.1 Joint Analysis and Identification

The video data analysis task translates into developing a way to isolate and identify the patient’s
joints through all their movement. Having in mind the set of five movements the patient has to
follow presented previously, their corresponding skeleton images will be:

• Patient skeleton sitting on the chair, figure 3.7;

• Patient skeleton walking towards the device, figure 3.10;

• Patient skeleton turning around facing the chair, figure 3.9;

• Patient skeleton walking back towards the chair, figure 3.10;

• Patient skeleton sitting back on the chair, figure 3.11.

Figure 3.7: Patient skeleton sitting on the chair

39

Figure 3.8: Patient skeleton walking towards the device

Figure 3.9: Patient skeleton turning around facing the chair

Figure 3.10: Patient skeleton walking back towards the chair

40

Figure 3.11: Patient skeleton sitting back on the chair

3.2.2 Extracting joint coordinates

In order to facilitate our work and increase its accuracy and achieve successful results, we made
use of the J4K Java library which is an open source Java library that implements a Java binding
for the Microsoft’s Kinect SDK. It communicates with a native Windows library, which handles
the depth, color, infrared, and skeleton streams of the Kinect using the Java Native Interface (JNI).

Below following method header is one the existing methods on the Kinect class and is the one
responsible to enable us the extraction of the data associated with the skeleton streams. It starts
by checking if some skeleton body is detected by the Kinect device, then retrieves for each skeleton,
his position, orientation, state, flags and respective joints, and finally writes the skeleton 3D joint
coordinates into a log file for later use.

1 pub l i c void onSkeletonFrameEvent (boolean [] f l a g s , f l o a t [] p o s i t i on s , f l o a t []

o r i e n t a t i on s , byte [] s t a t e) { . . . }

Listing 3.1: Extract skeleton data

41

The output file format looks something like:

1 BONE | X | Y | Z

2 −−
3 01 | −0.16948788 | −0.16639492 | 3 .4596786

4 02 | −0.17006062 | −0.10776921 | 3 .5189590

5 03 | −0.17665800 | 0 .24895142 | 3 .5350120

6 04 | −0.19132298 | 0 .41924775 | 3 .4980333

7 05 | −0.36282122 | 0 .12864287 | 3 .5054340

8 06 | −0.42800647 | −0.04281822 | 3 .4173112

9 07 | −0.26290643 | −0.06567054 | 3 .2654540

10 08 | −0.22328073 | −0.07519613 | 3 .2333055

11 09 | −0.00193787 | 0 .14907743 | 3 .5052726

12 10 | 0 .08717620 | −0.04234611 | 3 .4545121

13 11 | 0 .07774843 | −0.27299222 | 3 .4752805

14 12 | 0 .09540976 | −0.36505340 | 3 .4968703

15 13 | −0.24931088 | −0.25068653 | 3 .4481027

16 14 | −0.24318285 | −0.59123003 | 3 .4041839

17 15 | −0.23263395 | −0.88161606 | 3 .3733299

18 16 | −0.21569973 | −0.95798370 | 3 .3263545

19 17 | −0.08691338 | −0.24149096 | 3 .4370992

20 18 | −0.06345392 | −0.63124865 | 3 .4660883

21 19 | −0.06795472 | −0.96873450 | 3 .5775857

22 20 | −0.06833535 | −0.99156760 | 3 .5016005

23 21 | 0 .00000000 | 0 .00000000 | 0 .0000000

24 22 | 0 .00000000 | 0 .00000000 | 0 .0000000

25 23 | 0 .00000000 | 0 .00000000 | 0 .0000000

26 24 | 0 .00000000 | 0 .00000000 | 0 .0000000

27 25 | 0 .00000000 | 0 .00000000 | 0 .0000000

Listing 3.2: Output file data format

A list of all twenty-five bones is generated with their corresponding X, Y and Z coordinates, which
repeats for the entirety of the movement frames. However, the last five bones can not be tracked
and thus they will always be set to the value 0.00000000 on their coordinates.

42

3.3 Application organization and dataset preparation

In this section will be described the main class of our application responsible for the entire appli-
cation orchestration, together with an additional class where the dataset files location is specified
and handled according to being part of the training set or the final set.

3.3.1 Application orchestration

As in any JAVA application, we had to create a class capable of doing the entire orchestration
and coordination of our code, thus the "Application" class was developed which contains a main
method responsible for launching our application, one constructor ("Application") and one private
method ("loadData"), and two private methods ("readLargerTextFile" and "populateJoints"):

1 [. . .]

2

3 pub l i c c l a s s App l i cat ion {

4

5 pr i va t e ArrayList<double [] > tra in ing_inputs ;

6 pr i va t e ArrayList<double [] > tra in ing_outputs ;

7 pr i va t e ArrayList<double [] > c l a s s i f i c a t i o n_ i n pu t s ;

8 pr i va t e ArrayList<double [] > c l a s s i f i c a t i o n_ou t pu t s ;

9

10 pub l i c App l i ca t ion () { . . . }

11

12 pr i va t e void loadData (S t r ing data_type) { . . . }

13

14 pub l i c s t a t i c void main (St r ing [] a rgs) throws IOException {

15 Appl i ca t ion network = new Appl i ca t ion () ;

16 }

17 }

Listing 3.3: Main application class

• ’Application’: The class constructor method. Here is specified and initialized the private
class variables "training_inputs", "training_outputs", "classification_inputs" and "classifi-
cation_outputs" respectively by calling the "loadData" method for each situation, plus the
"Classification" class initialization and usage by calling its three public methods (the con-
structor "Classification", the "trainNetwork" and the "finalNetwork" methods). At all times
the current operation status is written on the console so the user knows what being done by
the application;

• ’loadData’: Calls the "ManageData" class in order to prepare a specific dataset (training or
final) while orchestrating the calculation of the inputs and outputs for each file of the dataset
by using the "CalculateInput" class and saving their values on the class private variables;

• ’main’: It is where the JAVA application is started which requires the "IOException" excep-
tion in order to rescue and validate what when the application is being started.

43

3.3.2 Dataset handling

For our application development two datasets were given, each representing the people from a
specific eldery healthcare house, in order to handle this situation a class capable of having both
datasets file informations was built with the name "ManageData" which contains one construc-
tor ("ManageData"), one public method ("getFilesToUse"), and three private methods ("load",
"trainingDataFiles" and "classifyingDataFiles"):

1 [. . .]

2

3 pub l i c c l a s s ManageData {

4

5 [. . .]

6

7 pub l i c ManageData (St r ing data_type) { . . . }

8

9 pr i va t e void load (St r ing [] f i l e s) { . . . }

10

11 pr i va t e S t r ing [] t r a i n i ngDataF i l e s () { . . . }

12

13 pr i va t e S t r ing [] c l a s s i f y i n gDa t aF i l e s () { . . . }

14

15 pub l i c ArrayList<St r ing [] > getFi lesToUse () { . . . }

16 }

Listing 3.4: Manage data class

• ’ManageData’: The class constructor method. Receives the data type as a parameter, the
private class variable "files_to_use" is specified and according to the data type parameter
calls the "load" while passing the parameter to them;

• ’load’: Receives the list of files to be used and their respective information storing it in the
"files_to_use" class variable.

• ’trainingDataFiles’: Has the list of all files to be used for training purposes together with
their associated information;

• ’classifyingDataFiles’: Has the list of all files to be used for classification purposes together
with their associated information;

• ’getFilesToUse’: Returns the class variable "files_to_use";

44

3.4 Video data analysis and manipulation

With all the important and relevant data saved, it is required to have a mechanism to access it for
post preparation and transformation into a usable dataset by our classifier. For such purpose, a
principle orchestrating class was developed in order to properly call other relevant classes in their
due correct order.

3.4.1 Input calculation

Since there would be lots of iterations in order to read every file of the dataset and process
their respective inputs an orchestration class was built for this task. The "CalculateInput" class
contains one constructor ("CalculateInput"), one public method ("getInputValues"), and three
private methods ("readDataFromFile", "normalizeData", "transformData"):

1 [. . .]

2

3 pub l i c c l a s s Ca lcu late Input {

4

5 [. . .]

6

7 pub l i c Ca lcu la te Input (S t r ing [] f i l e_to_use) { . . . }

8

9 pr i va t e void readDataFromFile () { . . . }

10

11 pr i va t e void normalizeData () { . . . }

12

13 pr i va t e void transformData () { . . . }

14

15 pub l i c double [] getInputValues () { . . . }

16 }

Listing 3.5: Calculate input class

• ’CalculateInput’: The class constructor method. Receives the file to use information as a
parameter, the private class variables "file", "time", "joints" and "normalized_joints" are
specified and initialized, and then the three private methods are called in their respective
order ("readDataFromFile", "normalizeData" and "transformData");

• ’readDataFromFile’: Calls the "ReadTextFile" class passing the class variable "file" as a
parameter. Then calls its class method "getJoints" in order to set the class variable "joints".

• ’normalizeData’: Calls the "NormalizeData" class passing the class variables "joints" and
time" as parameters. Then calls its class method "getNormalization" in order to set the
class variable "normalized_joints".

• ’transformData’: Calls the "TransformData" class passing the class variables "normalized_joints"
and "time" as parameters. Then calls its respective class method "getTransformation" in
order to set the class variable "input_values".

• ’getInputValues’: Returns the class variable "input_values";

45

3.4.2 Accessing the stored data

In order to read the previously stored data the class "ReadTextFile" was developed which contains
one constructor ("ReadTextFile"), one public method ("getJoints"), and two private methods
("readLargerTextFile" and "populateJoints"):

1 [. . .]

2

3 pub l i c c l a s s ReadTextFile {

4

5 [. . .]

6

7 pub l i c ReadTextFile (S t r ing pathToFile) throws IOException { . . . }

8

9 pr i va t e void readLargerTextFi l e () throws IOException { . . . }

10

11 pr i va t e void popu la t eJo in t s () { . . . }

12

13 pub l i c ArrayList<ArrayList> ge t Jo i n t s () { . . . }

14 }

Listing 3.6: Read text file class

• ’ReadTextFile’: The class constructor method. Here is specified the path to the file, its
encoding and the class variables "joints and "coords" are initialized, finishing by calling the
’readLargerTextFile’ method;

• ’readLargerTextFile’: Reads the specified file storing every X, Y and Z coordinates in the
"coords" class variable, lastly calling the "populateJoints" method;

• ’populateJoints’: Every X, Y and Z coordinates of all twenty-five bones for each frame are
stored in the "joints" variable;

• ’getJoints’: A get method which returns the "joints" class variable value.

3.4.3 Data normalization

Having the stored data now loaded into the application it is necessary to verify and normalize it if
necessary. This is done by the class "NormalizeData" which contains one constructor ("Normalize-
Data"), one public method ("getNormalization"), and five private methods ("normalize", "adapt-
ToBoundaries", "findCenter", "calculateSpeed", "calculateAcc" and "checkRepeatedData"):

1 [. . .]

2

3 pub l i c c l a s s NormalizeData {

4

5 [. . .]

