
UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

Improvement of TestH: a C Library for Generating
Self-Similar Series and for Estimating the Hurst

Parameter

Cristiano Duarte Gonçalves Ramos

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

(2º ciclo de estudos)

Orientador: Prof. Doutor Pedro Ricardo Morais Inácio

Covilhã, novembro de 2017

ii

To the most important woman in my life,
my grandmother.

iii

iv

Acknowledgements

I would first like to thank my thesis supervisor Prof. Dr. Pedro R. M. Inácio for all the motivation

he gave me in order to pursue this academic title. I would also like to thank him for always having

his door open whenever it was needed.

I would like to thank my family, specially my mother, stepfather, grandmother and my girlfriend

for all the support they have been giving me during this period (a kiss to each one of you for

every cup of coffee you brewed for me).

To my friends, a big thank you for all the good stories we have and for giving a hand in shaping

me into what I am today.

Finally, a special thanks to my beautiful blue-eyed white cat and to my rottweiler, Joana and

Dóris, which give comfort and relief without ever questioning.

v

vi

Resumo

A descoberta da dependência consistente entre valores em certas séries de dados, abriu cam-

inho para o desenvolvimento de algoritmos que permitissem, de alguma forma, classificar o

grau de auto-semelhança entre valores e tecer considerações sobre o comportamento da série.

A esta estatística dá-se o nome de Parâmetro de Hurst, que permite analisar e classificar o com-

portamento de uma série de dados como persistente, antipersistente ou puramente aleatória.

Esta descoberta tem sido bastante relevante na área das redes de computadores, onde serve,

p.ex., de ajuda às empresas para desenvolverem equipamentos e infraestruturas adequadas às

suas necessidades. Para além do elevado interesse que a referida área apresentou por esta

métrica, existem outros campos ciêntificos onde algoritmos para estimar o Parâmetro de Hurst

de sequências de valores estão a ser aplicados, como por exemplo no estudo de fenómenos

geológicos [KTC07], bem como em fenómenos ligados às ciências da saúde [VAJ08, HPS+12].

Existem vários algoritmos para estimar o Parâmetro de Hurst [Hur51, Hig88, RPGC06], tendo

cada um deles as suas virtudes e fraquezas. A utilização destes algoritmos é por vezes difícil,

motivando a criação de ferramentas e bibliotecas que os congregam e disponibilizam de uma

forma mais amigável ao utilizador. Infelizmente, e apesar de ser uma área que está a ser alvo de

estudos há décadas, as ferramentas existentes, para além de não implementarem a totalidade

dos algoritmos mais relevantes, apresentam ainda algumas limitações. Desta forma, o trabalho

apresentado nesta dissertação consiste, principalmente, na melhoria da TestH, uma biblioteca

escrita em ANSI C para o estudo de séries temporais auto-semelhantes, inicialmente desen-

volvida por Fernandes et al. [FNS+14]. Estas melhorias materializam-se sobretudo na adição

de algoritmos para estimar o Parâmetro de Hurst e gerar séries de dados auto-semelhantes.

Adicionalmente foram introduzidas funções auxiliares, foi efetuada a refactorização do código,

documentação das interfaces de programação e ainda a criação de um sítio web para divulgação

do projeto.

Esta dissertação dá enfase aos algoritmos de estimação do Parâmetro de Hurst e geração de

séries auto-semelhantes. Relativamente à estimação, foram introduzidos na TestH, no âmbito

deste trabalho, o Periodograma, o método de Higuchi, a estimação através da função de auto-

correlação e o método de análise através da remoção das tendências. No que respeita à geração

de séries, foi também introduzido o método de Davies e Hart. Com o objetivo de tornar a TestH

robusta e credível, foram realizados vários testes, comparando os resultados destas implemen-

tações com os valores fornecidos por ferramentas semelhantes. Os resultados obtidos estão al-

inhados com o esperado e, inclusivamente, os algoritmos que se encontram implementados na

TestH e restantes ferramentas analisadas (como por exemplo, o Periodograma), apresentaram

valores bastante semelhantes entre si, corroborando a crença da correção da implementação

dos vários métodos.

vii

Palavras-chave

TestH, Passeio Aleatório, movimento Browniano fracionário, ruído Gaussiano fracionário, De-

pendência de Longo Alcance , Auto-Semelhança, Geradores de Sequências Auto-Semelhantes,

Estimadores do Parâmetro de Hurst.

viii

Resumo alargado

Introdução

Escrita em língua Portuguesa, esta secção pretende expor o corpo da dissertação de uma forma

mais detalhada que o resumo, estando a sua organização alinhada com a estrutura do corpo deste

documento. Na primeira subsecção é feito um enquadramento da dissertação, seguida pelas

subsecções que definem o problema abordado, os objetivos propostos a alcançar, a abordagem

adotada para os realizar e uma breve discrição da materialização do trabalho feito ao longo

da dissertação. De seguida é abordada uma secção que define alguns preliminares relevantes

para o estudo desta área científica bem como uma análise a trabalhos similares. Nas últimas

subsecções é feita uma apresentação dos algoritmos implementados bem como uma avaliação

dos mesmos, terminando a secção com um resumo das conclusões e direções a seguir para o

trabalho futuro.

Motivação e Âmbito

Desde o inicio dos tempos o ser humano sempre teve a ambição de conseguir prever o futuro de

certos eventos, sejam estes o estado do tempo nos dias seguintes ou o comportamento de uma

ação no mercado bolsista. Embora em certas situações possa aparentar, estas previsões não

são ingénuas e resultam de uma reflexão sobre os valores no passado. Por outras palavras, esta

reflexão indica que os valores futuros têm um certo grau de dependência dos valores passados,

sendo este fenómeno conhecido como dependência de longo alcance (Long Range Dependence)

e que, ocorre quando a dependência entre valores espaçados no tempo decresce mais suave-

mente que uma decadência exponencial. Esta auto-semelhança entre os valores de uma série

de dados pode ser medida através da estatística conhecida como Parâmetro de Hurst, o qual

é descrito em maior detalhe no capítulo 2. De uma forma bastante resumida o Parâmetro de

Hurst permite determinar com um certo grau de certeza se uma série apresenta um compor-

tamento persistente (tendência nos valores), anti-persistente (inversão da tendência) ou se é

simplesmente imprevisível.

Esta área cientifica foi particularmente impulsionada devido à descoberta de propriedades de

auto-semelhança no tráfego das redes de computadores por Leland et al. [LTWW93]. Estes

avanços têm ajudado as companhias ligadas à área de redes a planificarem melhor a sua in-

fraestrutura e a desenvolverem melhores dispositivos, poupando assim recursos e melhorando a

experiencia de utilização dos clientes. Existem outras áreas onde o estudo da auto semelhança

tem sido amplamente aplicado, como o estudo de fenómenos naturais [KTC07] ou ainda estudos

na área das ciências da saúde [VAJ08, HPS+12]. Na literatura é possível encontrar diversos algo-

ritmos [Hur51, Hig88, RPGC06] para estimar o Parâmetro de Hurst, cada um deles tendo as suas

virtudes e fraquezas. Para além disso, parte destes algoritmos são parametrizáveis, deixando

espaço para diferentes implementações. Infelizmente as ferramentas para a análise de séries

ix

de dados auto-semelhantes que implementam estes algoritmos são de certa forma limitadas,

levando a que os investigadores por vezes optem por fazer as suas próprias implementações.

Para além dos possíveis erros que podem resultar da implementação os investigadores ainda

têm que dispor do seu templo para implementar algo que não está diretamente relacionado

com a seu trabalho.

Com o cenário apresentado, o trabalho referente a esta dissertação consiste na introdução de

melhorias na TestH, uma biblioteca escrita em ANSI C para o estudo de séries auto-semelhantes,

inicialmente desenvolvida por Fernandes et al. [FNS+14]. Estas melhorias passam pela adição

à biblioteca de geradores de séries auto-semelhantes e de estimadores do Parâmetro de Hurst,

adição de funções de apoio, refactorização do código, documentação do mesmo e ainda a criação

de um sítio web para divulgação do projeto.

Problema e Objetivos

O problema identificado é a falta de uma ferramenta para o estudo de séries auto-semelhantes

que tenha sido amplamente testada, seja possível a sua adaptação e ainda que o seu código seja

disponibilizado de forma livre. Como foi identificado anteriormente, a falta de uma ferramenta

com estas característica leva a que os investigadores tenham que implementar as suas versões

dos algoritmos, fazendo com que conhecimentos de programação sejam quase um requisito

para esta área. Para os investigadores que não possuem estes conhecidos existem ferramen-

tas com interfaces gráficas, contudo, estas apresentam limitações (discutidas no capítulo 3).

Parte destas ferramentas também não providenciam nenhuma informação relativa à maneira

de implementação dos algoritmos, o que pode criar uma certa desconfiança relativamente aos

resultados por elas apresentados.

A TestH é uma biblioteca pensada para investigadores que ambiciona ser robusta, amplamente

testada, facilmente adaptável e que tenha uma maneira de utilização bastante simples. A

escolha da criação de uma biblioteca em vez de uma aplicação com interface gráfica foi pen-

sada para permitir aos investigadores que possuam conhecimentos de programação uma maior

adaptação às suas necessidades. Adicionalmente, a interface de programação da biblioteca

encontra-se devidamente documentada, possibilitando o seu uso por investigadores que pos-

suam conhecimentos reduzidos de C. Com o problema e os objetivos identificados, as tarefas

propostas para este trabalho são:

1. implementação de estimadores do Parâmetro de Hurst;

2. implementação de geradores de sequências auto-semeIhantes;

3. refactorização do código;

4. implementação de um sistema de geração de documentação da interface de programação;

x

5. construção de um sítio web para divulgação do projeto e hospedagem da documentação;

6. validação dos algoritmos implementados através de testes e comparação com as ferramen-

tas similares disponíveis.

Abordagem para Resolver o Problema

Para resolver o presente problema e para atingir os objetivos propostos acima mencionados, a

estratégia definida na seguinte lista foi seguida:

1. etapa 1 – a familiarização com os conceitos inerentes a esta dissertação (como por exem-

plo, a auto-semelhança) foi o primeiro paço tomado para a realização da mesma. Esta

tarefa incluiu também um estudo profundo do estado da arte, seguido pela recolha da

informação referente aos algoritmos a implementar;

2. etapa 2 – com uma grande extensão de código já implementado e sem documentação,

a segunda etapa consistiu na compreensão da arquitetura da biblioteca. Ao longo deste

estudo foram identificadas oportunidades de melhorias. Foi também efetuado uma com-

paração das ferramentas disponíveis com a TestH, visando a extração de ideias passíveis

de implementação;

3. etapa 3 – neste paço foi efetuada a implementação dos algoritmos. Por motivos de rapidez

de execução e desenvolvimento, estes foram implementados à parte da biblioteca, tendo

sido posteriormente integrados na TestH. Em termos técnicos, a abordagem seguida para

a implementação dos mesmos foi a de desenvolvimento orientado por testes. Ou seja,

foram desenhados testes previamente, com a implementação a ser considerada incompleta

enquanto algum deles não fosse satisfeito positivamente;

4. etapa 4 – a biblioteca já beneficiou de várias modificações feitas por diversos contribuidores.

Contudo, estas nem sempre tiveram em atenção a uniformização do código. De encontro

a este problema, neste paço foi efetuada uma refactorização do código;

5. etapa 5 – por fim seguiu-se a fase de validação dos algoritmos, onde cada um deles foi

submetido a vários testes de forma a averiguar a sua correta implementação.

Principais Contribuições

A principal contribuição resultante deste trabalho é a melhoria de uma ferramenta de cariz

científico que pode vir a servir como um meio para o progresso neste campo. Segue-se uma

breve discrição das principais contribuições:

1. a primeira contribuição é a implementação de cinco novos algoritmos, quatro relativos a

estimadores do Parâmetro de Hurst e um relativo à geração de sequências auto-semelhantes;

xi

2. para além dos algoritmos previamente referidos, outras funções foram adicionadas, como

por exemplo a transformada rápida de Fourier ou as somas cumulativas;

3. o código foi refactorizado para tornar mais harmoniosa a sua adaptação e melhorar a sua

legibilidade;

4. de uma perspetiva funcional, a interface de programação da biblioteca foi documentada

com recurso à Clang based DOCumentation generator (CLDOC), uma ferramenta de código

aberto de geração de documentação;

5. por último, um sítio web para divulgação da biblioteca e consulta da documentação foi con-

truído, o qual pode ser acedido através da seguinte ligação: https://cdgramos.github.

io/testh/.

Preliminares

É sempre importante relembrar os eventos históricos que levaram a descoberta do Parâmetro de

Hurst. Durante os estudos para a construção de uma barragem no rio Nilo que pudesse guardar

eficientemente a água durante os períodos de seca ou de cheia, Harold Hurst percebeu que era

comum anos de cheia serem precedidos por anos de cheias, e que o mesmo se aplicava para

as secas. Este tipo de semelhança indicou que as observações presentes têm um certo grau de

dependência das observações efetuadas no passado, o que o levou a criar um método que a

permitisse medir esta dependência, dando assim origem à unidade estatística que hoje carrega

o seu nome, o Parâmetro de Hurst. Esta estatística H assume valores entre]0, 1[, e dependendo

do intervalo em que se encontre pode indicar:

• para H ∈]0, 0.5[, o processo é considerado como anti persistente (também denominado por

negativamente correlacionado), o que significa que uma tendência verificada irá inverter

no futuro próximo;

• para H = 0.5, o processo é classificado como sem memória [Sam06], ou seja, impossível

de prever o seu comportamento (p.ex. um passeio aleatório);

• para H ∈]0.5, 1.0[o processo é considerado como persistente (também denominado como

correlacionado) e indica que a tendência verificada na série irá continuar a verificar-se.

Trabalho Relacionado e TestH

A TestH viu o seu desenvolvimento começar em 2013 mas está longe de ser a primeira ferramenta

do género. A SELF-similarity analysIS (SELFIS), Self-similarity and Quality of Service (SELQoS)

e Herramienta de Análisis de Tráfico Telemático Autosemejante (HATTA) surgiram com o ob-

jetivo de estudar e simular dados de tráfego de redes informáticas, enfatizando novamente a

relevância deste campo científico. Estas ferramentas são as mais referenciadas na literatura,

xii

https://cdgramos.github.io/testh/
https://cdgramos.github.io/testh/

tendo sido por isso escolhidas para serem objeto de análise nesta dissertação (capítulo 3). No

entanto, existem mais ferramentas como por exemplo a Local Analysis of Self-Similarity (LASS)

[STP+06]. A partir da análise da literatura e do estudo das ferramentas, é possível notar que

os estimadores mais comuns, como o Rescaled Range Statistics (R/S), estão implementados em

todas as ferramentas acima mencionadas. No entanto, não é garantido que os resultados de

um algoritmo específico, aplicado às mesmas séries temporais, sejam iguais entre eles. Isto

deve-se à variedade de possíveis implementações de um algoritmo (p. ex., tamanhos de bloco

definidos de forma estática ou dinâmica) ou até mesmo a possíveis erros que possam ter acon-

tecido aquando da sua implementação.