6

7 pub l i c NormalizeData (ArrayList<ArrayList> j o i n t s , double time) { . . . }

8

9 pr i va t e void normal ize () { . . . }

46

10

11 pr i va t e void adaptToBoundaries () { . . . }

12

13 pr i va t e Double [] f indCenter (ArrayList <St r ing [] > j o i n t L i s t) { . . . }

14

15 pr i va t e Double ca l cu l a t eSpeed (Double [] Cmi , Double [] Cmf , double

t ime_interva l) { . . . }

16

17 pr i va t e Double ca l cu l a t eAcc (Double Va , Double Vb, double Ta , double Tb)

{ . . . }

18

19 pr i va t e Boolean checkRepeatedData (i n t i , Double [] next_data) { . . . }

20

21 pub l i c ArrayList<Double [] > getNormal i zat ion () { . . . }

22 }

Listing 3.7: Normalize data class

• ’NormalizeData’: The class constructor method. Here is specified the "joints" and "time"
variables, the "normalizedJoints" variable is initialized, and the private methods "normalize"
and "adaptToBoundaries" are called;

• ’normalize’: Its the principal method of the class which calls every other private method
in a given order together with additional calculations according to the specific frame in the
movement;

• ’adaptToBoundaries’: The "normalizedJoints" values are adapted to specific boundaries;

• ’findCenter’: "Finds the mass center XYZ coordinates of the skeleton for each frame of the
movement;

• ’calculateSpeed’: Receives the time interval and the XYZ coordinates between two given
frames returning the speed calculated through a mathematic formula;

• ’calculateAcc’: Receives the speed, and time of two given frames returning the accelation
calculated through a mathematic formula;

• ’checkRepeatedData’: Verifies if two followed frames have the same values allowing only those
who do not;

• ’getNormalization’: A get method which returns the "normalizedJoints" class variable value.

3.4.4 Data transformation

Now that all data has been verified and normalized there is only one final step before sending it to for
classification which is the transformation phase. The class "TransformData" is the one responsible
for this task which contains one constructor ("TransformData"), one public method ("getTrans-
formation"), and four private methods ("firstClassification", "secondClassification", "thirdClassi-
fication" and "fourthClassification"):

1 [. . .]

2

47

3 pub l i c c l a s s TransformData {

4

5 [. . .]

6

7 pub l i c TransformData (ArrayList<Double [] > normal i zedJo ints , double time)

{ . . . }

8

9 pr i va t e void f i r s t C l a s s i f i c a t i o n () { . . . }

10

11 pr i va t e void s e c o ndC l a s s i f i c a t i o n () { . . . }

12

13 pr i va t e void t h i r dC l a s s i f i c a t i o n () { . . . }

14

15 pr i va t e void f o u r t hC l a s s i f i c a t i o n () { . . . }

16

17 pub l i c double [] getTransformat ion () { . . . }

18 }

Listing 3.8: Transform data class

• ’TransformData’: The class constructor method. Here is specified the "normalizedjoints"
and "time" variables, the "transformedData" variable is initialized, and the private methods
"firstClassification", "secondClassification", "thirdClassification" and "fourthClassification"
are called;

• ’firstClassification’: Calculates the acceleration differences counting the number of positives
and negatives, returning ’1.0’ if there are more positives or ’0.0’ otherwise;

• ’secondClassification’: Verifies how many times the speed is superior to the constant value
"SPEED" counting the number of positives and negatives, returning ’1.0’ if there are more
positives or ’0.0’ otherwise;

• ’thirdClassification’: Verifies how many times the distance is superior to the constant value
"SPACE" counting the number of positives and negatives, returning ’1.0’ if there are more
positives or ’0.0’ otherwise.

• ’fourthClassification’: Verifies the total time of the movement returning 1.0 if greater than
twenty seconds, ’0.0’ in case its between ten seconds (excluded) and twenty seconds (in-
cluded), or ’-1.0’ if inferior to 10 seconds (included);

• ’getTransformation’: Returns the transformed data array.

48

3.5 Data classification

The last section of the development process is related to the neural network itself, being one of the
most important section of this dissertation. It can be subdivided into two parts: one being the
class responsible for calling and handling the neural network implementation, and the other is the
three classes which represent the neural network itself.

3.5.1 Handling the neural network

After every dataset has been properly loaded, prepared, normalized and transformed it is now
available to be used for training and finally classification purposes. An orchestration class "Clas-
sification" was build in order to ease how the dataset should be handled by our neural network
implementation, containing one constructor ("Classification") and two public methods ("trainNet-
work" and "finalNetwork"):

1 [. . .]

2

3 pub l i c c l a s s C l a s s i f i c a t i o n {

4

5 pr i va t e s t a t i c f i n a l i n t INPUT_LAYER = 4 ;

6 pr i va t e s t a t i c f i n a l i n t HIDDEN_LAYER = 3 ;

7 pr i va t e s t a t i c f i n a l i n t OUTPUT_LAYER = 3 ;

8 pr i va t e s t a t i c f i n a l i n t ITERATIONS = 1000000;

9 pr i va t e Network net ;

10 pr i va t e TrainSet t r a i n i n g ;

11 pr i va t e TrainSet c l a s s i f y ;

12

13 pub l i c C l a s s i f i c a t i o n () { . . . }

14

15 pub l i c void trainNetwork (ArrayList<double [] > input , ArrayList<double [] >

output) { . . . }

16

17 pub l i c void f ina lNetwork (ArrayList<double [] > input , ArrayList<double [] >

output) { . . . }

18 }

Listing 3.9: Classification orchestration class

• ’Classification’: The class constructor method. Here is initialized the private class variable
"net" as an object of the class "Network" using an input layer of four neurons, two hidden
layers of three neurons and one output layer with three neurons, "additionally two more
private variables (training and classify) are specified as objects of the the class "TrainSet"
using four as the input size value and three as the output size value;

• ’trainNetwork’: Receives a list of inputs and their corresponding outputs that will be added
as data for training purposes and later being used to train the network over a set of one
million iterations;

• ’finalNetwork’: Receives a list of inputs and their corresponding outputs that will be added
as data for classification purposes and later the neural network is asked to classify this inputs
and obtain their outputs.

49

3.5.2 Neural network implementation

The implementation of our neural network [26] [27] was divided into three classes, one being the
primary one which has the main functions related to the network, another works as a set of tool
methods which can be called as helpers to the main class and the last one is intended to enable
the training or classification capabilities of the network on a particular or multiple datasets, it also
allows the user to use only a particular part of the dataset instead of the entirety of it (this is called
"batch" selection). We will describe only the main Neural Network [28] [29] [30] [31] class since the
other two classes are composed of simple helper methods and override for native java methods such
as "toString" to better suit our needs in terms of console display, their code is however available
in the appendix. The main Neural Network is named "Network" which contains one constructor
("Network"), two public methods ("calculate" and "train") and five private methods ("MSE",
"MSE", "train", "backPropagationError", and "updateWeights");

1 [. . .]

2

3 pub l i c c l a s s Network {

4 pr i va t e f i n a l i n t [] NETWORK_LAYER_SIZES;

5 pr i va t e f i n a l i n t NETWORK_SIZE;

6 pr i va t e f i n a l i n t INPUT_SIZE ;

7 pr i va t e f i n a l i n t OUTPUT_SIZE;

8 pr i va t e double [] [] output ;

9 pr i va t e double [] [] [] we ights ;

10 pr i va t e double [] [] b i a s ;

11 pr i va t e double [] [] e r r o r_s i gna l ;

12 pr i va t e double [] [] output_der ivat ive ;

13

14 pub l i c Network (i n t . . . NETWORK_LAYER_SIZES) { . . . }

15

16 pub l i c double [] c a l c u l a t e (double . . . input) { . . . }

17

18 pub l i c void t r a i n (TrainSet set , i n t loops , i n t batch_size) { . . . }

19

20 pr i va t e double MSE(TrainSet s e t) { . . . }

21

22 pr i va t e double MSE(double [] input , double [] t a r g e t) { . . . }

23

24 pr i va t e void t r a i n (double [] input , double [] ta rget , double eta) { . . . }

25

26 pr i va t e void backPropagationError (double [] t a r g e t) { . . . }

27

28 pr i va t e void updateWeights (double eta) { . . . }

29 }

Listing 3.10: Classification orchestration class

• ’Network’: The class constructor method. Receives the network layers disposition and re-
spective sizes as a parameter which is used to initialize the private class variable "NET-
WORK_LAYER_SIZES". Additionally, the other private class variables are also initialized

50

("NETWORK_SIZE", "INPUT_SIZE", "OUTPUT_SIZE", "output", "weights", "bias",
"error_signal" and "output_derivative");

• ’calculate’: Queries the network to calculate the output for a given input that is passed as a
parameter;

• ’train 1’: Trains the network using a specific dataset, number of loops and enables the user
to specify how many entries of the dataset should be used using the variable "batch_size"
calling the other method "train" by passing the inputs and outputs of the batch;

• ’MSE 1’: Allows the calculation of the mathematics error operation ’Mean Square Error’ for
a given dataset. The calculations are made by calling the other "MSE" method by passing
the set inputs and outputs;

• ’MSE 2’: Calculates the ’Mean Square Error’ using the inputs and outputs passed as param-
eters and calling the "calculate" method on the inputs;

• ’train 2’: Receives a list of inputs and targets as well as the learning rate as parameters which
will be used to call the "calculate" method passing the inputs as a parameter, the "backProp-
agationError" method passing the targets as a parameter and finally the "updateWeights"
method passing the learning rate as a parameter;

• ’backPropagationError’: Receives the intended output values as a parameter and then applies
a mathematic formula to calculate the back propagation error firstly on the output layers
and lastly to the hidden layers.

• ’updateWeights’: Receives the learning rate value as a parameter which is used to update
the weights of every neuron existing on the network.

3.6 Conclusion

Previously were presented the main classes that were created during our thesis development phase.
All of them play their part while complementing each other, plus they were build having mind the
possibility of code re-usage and/or easy adaption for other types of projects other than the one of
this dissertation. The best example of this is the Neural Network related classes which all have
their one main method filled with code capable of testing them as a stand-alone project, which
was proven quite useful during the development and debugging phase. All this work, techniques
and precautions combined enabled us to achieve our primary objectives for this thesis.

51

52

Chapter 4

Results and Conclusions

4.1 Results

On this section will be discussed the application obtained results accompanied by images, graphics,
and their respective textual explanation. In order to evaluate the success of our application a total
of ten individual and independent runs were undertaken saving the console outputs for each every
one of them (the ten console output images are presented in the Appendix section A.3 of this
dissertation and go by figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9 and A.10,). An example
of this outputs is shown in the figure 4.1.

Figure 4.1: Console Output 1

The console outputs indicate every step that was made by our application when it starts and fin-
ishes the loading and preparation phase for both the training and the classification dataset. It also
indicates when the neural network training phase is initiated and once it ends the respective mean
square error obtained, and lastly the classification phase together with its results (containing the
input array, the output array, and the expected/target array).

From the console outputs, we can extract two important information: the mean square error
value that was calculated over all the iterations during the network training phase, which can be
evaluated in the graph 4.2 that demonstrates the calculated values for each of the ten runs and its
variation between them; the other one being the final results of the four selected patients classifi-
cation which were all successfully classified into their respective conditions, as shown in tables 4.1,
4.2 and 4.3.