A ideia chave da TestH é a de fornecer aos investigadores uma ferramenta robusta, mas de

simples uso, para o estudo da auto-semelhança em séries temporais. Esta fácil utilização é

alcançada com a camada de abstração fornecida pela interface de programação, que permite

a utilização da biblioteca sem conhecimentos profundos de programação. Até ao momento, a

biblioteca apresenta uma coleção de oito estimadores de Parâmetro de Hurst, seis geradores

de sequências auto-semelhantes, baterias de teste e capacidade de usar dados de geradores

externos à biblioteca.

Geradores e Estimadores Implementados

Ao todo foram introduzidos cinco algoritmos na TestH durante esta dissertação, nomeadamente

o Periodograma, o método de Higuchi, a estimação através da função de auto correlação e a

análise através da remoção das tendências como algoritmos de estimação, e o método de Davies

e Hart como algoritmo de geração de séries auto-semelhantes. Abaixo encontra-se uma breve

descrição sobre cada um deles.

O Periodograma foi proposto por Geweke e Porter-Hudak [GPH83]. O algoritmo apresentado

para estudar processos com memória de longo alcance baseia-se na análise do espectro f(λ) e

propõe-se a aproximá-lo por I(λ) = 1
N

∑N−1
j=−(N−1) γ̂(j)× eijλ, onde N é o número de amostras,

λ a frequência e γ̂(j) uma estatística semelhante à função de autocorrelação. Este cálculo deve

ser executado para várias frequências k. O valor de H é obtido através do declive da linha

ajustada dos mínimos quadrados ajustada aos logaritmos de I(λk) e os de λk , de acordo com a

fórmula H = (1− β)/2 em que β é o declive.

Em 1988, Higuchi propôs um algoritmo para estimar o Parâmetro de Hurst que viria a carregar o

seu nome [Hig88]. Semelhante a outros algoritmos, este também tira partido do uso de difer-

entes escalas de janela mk para aplicar a função definida pelo autor. Para extrair o Parâmetro

de Hurst uma linha dos mínimos quadrados deve ser ajustada aos logaritmos dos valores dados

pela função de Higuchi L(mk) e mk para diferentes mk ∈ N. O Parâmetro de Hurst é obtido

adicionando 2 ao declive da linha encontrada.

xiii

A estimação através da função de auto correlação é dos métodos mais recentes descritos na

literatura para a estimação do parâmetro Hurst. Este método foi introduzido por Rezaul et

al. [RPGC06] seguindo o trabalho de Kettani et al. [KG02] sobre a auto-semelhança do tráfego

em redes informáticas. O algoritmo depende da função de auto correlação γ(k). Por exemplo, se

k = 1 for a distância da vizinhança a considerar, deve-se calcular a auto correlação entre Y (t+1)

e Y (t). A estimativa de do Parâmetro de Hurst é obtida a partir de H = 1
2 log2(γ(1) + 1) + 1

2 .

Ao estudar sequências de ADN, Peng textit et al. [PBH+94] propôs o método de análise através da

remoção das tendências (Detrended Fluctuation Analysis (DFA)). Este método requer a definição

de uma família de escalas mk, para as quais a série é integrada e os seus valores ajustados à

linha dos mínimos quadrados para a remoção do efeito de tendência. Esta remoção é feita para

cada escala, calculando posteriormente a variância dos valores. O Parâmetro Hurst é obtido

através do declive de uma linha dos mínimos quadrados ajustada aos logaritmos das escalas e

aos logaritmos das médias da variância para cada escala.

À semelhança de outros algoritmos este método também carrega o nome dos seus criadores,

Davies e Hart [DH87]. Este método é considerado como sendo exato, ou seja, para um dado

Parâmetro de Hurst gera uma sequência de valores com a auto-semelhança pretendida. Ele

assenta na definição de uma matriz circulante contendo a matriz de covariância. A matriz

circulante é então fatorizada usando a transformada de Fourier. É importante realçar que este

algoritmo é o mais rápido entre os três métodos exatos conhecidos, sendo o método de Hosking

e o de Cholesky os outros dois.

Avaliação

Os esforços feitos no desenvolvimento da biblioteca são justificados se a TestH encontrar o seu

lugar entre a comunidade científica e, para conseguir isso, é necessário que os investigadores

confiem nos resultados que ela produz, tornando o processo de validação crucial. Vários testes

foram realizados recorrendo às ferramentas HATTA e SELFIS para obter uma confirmação da

precisão dos geradores e estimadores implementados, uma vez que constituem uma boa linha

de base para comparação. O primeiro tipo de algoritmos a serem testados foram os geradores

devido à inexistência de ferramentas amplamente conhecidas que, para um determinado valor

de H, produzam uma sequência auto-similar. Tendo sido estes métodos posteriormente usados

para testar os estimadores. Estes resultados irão ser brevemente discutidos aqui, estando a sua

apresentação e discussão presentes no capítulo 5.

Foi observado que, para o ruído anti-persistente próximo de zero, o Periodograma tem um

desempenho fraco, enquanto que, por outro lado, pode ser o mais útil para estudar séries

temporais persistentes. Também foi demonstrado que o tempo de processamento cresce expo-

nencialmente para o método Higuchi, tornando-o o pior candidato para aplicações que exigem

resultados em tempo real. De forma geral, os estimadores apresentaram resultados alinhados

xiv

com as espectativas e em concordância com as ferramentas similares à TestH.

Os geradores tiveram um comportamento notavelmente bom nos testes efetuados, reforçando a

ideia de que estão corretamente implementados. Devido à elevada precisão dos métodos não há

nenhuma recomendação em particular sobre qual gerador deve ser usado para séries de tamanho

igual ou superior a 220 valores. No entanto, foi verificado que para séries mais pequenas, de 212

valores, a precisão dos algoritmos aproximados é bastante menor. É também importante notar

que se o tempo for uma restrição, o método de Hosking deve ser evitado devido à sua elevada

complexidade computacional.

Conclusões e Trabalho Futuro

A literatura estudada durante este trabalho não deixa espaço para duvidas relativamente à im-

portância do papel do Parâmetro de Hurst em diversas áreas, tais como a de modelação e simu-

lação de tráfego de rede. Com a conclusão desta dissertação, a TestH passou a incorporar mais

geradores e estimadores do que as outras ferramentas aqui estudadas. No entanto, há opor-

tunidades de melhoria (como por exemplo a introdução de optimizações para processamento

multi-núcleo) a serem consideradas para tornarem a biblioteca cada vez mais robusta.

Como trabalho futuro é proposta a adição dos restantes algoritmos de estimação, bem como a

implementação do método de Cholesky (único gerador exato em falta). Uma grande vantagem

das ferramentas analisadas é a produção de gráficos, algo impossível de realizar em ANSI C,

porém deve-se considerar a integração da biblioteca com a GNU Plot, uma ferramenta de código

livre para o efeito. O crescimento do código também o torna mais suscetível a erros, por isso

como contribuição futura deve ser criado um novo módulo dedicado a testes unitários.

Por último, mas não menos importante, o objetivo final deste trabalho só é cumprido se a

ferramenta for efetivamente usada, por isso o seu uso deve ser encorajado junto da comunidade

científica, que validará a implementação e fará possíveis contribuições para o código-fonte.

xv

xvi

Abstract

The discovery of consistent dependencies between values in certain data series paved the way

for the development of algorithms that could, somehow, classify the degree of self-similarity

between values and derive considerations about the behavior of these series. This self-similarity

metric is typically known as the Hurst Parameter, and allows the classification of the behavior of

a data series as persistent, anti-persistent, or purely random. This discovery was highly relevant

in the field of computer networks, inclusively helping companies to develop equipment and

infrastructure that suit their needs more efficiently. The Hurst Parameter is relevant in many

other fields, and it has been for exemple applied in the study of geologic phenomena [KTC07]

or even on areas related with health sciencies[VAJ08, HPS+12].

There are several algorithms for estimating the Hurst Parameter [Hur51, Hig88, RPGC06], and

each one of them has its strengths and weaknesses. The usage of these algorithms is sometimes

difficult, motivating the creation of tools or libraries that provide them in a more user-friendly

manner. Unfortunately, and despite of being an area that has been studied for decades, the

tools available have limitations and do not implement all algorithms available in the literature.

The work presented in this dissertation consists on the improvement of TestH, a library written in

ANSI C for the study of self-similarity in time series, which was initially developed by Fernandes

et al. [FNS+14]. These improvements are materialized as the addition of algorithms to estimate

the Hurst Parameter and to generate self-similar sequences. Additionally, auxiliary functions

were implemented, along with code refactoring, documentation of the application programming

interface and the creation of a website for the project.

This dissertation is mostly focused on the algorithms that were introduced in TestH, namely

the Periodogram, the Higuchi method, the Hurst Exponent by Autocorrelation Function and the

Detrended Fluctuation Analysis estimators, and the Davies and Hart method for generating self-

similar sequences. In order to turn TestH into a robust and trustable library, several tests were

performed comparing the results of these implementations with the values provided by similar

tools. The overall results obtained in these tests are in line with expectations and the algorithms

that are simultaneously implemented in TestH and in the other tools analyzed (for example, the

Periodogram) returned very similar results, corroborating the belief that the methods were well

implemented.

xvii

Keywords

TestH, Random Walk, fractional Brownian motion, fractional Gaussian noise, Long Range De-

pendence, Self-Similarity, Self-Similar Sequences Generator, Hurst Parameter Estimators.

xviii

Contents

1 Introduction 1

1.1 Motivation and Scope . 1

1.2 Problem Statement and Objectives . 2

1.3 Adopted Approach for Solving the Problem . 3

1.4 Main Contributions . 4

1.5 Dissertation Overview . 4

2 Preliminaries 7

2.1 Introduction . 7

2.2 Self-similarity and Hurst Parameter . 7

2.2.1 Historical Overview and the Hurst Parameter 7

2.2.2 Self-similarity . 8

2.2.3 Random Walk . 9

2.2.4 Fractional Brownian Motion . 9

2.2.5 Fractional Gaussian Noise . 10

2.3 Estimators for the Hurst Parameter . 10

2.3.1 Rescaled Range Statistics . 10

2.3.2 Variance Time . 11

2.3.3 Absolut Moments Time . 12

2.3.4 Embedded Branching Process . 12

2.3.5 Detrended Fluctuation Analysis . 13

2.3.6 Periodogram . 13

2.3.7 Whittle Estimator . 14

2.3.8 Wavelets-Based Estimator . 14

2.3.9 Higuchi Method . 14

2.3.10 Hurst Exponent by Autocorrelation Function 15

xix

2.4 Self-similar Sequences Generators . 15

2.4.1 Hosking . 15

2.4.2 Cholesky . 15

2.4.3 Davies and Hart . 16

2.4.4 Aggregation of Processes . 16

2.4.5 Paxson . 16

2.4.6 Fractional Brownian Motion Sequential Generation Algorithm 16

2.4.7 Simple Self-Similar Sequences Generator 17

2.5 Conclusion . 17

3 Related Work and TestH 19

3.1 Introduction . 19

3.2 Related Works . 19

3.2.1 SELFIS . 19

3.2.2 SELQoS . 19

3.2.3 HATTA . 20

3.2.4 Statistical Tools . 20

3.2.5 State of the Art Wrap-up . 22

3.3 TestH . 22

3.3.1 Library Overview . 22

3.3.2 Directory Structure . 23

3.3.3 Library Architecture . 23

3.3.4 Additional Features . 26

3.3.5 Code Management . 26

3.4 Tool Comparison . 27

3.5 Conclusion . 27

4 Implemented Estimators and Generators 29

4.1 Introduction . 29

xx

4.2 Implemented Estimators of the Hurst Parameter 29

4.2.1 Detrended Fluctuation Analysis . 29

4.2.2 Higuchi . 30

4.2.3 Periodogram . 32

4.2.4 HEAF . 33

4.3 Implemented Generators of Self-Similar Sequences 35

4.3.1 Davies and Hart . 35

4.4 Other Contributions . 35

4.4.1 API Additions . 35

4.4.2 Documentation and Website . 36

4.4.3 Usage Example . 38

4.5 Conclusion . 39

5 Evaluation 41

5.1 Introduction . 41

5.2 Testing Apparatus . 41

5.3 Evaluation of Generators . 42

5.3.1 Generators Computational Time . 42

5.3.2 Generators Memory Consumption . 42

5.3.3 Generators Accuracy . 43

5.4 Evaluation of Estimators . 43

5.4.1 Estimators Computational Time . 43

5.4.2 Estimators Memory Consumption . 43

5.4.3 Estimators Accuracy . 44

5.5 Discussion of the Results . 46

5.6 Conclusion . 46

6 Conclusions and Future Work 51

6.1 Main Conclusions . 51

xxi

6.2 Future Work . 52

Bibliography 55

A Full Set of Results Per Estimator and Generator 59

xxii

List of Figures

3.1 Screenshot showing the SELFIS Graphical User Interface. 20

3.2 Screenshot showing the SELQoS Graphical User Interface (adapted from [RT05]). . 21

3.3 Screenshot showing the HATTA Graphical User Interface. 21

3.4 Diagram showing TestH directory structure. 24

4.1 Sample of a documentation page for TestH generated by CLDOC with the DFA
example highlighted. 37

4.2 The TestH website. 38

5.1 Accuracy related results obtained for the R/S estimator. 48

5.2 Accuracy related results obtained for the VT estimator. 48

5.3 Accuracy related results obtained for the Periodogram estimator. 49

5.4 Accuracy related results obtained for the estimators implemented under the scope
of this dissertation. 49

xxiii

xxiv

List of Tables

3.1 Comparison between TestH, SELFIS and HATTA. 28

5.1 Time taken to generate series with 216, 218 and 220 values (average values of 20
samples) measured in seconds. 47

5.2 Approximated maximum memory consumption for TestH generators. 47

5.3 Accuracy results for the generators according to estimators in TestH, SELFIS and
HATTA. 47

5.4 Average processing time measured in seconds of 20 series of a given length gen-
erated with the Hosking method . 47

5.5 Approximated maximum memory consumption for TestH estimators as a function
of the length of the series (N) under analysis. 47