53

Figure 4.2: Training phase mean square error

Run Person Input Output Target Assertion

1

1 [0.0, 1.0, 0.0, 1.0]
[1.794148235533662E-5,
4.280020476685341E-6,
0.9999957182462021]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[1.3759291124407587E-5,
6.009072274830778E-6,
0.9999939886513286]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[1.3759291124407587E-5,
6.009072274830778E-6,
0.9999939886513286]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[6.56112918920319E-5,
0.009292421543713594,
0.9907075767943201]

[0.0, 0.0, 1.0] Correct

2

1 [0.0, 1.0, 0.0, 1.0]
[2.3166281254593225E-5,
3.0382534894761605E-4,
0.9996961747991125]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[1.3374175035206572E-5,
1.1040331924450852E-4,
0.9998895967396797]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[1.3374175035206572E-5,
1.1040331924450852E-4,
0.9998895967396797]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[4.019351101598086E-5,
0.0028737458916524576,
0.9971262548825077]

[0.0, 0.0, 1.0] Correct

Table 4.1: Results comparison - Run one and two

54

Run Person Input Output Target Assertion

3

1 [0.0, 1.0, 0.0, 1.0]
[8.692397147286361E-6,
2.250562459199995E-4,
0.9997749439334834]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[4.151340806187727E-6,
3.796890184426026E-5,
0.9999620311384434]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[4.151340806187727E-6,
3.796890184426026E-5,
0.9999620311384434]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[1.8771353518355388E-5,
0.0029391080604733726,
0.9970608929325334]

[0.0, 0.0, 1.0] Correct

4

1 [0.0, 1.0, 0.0, 1.0]
[1.0528256978821108E-4,
1.386397501830746E-4,
0.9998613602525785]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[4.2687069614608084E-5,
8.059852162339667E-6,
0.9999919401481449]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[4.2687069614608084E-5,
8.059852162339667E-6,
0.9999919401481449]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[4.4180816967724336E-4,
0.013254717914690052,

0.9867452820852]
[0.0, 0.0, 1.0] Correct

5

1 [0.0, 1.0, 0.0, 1.0]
[1.802401899237266E-4,
5.948085866977581E-4,
0.9994051914133022]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[1.8046936236059132E-4,
5.962372003881008E-4,
0.999403762799612]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[1.8046936236059132E-4,
5.962372003881008E-4,
0.999403762799612]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[1.5941448011733234E-4,
0.00367231086345424,
0.9963276891365457]

[0.0, 0.0, 1.0] Correct

6

1 [0.0, 1.0, 0.0, 1.0]
[1.9597360963490593E-5,
0.0056902525034688315,
0.9943097474966119]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[3.2384962350125657E-6,
3.792436367752014E-6,
0.999996207563631]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[3.2384962350125657E-6,
3.792436367752014E-6,
0.999996207563631]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[2.5081793701433034E-5,
0.004425233128981999,
0.9955747668708996]

[0.0, 0.0, 1.0] Correct

Table 4.2: Results comparison - Run three to six

55

Run Person Input Output Target Assertion

7

1 [0.0, 1.0, 0.0, 1.0]
[3.571118091843838E-5,
1.0199549618928155E-4,
0.9998980030829162]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[2.8681839679936332E-5,
3.690699647888109E-5,
0.9999630924082283]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[2.8681839679936332E-5,
3.690699647888109E-5,
0.9999630924082283]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[6.974345519730311E-5,
0.009081429185186346,
0.9909185705607539]

[0.0, 0.0, 1.0] Correct

8

1 [0.0, 1.0, 0.0, 1.0]
[1.8491360307328446E-4,
9.43060679972735E-4,
0.9990571125906482]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[5.231996414149557E-5,
2.3941579209086824E-5,
0.9999760645370442]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[5.231996414149557E-5,
2.3941579209086824E-5,
0.9999760645370442]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[1.55518442951638E-5,
0.007501954128141977,
0.9924980398583678]

[0.0, 0.0, 1.0] Correct

9

1 [0.0, 1.0, 0.0, 1.0]
[1.0240703108915565E-5,
6.927109864848383E-6,
0.9999930786973508]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[1.035661965675549E-5,
7.162071114991674E-6,
0.9999928439069675]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[1.035661965675549E-5,
7.162071114991674E-6,
0.9999928439069675]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[1.1727227063032475E-4,
0.004302662952708057,
0.9956980814324169]

[0.0, 0.0, 1.0] Correct

10

1 [0.0, 1.0, 0.0, 1.0]
[1.0111030104191426E-5,
5.0977333469343E-5,
0.9999490226932375]

[0.0, 0.0, 1.0] Correct

2 [0.0, 1.0, 0.0, 1.0]
[1.0069670183713392E-5,
5.014044420395501E-5,
0.9999498595821419]

[0.0, 0.0, 1.0] Correct

3 [0.0, 1.0, 0.0, 1.0]
[1.0069670183713392E-5,
5.014044420395501E-5,
0.9999498595821419]

[0.0, 0.0, 1.0] Correct

4 [0.0, 1.0, 0.0, 1.0]
[3.836843349483E-5,

0.0034623196198481617,
0.9965376810009974]

[0.0, 0.0, 1.0] Correct

Table 4.3: Results comparison - Run seven to ten

56

The tables 4.1, 4.2 and 4.3 have 6 columns which are structured in the following way:

• The ’Run’ column displays the run number which goes from one to ten;

• The ’Person’ column represents the person associated with the test or in other words the log
file of the classification dataset that was used;

• The ’Input’ column indicates the input values obtained from the ’TransformData’ class rep-
resented as an array of four entry values(remembering from the previous chapter, the only
possible values are 1.0 or 0.0, the first entry is correlated with the acceleration positive/neg-
ative calculation, the second entry is correlated with how many times the speed is superior
to a specific constant value, the third entry is correlated with distance difference between
two followed frames, and the last entry is correlated with the total movement time);

• The ’Output’ column has the output values calculated by the Neural Network in an array of
three entries (their values can variate between 0.0 and 1.0 with multiple decimals cases);

• The ’Target’ column has the expected result or target output (the only possible values are 1.0
or 0.0, whereas the first entry represents a low mobility deficit, the second entry a medium
mobility deficit and the last one a high mobility deficit);

• The ’Assertion’ column states if the neural network achieved a successful classification or
not.

4.2 Conclusion

Having closer look at the values present on the previous tables. For every run and person, the
result was always a successful classification. Mathematically if the array entry values from the
’Output’ column are rounded according to being nearer to 1.0 or 0.0, then we would achieve a
result array exactly equal to the one in the ’Target’ column.

Having this mind the value of the last column ’Assertion’ in each of the three tables was set to ’Cor-
rect’, which means we achieved the best case scenario where our application is doing exactly what
it was supposed to do: a correct patient classification according to their mobility difficulties when
comparing with previous valid results for the same patients obtained by different methodologies
other than Kinect.

57

58

Chapter 5

Final Considerations

5.1 Difficulties and future work

During the development of our application, we encountered a lot of problems, such as incorrec-
t/corrupt Kinect video examples, the skeleton joints detection, skeleton isolation (in case of 2
skeletons being present), store their coordinates, mathematics calculations to obtain the instant
velocity, acceleration, and distance between two frames and the neural network development.

We managed to overcome said problems with the exception of two particular ones, more specifically
the Kinect video problems and the skeleton isolation. In terms of the first one, unfortunately, there
was nothing we can do about it since some of the videos had nothing recorded or were incomplete
and therefore we had to remove them from our usable datasets (we lost a total of nine videos
because of this problem) and one about the existence of two skeletons in the video represented
a problem that we could not overcome, there was movement on both skeletons at all times and
therefore we could not differentiate between which was the correct one that represented the patient
(we lost a total of seven videos because of this problem).
In terms of future work it is important to note the following three cases:

• The most obvious one would be to find a solution for the two skeleton problem;

• Even though we had a classification of type ’Low’ none of our videos patients classified for
that and so it could be advantageous if future video captures could bring examples of persons
within said characteristic for a complete classification experience;

• Create some sort of visual friendly user interface instead of using the console as the standard
output of the application;

• And the last one would be to record more videos from different elderly health-care houses in
order to collect more data that can be used as different datasets and therefore enhance and
further prove our application classification capabilities.

59

5.2 Conclusions

According to the obtained results together with the mean square error graph, one can easily and
safely assume that the overall application performance is amazing and working goes according to
our initial objectives and aims.

Therefore it has been proven just like in previous works demonstrated in the State the Art chapter
that the Kinect device is very capable and excellent tool to be used in health-care environment
applications and if combined with some artificial intelligence and machine learning techniques it
has without a doubt a bright future ahead of it.

Our application is hereby approved as a perfect example of this last statement and can be used to
evaluate and help patients on other elderly health-care houses aside from the local ones associated
with our datasets.

60

Bibliography

[1] Kinect. https://en.wikipedia.org/wiki/Kinect. Last checked: 21 May 2017. 25,
30

[2] Java for kinect librabry. http://research.dwi.ufl.edu/ufdw/index.php. Last
checked: 21 May 2015. 25, 30

[3] Ennio Mingolla Jonathan Chey, Stephen Grossberg. Neural dynamics of motion processing
and speed discrimination. Vision Research, 38(18):2769–2786, 1998. 25

[4] World report on disability. http://www.who.int/disabilities/worldreport/

2011/accessibleen.pdf. Last checked: 12 August 2017. 29

[5] World report on disability. https://www.unicef.org/protection/

Worldreportondisabilityeng.pdf. Last checked: 12 August 2017. 29

[6] Smart-dx. http://www.btsbioengineering.com/products/smart-dx/. Last
checked: 21 September 2017. 29

[7] Optoelectronic plethysmography system. http://www.btsbioengineering.com/

products/bts-oep-system/. Last checked: 21 September 2017. 29

[8] Optitrack. http://optitrack.com/. Last checked: 21 September 2017. 29

[9] xsens mvn. https://www.xsens.com/products/xsens-mvn/. Last checked: 21
September 2017. 29

[10] Vicon. https://www.vicon.com/. Last checked: 21 September 2017. 29

[11] Autodesk maya. https://knowledge.autodesk.com/support/maya. Last checked:
21 September 2017. 29

[12] Kinect hardware. https://developer.microsoft.com/en-us/windows/kinect/

hardware. Last checked: 19 September 2017. 30

[13] Kinect software development kit 2.0. https://www.microsoft.com/en-us/download/
details.aspx?id=44561. Last checked: 19 September 2017. 30

[14] Mi Zhang Sebastian Koenig Phil Requejo Noom Somboon Alexander A. Sawchuk Albert
A. Rizzo Chien-Yen Chang, Belinda Lange. Towards pervasive physical rehabilitation using
microsoft kinect. Pervasive Computing Technologies for Healthcare (PervasiveHealth), 2012
6th International Conference on, page 4, 2012. 30

[15] Sonali Dubey Anil K. Roy, Yash Soni. Enhancing effectiveness of motor rehabilitation using
kinect motion sensing technology. Global Humanitarian Technology Conference: South Asia
Satellite (GHTC-SAS), 2013 IEEE, page 7, 2013. 30, 31

[16] Roanna Lun Deborah D. Espy M. Ann Reinthal Wenbing Zhao, Hai Feng. A kinect-based
rehabilitation exercise monitoring and guidance system. Software Engineering and Service
Science (ICSESS), 2014 5th IEEE International Conference on, page 4, 2014. 30, 31

61

https://en.wikipedia.org/wiki/Kinect
http://research.dwi.ufl.edu/ufdw/index.php
http://www.who.int/disabilities/world report/2011/accessible en.pdf
http://www.who.int/disabilities/world report/2011/accessible en.pdf
https://www.unicef.org/protection/World report on disability eng.pdf
https://www.unicef.org/protection/World report on disability eng.pdf
http://www.btsbioengineering.com/products/smart-dx/
http://www.btsbioengineering.com/products/bts-oep-system/
http://www.btsbioengineering.com/products/bts-oep-system/
http://optitrack.com/
https://www.xsens.com/products/xsens-mvn/
https://www.vicon.com/
https://knowledge.autodesk.com/support/maya
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://developer.microsoft.com/en-us/windows/kinect/hardware
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://www.microsoft.com/en-us/download/details.aspx?id=44561

[17] Jessica Coulson Yoann Barnouin Jamie S. McPhee Daniel Leightley, Moi Hoon Yap. Bench-
marking human motion analysis using kinect one: An open source dataset. Signal and Infor-
mation Processing Association Annual Summit and Conference (APSIPA), 2015 Asia-Pacific,
page 7, 2015. 30, 32