5.6 Average error for the other estimators implemented under the scope of this dis-
sertation along with the Absolut Moments Time (AMT). Values presented for each
combination estimator/generator. Sequences with length 220. 47

5.7 Average error for the estimators implemented under the scope of this disserta-
tion. Values presented for each combination estimator/generator. Sequences
with length (212). 48

A.1 Average estimations for the algorithms present in TestH resulting from 20 time
series of length 220 produced with the Davies and Hart method. 60

A.2 Average estimations for the algorithms present in TestH resulting from 20 time
series of length 220 produced with the Paxson method. 60

A.3 Average estimations for the algorithms present in TestH resulting from 20 time
series of length 220 produced with the Simple Self-Similar Sequences Generator
(4SG) method. 61

A.4 Average estimations for the algorithms present in TestH resulting from 20 time
series of length 220 produced with the Fractional Brownian motion Sequential
Generation Algorithm (fBm-SGA) method. 61

A.5 Average estimations for the algorithms present in TestH, Herramienta de Análisis
de Tráfico Telemático Autosemejante and SELF-similarity analysIS tools result-
ing from 20 time series of length 220 (218 for SELF-similarity analysIS) for each
expected Hurst value, produced with the Hosking method. 62

xxv

xxvi

Acronyms

4SG Simple Self-Similar Sequences Generator

ACM Association for Computer Machinery

AMT Absolut Moments Time

API Application Programming Interface

AV Abry-Veitch

BSD Berkeley Software Distribution

CCS Computing Classification System

CDF Cumulative Distribution Function

CLDOC Clang based DOCumentation generator

DFA Detrended Fluctuation Analysis

DNA Deoxyribonucleic Acid

EBP Embedded Branching Process

FARIMA Fractional Autoregressive Integrated Moving Average

fBm-SGA Fractional Brownian motion Sequential Generation Algorithm

fBm Fractional Brownian Motion

FFT Fast Fourier Transform

fGn Fractional Gaussian Noise

GUI Graphical User Interface

HATTA Herramienta de Análisis de Tráfico Telemático Autosemejante

HEAF Hurst Exponent by Autocorrelation Function

HTML HyperText Markup Language

HIG Higuchi

LAN Local Area Network

LASS Local Analysis of Self-Similarity

LRD Long Range Dependence

LMS Least Means Square

LU Lower Upper

MLE Maximum Likelihood Estimation

PDF Probability Density Function

PER Periodogram

Ph.D. Doctor of Philosophy

PRNG Pseudo Random Number Generator

RAM Random-access Memory

R/S Rescaled Range Statistics

xxvii

SELFIS SELF-similarity analysIS

SELQoS Self-similarity and Quality of Service

SRD Short Range Dependence

TDD Test Driven Development

UBI Universidade da Beira Interior

URL Uniform Resource Locator

VT Variance Time

xxviii

Chapter 1

Introduction

This dissertation addresses problems related with the estimation of the self-similarity on time

series. In section 1.1 of this chapter, the motivation behind this work along with a brief contex-

tual explanation regarding its importance is discussed. The problems addressed in this work, the

objectives and the adopted solution to solve them will also be subject of discussion in section 1.2

and 1.3. Close to the end o this chapter, a summary of the main contributions to the specific

field is included, in section 1.4, followed by a description of the dissertation organization, in

section 1.5.

1.1 Motivation and Scope
From knowing the next day weather to predicting the behavior of the stock market, humans

have always had a natural desire to predict the future. The meaning of prediction however can

be vague and prone to errors. Additionally, one does not simply predict the future accurately

without taking into account the past observations, unless of course, it is a lucky shot. This

action of looking to the past in a time series in order to understand the future implies that future

observation values possess a certain degree of dependence from the values previously observed.

This kind of phenomenon is typically referred to as Long Range Dependence (LRD) [R+02], also

known as long memory process. This self-similarity between values can be measured in a way

that it is possible to tell if a series will continue with the same behavior as observed before, if it

will invert its behavior or if it is simply unpredictable. The Hurst parameter [Cle06] constitutes

a metric for measuring such property and it will be described with more detail in chapter 2.

The discovery of self-similar properties in the networks traffic by Leland et al. [LTWW93] has

been pushing this scientific field forward during the past decades. Doing a prior analysis and

modeling of the network traffic, companies are better informed to develop network devices or

plan their infrastructure, thus saving money, improving the end user experience and avoiding

possible network bottlenecks. Even though the computer networks in one of the main fields

where this studies have been applied, it will be shown ahead that other fields of expertise

have been making progress in this area as well, such as the fields of seismology [KTC07] and

health-care [VAJ08, HPS+12].

There are several algorithms described in the literature to estimate the Hurst Parameter value,

with each one having its own weaknesses and strengths [Hur51, Hig88, RPGC06]. Besides that,

1

there is a huge range of different possibilities to implement each of them. This number can

increase if one takes into account that some of them have input values where no proper study

was conducted to decide how they should be optimally adjusted. Unfortunately, there are only

a few tools available implementing these algorithms [PRV08], and researchers are sometimes

forced to implement them. With this scenario, the researchers are forced to implement those

methods themselves, which can lead to biased values since no proper testing have been made.

Having in mind all these contigencies, the scope of the present work is to improve the library

TestH, which has been initially developed by Fernandes et al. [FNS+14]. These improvements

aim to provide more algorithms to estimate the Hurst Parameter, the addition of new self-

similar sequences generators, and to refactor and document the code that is already in place.

It is also under the scope of this dissertation a proper validation of the implemented algorithms

to this date. This work involves the fields of computer science and statistical mathematics

and according to the Computing Classification System (Computing Classification System (CCS))

created by the Association for Computer Machinery (Association for Computer Machinery (ACM)),

this work could be categorized as the following:

• Mathematical software∼Statistical software;

• Mathematical software∼Time series analysis;

• Information systems∼Similarity measures.

1.2 Problem Statement and Objectives
The problem identified in this work is the lack of a trustworthy, adaptable and open source

tool to be easily used by those working with or studying the self-similarity in time series. It is

often observed in the literature that researchers have to implement themselves the algorithms

as mentioned in the previous section, which may have a negative impact on their work as there

may be biases due to implementation faults. Even if the implemented algorithm is heavily

tested and reviewed this may produce a loss of focus of what is the real work. This also implies

that the researcher needs to possess a considerable set of programming skills to implement the

algorithms. Those who do not know how to program are forced to use third party tools, which

may not provide a description on how the algorithms were implemented nor the source code

of the algorithm. Once again, even if the researcher uses an available tool the algorithms may

output biased results and has to be limited to the capabilities of the tool, such as the length of

the time series.

TestH is a library with its objectives well defined, and as it is the scope of this work to im-

prove it, its objectives were inherited. The main objective is to provide the researchers with

a robust, tested, adaptable and user friendly tool in order to ease their work, therefore al-

2

lowing a better focus on their core objective. The choice of building a library instead of a

program with a Graphical User Interface (Graphical User Interface (GUI)) was also carefully con-

sidered. This allows the users that possess programming knowledge to manipulate the code to

fit their needs, such as the batch processing of a set of time series. Additionally, the library has

a well-documented user friendly application programming interface (Application Programming

Interface (API)) which simplifies its usage.

With the problem and the core objective identified, the tasks set up for this work were:

1. Implementation of missing Hurst Parameter estimators;

2. Implementation of missing self-similar sequence generators;

3. Refactoring the existing code;

4. Implement a system to generate the API documentation;

5. Building a website with the documented API;

6. Validating the implemented algorithms against the other tools available.

1.3 Adopted Approach for Solving the Problem
In order to solve the identified problems and to successfully achieve the above-mentioned ob-

jectives, a strategy based on the following steps was pursued during this project:

1. Step 1 – the familiarization with the concepts such as the self-similarity, long range depen-

dence, amongst others not so trivial at a first glance. This step included a deeper study

of the state of the art, followed by the gathering of information regarding the algorithms

to be implemented;

2. Step 2 – with code already in place, the next step was to get into TestH code in order to

understand its architecture, implementation techniques and possible points of improve-

ments. A comparison with the other tools available was also made at this stage;

3. Step 3 – this step consisted in the implementation of the algorithms, both for the Hurst

Parameter estimation and for generating self-similar sequences, always favoring the de-

scription given by their original author. For simplicity and debugging purposes, the algo-

rithms were first implemented separately, and then integrated on TestH. The Test Driven

Development (Test Driven Development (TDD)) technique was used as the driving force of

this part of the work. It was proposed by American Software Engineer Kent Beck [Bec03],

which states that the tests should be made ahead of the implementation, and that the

implementation is only considered completed after all tests are positive;

3

4. Step 4 – the refactoring and documentation of the code was the fourth step. To publish

the documented API, a website where the user could search for a specific function was

also build;

5. Step 5 – the last step, but perhaps the most important was the validation of the algorithms

implemented on TestH up to the date in which this dissertation was written. This validation

included running several tests on TestH and its peers, and also performing a comparative

analysis of the results of those tests.

1.4 Main Contributions
The main contribution resulting from this work is the improvement of a scientific tool which

may lead to additional progress in this field. The work can be summarized as follows:

1. The first contribution, directly related with the library, is the implementation of five

algorithms, four of them to estimate the Hurst Parameter and another one to generate

self-similar sequences;

2. Besides the core TestH algorithms, other general functions were added to the TestH API,

such as the cumulative sums and the Fast Fourier Transform (FFT), which embody a valu-

able addition to the API as they are commonly used;

3. Another addition directly related with TestH concerns the refactorization of the code. As

there have been additions over time to TestH, each of them with its own coding style, a

uniformization of the code was necessary for the sake of legibility;

4. From a functional perspective the API was documented using the clang based documen-

tation generator (Clang based DOCumentation generator (CLDOC)), an open source docu-

mentation generator for C and C++;

5. Finally, a website where a user can get code samples, consult the API documentation and

search for a specific function was prepared and published online, which can be accessed us-

ing the following Uniform Resource Locator (URL): https://cdgramos.github.io/testh/.

The objective of this site is also to give more visibility to the project.

The work described in this dissertation is the main subject of a journal paper under preparation.

Its submission is expected to happen in the months following the discussion of this work.

1.5 Dissertation Overview
In order to reflect the work performed along this project, this document is decomposed in 6

chapters, identified and briefly described as follows:

4

https://cdgramos.github.io/testh/

1. The first chapter – Introduction – presents the motivation behind this work, along with its

scope. It includes the identified problems and the method used to approach them. A brief

summary of the contributions of this project is also included, followed by an overview of

the organization of the document;

2. The second chapter – Preliminaries – introduces some of the concepts this work relies

on, such as the self-similarity and fractal dimension. An historic overview of the Hurst

parameter, its applications and limitations is also made on this chapter. This chapter

is concluded with a brief description of the Hurst parameters estimators and self-similar

sequence generators;

3. The third chapter – Related Work and TestH – contains a brief analysis conducted on tools

similar or related with TestH followed by a description of the TestH directory structure

and architecture. The remaining of this chapter is dedicated to a deeper analysis between

some of this tools and TestH where, weaknesses and strengths are pointed out;

4. The fourth chapter – Contributions – gives a formal description of the implemented Hurst

Parameter estimators and self-similar sequence generators. On this chapter, the process

of documenting the code and the procedure one may follow to simply generate a new set

of documentation files is also described. The chapter ends with the analysis of a small,

yet executable piece of code;

5. The fifth chapter – Evaluation – contains the testing apparatus used for evaluating both the

implemented generators and estimators. This chapter also discusses the results obtained

from the tests;

6. The sixth chapter – Conclusions and Future Work – contains a discussion of the the main

achievements and results of this work. This chapter concludes with a set of suggestions,

pointing out the next steps in the landscape of the TestH development;

7. Appendix A – Full Set of Results Per Estimator – presents a table with the average results

for several estimators present in TestH and in other similar tools.

5

6

Chapter 2

Preliminaries

2.1 Introduction
The main objective of this chapter is to provide an overview of some of the concepts related

with self-similarity and that are required to understand the subsequent chapters. An historical

perspective over the subject of self-similarity and Hurst Parameter is given in section 2.2, along

with the presentation of relevant concepts such as self-similarity and random walks. This chap-

ter concludes with a description of the most famous estimators and generators in sections 2.3

and 2.4, respectively.

2.2 Self-similarity and Hurst Parameter
This section contains the description of several concepts related with the self-similarity and

Hurst Parameter. These concepts are deemed important for a better comprehension of this

work.

2.2.1 Historical Overview and the Hurst Parameter

In order to better understand the concept of self-similarity, one should first consider peeking

into the fractal theory, which states that an object will be perceived as the same no matter the

distance it is observed from. The father of the so called fractals or fractal geometry is Benoit

Mandeldrot, which introduced the concept of fractal and fractal dimension in 1967 [Man67].

Benoit believed that certain elements from nature and also some human made artifacts could

be described using equations that conveyed the meaning of an form that repeats itself over

different scales. After his first work on this field, he studied the roughness of the coast of

Britain by describing its fractal dimension d.

The Hurst Parameter (also known as Hurst Exponent) inherited his name from its creator, the

hydrologist Harold Hurst, and was discovered during his research on the Nile river. Hurst was

seeking a way to build a perfect water reservoir that could withstand the drought periods and

avoid floods. While analyzing the records from the previous years he noticed a pattern: a year

with a high flood was most likely to be followed by another year with a high flood; and the same

occurred for drought periods. This indicated that the results observed in a certain year had

a certain degree of dependence from the ones observed in previous years. With this in mind,

he came up with the Hurst Parameter, which is the unit that measures the self-similarity of a

7

time series, and it is defined in a way that it can probabilistic predict the future behavior of

a time series given its past. Finding the Hurst Parameter H can be very challenging, as some

estimation methods converge slowly as the size of the observation increases. There are other

factors which can compromise the results and should be taken into account, such as trends in

the signal or episodic events.

Both the fractal dimension d and the Hurst Parameter H are related for some stochastic pro-

cesses via d = 2 − H, where d ∈]1, 2[and H ∈]0, 1[. The value of H for a certain process can

have three different meanings, which are:

• for H ∈]0, 0.5[, the process is said to be anti-persistent / negatively correlated, which

means that the tendency verified before will the inverted in the near future;

• for H = 0.5, the process is said to be memory less [Sam06], thus not possible to predict

its behavior (e.g. random walk);

• and for H ∈]0.5, 1.0[the process is considered persistent / correlated, meaning that the

values will keep following their previous behavior.