[18] Amit Konar Pavia Bera, Reshma Kar. Joint pain detection by gait analysis for elderly health-
care. Research in Computational Intelligence and Communication Networks (ICRCICN), 2015
IEEE International Conference on, page 5, 2015. 30, 32

[19] Wenbing Zhao Roanna Lun, Connor Gordon. Tracking the activities of daily lives: An inte-
grated approach. Future Technologies Conference (FTC), page 10, 2016. 30, 33

[20] A Kinect based system for cognitive rehabilitation exercises monitoring. A kinect-based sys-
tem for cognitive rehabilitation exercises monitoring. Computer Methods and Programs in
Biomedicine, page 12, 2014. 30, 33

[21] Jun-Da Huang Yao-Jen Chang, Shu-Fang Chen. A kinect-based system for physical rehabil-
itation: A pilot study for young adults with motor disabilities. Research in Developmental
Disabilities, page 5, 2011. 30, 33

[22] Florica Moldoveanu Alin Moldoveanu Hesham Alabbasi, Alex Gradinaru. Human motion
tracking and evaluation using kinect v2 sensor. E-Health and Bioengineering Conference
(EHB), 2015, page 4, 2015. 30, 31

[23] Amit Konar Monalisa Pal, Sriparna Saha. Distance matching based gesture recognition for
healthcare using microsoft’s kinect sensor. Microelectronics, Computing and Communications
(MicroCom), 2016 International Conference on, page 6, 2016. 30, 32

[24] Sanjay Mehrotra Liang Liu. Patient walk detection in hospital room using microsoft kinect v2.
Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International
Conference of the, page 4, 2016. 30, 32

[25] Jose Antonio Piedra-Fernandez César Bernal Bravo, Juan Jesus Ojeda-Castelo. Art activities
with kinect to students with cognitive disabilities: Improving all motor skills. Procedia -
Social and Behavioral Sciences, page 4, 2016. 30, 34

[26] University of Belgrade an experiment for Intelligent Systems course. Tijana Jovanovic, Fac-
ulty of Organisation Sciences. Neuroph and multilayer perceptron. http://neuroph.

sourceforge.net/index.html. Last checked: 13 January 2017. 50

[27] Sigmoid activation function. https://en.wikibooks.org/wiki/Artificial_

Neural_Networks/Activation_Functions. Last checked: 13 January 2017. 50

[28] 15 steps to implement a neural net. http://code-spot.co.za/2009/10/08/

15-steps-to-implemented-a-neural-net/. Last checked: 23 September 2017. 50

[29] An introduction to neural networks in java. http://www.informit.com/articles/

article.aspx?p=30596. Last checked: 23 September 2017. 50

[30] How to build a neural network. https://stevenmiller888.github.io/

mind-how-to-build-a-neural-network/. Last checked: 23 September 2017.
50

[31] Neural networks tutorial. https://www.youtube.com/channel/UCaKAU8vQzS-_

e5xt7NSK3Xw/videos. Last checked: 23 September 2017. 50

62

http://neuroph.sourceforge.net/index.html
http://neuroph.sourceforge.net/index.html
https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Activation_Functions
https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Activation_Functions
http://code-spot.co.za/2009/10/08/15-steps-to-implemented-a-neural-net/
http://code-spot.co.za/2009/10/08/15-steps-to-implemented-a-neural-net/
http://www.informit.com/articles/article.aspx?p=30596
http://www.informit.com/articles/article.aspx?p=30596
https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/
https://stevenmiller888.github.io/mind-how-to-build-a-neural-network/
https://www.youtube.com/channel/UCaKAU8vQzS-_e5xt7NSK3Xw/videos
https://www.youtube.com/channel/UCaKAU8vQzS-_e5xt7NSK3Xw/videos

Appendix A

Attachments

This appendix includes all the JAVA functions that were used directly in the development of the
final application as well as some auxiliary functions used exclusively for testing purposes.

A.1 JAVA Kinect Functions

Below are written the entire code of each JAVA function used in order to communicate with the
Kinect device and extract the skeleton data together with its respective joints.

A.1.1 Kinect Class

1 package j4kdemo . k inectv iewerapp ;

2 import javax . swing . JLabel ;

3 import edu . u f l . d i g i t a lwo r l d s . j4k . DepthMap ;

4 import edu . u f l . d i g i t a lwo r l d s . j4k .J4KSDK;

5 import edu . u f l . d i g i t a lwo r l d s . j4k . Ske le ton ;

6 import java . i o . F i l e ;

7 import java . i o . FileOutputStream ;

8 import java . i o . Pr intWriter ;

9

10 /∗
11 ∗ Copyright 2011−2014 , D i g i t a l Worlds I n s t i t u t e , Un ive r s i ty o f

12 ∗ Flor ida , Angelos Barmpoutis .

13 ∗ Al l r i g h t s r e s e rved .

14 ∗
15 ∗ When t h i s program i s used f o r academic or r e s ea r ch purposes ,

16 ∗ p l e a s e c i t e the f o l l ow i ng a r t i c l e that introduced t h i s Java l i b r a r y :

17 ∗
18 ∗ A. Barmpoutis . "Tensor Body : Real−time Reconstruct ion o f the Human Body

19 ∗ and Avatar Synthes i s from RGB−D ’ , IEEE Transact ions on Cybernet ics ,

20 ∗ October 2013 , Vol . 43(5) , Pages : 1347−1356.

21 ∗
22 ∗ Red i s t r i bu t i on and use in source and binary forms , with or without

23 ∗ modi f i ca t i on , are permitted provided that the f o l l ow i ng cond i t i on s are

24 ∗ met :

25 ∗ ∗ Red i s t r i bu t i on s o f source code must r e t a i n t h i s copyr ight

26 ∗ not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a ime r .

27 ∗ ∗ Red i s t r i bu t i on s in binary form must reproduce t h i s

28 ∗ copyr ight not i ce , t h i s l i s t o f c ond i t i on s and the f o l l ow i n g d i s c l a ime r

29 ∗ in the documentation and/or other mat e r i a l s provided with the

30 ∗ d i s t r i b u t i o n .

63

31 ∗
32 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

33 ∗ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

34 ∗ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

35 ∗ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

36 ∗ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

37 ∗ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

38 ∗ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE,

39 ∗ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

40 ∗ THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT

41 ∗ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

42 ∗ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

43 ∗/
44

45 pub l i c c l a s s Kinect extends J4KSDK{

46

47 ViewerPanel3D viewer=nu l l ;

48 JLabel l a b e l=nu l l ;

49 boolean mask_players=f a l s e ;

50 pub l i c void maskPlayers (boolean f l a g) {mask_players=f l a g ; }

51

52 pub l i c Kinect ()

53 {

54 super () ;

55 }

56

57 pub l i c Kinect (byte type)

58 {

59 super (type) ;

60 }

61

62 pub l i c void setViewer (ViewerPanel3D viewer) { t h i s . v iewer=viewer ; }

63

64 pub l i c void se tLabe l (JLabel l) { t h i s . l a b e l=l ; }

65

66 pr i va t e boolean use_in f rared=f a l s e ;

67

68 pub l i c void updateTextureUsingInfrared (boolean f l a g)

69 {

70 use_in f rared=f l a g ;

71 }

72

73 @Override

74 pub l i c void onDepthFrameEvent (shor t [] depth_frame , byte [] player_index ,

f l o a t [] XYZ, f l o a t [] UV) { . . . }

75

76 @Override

64

77 pub l i c void onSkeletonFrameEvent (boolean [] f l a g s , f l o a t [] p o s i t i on s , f l o a t

[] o r i e n t a t i on s , byte [] s t a t e) { . . . }

78

79 @Override

80 pub l i c void onColorFrameEvent (byte [] data) { . . . }

81

82 @Override

83 pub l i c void onInfraredFrameEvent (shor t [] data) { . . . }

84 }

A.1.2 Kinect method onDepthFrameEvent

1 pub l i c void onDepthFrameEvent (shor t [] depth_frame , byte [] player_index ,

f l o a t [] XYZ, f l o a t [] UV) {

2

3 i f (v iewer==nu l l | | l a b e l==nu l l) r e turn ;

4 f l o a t a []= getAcce lerometerReading () ;

5 l a b e l . setText (((i n t) (a [0] ∗ 1 00) /100 f)+" , "+((i n t) (a [1] ∗ 1 00) /100 f)+" , "+((i n t)

(a [2] ∗ 1 00) /100 f)) ;
6 DepthMap map=new DepthMap(getDepthWidth () , getDepthHeight () ,XYZ) ;

7

8 map . setMaximumAllowedDeltaZ (0 . 5) ;

9

10 i f (UV!= nu l l && ! use_in f rared) map . setUV(UV) ;

11 e l s e i f (use_in f rared) map . setUVuniform () ;

12 i f (mask_players)

13 {

14 map . se tP layer Index (depth_frame , player_index) ;

15 map . maskPlayers () ;

16 }

17 viewer .map=map ;

18 }

A.1.3 Kinect method onSkeletonFrameEvent

1 pub l i c void onSkeletonFrameEvent (boolean [] f l a g s , f l o a t [] p o s i t i on s , f l o a t []

o r i e n t a t i on s , byte [] s t a t e) {

2 i f (v iewer==nu l l | | v iewer . s k e l e t on s==nu l l) r e turn ;

3

4 f o r (i n t i =0; i<getSkeletonCountLimit () ; i++)

5 {

6 viewer . s k e l e t on s [i]= Ske le ton . ge tSke l e ton (i , f l a g s , po s i t i on s ,

o r i e n t a t i on s , s ta te , t h i s) ;

7 byte [] g e tJo in tTrack ingSta t e s = viewer . s k e l e t on s [i] .

g e tJo in tTrack ingSta t e s () ;

8 }

9 t ry {

10 PrintWriter pw = new PrintWriter (new FileOutputStream (

65

11 new F i l e ("C:\\ Users \\Pedro\\Google Drive \\ t e s t e . l og ") , t rue)) ;

12 f o r (i n t j = 0 ; j < 25 ; j++) {

13 f l o a t x = viewer . s k e l e t on s [0] . get3DJointX (j) ;

14 f l o a t y = viewer . s k e l e t on s [0] . get3DJointY (j) ;

15 f l o a t z = viewer . s k e l e t on s [0] . get3DJointZ (j) ;

16 pw. p r i n t (j + " | " + x + " | " + y + " | " + z + "\n") ;

17 }

18 pw. p r i n t ("\n") ;

19 pw. c l o s e () ;

20 } catch (Exception e) {

21 System . out . p r i n t ("ERROR WRITING TO FILE ! ! ") ;

22 }

23 }

A.1.4 Kinect method onColorFrameEvent

1 pub l i c void onColorFrameEvent (byte [] data) {

2 i f (v iewer==nu l l | | v iewer . v ideoTexture==nu l l | | u se_in f rared) re turn ;

3 viewer . v ideoTexture . update (getColorWidth () , getColorHeight () , data) ;

4 }

A.1.5 Kinect method onInfraredFrameEvent

1 pub l i c void onInfraredFrameEvent (shor t [] data) {

2 i f (v iewer==nu l l | | v iewer . v ideoTexture==nu l l | | ! u se_in f rared) re turn ;

3 i n t sz = getInfraredWidth () ∗ ge t In f r a r edHe i gh t () ;

4 byte bgra [] = new byte [sz ∗ 4] ;
5 i n t i , idx = 0 , i v = 0 ;

6 shor t sv = 0 ;

7 byte bv = 0 ;

8

9 f o r (i = 0 ; i < sz ; i++)

10 {

11 sv = data [i] ;

12 i v = sv >= 0 ? sv : 0x10000 + sv ;

13 bv = (byte) ((i v & 0 x f f f 8)>>6) ;

14 bgra [idx] = bv ;

15 bgra [idx] = bv ;

16 bgra [idx] = bv ;

17 bgra [idx] = 0 ;

18 idx = idx + 4 ;

19 }

20

21 viewer . v ideoTexture . update (getInfraredWidth () , g e t In f r a r edHe igh t () , bgra) ;

22 }

66

A.2 Application Functions

Below are written the entire code of each JAVA function written on our application, composed
of the following classes: "Application", "ManageData", "CalculateInput", "ReadTextFile", "Nor-
malizeData", "TransformData", "Classification", "Network", "TrainSet" and "NetworkTools".