2.2.2 Self-similarity

A continuous-time stochastic process is considered self-similar if its statistical behavior remains

closely the same upon scaling. Formally, let X = {X(t)}t∈N be a continuous stochastic process.

X is said self-similar if

X(at)
d
= aHX(t), a ∈ R>0, (2.1)

where d
= denotes the equality of finite-dimensional distributions, a is the scaling factor (a scalar)

and H the Hurst Parameter.

While the most common scenarios might be the ones involving continuous-time stochastic pro-

cesses, for finite discrete stochastic processes with stationary increments, the first order dif-

ferences of the main process can also be considered for the purpose of defining self-similarity.

Let X = {X(t)}t∈N be a finite discrete stochastic process with stationary increments and as its

first order differences consider Y = {Y (t)}t∈N = X(t+ 1)−X(t). Notice also the definition of

the aggregation processes of Y given by:

Y m(i) =
Y (mi) + Y (mi+ 1) + ...Y ((m+ 1)i− 1)

m
,m ∈ N. (2.2)

Given these definitions, X is said self-similar if:

Y d d
= m1−HY m(i),m ∈ N (2.3)

8

where m denotes the aggregation scale (non-overlapping blocks) and H is the Hurst Param-

eter. Fractional Autoregressive Integrated Moving Average (FARIMA), Fractional Brownian Mo-

tion (fBm) and Fractional Gaussian Noise (fGn) are examples of processes that exhibit long range

dependence (long memory). fGn is the first order differences of fBm, and it is self-similar in

the sense given by equation 2.3.

2.2.3 Random Walk

A random walk [Spi13] is a process which describes a path in a nth dimension composed of a set

of independent and equally distributed random steps and has been used to model phenomena

in a wide range of fields, including physics [Kem03] and biology [CPB08]. The sum of the values

obtained by assigning 1 or -1 to heads or tails during an experiment consisting of systematically

tossing a coin into the air is a practical example of a single dimension process that resembles

a random walk. Even though this process cannot be considered as a random walk (most of the

coins are not balanced, the stamina of the thrower decreases over time and the air temperature

and wind can affect the air resistance), it still holds as a good enough example to explain the

concept.

More formally (and generic), let R(t), t ∈ N be a discrete-time stochastic process and S(t) a

random discrete variable defined in t. R(t) is considered a Random Walk if equation 2.4 holds

true:

R(t) =

0, if t = 0

R(t− 1) + S(t), otherwise
(2.4)

If S(t) is a random variable, the resulting process R(t) has a Hurst Parameter value of 0.5, i.e.

a memory less process.

This kind of process is important because it can be used to generate time series that exhibit

persistent or anti-persistent behavior [Enr04]. It will also allow an easier understanding of the

concepts to be introduced next.

2.2.4 Fractional Brownian Motion

The fractional Brownian motion (fBm), also known as fractal Brownian motion or the random

walk process, is a generalization of the Brownian motion and it is named after Robert Brown, a

botanist that did remarkable work in this field while studying biological phenomena [NNNN67].

It is widely used to model LRD and Short Range Dependence (SRD) processes in fields associated

with analysis of network traffic [THJ07] or stock markets [Øks03]. To formalize this concept,

let Bh(t), t ∈ N be a discrete-time process, H ∈]0, 1[the Hurst Parameter, and Γ the Gamma

9

function Γ(α) =
∫∞
0
e−xdx. BH(t) can be modeled as a fBm according to Equation 2.5 [MVN68]:

BH(t) =
1

Γ(H + 1/2)

(∫ 0

−∞
(t− s)H−1/2 − (−s)H−1/2dB(s) +

∫ t

0

[(t− s)H−1/2]dB(s)

)
. (2.5)

2.2.5 Fractional Gaussian Noise

Formalized by Mandelbrot in 1965 [Man65], fGn is another way to model persistent/anti-persistent

processes and relies on the first order differences of a fBm, as shown in equation 2.6, where

Gh(t), h ∈]0, 1[represents the fGn:

Gh(t) = BH(t+ 1)−BH(t), t ∈ N. (2.6)

Algorithms to generate self-similar sequences, such as the Paxson method [Pax97], use the fGn

as the base model, making it highly relevant under the scope of this work.

2.3 Estimators for the Hurst Parameter
This section contains brief description of the most well-known Hurst Parameter estimation algo-

rithms, with a more detailed explanation of the algorithms implemented in the scope of this work

being then given in section 4.2. The complete description of all algorithms would take longer

and falls out of scope of this dissertation. Nonetheless, references included in the several sec-

tions point out to where the reader may obtain more information on each subject or estimator.

These algorithms can be classified in three major groups: (i) the ones that take advantage of the

time domain properties, such as Rescaled Range Statistics (R/S), Variance Time (VT), Absolut

Moments Time (AMT), Embedded Branching Process (EBP), Higuchi (HIG), Detrended Fluctuation

Analysis (DFA) and the Hurst Exponent by Autocorrelation Function (HEAF); (ii) the ones that take

advantage of the frequency properties such as Periodogram and the Whittle estimator; (iii) and

the ones based on wavelets such as the Abry-Veitch estimator.

DFA, Periodogram, HEAF and the Higuchi methods were integrated on TestH as part of this

project and will be better described ahead. This section presents the most important estimators,

but an honorable mention is due to the FFT [CSZ07] and the Visibity Graph [LLLN09] methods,

presented in 2007 and 2009, respectively. These most recent methods, such as the HEAF, the

FFT and the Visibility Graph demonstrate that this scientific field is still very active.

2.3.1 Rescaled Range Statistics

The first algorithm to be included in TestH was R/S, mainly because of its historical value, since

it was the one presented by Harold Hurst [Hur51] himself and later formalized my Mandelbrot

and Wallis [MW69]. Nonetheless, this algorithm is amongst the most biased ones. This method

works by splitting the values of the time series under analysis in K non-intersecting blocks, with

10

size mk. For each block size, the partial sums Si
k(j)j∈N of the deviations from its mean are then

calculated, as shown in equation 2.7:

Si
k =

imk+j∑
l=imk

(Y (l)− Y mk(i)). (2.7)

Note that in the previous equation Y mk(i) denotes the particular value at index i for an aggre-

gation block. This process is repeated for different block sizes mk, and for each block size a

maximum and a minimum are calculated as suggested in equations 2.8 and 2.9, respectively:

Maxk(i) = max(0, Si
k(1), ..., S

i
k(mk − 1)), (2.8)

Mink(i) = min(0, Si
k(1), ..., S

i
k(mk − 1)). (2.9)

The rescaled range is then found by dividing the differences between the maximum and the

minimum by the standard deviation, as can be observed on equation 2.10:

RSk(i) =
Maxk(i)−Mink(i)

σ(i)
. (2.10)

The values of the rescaled range series and of the non-overlapping blocks mk are then plotted

using a logarithmic scale for both the x (block sizes) and y axis (RSk(i)), in a chart also known

as the pox plot. The H parameter estimation can be obtained by calculating the slope of a

line fitted to the pox plot graph using the Least Means Square (LMS). Due to the short range

dependence of values at a lower scale and the lag between higher scales, the line should be

fitted ignoring the points on the edges.

2.3.2 Variance Time

VT is available on TestH since its initial iterations. This method is closely related with the R/S

with its main difference being the computation done at each block size which is, and as the

name suggests, the variance instead of the rescaled sums, denoted by V. The method is based

on the relation between variances of different block sizes formalized in equation 2.11:

V(Y) = V(m1−HY m). (2.11)

Due to the variance properties, and introducing the logarithm into both sides of the previous

11

equation, it is possible to obtain equation 2.12:

log(V(Y (mk)) = log(V(Y)) + β × log(mk),where β = 2H − 2. (2.12)

The Hurst exponent is given by the formula H = 1 − β
2 , where β is the slope of a line fitted

to logarithms of mk and V(Y mk) after particularizing to different aggregation blocks mk ∈ N.

Both VT and R/S are amongst the most biased estimators, however VT is widely used in network

related researches [KRD11];

2.3.3 Absolut Moments Time

Also available in TestH since the beginning, this method is a generalization of the VT method. In

this case, the estimator is based on the computation of absolute moments instead of the variance

or rescaled statistics. To perform a given estimation, an order for the absolute moments must

be selected a priori. In fact, VT is as a particular case of the AMT for order 2, as it will be

pointed by the end of this subsection. Let Mn(Y) denote the order n absolute moment of

process Y = {Y (t)}t∈N. AMT is based in the relation depicted in equation 2.13:

Mn(Y) = mn(1−H)Mn(Y
m)). (2.13)

Analogously to what was shown to VT, it is possible to obtain equation 2.14 via the application

of logarithms to both sides or the previous relation::

log(Mn(Y)) = n(1−H)× log(m) + log(Mn(Y
m)), n ∈ N. (2.14)

Finally, one can solve the equation in order to H, and an estimation can be obtained from

the calculations of the absolute moments for different aggregation blocks m_k. This should be

achieved, once again, by fitting a line to the logarithms of the coordinates (mk,Mn(Y
mk)), as

equation 2.15 suggests:

H = 1 +
β

n
, β =

log(Mn(Y)) + log(Mn(Y
m))

log(m)
(2.15)

It is easy to see that the expression behind the VT estimator is retrieved by replacing n with 2

in equation 2.15, making it a particular case of the AMT.

2.3.4 Embedded Branching Process

EBP was also already available in TestH at the beginning of this project. This method was

presented by Jones and Shen in [JS04] and was initially used to study network packet traces,

revealing once again the importance of these methods in the field of computer networks. This

method requires the definition of a family of multiple horizontal lines. The points of the (self-

similar) process that cross the line are then considered unless they pass once again trough the

12

same line they have passed in the last recorded moment. The Hurst Parameter can be estimated

by considering the time it took the process to increase its statically properties in a power of two

logic, as suggested by the relation in equation 2.16 (µk is defined afterwards):

log(2k) = H × log(µk). (2.16)

The requirement here is the computation of enough µk in order to obtain statistical significance.

This can be achieved using the equation 2.17, where Nk is the cardinality of a set of crossings

of the process under analysis with lines with different magnitudes:

µk =
N0 × µ1 + ...+Nk−1 × µk

N1 + ...+Nk
. (2.17)

The Hurst Parameter can be retrieved by applying the LMS to the graph with logarithmic scales

for µk and log(2k). The estimation for the Hurst Parameter coincides with the slope of the fitted

line.

2.3.5 Detrended Fluctuation Analysis

While studying Deoxyribonucleic Acid (DNA) sequences [PBH+94], and later other kinds of phe-

nomena such as the Heartbeats [PHSG95], Peng et al. proposed the DFA method. Similar to

the previous methods presented, DFA also requires the definition of a family of scales mk but,

in this case, the time series is integrated and then detrended against the best fitted line to

mitigate the effects of trends. For each scale, ones calculate the local trend by finding the

line that best fits the local random walk points within each block. The detrended walk is then

obtained by subtracting the local trend to its original trend, which is then used to compute the

variance. The Hurst Parameter is retrieved once again from the slope of a line fitted to a plot

with logarithmic scales, containing the average variance at each scale against the aggregation

scales. This algorithm was implemented under the scope of this work and a deeper explanation

will be given ahead.

2.3.6 Periodogram

This method was proposed by Geweke and Porter-Hudak in [GPH83]. The presented algorithm

to study the long memory processes is based on the analysis of the spectrum f(λ) and proposes

to approximate it by I(λ) = 1
N

∑N−1
j=−(N−1) γ̂(j)× eijλ, where N is the number of samples, λ the

frequency and γ̂(j) a statistic resembling the autocorrelation function. This calculation should

be executed for several frequencies k since the Hurst Parameter is obtained by computing the

slope of the fitted line between the logarithms of I(λk) against the ones of λk, according to

the formula H = (1 − β)/2 where β is the slope. As the previous algorithm, this one was also

implemented under the scope of this project and will be the subject of lengthier explanation in

chapter 4.

13

2.3.7 Whittle Estimator

Based on the Maximum Likelihood Estimation (Maximum Likelihood Estimation (MLE)), the Whit-

tle Method [Die04, TT97] modus operandi is based on the minimization of a goodness of fit

function. Popular variations of this method include the Aggregated Whittle and the Local Whit-

tle. The main idea behind the Aggregated Whittle is that for a long enough time series, its data

can be aggregated in order to produce a smaller time series that will possess the same properties

of a fGn process.

On the other hand, the Local Whittle offers a semi-parametric estimator to be used when the

spectral density is assumed for frequencies near zero. Unlike the majority of its peers, this

method does not produce a graphical output. More formally, this method is focused on discov-

ering the parameters that minimise a goodness of fit function Q(H). This function is tipically

defined as in equation 2.18, where f(λ) is the spectrum function obtained from the autocorre-

lation function and fH(λ) the spectral density:

Q(H) =

∫ π

−π

f(λ)

fH(λ)
dλ. (2.18)

If the spectral density is only assumed for values near zero, the method is considered to be the

local Whittle method.

2.3.8 Wavelets-Based Estimator

Darryl Veitch and Patrice Abry [AV98] proposed a wavelets based method for the estimation of

the Hurst Parameter, which is nowadays better known as the Abry-Veitch method. This method

explores the recursive decomposition of a time series in a set of details dj(k), kinN. Considering

the family of wavelets defined by ψj,k(t))2
−j/2ψ0(2

−jt− k, the Hurst Parameter can be retrieved

by fitting a line to the set of points j and log2(µj) using LMS, with µ denoting variance and nj

denoting the number of details coefficients for each j:

µj =
1

nj

nj∑
k=1

d2j (k). (2.19)

2.3.9 Higuchi Method

Back in 1988, Higuchi proposed an algorithm to estimate the Hurst exponent that now bears

his name [Hig88]. This method has resemblances with the AMT, whereas a sliding window is

used instead of non-intersecting blocks, thus making its computational complexity considerably

higher. Similarly to other methods previously presented, a line should be fitted to the logarithms

of the values given by Higuchi’s function L(mk) andmk for differentmk ∈ N. The Hurst exponent

is then obtained by adding 2 to the slope of the fitted line. This estimator will be discussed in

chapter 4, as it was implemented as part of the work described in this dissertation.

14

2.3.10 Hurst Exponent by Autocorrelation Function

HEAF is the most recent method for the estimation of the Hurst Parameter. It was introduced

by Rezaul et al. [RPGC06] following the work of Kettani et al. [KG02] on the self-similarity of

network traffic. The algorithm relies on the autocorrelation function γ(k) of the self-similar

processes. For example, if k = 1 is the lag being considered to obtain an estimate, one should

compute the autocorrelation between Y (t + 1) and Y (t), and the Hurst Parameter estimation

can be obtained from H = 1
2 log2(γ(1) + 1) + 1

2 . This algorithm is part of the set of estimators

integrated on TestH during this project, and will it be discussed with more detail on chapter 4.

2.4 Self-similar Sequences Generators
TestH aims to provide methods for handling self-similarity, estimating the Hurst Parameter, and

generating series of points with a predefined H value. This section is thus devoted to the brief

presentation of self-similar sequences generators.

The self-similar sequence generators can be divided in two families, the exact generators (namely

the Hosking, Cholesky and Paxson) and the approximate generators. Their complete definition

requires typically several pages, and the description below contains pointers where more infor-

mation can be found. The discussion of the approximate methods is only confined to the ones

available in TestH up to the date this dissertation was written, since there is a large number of

generators available nowadays. The Davies and Hart generator was integrated in TestH as part

of the work accomplished in this project and will be better described in chapter 4.

2.4.1 Hosking

The Hosking method [Hos81, Hos84], which was named after its creator, defines a procedure

to simulate an exact realization of a fGn. It is based on the covariance matrix of points of the

process. One of the features is that it does require the definition of a fixed number of points a

priori, making it a good candidate for on-demand point generation applications. Nonetheless, it

is a computationally intensive procedure, with a computationally complexity growing with the

square of the number of points.

2.4.2 Cholesky

The main difference between this method and the aforementioned one is the different decom-

position applied to the covariance matrix. This method uses the Lower Upper (LU) decomposi-

tion, producing two triangular matrices [CP16]. For this decomposition process, known as the

Cholesky decomposition, a larger number of operations has to be made, thus taking longer than

the Hosking method to generate the points of the process.

15

2.4.3 Davies and Hart

Also named after its creators, the Davies and Hart method [DH87] is similar to the Hosking

method, with differences in the way the covariance matrix is computed. In this case, the method

elaborates on the possibility to define a circulant matrix containing the covariance matrix. The

circulant matrix can then be factorized using the Fast Fourier Transform. The key feature of

this algorithm is that its computational complexity is lower than the other exact methods, i.e.

the fastest one amongst them (on the order of nlog(n)). This method will be explained on the

following chapter, as its integration on TestH was part of the work done during this project.

2.4.4 Aggregation of Processes

Formalized by Willinger et al. while studying the Ethernet Local Area Network (LAN) traf-

fic [WTSW97], the aggregation of processes method was initially used to model the bit rate

per minute of a network aggregation point. To understand the logic behind it, one can imagine

a set of independent computers s, connected between via a central network. Each one will be

in the transmitting state (ON period, if and only if W s(t) = 1) or in the OFF state otherwise, with

W denoting a stationary binary process. When rescaling time by a factor T , the cumulative

sum of all transmitting computers can be defined according to equation 2.20:

Ws(Tt) =

∫ Tt

0

(
s∑
0

(u))du. (2.20)

It can be shown that Ws(Tt) converges to an fBm, as formalized in equation 2.21, with BH

denoting an fBm with Hurst Parameter H:

σBH(t) = lim
T→∞

lim
S→∞

T−HS−1/2

(
WS(Tt)−

TSt

2

)
. (2.21)

2.4.5 Paxson

Paxson proposed a method to simulate instances of fGns, and consequently fBms, by generating

a process in the frequency domain and then transforming it into the time domain [Pax97]. This

method is relatively similar to the Davies and Hart method, and tends to be exact as the number

of samples grow to infinite. It is also faster than Davies and Hart due to the less amount of FFT

computations required.

2.4.6 Fractional Brownian Motion Sequential Generation Algorithm

Proposed by Inácio during his Doctor of Philosophy (Ph.D.) work [Ina09], the Fractional Brownian

motion Sequential Generation Algorithm (fBm-SGA) elaborates a set of random walks with a per-

sistent behavior in order to formulate the persistence probabilities. It is important to mention

that this method relies on the dependence of every point in the sequence towards the first one,

16

but also that for larger scales the process acts as a random walk.

2.4.7 Simple Self-Similar Sequences Generator

As the previous algorithm, this generator was also developed by Inácio et al. during his Ph.D.

work [Ina09]. The Simple Self-Similar Sequences Generator (4SG), unlike the previous one, is

capable of producing series with both anti-persistent and persistent behavior, i.e., with H ∈

]0, 1[(the fBm-SGA is only defined for H ∈]0.5, 1[). In this algorithm, a self-similar process is

approximated by having a set of several constant parts (with the size being always a power of

2) that contribute from time to time to the generation of new values.

2.5 Conclusion
It is now possible to see that there is a wide range of algorithms to estimate the Hurst Parameter,

and there is not a single answer for which one is the better, as their performance might depend

on features of the processes to be analyzed. The panoply of available estimators is also an

indication that the values obtained for the Hurst Parameter are truly estimations, since they do

not arrive all necessarily to the same value. It also corroborates the need to have a tool with a

wide range of implemented algorithms from this area of knowledge. Many estimators elaborate

on statistical measures of the processes for different aggregation scales and on fitting a line to

plots with logarithmic scales. This fact eases the understanding of the different and sometimes

difficult procedures and, consequently, it eases their implementation.

There are also several methods to simulate series of values from self-similar processes. The

exact methods have typically higher computational complexity. It is worth mentioning that, for

generators, the baseline in which they elaborate is typically more diverse than for estimators.

17

18

Chapter 3

Related Work and TestH

3.1 Introduction
TestH has been in development since 2013 but it is far from being the first tool of its kind. This

chapter presents several works (section 3.2) focused on the creation of a tool to study the self-

similarity of time series, which basically constitute the state of the art on this subject. Some of

these works were in fact a source of inspiration for the development of this library and they will

be compared against TestH right after the presentation of its philosophy, directory structure

and architecture overview in section 3.3.

3.2 Related Works
The main purpose of this section is to provide a brief description of the most well-known tools

to measure self-similarity available to date, with a comparative analysis being given on section

3.4. Please note that some of these tools were not available to download (they might have

been in the past), which means that the analysis had to be performed with basis on information

included in several publications mentioning them.

3.2.1 SELFIS

Introduced in 2002, the SELF-similarity analysIS (SELF-similarity analysIS (SELFIS)) is a tool with

a GUI published by Karagiannis et al. and written in Java [KF02]. SELFIS includes features such

as the implementation of the most common Hurst parameter estimation algorithms (Absolut

Moments, Abry-Veitch, Periodogram, Rescaled Statistics, Variance of Residuals and Whittle).

This tool has already been used in many studies but there are also authors who have reported

issues related with the processing of long series, which results in long delays and infinite loops

for lengths greater than 218, and also issues related with the high biases of many algorithms

[PMK14]. Figure 3.1 contains a screenshot of the main window of SELFIS as an example of its

GUI after loading a time series and executing the Periodogram method.

3.2.2 SELQoS

Self-similarity and Quality of Service (SelQoS) is a tool developed in C++ and it also possesses

a GUI. The main features of this tool include a wide range of different estimators (Absolut

Moments, Abry-Veitch, Modified Allan Variance, Periodogram, Rescaled Statistics, Variance of

Residuals and Whittle) and the Paxson's algorithm as a self-similar sequences generator. Statis-

19

Figure 3.1: Screenshot showing the SELFIS Graphical User Interface.

tical methods ranging from the most basic (e.g., average and standard deviation) to the most

advanced (e.g., power spectral density function and histogram estimation) are also provided

along with the capabilities to export the results (even in the form of charts) and adapt the

paramenters. Reported disadvantages of this tool include the biases of some algorithms and the

long processing time when the modified Allan algorithm is applied to long sequences [PRV08].

No source code or executable was found for this application. The screenshot of this tool shown

in Figure 3.2 was taken from [RT05].

3.2.3 HATTA

Another known tool is HATTA, created by Bravo et al. and with its name coming from the

Spanish words that describes it (Self-Similar Telematics Traffic Analysis Tool). HATTA has a

simple GUI and is also written in C++ but isn't as complete as its peers. Nonetheless, it still

has a large variety of estimators implemented (Differenced Variance, Periodogram, Rescaled

Statistics, Variance of Residuals and Whittle). Some of the reported issues related with this

tool that were reported include the high biases in some algorithms and the limited estimations

that can be achieved in each session, forcing it to be reinitialized every 10 iterations [PRV08].

Presented in figure 3.3 we can see HATTA interface after loading a time series and computing

the Periodogram.

3.2.4 Statistical Tools

R is a powerfull and well-known statistical tool. It is a solution initially developed by Ross Ihaka

and Robert Gentleman [rLa] at the University of Auckland. R has a wide variety of packages avail-

able, but the most interesting package in the field of the self-similarity is fARMA, supported by

Wuertz et al. [fAR]. This package includes a wide range of estimators (namely, Absolut Mo-

20

Figure 3.2: Screenshot showing the SELQoS Graphical User Interface (adapted from [RT05]).

Figure 3.3: Screenshot showing the HATTA Graphical User Interface.

21

ments, Abry-Veitch, Differenced Variance, Higuchi, Periodogram, Rescaled Statistics, Variance

of Residuals and Whittle) and generators for both fractional Gaussian noise (fGn) and fractional

Autoregressive Moving Average (FARIMA) series. A later check on fARMA official web page shows

that the package have been archived due to problems that were not corrected.

MATLAB is also a widely used statistical tool but, unlike R, it does not have a dedicated package

related to this particular subject. Instead, there are many isolated implementations around the

Internet that can be used for the purposes at hand, but none of them have been scrutinized as

much as the solutions aforementioned.

3.2.5 State of the Art Wrap-up

SELFIS, Self-similarity and Quality of Service (SELQoS) and Herramienta de Análisis de Tráfico

Telemático Autosemejante (HATTA) emerged with the main purpose of studying and simulating

network traffic data, emphasizing once again that the exhaustive studies in this field were

influential for the development of such tools, as mentioned in chapter 1. These are the most

widely used tools for the analysis of self-similarity described in the literature, being chosen for

analysis in this dissertation because of that. Nonetheless, other non-popular tools such as Local

Analysis of Self-Similarity (LASS) [STP+06] can also be found.

From the analysis of the literature, one can notice that the most common estimators, such as

R/S, are implemented in all of the aforementioned tools. However, it is not guaranteed that

the results of a specific algorithm, applied to the same time series, are equal across them. This

is due to the variety of possible implementations of an algorithm (e.g., static or dynamic block

sizes) or even misunderstandings during the implementation process.

3.3 TestH
This section starts by providing an overview of the TestH library, followed by its folder structure

and architecture, where each module purpose is described. This chapter ends with a brief

discussion of the additional features that are available out of the box on TestH.

3.3.1 Library Overview

The tools described in previous sections were the main source of inspiration for the develop-

ment of TestH, but it is also important to mention another source on which this work is based:

TestU01, developed by L’ecuyer et al. et al., is a statistical tool with the purpose of studying

the quality of random number generators, also written in ANSI C. The TestH library is thus being

implemented in the widely used ANSI C programming language and released under the Berkeley

Software Distribution (BSD) 3-clause license. The core idea behind its design and implementa-

tion is to empower researchers with a robust, yet simple to use, tool to study the self-similarity.

This user-friendly usage is achieved with the layer of abstraction provided by the meaningful

22

API, which aims to remove the burden related with the self-similarity estimation, thus enabling

a better focus on the real problem the users are facing.

So far, the features included in the library are a collection of eight Hurst parameter estimators,

six self-similar sequence generators, testing batteries to measure the performance of different

algorithms when exposed to the same data and the possibility to use external generators or

external data.

3.3.2 Directory Structure

The addition of documentation related features on TestH during this project increased the com-

plexity of the folder structure of the library, which is illustrated in Figure 3.4. In this figure,

the rectangles represent a directory and the sheet represents a file or set of files. The green

highlighted archives are actually not part of the project, as the contents of their folders is gen-

erated at each compilation. However, the folders should be created in order to run the test

files. The documentation related archives are emphasized in blue. Even though the files under

the documentation directory are generated with the make file, TestH is shipped with them

generated as they are part of the site documentation and could be used to consult the API off-

line (note that, in order to generate these files, one needs to install CLDOC locally). The files

under docs are also part of the API documentation, but they are not intended to be modified,

as they only define the description of each module and of the library itself. The core files of

the library are displayed with the yellow color. The directory include contains the header files

which define the API, while the src directory has the .c files implementing the library code.

This directory also contains a test file named test.c and a make file, which upon invocation

compiles the project and executes the executable generated from the test.c.

3.3.3 Library Architecture

For a better organization of the code, the library is divided in twelve modules, each of them

with a well-defined purpose:

• proc.h – this module provides the interface to manipulate processes, prototyping the most

relevant data type on TestH, the so-called proc_Process, which holds the information re-

garding a specific process. This structure is an extension of other two, explained next.

proc_Points carries the data points, and proc_Scales carries the scales to be considered

(when applicable). Besides holding the points, proc_Points can also contain other rele-

vant data, such as the process average value and standard deviation. The proc_Scales

structure contains a proc_ScalesConfig, which has information regarding the scales con-

figuration, such as the their maximum and minimum values. This last two kinds of struc-

tures are not intended to be manipulated directly, as the API contains specific functions

to configure them such as proc_CreateScalesConfig();

23

Figure 3.4: Diagram showing TestH directory structure.

• gen.h – the self-similar sequence generators are defined in this module, but its func-

tionalities are not limited to that specific objetive. It contains also the functions to

import self-similar sequences from external files trough functions like gen_ReadFile().

These functions can be called in a static manner via their name, or dynamically via the

gen_GenProc() function, where the first argument is the generator to be used, as defined

in the enumeration TestHGenerator. This enumeration has a practical organization and

allows the addition of more generators without modifying its logic (the Gaussian generator

is at position zero, the external generators have positions below zero and the TestH ones

have positions above zero), thus making the software retro compatible. One should notice

that most of the functions present on this module output a proc_Process structure;

• est.h – the purpose of this part of the library is to define the Hurst Parameter estimators.