A.2.1 Application Class

1 package ubi . a l l a b . app l i c a t i o n ;

2

3 import java . i o . IOException ;

4 import java . u t i l . ArrayList ;

5

6 pub l i c c l a s s App l i cat ion {

7 pr i va t e ArrayList<double [] > tra in ing_inputs ;

8 pr i va t e ArrayList<double [] > tra in ing_outputs ;

9 pr i va t e ArrayList<double [] > c l a s s i f i c a t i o n_ i n pu t s ;

10 pr i va t e ArrayList<double [] > c l a s s i f i c a t i o n_ou t pu t s ;

11

12 pub l i c App l i ca t ion () {

13 t ra in ing_inputs = new ArrayList<double [] >() ;

14 t ra in ing_outputs = new ArrayList<double [] >() ;

15 System . out . p r i n t l n ("Loading t r a i n i n g DATASET . . . ") ;

16 loadData (" t r a i n i n g ") ;

17 System . out . p r i n t l n ("Train ing DATASET s u c c e s s f u l l y loaded ! ! \ n") ;

18

19 c l a s s i f i c a t i o n_ i n pu t s = new ArrayList<double [] >() ;

20 c l a s s i f i c a t i o n_ou tpu t s = new ArrayList<double [] >() ;

21 System . out . p r i n t l n ("Loading c l a s s i f i c a t i o n DATASET . . . ") ;

22 loadData (" c l a s s i f i c a t i o n ") ;

23 System . out . p r i n t l n (" C l a s s i f i c a t i o n DATASET s u c c e s s f u l l y loaded ! ! \ n"

) ;

24

25 // Star t the c l a s s i f i c a t i o n phase

26 C l a s s i f i c a t i o n r e s u l t s = new C l a s s i f i c a t i o n () ;

27

28 //Train ing phase

29 System . out . p r i n t l n (" S ta r t i ng the c l a s s i f i c a t i o n t r a i n i n g phase . . . ") ;

30 r e s u l t s . trainNetwork (tra in ing_inputs , t ra in ing_outputs) ;

31 System . out . p r i n t l n ("The c l a s s i f i c a t i o n t r a i n i n g phase has completed

s u c c e s s f u l l y ! ! \ n") ;

32

33 // Fina l c l a s s i f i c a t i o n

34 System . out . p r i n t l n (" S ta r t i ng the c l a s s i f i c a t i o n f i n a l phase . . . ") ;

35 r e s u l t s . f ina lNetwork (c l a s s i f i c a t i o n_ i npu t s , c l a s s i f i c a t i o n_ou tpu t s) ;

36 }

37

67

38 pr i va t e void loadData (S t r ing data_type) {

39 i n t i ;

40 double f i l e_ i npu t s [] , f i l e_output s [] ;

41 St r ing [] f i l e_ i n f o ;

42 ArrayList<St r ing [] > f i l e s_to_use ;

43

44 ManageData f i l e s = new ManageData (data_type) ;

45 f i l e s_to_use = f i l e s . getFi lesToUse () ;

46

47 f o r (i = 0 ; i < f i l e s_to_use . s i z e () ; i++) {

48 f i l e_ i n f o = f i l e s_to_use . get (i) ;

49 Calcu la te Input f i l e = new Calcu late Input (f i l e_ i n f o) ;

50 f i l e_ i npu t s = f i l e . get InputValues () ;

51

52 switch (f i l e_ i n f o [2]) {

53 case " low" :

54 f i l e_output s = new double [] { 1 . 0 , 0 . 0 , 0 . 0 } ;

55 break ;

56 case "medium" :

57 f i l e_output s = new double [] { 0 . 0 , 1 . 0 , 0 . 0 } ;

58 break ;

59 de f au l t :

60 f i l e_output s = new double [] { 0 . 0 , 0 . 0 , 1 . 0 } ;

61 break ;

62 }

63

64 i f (data_type . equa l s (" t r a i n i n g ")) {

65 t ra in ing_inputs . add (f i l e_ i npu t s) ;

66 t ra in ing_outputs . add (f i l e_output s) ;

67 } e l s e {

68 c l a s s i f i c a t i o n_ i n pu t s . add (f i l e_ i npu t s) ;

69 c l a s s i f i c a t i o n_ou tpu t s . add (f i l e_output s) ;

70 }

71 }

72 }

73

74 pub l i c s t a t i c void main (St r ing [] a rgs) throws IOException {

75 Appl i ca t ion network = new Appl i ca t ion () ;

76 }

77 }

A.2.2 ManageData Class

1 package ubi . a l l a b . app l i c a t i o n ;

2

3 import java . u t i l . ArrayList ;

4

5 pub l i c c l a s s ManageData {

68

6

7 pr i va t e s t a t i c f i n a l S t r ing PATH = "C:\\ Users \\Pedro\\Google Drive \\Tese

\\" ;

8 pr i va t e ArrayList<St r ing [] > f i l e s_to_use ;

9

10 pub l i c ManageData (St r ing data_type) {

11 f i l e s_to_use = new ArrayList<St r ing [] >() ;

12

13 i f (data_type . equa l s (" t r a i n i n g "))

14 load (t r a i n i ngDataF i l e s ()) ;

15 e l s e

16 load (c l a s s i f y i n gDa t aF i l e s ()) ;

17 }

18

19 pr i va t e void load (St r ing [] f i l e s) {

20 i n t i ;

21 St r ing [] tmp ;

22

23 f o r (i = 0 ; i < f i l e s . l ength ; i = i + 3) {

24 tmp = new St r ing [3] ;

25 tmp [0] = f i l e s [i] ;

26 tmp [1] = f i l e s [i + 1] ;

27 tmp [2] = f i l e s [i + 2] ;

28 f i l e s_to_use . add (tmp) ;

29 }

30 }

31

32 pr i va t e S t r ing [] t r a i n i ngDataF i l e s () {

33 St r ing fu l l_path = PATH + "Ferro \\" ;

34

35 re turn new St r ing [] {

36 fu l l_path + " 1 . 1 . l og " , " 17 .149 " , "medium" ,

37 fu l l_path + " 1 . 2 . l og " , " 16 .181 " , "medium" ,

38 fu l l_path + " 1 . 3 . l og " , " 18 .664 " , "medium" ,

39 fu l l_path + " 2 . 1 . l og " , " 15 .923 " , "medium" ,

40 fu l l_path + " 2 . 2 . l og " , " 15 .859 " , "medium" ,

41 fu l l_path + " 2 . 3 . l og " , " 14 .213 " , "medium" ,

42 fu l l_path + " 3 . 1 . l og " , " 17 .964 " , "medium" ,

43 fu l l_path + " 3 . 2 . l og " , " 17 .354 " , "medium" ,

44 fu l l_path + " 3 . 3 . l og " , " 18 .348 " , "medium" ,

45 fu l l_path + " 4 . 1 . l og " , " 25 .738 " , " high " ,

46 fu l l_path + " 4 . 2 . l og " , " 18 .770 " , " high " ,

47 fu l l_path + " 4 . 3 . l og " , " 15 .081 " , " high " ,

48 fu l l_path + " 5 . 1 . l og " , " 27 .747 " , " high " ,

49 fu l l_path + " 6 . 1 . l og " , " 25 .359 " , " high " ,

50 fu l l_path + " 6 . 2 . l og " , " 25 .227 " , " high " ,

51 fu l l_path + " 6 . 3 . l og " , " 25 .514 " , " high " ,

69

52 fu l l_path + " 7 . 3 . l og " , " 15 .694 " , " high " ,

53 fu l l_path + " 9 . 1 . l og " , " 25 .293 " , " high " ,

54 fu l l_path + " 9 . 2 . l og " , " 18 .957 " , " high " ,

55 fu l l_path + " 9 . 3 . l og " , " 22 .018 " , " high " ,

56 fu l l_path + " 1 0 . 1 . l og " , " 18 .910 " , " high " ,

57 fu l l_path + " 1 0 . 3 . l og " , " 21 .956 " , " high " ,

58 fu l l_path + " 1 1 . 1 . l og " , " 15 .679 " , "medium" ,

59 fu l l_path + " 1 1 . 2 . l og " , " 15 .481 " , "medium" ,

60 fu l l_path + " 1 1 . 3 . l og " , " 16 .399 " , "medium" ,

61 fu l l_path + " 1 2 . 2 . l og " , " 32 .620 " , " high " ,

62 fu l l_path + " 1 2 . 3 . l og " , " 33 .142 " , " high "

63 } ;

64 }

65

66 pr i va t e S t r ing [] c l a s s i f y i n gDa t aF i l e s () {

67 St r ing fu l l_path = PATH + "Caria \\" ;

68

69 re turn new St r ing [] {

70 fu l l_path + " 1 . 2 . l og " , " 23 .555 " , " high " ,

71 fu l l_path + " 2 . 2 . l og " , " 23 .600 " , " high " ,

72 fu l l_path + " 4 . 3 . l og " , " 27 .829 " , " high " ,

73 fu l l_path + " 6 . 3 . l og " , " 16 .131 " , " high "

74 } ;

75 }

76

77 pub l i c ArrayList<St r ing [] > getFi lesToUse () {

78 re turn f i l e s_to_use ;

79 }

80 }

A.2.3 CalculateInput Class

1 package ubi . a l l a b . app l i c a t i o n ;

2

3 import java . i o . FileNotFoundException ;

4 import java . i o . IOException ;

5 import java . u t i l . ArrayList ;

6

7 pub l i c c l a s s Ca lcu late Input {

8

9 pr i va t e ArrayList<ArrayList> j o i n t s ;

10 pr i va t e ArrayList<Double [] > normal i zed_jo int s ;

11 pr i va t e S t r ing f i l e ;

12 pr i va t e double time ;

13 pr i va t e double [] input_values ;

14

15 pub l i c Ca lcu la te Input (S t r ing [] f i l e_to_use) {

16 f i l e = f i l e_to_use [0] ;

70

17 time = Double . parseDouble (f i l e_to_use [1]) ;

18 j o i n t s = new ArrayList<ArrayList >() ;

19 normal i zed_jo ints = new ArrayList<Double [] >() ;

20 readDataFromFile () ;

21 normalizeData () ;

22 transformData () ;

23 }

24

25 pr i va t e void readDataFromFile () {

26 t ry {

27 ReadTextFile data = new ReadTextFile (f i l e) ;

28 j o i n t s = data . g e t Jo i n t s () ;

29 } catch (FileNotFoundException e r r) {

30 System . out . p r i n t l n (" F i l e not found ! ! ") ;

31 } catch (IOException e r r) {

32 System . out . p r i n t l n ("Error whi l e read ing input f i l e ! ! ") ;

33 }

34 }

35

36 pr i va t e void normalizeData () {

37 t ry {

38 NormalizeData normal ize = new NormalizeData (j o i n t s , time) ;

39 normal i zed_jo ints = normal ize . getNormal i zat ion () ;

40 } catch (Exception e r r) {

41 System . out . p r i n t l n ("Normal izat ion Error ! ! ") ;

42 e r r . pr intStackTrace () ;