It also includes the enumeration TestHEstimator, containing an entry for each estimator,

and it is used to output printing purposes. Every estimator prints their estimation related

values at the end, which may vary for the different methods, as it depends on the math-

ematical principles each one relies on. They also return the Hurst Parameter as a double

precision C value, which can be useful for subsequent computations. Regarding their input

parameters, every single estimator requires a proc_Process structure, with the AMT and

EBP requiring additional parameters, namely the number of absolut moments and crossing

lines;

• batt.h – this module contains the function batt_Generator, which concatenates a bat-

tery of tests enabling the quick testing of self-similar sequences and Hurst Parameter

estimators. This function takes as input a self-similar sequence generator, as defined in

24

TestHGenerator, two Hurst Parameter estimators, defined in TestHEstimator, the lower

and upper boundaries for the tests and the step increment. For each step, this method

computes the self-similar sequence with the desired Hurst value, feeds the sequence to

the estimators and then prints the results;

• dist.h – focused on probability functions and their manipulation, this module offers sev-

eral implementations of algorithms to simulate variables with the Gaussian (e.g., the Box-

Muller method), Pareto, and uniform distributions, with most of them having both the

Probability Density Function (PDF) and Cumulative Distribution Function (CDF) associated

methods implemented;

• reg.g – functions related with regression analysis are defined in this module. Being one of

the smallest, with only three functions, it defines the coefficient of determination and the

LMS functions. It also defines a variant of the LMS function which allows the computation

to be done over a specific interval. Both the LMS and the LMS variant return a specific

structure called reg_Linear, also defined therein, which stores the values related with

the line fitted by regression (slope and y-axis interception value);

• rng.g – with two functions, this module provides a high quality Pseudo Random Number

Generator (PRNG). Both functions are interrelated, as one is used to define the seed for

the generator and the other one to generate the values. The PRNG algorithm in place is

the standard Mersenne Twister [MN98];

• stat.h – this module implements both basic statistical functions (such as the average

value, standard deviation, auto-covariance and auto-correlation) and more complex func-

tions and methods, such as the goodness of fit Chi-Square and the goodness of fit Kolmogorov-

Smirnov statistical tests;

• func.h – this module offers a set of mathematical functions that did not fit under the

scope of the four mathematical modules described above. It includes functions related

with FFT and cumulative sums, a function to compute the complement of the incomplete

gamma function and, finally, a function to perform a numerical integration over a closed

interval using the Simpson's rule. This module also adds a data type to manage complex

numbers, called func_complexNumber, for usage with the FFT;

• sim.h – containing just one function, this module can be used to define simulators that

resort to self-similar processes in their inner-workings. The only function there is currently

used to simulate network traffic. It takes as input a self-similar sequence generator or a

path to a file, and returns a process proc_Process to be further analyzed;

• io.h – in order to avoid code duplication, this module offers a set of input and output

functions, e.g., for printing errors that may have occurred during the program execution

or managing files. A set of boolean alike functions are also available, such as the validation

of a Hurst Parameter value (between zero and one) and if a value is a power of two;

25

• util.h – this module was added with the intention of avoiding code duplication also, as

it is responsible for the memory management, time and sorting functions. The mem-

ory management related functions are encapsulations of the ones defined in C (calloc,

malloc, realloc and free), with the particularity of having a successful memory alloca-

tion validation embedded. The time related functions are used with TestH generators and

estimators and are intended to measure the computation time of an algorithm. The time is

printed at the end of each algorithm and is expressed in seconds. Besides these methods,

there are some system functions, e.g., for printing the user name or the hostname and an

implementation of the bubble sort algorithm.

The output of the programs can be configured to some extent through a set of variables. For

example, one can enable the printing of the memory used by a certain algorithm. Is is impor-

tant to note that the aforementioned functions represent the API of TestH and are the ones

documented and supposed to be used by the end user. There are several functions that were

not included in the API as they are used by a specific algorithm and are not seen as relevant

from a user perspective.

The name of the functions, enumerations and structures present in the API follow a certain

logic: contain the name of the module, followed by an underscore, and the name of the method

written following the Upper Camel Case rule (also known as the Pascal Case) [cap].

3.3.4 Additional Features

The conception of the library took into account several aspects that may ease the end user

work. One of them is the possibility to not only adapt the code easily to receive new estimators

and/or generators, but also to read and write from external sources. Another feature that is

worth mentioning is the battery method, which allows several tests to run sequentially without

interrupting the flow of the program. This last feature could be particularly useful when deciding

which estimator should be used to measure a certain kind of signal.

3.3.5 Code Management

TestH is an open-source project with several contribution from different developers. The sys-

tem chosen to manage the code is GitHub, a popular web hosting service that implements the

GIT version control system (originally developed by Linus Torvalds) [git]. This assures the avail-

ability of the code to everyone at any time. Another advantage is the seamless integration of

contributions, which can be done following the steps below:

1. fork the project present on the URL https://github.com/cdgramos/testh. This creates

a branch called master by default;

2. create one or more branches, each one dedicated to a particular issue;

26

https://github.com/cdgramos/testh

3. commit changes made on that branch;

4. merge the created branch with the local master branch;

5. open a pull request from the forked version (master branch) to the original version (master

branch).

If a submitted pull request concerns code following the TestH philosophy, the branches can be

merged with a single click. Troubles may arise when another contributer changes the same files,

resulting in conflicts which should be solved in the last pull request sent.

GitHub features an issue tracking system where a user can report bugs, suggestions and re-

quests. Besides this, GitHub allows the creation of project websites through the creation of a

specific branch named gh-pages, which TestH is using for presenting a beautiful form of the

documentation and can be found at the following URL: https://cdgramos.github.io/testh/.

3.4 Tool Comparison
From all the tools mentioned in section 3.2, only SELFIS and HATTA were found to be available

to download on the Internet, which is the main reason the following analysis is made with those

two tools. On table 3.1 we can see a comparative analysis between them and TestH. All possess

advantages and disadvantages. TestH strengths are the language of the documentation and

API (note that HATTA is written in Spanish, which may be a barrier to some researchers), the

guaranteed platform independence offered by the ANSI C language, the number of algorithms

implemented and the availability of the code on-line. As weakness one can point out that TestH

lacks a GUI and the possibility to directly plot charts. Note that this analysis already takes into

account the improvements made under the scope of this work.

3.5 Conclusion
This chapter presented the works that are more closely related with the project described

herein. Tools for estimating the Hurst parameter or to generate self-similar sequences were

discussed with more detail, with their advantages and disadvantages identified and compared

to the ones of TestH. The implementation philosophy of TestH was also presented, namely the

directory structure over which it elaborates on and the way the code is organized in modules.

The comparison with other tools took into account the improvements made during this project.

Nonetheless, it is the next chapter that better discusses the work performed during this project.

27

https://cdgramos.github.io/testh/

Table 3.1: Comparison between TestH, SELFIS and HATTA.

TestH SELFIS HATTA
Software Language English English Spanish

Price Free Free Free
GUI No Yes Yes

Graphical Plotting No Yes Yes
Programming Language ANSI C Java C++

Open Source Yes (BSD 3-clause) Yes Not verified
Time Series Maximum Length Not verified, supported 220 218 Not verified, supported 220

Number of Hurst Estimators 8 7 5
Number of Self-Similar
Sequence Generators

6 0 0

28

Chapter 4

Implemented Estimators and Generators

4.1 Introduction
This chapter of the dissertation emphasizes and is focused on the description of the direct con-

tributions given to TestH. Section 4.2 describes more accurately the estimators added under

the scope of this work, namely the DFA, Higuchi, Periodogram and HEAF. The following sec-

tion 4.3 describes the self-similar sequence generator integrated on TestH, called Davies and

Hart. Lastly, section 4.4 presents additional API contributions, the approach followed to docu-

ment the code and a brief code sample.

4.2 Implemented Estimators of the Hurst Parameter
This section elaborates on the mathematical formalization and implementation details of the

algorithms behind the estimators that were integrated on TestH as part of the work of this

dissertation.

4.2.1 Detrended Fluctuation Analysis

DFA should be seen as an improvement of R/S. The main differences lies in the way the rescaled

sums and the line to compute the slope is obtained. In DFA, given a time series with N entries,

the first step consists in calculating its cumulative sums (also referred to as integration), as in

R/S. A time integrated series, which is herein denoted by y(t), is divided into blocks of length

m. For each block, a line is then fitted to the values using LMS, thus giving the trend for that set

of values. Consider that, inside a given block with size m, the fitted line is denoted by ym(i).

The detrended signal is then achieved by measuring, for each scale, the values of the integrated

series against the ones in ym(i), according to equation 4.1:

F (m) =

√√√√ 1

N

N∑
i=1

[y(i)− ym(i)]2. (4.1)

This operation is then repeated for each block size, with the resulting values being computed

in a log-log plot against k different aggregation scales mk.

The implementation of this algorithm is straightforward, having the following particular details

in TestH:

29

1. a set of block sizes is automatically setup for a given time series of lengthN. The minimum

and maximum block sizes are set to 4 and N/4, respectively. This ensures that the largest

block size has enough samples for the calculation of F (m);

2. the cumulative sums y of the time series are computed;

3. the computation of the detrended signal is shown in Listing 4.1, which works by iterating

each window size (line 1) and by determining the LMS for each non-overlapping block (lines

3 and 4). The detrended sum is cumulatively obtained from all LMS values calculated for

each particular window size, which is stored in yyAxis at the end and for each block size

(line 9);

4. the values from the yyAxis can then used to produce a log-log plot against the values of

blockSize;

5. finally, a LMS line is fitted to the logarithms of the average value of detrended sums and

block sizes, and an Hurst Parameter estimation is obtained directly from the slope of the

fitted line.

1 for (i = 0; i < totB locks ; i ++) {

2 sum = 0.0;

3 for (j = 0; j <= N − blockS ize [i] ; j += b lockS ize [i]) {

4 r = reg_LeastSquareMeansLimited (pr−>points , y , j , j + b lockS ize [i] , OFF

) ;

5 fo r (z = j ; z <= j + b lockS ize [i] ; z ++) {

6 sum += pow(y [z] − r .m − (r .b * z) , 2) ;

7 }

8 }

9 yyAxis [i] = sum / (N / blockS ize [i] * b lockS ize [i]) ;

10 }

Listing 4.1: Excerpt of code showing how the detrended sums are calculated in the scope of DFA.

4.2.2 Higuchi

The Higuchi estimator works by obtaining a new series ymk (i) from a time series y(t) of length N

as per Equation 4.2, where m represents the initial interval and k the width:

ymk : y(m), y(m+ k), y(m+ 2k), ..., y(m+ ⌊N −m

k
⌋k); k,m ∈ R>0 (4.2)

Note that, on the equation above, ⌊⌋ represents the floor function, also known as the truncation

function.

30

The function Lm(k) is then computed as can be seen on Equation 4.3:

Lm(k) =


N − 1[
N −m

k

]
k



N −m

k

∑
i=1

|y(m+ ik)− y(m+ (i− 1)k)|




/
k. (4.3)

In practice, this estimator works by defining once again a fixed set of block sizes mj ∈ N (e.g.,

2, 4, 8, ...) and calculating Lmj (k) for each one of those block sizes. The next step consists on

building a log-log plot with the logarithms of Lmj (k) and mj, and then fit a line to those values.

The Hurst parameter is finally obtained by using the formula H = β+2, where β is the slope of

the fitted line. The computational complexity of this method is high and is by far the slowest

method present on TestH to date.

The implementation of the Higuchi estimator in TestH can be described as follows:

1. given the time series of length N, a set of logarithmically spaced blocks are computed

between log10(1) and log10(N/5). N/5 and bins = 50 were chosen by the authors of

TestH, since the algorithm does not define this in practice. The blocks are thus computed

such that the first one is zero and the others are the addition between the previous value

found and the increment log10(N/5)/bins;

2. with the blocks computed on the previous step, a new array containing the block sizes

blockSize is created and initialized with 10 to the power of each previously computed

block;

3. Listing 4.2 depicts the core of the algorithm, which computes and stores the sum of the

local curve length for each block size and for each overlapping block. Note that the com-

putation that is made for the overlapping blocks highly increases the complexity of this

method, since processing is performed for all points of the sequence several times (instead

of being performed for non-overlapping blocks, as in many other methods);

4. finally, a line is fitted to the logarithms of the curveLength and blockSize using LMS, from

which one can obtain an estimation of the Hurst parameter via the formula H = β + 2,

where β is the slope of the fitted line. In the implementation, only the first half of the

values are considered to fit the LMS, decision that results from the fine tunning process to

maximize the algorithm accuracy.

31

1 for (h = 1; h <= n ; h++) {

2 aux = 0;

3 k = f l oo r ((N − blockS ize [h]) / b lockS ize [h]) ;

4

5 for (i = 1; i <= b lockS ize ; i ++) {

6 aux1 = 0;

7 fo r (j = 1; j <= k ; j ++) {

8 temp_lenght [i] [j] = abs (pr−>po ints [i + j * b lockS ize [h]] − sequence

[i + (j − 1) * b lockS ize [h]]) ;

9 aux1 += temp_lenght [i] [j] ;

10 }

11

12 aux1 /= k ;

13 aux += aux1 ;

14 }

15

16 curveLength [h] = aux * ((N − 1) / pow(blockS ize [h] , 3)) ;

17 }

Listing 4.2: Excerpt of code showing some of the core operations of the Higuchi method.

4.2.3 Periodogram

For a given process y(t), let the Periodogram P (λ) be computed according to the equation 4.4,

where N denotes the length of the time series and λ denotes a frequency. Consider also that

this calculation is repeated for several frequencies λk, with k > 0:

P (λ) =
1

N

∣∣∣∣∣
N−1∑
i=1

y(i)× eijλ

∣∣∣∣∣
2

. (4.4)

Analogously to many other previously described estimators, an estimation of the Hurst parame-

ter is taken from the slope of the line that best fits the logarithms of P (λk) and the logarithms

of λk using H = (1−β)/2, where β is the slope of the fitted line. It is common to find sources in

the literature [TTW95] where the authors only consider a certain percentage of the values close

to the origin to fit the line. However, there is no exhaustive study that highlights the advantages

or disadvantages of choosing such values. As such, it should be considered as a parameter of

the method.

Programmatically, the Periodogram estimator can be written in a few lines of code because

it does not require calculations over overlapping blocks. Its implementation in TestH can be

32

described as follows:

1. the first step consists in computing the FFT on the given process of length N, resulting in

an array of complex numbers complexV ec;

2. the data is then ready for the main Periodogram computations, which are shown in List-

ing 4.3. The variables x and y represent two arrays of length N. Notice that the trans-

formation into the frequency domain is performed resorting to FFT, which eases this de-

scription;

3. in the end, a graph can be plotted using a log-log scale and the LMS can be used to fit the

coordinates. Once again, the Hurst Parameter estimation is given be H = 1− β/2, with β

denoting the slope of the fitted line. In this implementation, following the suggestion in

the original description of the estimator, only the first 2% of the values were considered to

fit the line. This empirical value was chosen as the one that minimized the verified error

close to the origin.