43 }

44 }

45

46 pr i va t e void transformData () {

47 t ry {

48 TransformData trans form = new TransformData (normal ized_jo ints ,

time) ;

49 input_values = transform . getTrans format ion () ;

50 } catch (Exception e r r) {

51 System . out . p r i n t l n ("Transformation Error ! ! ") ;

52 e r r . pr intStackTrace () ;

53 }

54 }

55

56 pub l i c double [] getInputValues () {

57 re turn input_values ;

58 }

59 }

A.2.4 ReadTextFile method

1 package ubi . a l l a b . app l i c a t i o n ;

71

2

3 import java . i o . IOException ;

4 import java . n io . cha r s e t . Charset ;

5 import java . n io . cha r s e t . StandardCharsets ;

6 import java . n io . f i l e . Path ;

7 import java . n io . f i l e . Paths ;

8 import java . u t i l . ArrayList ;

9 import java . u t i l . Scanner ;

10

11 pub l i c c l a s s ReadTextFile {

12

13 pr i va t e S t r ing pathToFile ;

14 pr i va t e Charset encoding ;

15 pr i va t e ArrayList<ArrayList> j o i n t s ;

16 pr i va t e ArrayList<St r ing [] > coords ;

17

18 pub l i c ReadTextFile (S t r ing pathToFile) throws IOException {

19 t h i s . pathToFile = pathToFile ;

20 encoding = StandardCharsets .UTF_8;

21 j o i n t s = new ArrayList<ArrayList >() ;

22 coords = new ArrayList<St r ing [] >() ;

23 readLargerTextFi l e () ;

24 }

25

26 pr i va t e void readLargerTextFi l e () throws IOException {

27 Path path = Paths . get (pathToFile) ;

28 i n t i = 0 ;

29 St r ing tmp ;

30 St r ing [] xyz ;

31 t ry (Scanner scanner = new Scanner (path , encoding . name ())) {

32 whi le (scanner . hasNextLine ()) {

33 tmp = scanner . nextLine () ;

34 i f (! tmp . isEmpty ()) {

35 xyz = tmp . s p l i t (" ") ;

36 i++;

37 coords . add (xyz) ;

38 }

39 }

40 }

41 popu la t eJo in t s () ;

42 }

43

44 pr i va t e void popu la t eJo in t s () {

45 ArrayList<St r ing [] > tmp ;

46

47 whi le (coords . s i z e () != 0) {

48 tmp = new ArrayList<St r ing [] >() ;

72

49 f o r (i n t x = 0 ; x < 25 ; x++) {

50 tmp . add (coords . get (0)) ;

51 coords . remove (0) ;

52 }

53 j o i n t s . add (tmp) ;

54 }

55 }

56

57 pub l i c ArrayList<ArrayList> ge t Jo i n t s () {

58 re turn j o i n t s ;

59 }

60 }

A.2.5 NormalizeData method

1 package ubi . a l l a b . app l i c a t i o n ;

2

3 import java . u t i l . ArrayList ;

4

5 pub l i c c l a s s NormalizeData {

6 pr i va t e double time ;

7 pr i va t e ArrayList<ArrayList> j o i n t s ;

8 pr i va t e ArrayList<Double [] > norma l i z edJo in t s ;

9

10 pub l i c NormalizeData (ArrayList<ArrayList> j o i n t s , double time) {

11 norma l i z edJo int s = new ArrayList<Double [] >() ;

12 t h i s . j o i n t s = j o i n t s ;

13 t h i s . time = time ;

14 normal ize () ;

15 adaptToBoundaries () ;

16 }

17

18 pr i va t e void normal ize () {

19 i n t i ;

20 double d i s t , avgS , avgSi , avgSf , avgA , step_time , d i f z , tmp ;

21 Double [] Cm, Cmi , Cmf , data ;

22

23 f o r (i = 0 ; i < j o i n t s . s i z e () ; i++) {

24 i f (i == 0) {

25 Cm = findCenter (j o i n t s . get (i)) ;

26 d i f z = 0 . 0 ;

27 avgS = 0 . 0 ;

28 avgA = 0 . 0 ;

29 step_time = (time / j o i n t s . s i z e ()) ∗ i ;

30 } e l s e i f (i == 1) {

31 Cm = findCenter (j o i n t s . get (i)) ;

32 Cmi = f indCenter (j o i n t s . get (i − 1)) ;

33 Cmf = f indCenter (j o i n t s . get (i)) ;

73

34 d i f z = Math . abs (Cmf [2] − Cmi [2]) ;

35 avgS = ca l cu l a t eSpeed (Cmi , Cmf , time / j o i n t s . s i z e ()) ;

36 avgA = ca l cu l a t eAcc (0 . 0 , avgS , (time / j o i n t s . s i z e ()) ∗ (i −
1) , (time / j o i n t s . s i z e ()) ∗ i) ;

37 step_time = (time / j o i n t s . s i z e ()) ∗ i ;

38 } e l s e i f (i == j o i n t s . s i z e () − 1) {

39 Cm = findCenter (j o i n t s . get (i)) ;

40 Cmi = f indCenter (j o i n t s . get (i − 2)) ;

41 Cmf = f indCenter (j o i n t s . get (i − 1)) ;

42 d i f z = Math . abs (Cmf [2] − Cmi [2]) ;

43 avgS = 0 . 0 ;

44 tmp = ca l cu l a t eSpeed (Cmi , Cmf , time / j o i n t s . s i z e ()) ;

45 avgA = ca l cu l a t eAcc (tmp , avgS , (time / j o i n t s . s i z e ()) ∗ (i −
1) , (time / j o i n t s . s i z e ()) ∗ i) ;

46 step_time = time ;

47 } e l s e {

48 Cm = findCenter (j o i n t s . get (i)) ;

49 Cmi = f indCenter (j o i n t s . get (i − 2)) ;

50 Cmf = f indCenter (j o i n t s . get (i − 1)) ;

51 avgSi = ca l cu l a t eSpeed (Cmi , Cmf , time / j o i n t s . s i z e ()) ;

52 Cmi = f indCenter (j o i n t s . get (i − 1)) ;

53 Cmf = f indCenter (j o i n t s . get (i)) ;

54 d i f z = Math . abs (Cmf [2] − Cmi [2]) ;

55 avgSf = ca l cu l a t eSpeed (Cmi , Cmf , time / j o i n t s . s i z e ()) ;

56 avgS = avgSf ;

57 avgA = ca l cu l a t eAcc (avgSi , avgSf , (time / j o i n t s . s i z e ()) ∗ (

i − 1) , (time / j o i n t s . s i z e ()) ∗ i) ;

58 step_time = (time / j o i n t s . s i z e ()) ∗ i ;

59 }

60

61 // use only coordenate Z

62 d i s t = Cm[2] ;

63 data = new Double [] { d i s t , d i f z , avgS , avgA , step_time } ;

64

65 // I f the cur rent data i s equ iva l en t to the prev ious one i t

should not be saved

66 i f (checkRepeatedData (i , data))

67 norma l i z edJo int s . add (data) ;

68 }

69 }

70

71 pr i va t e void adaptToBoundaries () {

72 //Dis tc = [0 , +00] −> 0

73 //Di fz = [0 , +00] −> 1

74 //Speed = [0 , 1] −> 2

75 //Accel = [−23 , 23] −> 3

76 i n t i ;

74

77 f o r (i = 0 ; i < norma l i z edJo int s . s i z e () ; i++) {

78 i f (norma l i z edJo in t s . get (i) [2] >= 1 . 0)

79 norma l i z edJo in t s . get (i) [2] = 1 . 0 ;

80 i f (norma l i z edJo in t s . get (i) [3] >= 23 . 0)

81 norma l i z edJo in t s . get (i) [3] = 2 3 . 0 ;

82 i f (norma l i z edJo in t s . get (i) [3] <= −23.0)

83 norma l i z edJo in t s . get (i) [3] = −23.0;

84 }

85 }

86

87 pr i va t e Double [] f indCenter (ArrayList<St r ing [] > j o i n t L i s t) {

88 i n t i , j ;

89 double x , y , z , sum_x = 0 . 0 , sum_y = 0 . 0 , sum_z = 0 . 0 ;

90 double Cx , Cy , Cz ;

91 St r ing [] tmp ;

92 f o r (i = 0 , j = 0 ; i < j o i n t L i s t . s i z e () ; i++) {

93 tmp = (St r ing []) j o i n t L i s t . get (i) ;

94 x = Double . parseDouble (tmp [0]) ;

95 y = Double . parseDouble (tmp [1]) ;

96 z = Double . parseDouble (tmp [2]) ;

97 i f (x != 0 .0 && y != 0 .0 && z != 0 . 0) {

98 sum_x = sum_x + x ;

99 sum_y = sum_y + y ;

100 sum_z = sum_z + z ;

101 j++;

102 }

103 }

104 Cx = sum_x / j ;

105 Cy = sum_y / j ;

106 Cz = sum_z / j ;

107

108 Double [] Cm = {Cx , Cy , Cz } ;

109 re turn Cm;

110 }

111

112 pr i va t e Double ca l cu l a t eSpeed (Double [] Cmi , Double [] Cmf , double

t ime_interva l) { // U t i l i z a r so a coordenada Z para c a l c u l o s

113 // double tmp1 = Math . s q r t (Cmi [0] ∗ Cmi [0] + Cmi [1] ∗ Cmi [1] + Cmi [2]

∗ Cmi [2]) ;

114 // double tmp2 = Math . s q r t (Cmf [0] ∗ Cmf [0] + Cmf [1] ∗ Cmf [1] + Cmf [2]

∗ Cmf [2]) ;

115 double tmp1 = Cmi [2] ;

116 double tmp2 = Cmf [2] ;

117 re turn Math . abs ((tmp2 − tmp1) / t ime_interva l) ;

118 }

119

120 pr i va t e Double ca l cu l a t eAcc (Double Va , Double Vb, double Ta , double Tb)

75

{

121 re turn ((Vb − Va) / (Tb − Ta)) ;

122 }

123

124 pr i va t e Boolean checkRepeatedData (i n t i , Double [] next_data) {

125 i f (i == 0) re turn true ;

126 i f (i > norma l i z edJo int s . s i z e ()) re turn f a l s e ;

127 i n t r e s u l t = 0 ;

128 Double [] prev_data = norma l i z edJo int s . get (i − 1) ;

129

130 r e s u l t += Math . abs (Double . compare (prev_data [0] , next_data [0])) ;

131 r e s u l t += Math . abs (Double . compare (prev_data [1] , next_data [1])) ;

132 r e s u l t += Math . abs (Double . compare (prev_data [2] , next_data [2])) ;

133 r e s u l t += Math . abs (Double . compare (prev_data [3] , next_data [3])) ;

134

135 re turn (r e s u l t > 3) ; //Followed frames should not have the same

va lue s .