1 fo r (i = 0; i < N; i ++) {

2 complexVec [i] . rea l = (pow(complexVec [i] . real , 2) + pow(complexVec [i] . imag

,2)) / (PI2 * N) ;

3 }

4

5 fo r (i = 0; i < N; i ++) {

6 x [i] = log ((P I / N) * (i + 1)) ;

7 }

8

9 fo r (i = 0; i < N; i ++) {

10 y [i] = log (complexVec [i + 1] . rea l) ;

11 }

Listing 4.3: Excerpt of code representing some of the core computations of the Periodogram estimation

method.

4.2.4 HEAF

The HEAF method, as highlighted in section 2.3, is relatively new compared to its peers. This

method elaborates on the autocorrelation function of the self-similar process to obtain an es-

timation of the Hurst parameter. This can be done by calculating one or more autocorrelation

values, for one or more lag values, though it was initially defined for the lag of 1. Let y(t) be

a time series of length n, ρn(1) (the autocorrelation for lag 1) is then computed according to

33

equation 4.5, where γ denotes the covariance and σ the variance:

ρn(1) =
γn(1)

σ1
n

. (4.5)

The next step is to compute dn as per equation 4.6:

dn =
ρn(1)

1 + ρn(1)
. (4.6)

At this point, the Hurst parameter can be obtained with equation 4.7:

H =
1

2

(
1

2log(2)

)
× log

(
1 +

ρn(1)

dn

)
. (4.7)

The implementation of this algorithm is remarkably simple and its computational complexity is

low (the algorithm is extremely fast). Notwithstanding, as pointed out in [Ina09], this method

does not fully capture the self-similar features of a process since the lag used is always one,

thus only comparing neighbor values. Its implementation in TestH is illustrated as follows:

1. the average value mu of the sequence of values under analysis is first calculated;

2. the rest of the main operations required by this method can be observed in Listing 4.4,

where one can see how the Hurst Parameter value is obtained at the end of the procedure

(line 11). N denotes the number of values of the sequence under analysis.

Note that the computations are only performed for the lag equal to one (line 8), as pointed

out before. Unlike the previous implementations, as is, this algorithm produces no output for a

graphical representation.

1 for (i = 0; i < N; i ++) {

2 gamma_0 += (pr−>po ints [i] − mu) * (pr−>po ints [i] − mu) ;

3 }

4 gamma_0 = gamma_0 / N;

5

6 k = 1;

7 for (i = 0; i < (N − k) ; i ++) {

8 gamma_1 += (pr−>po ints [i] − mu) * (pr−>po ints [i + k] − mu) ;

9 }

10 gamma_1 = gamma_1 / N;

11 H = 0.5 + (1 / (2 * log (2))) * log (1 + (gamma_1 / gamma_0)) ;

Listing 4.4: Excerpt of code showing important operations of the HEAF method.

34

4.3 Implemented Generators of Self-Similar Sequences
This section presents a more detailed description of the Davies and Hart method. This algorithm

was specifically chosen to be implemented in TestH during the development of this project

because it is the fastest generator amongst the exact methods.

4.3.1 Davies and Hart

For a given input H (the Hurst parameter) and n (the desired length) of the sequence to be

generated, the Davies and Hart method starts by computing the so-called row components R(i),

which are auto covariances, according to the formula in equation 4.8. The several R(i) are then

bind together with its inverse R̂(i), thus resulting in an array D of length 2n.

R(i) =
1

2
×

(
i2H − 2× (i+ 1)2H + (i+ 2)2H

)
. (4.8)

This method thus works by defining the covariances of the values to be generated prior to their

generation. Covariances depend on the expected Hurst parameter. It then depends on how to

make sure that the generated values will have those covariances. This is achieved resorting

to FFT, which is applied to the aforementioned array. After that transformation, additional

iterations are performed to the obtained values, according to the following conditions:

• For i = 0: D̂(i) =
√
D(i)/(2n)×ND1(i);

• For i < n: D̂(i) =
√
D(i)/(4n)× (ND1(i) + 1×ND2(i));

• For i = n: D̂(i) =
√
D(i)/(2n)×ND2(i);

• For i < 2n: D̂(i) =
√
D(i)/(4n)× (ND1(2× n− i)− 1×ND2(2× n− i)).

ND1 and ND2 denote two random distributions, whose values are simulated prior to the ap-

plication of the expressions. FFT is applied once again to this newly obtained array D̂(i). The

self-similar series is then achieved by multiplying the first n elements of D̂(i) by the scaling

factor 1/n.

4.4 Other Contributions
This section elaborates on the crucial step taken towards the development of TestH, which was

the documentation of the API, thus allowing a faster comprehension of the library. A usage

example of the library is also presented and discussed at the end of this section.

4.4.1 API Additions

In sections 4.2 and 4.3 estimator and generator algorithms were presented. Each of these

algorithms result in one functional addition to the API. Nonetheless, other minor or secondary

35

additions were made to the library under the scope of this work. The full set of functions added

to the API of TestH can be briefly described as follows:

• func_complexNumber – defines a data structure intended to represent complex algorithms.

This structure represents a commodity when using the FFT function as ANSI C does not have

director support for such numbers;

• func_FastFourierTransform – implements the FFT algorithm. This function is recursive

and a temporary structure (see above) that should be passed as parameter;

• func_CumulativeSums – this function computes the cumulative sums without overwriting

the given process;

• reg_LeastSquareMeansLimited – this function constitutes an adaptation of the LMS func-

tion already available on TestH. This version of the function enables the specification of

the boundaries for fitting the line through its parameters;

• est_Higuchi – this function embodies the interface for the Higuchi method for estimation

of the Hurst parameter;

• est_Periodogram – this function is defined in the est module and implements the Peri-

odogram method for the estimation of the Hurst parameter;

• est_DetrendedFluctuationAnalysis – this function embodies the interface for the DFA

estimator;

• est_AutocorrelationFunction – similarly to the 3 functions mentioned above, this func-

tion is also part of the est module and implements the HEAF method for the estimation of

the Hurst parameter;

• gen_DaviesHart – defined in the gen module, this function constitutes the interface for a

self-similar sequence generator and it accepts the expected Hurst parameter as input. It

implements the algorithm proposed by Davies and Hart.

These additions to the API follow the meaningful naming principle and should be easily per-

ceived by the end users. The aforementioned additions were mainly performed to the func,

est and gen modules of the library, respectively. Regarding the FFT there was already an in-

ternal implementation on the code (Paxson_FastFourierTransform) but it was implemented

specifically for the purpose of being used with the Paxson method, justifying the need to write

a generic function.

4.4.2 Documentation and Website

Even though C is a widely used programming language, there is no truly standard code documen-

tation tool nor one that is seen as a reference in the community. Because of this, several tools

36

Figure 4.1: Sample of a documentation page for TestH generated by CLDOC with the DFA example
highlighted.

were considered for building up the documentation, with the choice falling over to CLDOC in

the end. The main features that were taken into account to choose CLDOC were its open-source

nature, with its entire code available on GitHub, no requirement of configurations, the simplic-

ity of the code that needed to be added to TestH, the client side search filter and the seamless

integration of the generated documentation on a website. Listing 4.5 shows the documentation

of the DFA method with its respective generated documentation displayed in gigure 4.1. The

structure of the documentation should be made with precision by including a brief description

of the function, the input values and the expected output, in this order. Without respecting the

order or indentations, the outputted HyperText Markup Language (HTML) might contain faults

and thus cause rendering problems.In order to ease the work of those who wish to contribute or

development of TestH, a makefile dedicated to the generation of these HTML files was devel-

oped.

1 /* est_DetrendedFluctuat ionAnalys i s Function .

2 * @pr pointer to a given process .

3 *

4 * est_DetrendedFluctuat ionAnalys i s implements the Detrented F luctuat ion

Ana l y s i s (DFA) algorithm , and for a given process i t returns the computed

Hurst Parameter .

5 * @return the hurst parameter for a given process .

6 */

7 double est_DetrendedFluctuat ionAnalys i s (proc_Process * pr) ;

Listing 4.5: Documentation of the DFA function using CLDOC.

37

Figure 4.2: The TestH website.

The main goal of this documentation was for it to be accessible online, assuring that a researcher

could check the API and see if it fits his needs in a short time. In order to do that, a GitHub page

website was built, not only to host the API documentation, but also to promote the library. Its

structure consists of five main sections/pages, briefly described as follows:

• TestH – this separator (and landing page) gives the client a brief introduction to the library,

making him or her aware of the TestH features;

• Examples – short examples are given in this separator, with the purpose of showing the

simplicity of the library;

• Contributors – this page pays tribute to the TestH contributors;

• Resources – articles, thesis and any other relevant materials related with the library can

be found on this separator;

• Documentation – this separator links to the API documentation files generated by CLDOC.

Figure 4.2 shows how the site looks like, particularly in terms of its appealing appearance and

functionality that allows to download code directly from it. Download buttons fetch the last

version of the code from the GitHub repository automatically.

4.4.3 Usage Example

Listing 4.6 presents a sample program that uses the TestH library, illustrating a minimally work-

ing snippet that can be compiled and executed with success:

38

1 /* TestH and ANSI C inc ludes */

2

3 #define N pow(2 ,15)

4 #define H (double) 0.25

5

6 i n t main (i n t argc , char * argv []) {

7

8 proc_Process * pr = gen_Hosking (N, H, TestH_fBm) ;

9

10 proc_ScalesConf ig * conf = proc_CreateScalesConf ig (TestH_POW , 7 , 11 , 2) ;

11

12 proc_CreateScales (pr , conf) ;

13

14 est_Resca ledRangeStat i s t i c s (pr) ;

15

16 proc_DeleteProcess (pr) ;

17

18 return 1;

19 }

Listing 4.6: Sample C code using the TestH library.

The code can be adapted to each own style and objectives as it is intended to be only for

demonstration purposes. The first instruction in the main body instantiates a process generator

for the Hosking method, initializing it with a length of N and an expected Hurst value of H, with

the additional specification of the output to be a fBm. The next two instructions are required

in order to create the scales and to assign them to the process. The process is then passed

as an argument in the fourth instruction, where the Hurst parameter is finally estimated using

the R/S method. It is important to mention that every estimator in TestH returns the Hurst

Parameter as a double-type value. This can be particularly useful to compute the mean of a set

of estimations, for example.

4.5 Conclusion
This chapter dived into the algorithms that were implemented under the scope of this work,

offering an additional formalization of them. Regarding the estimators, with four additions to

the library, TestH now has a total of eight readily avaialble methods, with the Abry-Veitch and

Whittle being the ones missing from the set of ten estimators described in chapter 2. A step

was also taken towards the implementation of the generators. Davies and Hart is the fastest

method amongst the exact ones, making it particularly good to generate long time series with

39

many data points. A challenge faced during the implementation of these algorithms was the

lack of information for some of them, notable with respect to their parameters.

As it is possible to observe at the end of this chapter, the documentation of the code plays

an important role in this work, not only because it helps keeping the code organized but also

because it improves the learning curve of those who are not familiarized with the library. Docu-

mentation of the library is performed using CLDOC, which enables the developer to easily embed

documentation in a non intrusive manner, and also to transform the documentation into HTML

pages, already published in a website, fulfilling another objective of this work.

40

Chapter 5

Evaluation

5.1 Introduction
Efforts placed on the development of the library are only worth if TestH finds its place amongst

the scientific community and, in order to achieve that, it is required that researchers trust on

the results it outputs, making the validation process a crucial part of this work. Section 5.4 of

this chapter presents the method used to test both estimators and generators. In section 5.3 and

section 5.4, the self-similar sequence generators and Hurst Parameter estimators will have their

test results presented, respectively. Results will be divided in three main parts: one dedicated

to computational resources, namely computational time, another one dedicated to the memory

consumption, and the last part dedicated to their accuracy. This chapter ends with a brief

discussion of the obtained results.

5.2 Testing Apparatus
Several tests were performed resorting to the HATTA and SELFIS tools to obtain a confirmation

of the precision of the implemented generators and estimators, since they constitute a good

baseline for comparison. The first type of algorithms to be tested were the generators due to

the fact that there are no widely known tools that, for a given H value, produce a self-similar

sequence. This basically implied that the TestH generators had to be used to study the TestH

estimators. Another challenge faced during the tests was related with length of the time series

supported by SELFIS, which only supports the analysis of series with 218 values maximum.

In order to test the accuracy of the generators, two sets of 20 time series each were generated.

One set had time series with 218 values, to be used on SELFIS. The other set included series

with 220 values, to be used on HATTA and TestH. These series were then fed to the tools, which

were asked to produce estimations of the Hurst parameter. The average of the resulting values

is presented and discussed on section 5.3. Following the same procedure, the estimator tests

were done with the series produced for the tests of the generators. The scales considered for

the windowed methods followed a power of 2 order, with the minimum number of different

scale sizes being 7 and the maximum 11.

The testing procedures were automated using scripts and the the time that the computer took

during the tests was measured, so as to obtain an indication of the efficiency of the implemen-

41

tations. This evaluation was not made to conclude about the computational complexity of the

methods, since this is known from the literature and tests would have to be designed differ-

ently. Tests were performed in a computer with an quad-core 2.4GHz processor, 4GB of DDR3

Random-access Memory (RAM) and Ubuntu 14.04 Operating System.

5.3 Evaluation of Generators
This section presents the results of the tests regarding the self-similar sequence generators

implemented in TestH at the time of writing of this dissertation. The justification of the choice

of the generator that was used to test the estimators later on is also included in here.

5.3.1 Generators Computational Time

Table 5.1 shows the average time required to generate a series of values against the lengths

of 216, 218 and 220. Note that the lengths of the series increase by a factor of 4 from column

to column. The times to generate the series should also quadruplicate for linear complexity

algorithms. It can be concluded that this happens for all the generators, except for Hosking.

Due to its exact nature, the Hosking method processing time rapidly increases as the length of

the time series grows.

5.3.2 Generators Memory Consumption

The development of the generators in TestH is focused on the computational efficiency rather

than on memory consumption. The library uses arrays with data structures instead of lists,

i.e., the points will be allocated as a whole chunk in the heap during the program execution.