136 }

137

138 pub l i c ArrayList<Double [] > getNormal i zat ion () {

139 re turn norma l i z edJo int s ;

140 }

141 }

A.2.6 TransformData method

1 package ubi . a l l a b . app l i c a t i o n ;

2

3 import java . u t i l . ArrayList ;

4

5 pub l i c c l a s s TransformData {

6

7 pr i va t e s t a t i c f i n a l double SPEED = 0 . 3 ;

8 pr i va t e s t a t i c f i n a l double SPACE = 0.013259536082475 ;

9

10 pr i va t e double time ;

11 pr i va t e ArrayList<Double [] > norma l i z edJo in t s ;

12 pr i va t e double transformedData [] ;

13

14 pub l i c TransformData (ArrayList<Double [] > normal i zedJo ints , double time)

{

15 t h i s . time = time ;

16 t h i s . norma l i z edJo int s = norma l i z edJo in t s ;

17 transformedData = new double [4] ;

18 f i r s t C l a s s i f i c a t i o n () ;

19 s e c o ndC l a s s i f i c a t i o n () ;

20 t h i r dC l a s s i f i c a t i o n () ;

21 f o u r t hC l a s s i f i c a t i o n () ;

76

22 }

23

24 pr i va t e void f i r s t C l a s s i f i c a t i o n () { // Ca l cu l a t e s the a c c e l e r a t i o n

d i f f e r e n c e s

25 i n t i ;

26 i n t p o s i t i v e s = 0 , nega t i v e s = 0 ;

27

28 f o r (i = 0 ; i < norma l i z edJo int s . s i z e () ; i++) {

29 i f (Math . signum (norma l i z edJo in t s . get (i) [3]) >= 0)

30 p o s i t i v e s++;

31 e l s e

32 nega t i v e s++;

33 }

34

35 i f (p o s i t i v e s >= nega t i v e s)

36 transformedData [0] = 1 . 0 ;

37 e l s e

38 transformedData [0] = 0 . 0 ;

39 }

40

41 pr i va t e void s e c o ndC l a s s i f i c a t i o n () { // Ver i fy how many times the speed

i s s upe r i o r to "SPEED"

42 i n t i ;

43 i n t p o s i t i v e s = 0 , nega t i v e s = 0 ;

44

45 f o r (i = 0 ; i < norma l i z edJo int s . s i z e () ; i++) {

46 i f (norma l i z edJo in t s . get (i) [2] >= SPEED)

47 p o s i t i v e s++;

48 e l s e

49 nega t i v e s++;

50 }

51

52 i f (p o s i t i v e s >= nega t i v e s)

53 transformedData [1] = 1 . 0 ;

54 e l s e

55 transformedData [1] = 0 . 0 ;

56 }

57

58 pr i va t e void t h i r dC l a s s i f i c a t i o n () { // V e r i f i e s how many times the

d i s t anc e i s s up e r i o r to "SPACE"

59 i n t i ;

60 i n t p o s i t i v e s = 0 , nega t i v e s = 0 ;

61

62 f o r (i = 0 ; i < norma l i z edJo int s . s i z e () ; i++) {

63 i f (norma l i z edJo in t s . get (i) [1] >= SPACE)

64 p o s i t i v e s++;

65 e l s e

77

66 nega t i v e s++;

67 }

68

69 i f (p o s i t i v e s >= nega t i v e s)

70 transformedData [2] = 1 . 0 ;

71 e l s e

72 transformedData [2] = 0 . 0 ;

73 }

74

75 pr i va t e void f o u r t hC l a s s i f i c a t i o n () { // Ver i fy the t o t a l time o f the

movement

76 i f (time > 20 . 0)

77 transformedData [3] = 1 . 0 ;

78 e l s e i f (time > 10 .0 && time <= 20 . 0)

79 transformedData [3] = 0 . 0 ;

80 e l s e {

81 transformedData [3] = −1.0;

82 }

83 }

84

85 pub l i c double [] getTransformat ion () {

86 re turn transformedData ;

87 }

88 }

A.2.7 Classification Class

1 package ubi . a l l a b . app l i c a t i o n ;

2

3 import ubi . a l l a b . neural_network . Network ;

4 import ubi . a l l a b . neural_network . TrainSet ;

5

6 import java . u t i l . ArrayList ;

7 import java . u t i l . Arrays ;

8

9 pub l i c c l a s s C l a s s i f i c a t i o n {

10

11 pr i va t e s t a t i c f i n a l i n t INPUT_LAYER = 4 ;

12 pr i va t e s t a t i c f i n a l i n t HIDDEN_LAYER = 3 ;

13 pr i va t e s t a t i c f i n a l i n t OUTPUT_LAYER = 3 ;

14 pr i va t e s t a t i c f i n a l i n t ITERATIONS = 1000000;

15

16 pr i va t e Network net ;

17 pr i va t e TrainSet t r a i n i n g ;

18 pr i va t e TrainSet c l a s s i f y ;

19

20 pub l i c C l a s s i f i c a t i o n () {

21 net = new Network (INPUT_LAYER, HIDDEN_LAYER, HIDDEN_LAYER,

78

OUTPUT_LAYER) ;

22 t r a i n i n g = new TrainSet (INPUT_LAYER, OUTPUT_LAYER) ;

23 c l a s s i f y = new TrainSet (INPUT_LAYER, OUTPUT_LAYER) ;

24 }

25

26 pub l i c void trainNetwork (ArrayList<double [] > input , ArrayList<double [] >

output) {

27 f o r (i n t i = 0 ; i < input . s i z e () ; i++){

28 t r a i n i n g . addData (input . get (i) , output . get (i)) ;

29 }

30 net . t r a i n (t r a in ing , ITERATIONS, input . s i z e ()) ;

31 }

32

33 pub l i c void f ina lNetwork (ArrayList<double [] > input , ArrayList<double [] >

output) {

34 f o r (i n t i = 0 ; i < input . s i z e () ; i++){

35 c l a s s i f y . addData (input . get (i) , output . get (i)) ;

36 }

37

38 // net . t r a i n (c l a s s i f y , ITERATIONS/10 , input . s i z e ()) ;

39

40 f o r (i n t i = 0 ; i < input . s i z e () ; i++) {

41 System . out . p r i n t l n (Arrays . t oS t r i ng (net . c a l c u l a t e (c l a s s i f y .

getInput (i)))) ;

42 }

43 }

44 }

A.2.8 Network Class

1 package ubi . a l l a b . neural_network ;

2

3 import java . u t i l . Arrays ;

4

5 pub l i c c l a s s Network {

6 pr i va t e f i n a l i n t [] NETWORK_LAYER_SIZES;

7 pr i va t e f i n a l i n t NETWORK_SIZE;

8 pr i va t e f i n a l i n t INPUT_SIZE ;

9 pr i va t e f i n a l i n t OUTPUT_SIZE;

10 pr i va t e double [] [] output ;

11 pr i va t e double [] [] [] we ights ;

12 pr i va t e double [] [] b i a s ;

13 pr i va t e double [] [] e r r o r_s i gna l ;

14 pr i va t e double [] [] output_der ivat ive ;

15

16 pub l i c Network (i n t . . . NETWORK_LAYER_SIZES) {

17 t h i s .NETWORK_LAYER_SIZES = NETWORK_LAYER_SIZES;

18 t h i s .NETWORK_SIZE = NETWORK_LAYER_SIZES. l ength ;

79

19 t h i s . INPUT_SIZE = NETWORK_LAYER_SIZES[0] ;

20 t h i s .OUTPUT_SIZE = NETWORK_LAYER_SIZES[NETWORK_SIZE − 1] ;

21

22 t h i s . output = new double [NETWORK_SIZE] [] ;

23 t h i s . weights = new double [NETWORK_SIZE] [] [] ;

24 t h i s . b i a s = new double [NETWORK_SIZE] [] ;

25 t h i s . e r r o r_s i gna l = new double [NETWORK_SIZE] [] ;

26 t h i s . output_der ivat ive = new double [NETWORK_SIZE] [] ;

27

28 f o r (i n t i = 0 ; i < NETWORK_SIZE; i++) {

29 t h i s . output [i] = new double [NETWORK_LAYER_SIZES[i]] ;

30 t h i s . e r r o r_s i gna l [i] = new double [NETWORK_LAYER_SIZES[i]] ;

31 t h i s . output_der ivat ive [i] = new double [NETWORK_LAYER_SIZES[i]] ;

32 t h i s . b i a s [i] = NetworkTools . createRandomArray (

NETWORK_LAYER_SIZES[i] , 0 . 3 , 0 . 7) ;

33 i f (i > 0) {

34 t h i s . we ights [i] = NetworkTools . createRandomArray (

NETWORK_LAYER_SIZES[i] , NETWORK_LAYER_SIZES[i − 1] , 0 . 3 , 0 . 7) ;

35 }

36 }

37 }

38

39 pub l i c double [] c a l c u l a t e (double . . . input) {

40 i f (input . l ength != INPUT_SIZE) return nu l l ;

41

42 output [0] = input ;

43

44 f o r (i n t l a y e r = 1 ; l a y e r < NETWORK_SIZE; l ay e r++) {

45 f o r (i n t neuron = 0 ; neuron < NETWORK_LAYER_SIZES[l ay e r] ; neuron

++) {

46 double sum = bia s [l a y e r] [neuron] ;

47 f o r (i n t prevNeuron = 0 ; prevNeuron < NETWORK_LAYER_SIZES[

l ay e r − 1] ; prevNeuron++) {

48 sum += output [l a y e r − 1] [prevNeuron] ∗ weights [l a y e r] [

neuron] [prevNeuron] ;

49 }

50 output [l a y e r] [neuron] = NetworkTools . s igmoid (sum) ;

51 output_der ivat ive [l a y e r] [neuron] = (output [l a y e r] [neuron] ∗
(1 − output [l a y e r] [neuron])) ;

52 }

53 }

54 re turn output [NETWORK_SIZE − 1] ;

55 }

56

57 pub l i c void t r a i n (TrainSet set , i n t loops , i n t batch_size) {

58 i f (s e t . INPUT_SIZE != INPUT_SIZE | | s e t .OUTPUT_SIZE != OUTPUT_SIZE)

return ;

80

59 f o r (i n t i = 0 ; i < loops ; i++) {

60 TrainSet batch = se t . extractBatch (batch_size) ;

61 f o r (i n t y = 0 ; y < batch_size ; y++) {

62 t r a i n (batch . get Input (y) , batch . getOutput (y) , 0 . 3) ;

63 }

64 //System . out . p r i n t l n (MSE(batch)) ;

65 }

66 }

67

68 pr i va t e double MSE(TrainSet s e t) {

69 double v = 0 ;

70 f o r (i n t i = 0 ; i < s e t . s i z e () ; i++) {

71 v += MSE(s e t . get Input (i) , s e t . getOutput (i)) ;

72 }

73 re turn v / s e t . s i z e () ;

74 }

75

76 pr i va t e double MSE(double [] input , double [] t a r g e t) {

77 i f (input . l ength != INPUT_SIZE | | t a r g e t . l ength != OUTPUT_SIZE)

return 0 ;

78 c a l c u l a t e (input) ;

79 double v = 0 ;

80 f o r (i n t i = 0 ; i < ta r g e t . l ength ; i++) {

81 v += (ta r g e t [i] − output [NETWORK_SIZE−1] [i]) ∗ (t a r g e t [i] −
output [NETWORK_SIZE−1] [i]) ;

82 }

83 re turn v / (2d ∗ t a r g e t . l ength) ;

84 }

85

86 pr i va t e void t r a i n (double [] input , double [] ta rget , double eta) {

87 i f (input . l ength != INPUT_SIZE | | t a r g e t . l ength != OUTPUT_SIZE)

return ;

88 c a l c u l a t e (input) ;

89 backPropagationError (t a r g e t) ;

90 updateWeights (eta) ;

91 }

92

93 pr i va t e void backPropagationError (double [] t a r g e t) {

94 f o r (i n t neuron = 0 ; neuron < NETWORK_LAYER_SIZES[NETWORK_SIZE − 1] ;

neuron++) {

95 e r r o r_s i gna l [NETWORK_SIZE − 1] [neuron] = (output [NETWORK_SIZE −
1] [neuron] − t a r g e t [neuron])

96 ∗ output_der ivat ive [NETWORK_SIZE − 1] [neuron] ;

97 }

98 f o r (i n t l a y e r = NETWORK_SIZE − 2 ; l a y e r > 0 ; layer−−) {

99 f o r (i n t neuron = 0 ; neuron < NETWORK_LAYER_SIZES[l ay e r] ; neuron

++) {

81

100 double sum = 0 ;

101 f o r (i n t nextNeuron = 0 ; nextNeuron < NETWORK_LAYER_SIZES[

l ay e r + 1] ; nextNeuron++) {

102 sum += weights [l a y e r + 1] [nextNeuron] [neuron] ∗
e r r o r_s i gna l [l a y e r + 1] [nextNeuron] ;

103 }

104 e r r o r_s i gna l [l a y e r] [neuron] = sum ∗ output_der ivat ive [l a y e r

] [neuron] ;

105 }

106 }

107 }

108

109 pr i va t e void updateWeights (double eta) {

110 f o r (i n t l a y e r = 1 ; l a y e r < NETWORK_SIZE; l ay e r++) {

111 f o r (i n t neuron = 0 ; neuron < NETWORK_LAYER_SIZES[l ay e r] ; neuron

++) {

112 double de l t a = (−1) ∗ eta ∗ e r r o r_s i gna l [l a y e r] [neuron] ;

113 b ia s [l a y e r] [neuron] += de l t a ;

114 f o r (i n t prevNeuron = 0 ; prevNeuron < NETWORK_LAYER_SIZES[

l ay e r − 1] ; prevNeuron++) {

115 weights [l a y e r] [neuron] [prevNeuron] += de l t a ∗ output [

l a y e r − 1] [prevNeuron] ;

116 }

117 }

118 }

119

120 }

121

122 pub l i c s t a t i c void main (St r ing [] a rgs) {

123 Network net = new Network (4 , 3 , 3 , 2) ;

124

125 TrainSet s e t = new TrainSet (4 , 2) ;

126 s e t . addData (new double [] { 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4} , new double [] { 0 . 9 ,

0 . 1 }) ;

127 s e t . addData (new double [] { 0 . 9 , 0 . 8 , 0 . 7 , 0 . 6} , new double [] { 0 . 1 ,

0 . 9 }) ;

128 s e t . addData (new double [] { 0 . 3 , 0 . 8 , 0 . 1 , 0 . 4} , new double [] { 0 . 3 ,

0 . 7 }) ;

129 s e t . addData (new double [] { 0 . 9 , 0 . 8 , 0 . 1 , 0 . 2} , new double [] { 0 . 7 ,

0 . 3 }) ;

130

131 net . t r a i n (set , 1000000 , 4) ;

132

133 f o r (i n t i = 0 ; i < 4 ; i++) {

134 System . out . p r i n t l n (Arrays . t oS t r i ng (net . c a l c u l a t e (s e t . get Input (i)

))) ;

135 }

82

136 }

137 }

A.2.9 TrainSet Class

1 package ubi . a l l a b . neural_network ;

2

3 import java . u t i l . ArrayList ;

4 import java . u t i l . Arrays ;

5

6 pub l i c c l a s s TrainSet {

7

8 pub l i c f i n a l i n t INPUT_SIZE ;

9 pub l i c f i n a l i n t OUTPUT_SIZE;

10

11 pr i va t e ArrayList<double [] [] > data = new ArrayList <>() ;

12

13 pub l i c TrainSet (i n t INPUT_SIZE, i n t OUTPUT_SIZE) {

14 t h i s . INPUT_SIZE = INPUT_SIZE ;

15 t h i s .OUTPUT_SIZE = OUTPUT_SIZE;

16 }

17

18 pub l i c void addData (double [] in , double [] expected) {

19 i f (in . l ength != INPUT_SIZE | | expected . l ength != OUTPUT_SIZE) return

;

20 data . add (new double [] [] { in , expected }) ;

21 }

22

23 pub l i c TrainSet extractBatch (i n t s i z e) {

24 i f (s i z e > 0 && s i z e <= th i s . s i z e ()) {

25 TrainSet s e t = new TrainSet (INPUT_SIZE, OUTPUT_SIZE) ;

26 I n t eg e r [] i d s = NetworkTools . randomValues (0 , t h i s . s i z e () − 1 ,

s i z e) ;

27 f o r (In t eg e r i : i d s) {

28 s e t . addData (t h i s . get Input (i) , t h i s . getOutput (i)) ;

29 }

30 re turn s e t ;

31 } e l s e re turn t h i s ;

32 }

33

34 pub l i c S t r ing toS t r i ng () {

35 St r ing s = "TrainSet ["+INPUT_SIZE+ " ; "+OUTPUT_SIZE+"]\ n" ;

36 i n t index = 0 ;

37 f o r (double [] [] r : data) {

38 s += index +" : "+Arrays . t oS t r i ng (r [0]) +" >−||−< "+Arrays .

t oS t r i ng (r [1]) +"\n" ;

39 index++;

40 }

83

41 re turn s ;

42 }

43

44 pub l i c i n t s i z e () {

45 re turn data . s i z e () ;

46 }

47

48 pub l i c double [] get Input (i n t index) {

49 i f (index >= 0 && index < s i z e ())

50 re turn data . get (index) [0] ;

51 e l s e re turn nu l l ;

52 }

53

54 pub l i c double [] getOutput (i n t index) {

55 i f (index >= 0 && index < s i z e ())

56 re turn data . get (index) [1] ;

57 e l s e re turn nu l l ;

58 }

59

60 pub l i c i n t getINPUT_SIZE () {

61 re turn INPUT_SIZE ;

62 }

63

64 pub l i c i n t getOUTPUT_SIZE() {

65 re turn OUTPUT_SIZE;

66 }

67

68 pub l i c s t a t i c void main (St r ing [] a rgs) {

69 TrainSet s e t = new TrainSet (3 , 2) ;

70

71 f o r (i n t i = 0 ; i < 8 ; i++) {

72 double [] a = new double [3] ;

73 double [] b = new double [2] ;

74 f o r (i n t k = 0 ; k < 3 ; k++) {

75 a [k] = (double) ((i n t) (Math . random () ∗ 10)) / (double) 10 ;

76 i f (k < 2) {

77 b [k] = (double) ((i n t) (Math . random () ∗ 10)) / (double) 10 ;

78 }

79 }

80 s e t . addData (a , b) ;

81 }

82

83 System . out . p r i n t l n (s e t) ;

84 System . out . p r i n t l n (s e t . extractBatch (3)) ;

85 }

86 }

84

A.2.10 NetworkTools Class

1 package ubi . a l l a b . neural_network ;

2

3 pub l i c c l a s s NetworkTools {

4

5 pub l i c s t a t i c double [] c reateArray (i n t s i z e , double in i t_va lue) {

6 i f (s i z e < 1) {

7 re turn nu l l ;

8 }

9 double [] ar = new double [s i z e] ;

10 f o r (i n t i = 0 ; i < s i z e ; i++) {

11 ar [i] = in i t_va lue ;

12 }

13 re turn ar ;

14 }

15

16 pub l i c s t a t i c double [] createRandomArray (i n t s i z e , double lower_bound ,

double upper_bound) {

17 i f (s i z e < 1) {

18 re turn nu l l ;

19 }

20 double [] ar = new double [s i z e] ;

21 f o r (i n t i = 0 ; i < s i z e ; i++) {

22 ar [i] = randomValue (lower_bound , upper_bound) ;

23 }

24 re turn ar ;

25 }

26

27 pub l i c s t a t i c double [] [] createRandomArray (i n t sizeX , i n t sizeY , double

lower_bound , double upper_bound) {

28 i f (s izeX < 1 | | s izeY < 1) {

29 re turn nu l l ;

30 }

31 double [] [] ar = new double [s izeX] [s izeY] ;

32 f o r (i n t i = 0 ; i < s izeX ; i++) {

33 ar [i] = createRandomArray (sizeY , lower_bound , upper_bound) ;

34 }

35 re turn ar ;

36 }

37

38 pub l i c s t a t i c double randomValue (double lower_bound , double upper_bound)

{

39 re turn Math . random () ∗ (upper_bound − lower_bound) + lower_bound ;

40 }

41

42 pub l i c s t a t i c In t eg e r [] randomValues (i n t lowerBound , i n t upperBound , i n t

85

amount) {

43

44 lowerBound−−;

45

46 i f (amount > (upperBound − lowerBound)) {

47 re turn nu l l ;

48 }

49

50 I n t eg e r [] va lue s = new In t eg e r [amount] ;

51 f o r (i n t i = 0 ; i < amount ; i++) {

52 i n t n = (i n t) (Math . random () ∗ (upperBound − lowerBound + 1) +

lowerBound) ;

53 whi le (conta insValue (values , n)) {

54 n = (i n t) (Math . random () ∗ (upperBound − lowerBound + 1) +

lowerBound) ;

55 }

56 va lue s [i] = n ;

57 }

58 re turn va lue s ;

59 }

60

61 pub l i c s t a t i c <T extends Comparable<T>> boolean conta insValue (T [] ar , T

value) {

62 f o r (i n t i = 0 ; i < ar . l ength ; i++) {

63 i f (ar [i] != nu l l) {

64 i f (va lue . compareTo (ar [i]) == 0) {

65 re turn true ;

66 }

67 }

68 }

69 re turn f a l s e ;

70 }

71

72 pub l i c s t a t i c i n t indexOfHighestValue (double [] va lue s) {

73 i n t index = 0 ;

74 f o r (i n t i = 1 ; i < va lue s . l ength ; i++) {

75 i f (va lue s [i] > va lue s [index]) {

76 index = i ;

77 }

78 }

79 re turn index ;

80 }

81

82 pub l i c s t a t i c double s igmoid (double x) {

83 re turn 1d / (1 + Math . exp(−x)) ;

84 }

85 }

86

A.3 Application Console Outputs

The following images represent the ten application console outputs that were obtained and used
during the results analysis in chapter four.

A.3.1 Console Output One

Figure A.1: Application console output one

A.3.2 Console Output Two

Figure A.2: Application console output two

A.3.3 Console Output Three

Figure A.3: Application console output three

87

A.3.4 Console Output Four

Figure A.4: Application console output four

A.3.5 Console Output Five

Figure A.5: Application console output five

A.3.6 Console Output Six

Figure A.6: Application console output six

88

A.3.7 Console Output Seven

Figure A.7: Application console output seven

A.3.8 Console Output Eight

Figure A.8: Application console output eight

A.3.9 Console Output Nine

Figure A.9: Application console output nine

89

A.3.10 Console Output Ten

Figure A.10: Application console output ten

90

	Introduction
	Motivation and Scope
	Problem Statement and Objectives
	Adopted Approach for Solving the Problem
	Main Contributions
	Dissertation Overview

	State of the Art
	Development
	Application Workflow
	Video capturing using the Kinect device
	Joint Analysis and Identification
	Extracting joint coordinates

	Application organization and dataset preparation
	Application orchestration
	Dataset handling

	Video data analysis and manipulation
	Input calculation
	Accessing the stored data
	Data normalization
	Data transformation

	Data classification
	Handling the neural network
	Neural network implementation

	Conclusion

	Results and Conclusions
	Results
	Conclusion

	Final Considerations
	Difficulties and future work
	Conclusions

	Bibliografia
	Attachments
	JAVA Kinect Functions
	Kinect Class
	Kinect method onDepthFrameEvent
	Kinect method onSkeletonFrameEvent
	Kinect method onColorFrameEvent
	Kinect method onInfraredFrameEvent

	Application Functions
	Application Class
	ManageData Class
	CalculateInput Class
	ReadTextFile method
	NormalizeData method
	TransformData method
	Classification Class
	Network Class
	TrainSet Class
	NetworkTools Class

	Application Console Outputs
	Console Output One
	Console Output Two
	Console Output Three
	Console Output Four
	Console Output Five
	Console Output Six
	Console Output Seven
	Console Output Eight
	Console Output Nine
	Console Output Ten