Nonetheless, the API provides memory related functions to properly tackle this kind of issues

(such as the lack of memory) and the auxiliary memory blocks are freed once they are no longer

needed. Table 5.2 presents the approximated maximum memory consumption for each imple-

mented generator, where N denotes the desired time series length. Note that this analysis is

approximated, i.e., non static memory allocations which do not depend on the length of the

time series were ignored.

By observing these results, one may notice that there are relevant differences between the

several generators, with the Davies and Hart being the one that requires more memory. As

expected, the exact methods are the ones that require more memory, due to their higher de-

pendency of previous values to generate the next ones. Even though the Paxson method fall in

the category of the approximated methods, it is possible to notice that it roughly requires four

times more memory than the other approximated methods. This is attributed to the memory

necessary to compute the FFT.

42

5.3.3 Generators Accuracy

The results included in table 5.3 show the average error of each generator. These results were

achieved by computing the average value of the (absolute value of) differences between ex-

pected and effectively obtained Hurst parameter values for each one of the analyzed tools

(note that lower values indicate a better performance). Every generator had a good perfor-

mance, with the two exact methods (Hosking and the Davies and Hart) along with the Paxson

(recall that it tends to be exact) achieving the best results.

One of the generators was then selected for the evaluation of all implemented estimators, with

the most logical choice being the fastest exact estimator: Davies and Hart. Nonetheless, as this

estimator was implemented under the scope of this work, it was decided to do the tests using

the Hosking method to favor impartiality and avoid bias.

5.4 Evaluation of Estimators
On this section, the results of the Hurst Parameter estimators are presented and compared

against the ones obtained via the closely related tools peers. These tests were performed resort-

ing to sequences of values generated using the Hosking method, due to the reasons mentioned

in the previous section.

5.4.1 Estimators Computational Time

Similarly to the analysis reported on subsection 5.3.1, the experiments concerning the compu-

tational efficiency of the estimators outputted results aligned with the expectations. As it is

highlighted on this work, the computational complexity of Higuchi is high, and one can obtain

confirmation of this fact by comparing the respective value with the ones of others on table 5.4.

It is important to mention that even for sequences of length 220, HEAF took less than a tenth of

a second to execute, making it a good candidate when the processing time is critical.

5.4.2 Estimators Memory Consumption

As discussed in subsection 5.3.2, the estimators were also implemented with an emphasis on the

computational efficiency rather than on optimum memory management. To obtain an idea of

the memory usage of the implemented estimators, they were all fed with the same series and

the peak of memory used during their processing was recorded. Table 5.5 provides an idea of

the behavior of the estimators, by showing (i) that the memory is linearly dependent from the

length of the series (denoted by N) and (ii) the difference between estimators as a factor of N,

for comparison purposes. Note that these are approximated values and that the real maximum

will depend on the scales defined for each windowed estimator. Variables whose size do not rely

on the length of the time series were also ignored. One can see that the Periodogram method

43

requires far more memory that the other estimators. This is attributed to the use of the FFT,

which requires a 4N memory allocation during execution.

5.4.3 Estimators Accuracy

Since the generators tests provided a certain degree of confidence that both the generator

and the estimators are well implemented, it was possible to proceed with the accuracy tests

for the estimators implemented on TestH. The tests followed the same structure as the ones

reported on previous sections. In other words, 20 series with 218 or 220 values were gener-

ated with the Hosking method for each one of the expected Hurst parameter values chosen

for evaluation. In other words, the generator was initialized with Hurst parameter values of

{0, 0.05, 0.10, 0.15, ..., 0.85, 0.90, 0.95} and, for each one of those, 20 series with 218 and 220 val-

ues were generated. Series with 218 values were fed to SELFIS, while series with 220 values were

fed to HATTA and TestH. Each estimator was then asked to output estimations and the average

value of the 20 samples was calculated and plotted against the expected value. The resulting

charts are included in the figures of this section.

R/S was the first estimator tested due to its historic relevance. Figure 5.1 depicts the average

values for the estimations of the Hurst parameters against the expected values for this specific

method. It is possible to observe that the values for each different tool overlap most of the

times, which may indicate that the implementation of the algorithm is similar for all tools. It is

also important to notice that, as expected, this is the estimator that displays the worst results

in terms of bias, specially for small values of H.

Figure 5.2 depicts the results obtained for the VT estimator. It is notorious that every tool

produces noticeable deviations from the ideal Hurst parameter values (represented by a line),

with more accentuated differences at the edges.

Figure 5.3 makes it clear that the Periodogram is not the best option for estimating Hurst pa-

rameter values close to 0. This behavior was verified across the three tools, with the estimated

values being very good for expected values of H ≥ 0.25. One can also notice that for values in

the interval [0.25, 0.95], most of the results overlap.

Figure 5.4 congregates the results of all remaining estimators considered in the scope of this

work. These results were obtained using TestH only. They were not compared with the ones

returned by SELFIS or HATTA, either because the estimators are not implemented in those tools,

or because the tests were too biased due to a miss configuration of the input parameters that

could not be solved. It can be seen that the AMT is the estimator with the poorest perfor-

mance, followed by the Higuchi method. Nevertheless, all the estimators mentioned in the

figure provide estimations close to the expected values, which make them a reliable choice to

estimate the Hurst parameter. The full set of results obtained during these tests are presented

44

on Appendix A, for the sake of completeness.

For the sake of completeness, it was decided to test the estimators implemented in the scope

of this work with the full set of generators available on TestH. This test included the genera-

tion of 20 sequences of values using all generators and for all Hurst parameter values between

[0.05, 0.95] with increments of 0.05 (except for fBm-SGA, where the Hurst parameter values were

in [0.50, 0.95]). A total number of 1710 sequences were generated (20 sequences per each one

of the 19 Hurst parameter values for each one of the 4 generators plus the sequences generated

with the fBm-SGA). The average value of the absolute differences between the estimated Hurst

parameter values and the expected ones was then calculated for each one of the new estima-

tors. The results are summarized in table 5.6. Note that values close to 0 indicate a better

overall precision.

It is possible to see in the previous table that the average values are all really close to each

other and are typically low (recall that lower values indicate a better precision), with some

estimators having in average a three decimal point precision. Something worth mentioning

during the analysis of the table is that the poorest and the best performance were registered

for the same estimator: HEAF. This algorithm results follow the ones of other estimators closely,

but it performs remarkably bad for the fBm-SGA generator, with an average error of 0.04. This

can be attributed to its predefined setup of analyzing a time series with a lag of 1. It was also

the one that performed better, this time against 4SG, followed closely by DFA.

The lowest mean error was expected for the exact estimators, but this did not happen. As

highlighted in this work, some of the approximated methods to generate self-similar sequences

tend to be exact as their length tends to infinity. This might explain these results partially,

as the length of the sequences was very large (220). However, to confirm the suspicion that

approximate methods could even provide better results for lengthier sequences, a new set of

analogous tests was performed, this time using sequences with length of 212, producing the

results in table 5.7.

As it is possible to see in the previous table, the worst performance was again registered for

HEAF estimator regarding the series generated by the fBm-SGA algorithm, possible due to the

same aforementioned reasons. As expected, for such small series, the exact methods have

a better behavior than the approximate ones. Nonetheless, this might be an indication that

the algorithms are properly implemented. It is worth mentioning that the 4SG algorithm keeps

performing astoundingly well when compared with the other approximated methods, with even

better results than the exact methods for the DFA estimator.

45

5.5 Discussion of the Results
While it is true that there is not a direct answer on which one is the best Hurst Parameter

estimator, as it will also depend on the nature of the process, this section provided a useful

benchmark for future implementations. As an example, it was observed that for anti-persistent

noise close to zero, the Periodogram has a poor performance, while in the other hand, it may

be the most useful one to study persistent time series. It was also demonstrated that the

processing time grows exponentially for the Higuchi method, thus making it the worse candidate

for applications that demand near real time results.

The generators performed remarkably well in the conducted tests, providing assurance of their

correct implementation. There is no particular recommendation concerning which generator

is better in terms of accuracy, except for an honorable mention to 4SG. However, if time is a

constraint, the Hosking method should be avoided due to its computational complexity in the

order of n2.

One important conclusion that could be inferred from these tests is that, for large enough series,

the implemented approximate generators produce sequences with self-similarity embedded as

accurately as the ones produced by the exact methods (behavior verified for length of 220), at

least for the aggregation block with which the estimators were initialized. The same does not

apply as clearly for short lengths, as there was a huge gap of precision between some of the the

exact and approximate methods.

5.6 Conclusion
This chapter presented the tests made to TestH to evaluate the quality of the already available

and newly implemented algorithms. It can be said that the tests were very successful. Almost

every self-similar sequence generator and Hurst Parameter estimator outputted results near to

the expected values, and even for the estimators that turned out to perform worse, such as R/S

or the Periodogram for close to zero values, one can safely conclude that the behavior is more

likely to be a result of the nature of the algorithm rather than an implementation issue, since

the other tools, HATTA and SELFIS, produced similar behaviors.

Tests also allow to draw conclusions regarding the precision of the approximate methods. Some

tests corroborate the idea that their output might be better as the lenght of the generated

sequences increases. This was verified by comparing estimated Hurst Parameter for sequences

with length 212 and 220.

46

Table 5.1: Time taken to generate series with 216, 218 and 220 values (average values of 20 samples)
measured in seconds.

216 218 220

Hosking 28,31819 484,34890 5227,24821
Davies and Hart 0,261582 1,17025 4.53401

Paxson 0,00279 0,27323 1,31897
Aggregation of Renewals 53,889433 216,50727 884,089

fBmSGA 0,00797 0,03982 0,13288
4SG 0,01268 0,05036 0,17209

Table 5.2: Approximated maximum memory consumption for TestH generators.

Generator Hosking Davies and Hart Aggregation of Renewals fBm-SGA 4SG Paxson
Memory 4N 6N N N N 4.5N

Table 5.3: Accuracy results for the generators according to estimators in TestH, SELFIS and HATTA.

Hosking Davies and Hart Paxson 4SG fBm-SGA
0,012064 0,00930 0,01117 0,01513 0,02129

Table 5.4: Average processing time measured in seconds of 20 series of a given length generated with the
Hosking method

216 218 220

R/S 0,82656 3,15176 12,48033
VT 0,84554 3,12868 11,99754

AMT 0,85564 3,85445 12,59458
EBP 0,02591 1,22448 4,84564

HEAF 0,001147 0,00460 0,07216
HIG 7,02145 113,8947 1810,95895
DFA 0,23715 1,04020 5,11899
PER 0,05262 0,22560 2,90498

Table 5.5: Approximated maximum memory consumption for TestH estimators as a function of the length
of the series (N) under analysis.

Estimator R/S VT AMT EBP HIG DFA PER HEAF
Memory N N N N 3N 3N 6N N

Table 5.6: Average error for the other estimators implemented under the scope of this dissertation along
with the AMT. Values presented for each combination estimator/generator. Sequences with length 220.

HEAF HIG PER DFA
Hosking 0,00096 0,01813 0,0118 0,00884

Davies and Hart 0,00322 0,00987 0,01688 0,01279
Paxson 0,00254 0,00128 0,00677 0,01173

fBm-SGA 0,042295 0,00218 0,00111 0,01782
4SG 0,000289 0,01494 0,0019 0,000593

47

Figure 5.1: Accuracy related results obtained for the R/S estimator.

Figure 5.2: Accuracy related results obtained for the VT estimator.

Table 5.7: Average error for the estimators implemented under the scope of this dissertation. Values
presented for each combination estimator/generator. Sequences with length (212).

HEAF HIG DFA PER
Hosking 0,144954 0,033922 0,06135 0,004715

Davies and Hart 0,08651 0,054692 0,064713 0,038236
Paxson 0,097462 0,123507 0,066947 0,174994

fBm-SGA 0,560249 0,204133 0,069827 0,25385
4SG 0,108385 0,097792 0,037164 0,157843

48

Figure 5.3: Accuracy related results obtained for the Periodogram estimator.

Figure 5.4: Accuracy related results obtained for the estimators implemented under the scope of this
dissertation.

49

50

Chapter 6

Conclusions and Future Work

The main conclusions drawn from the work described in this dissertation are presented in section

6.1, and guidelines to keep pushing the work forward are discussed in section 6.2.

6.1 Main Conclusions
The literature studied during this work leaves no space for doubting the important role that

the self-similarity plays in fields such as the modelling and simulation of network traffic, stock

market analysis and even the study of biological phenomena. The analysis of the literature

revealed that the existing solutions are not perfect, lacking several algorithms, have not been

updated for quite some time, lack proper documentation, do not reveal the implementation

nuances of the algorithms, and have constraints regarding the data length, amongst others.

The work presented in this dissertation is the continuation of an effort to create a tool to study

and simulated self-similar processes, which embraces these three main principles: (i) reliability

– the users need to have a certain degree of confidence regarding the results the tool outputs;

(ii) dynamic – the tool should be easily adapted to the needs of users; and (iii) made for humans

– meaning that a researcher should be able to quickly start using the Library with little or no

skills regarding C programming.

The work evolved to the identification of the self-similar self-similar sequence generators and

the Hurst Parameter estimators to be implemented. The chosen generator was the fastest

exact self-similar sequence generator known to date, and its choice was mostly due to those

two characteristics. Regarding the estimators, the only concern taken into account was if they

were included on the list of the most important estimators, discussed in chapter 2.Prior to the

implementation, the development apparatus was set up. In other words, in order to develop a

new estimator, a set of sequences with known Hurst values were generated from the generators

already available on TestH. This allowed the TDD technic to be applied as it was possible to

validate the results right away. With the apparatus defined, the development (and most difficult

phase) began. The documentation regarding the algorithms is scarce and leaves room for doubts.

The usage of ANSI C also added an extra layer of complexity to this work, as it gives no support

for encapsulating complex mathematical principles (e.g. manipulating complex numbers). In

this last case, as the development of the library keeps moving forward, it becomes easier to

implement new algorithms, as most of the mathematical functions in TestH are exposed as an

51

API.

Several tests on different tools (SELFIS, and HATTA) were carried out, mainly on the algorithms

integrated in TestH under the scope of this dissertation, but not limited to them. This was per-

formed to fulfill the reliability principle mentioned above.The most interesting test is perhaps

the one that compares the Periodogram on the TestH and its peers, where one can clearly see

that the biased behavior close to the origin is verified in every tool analyzed. This common

behavior is also verified on R/S, another method available on every tool. This may indicate that

the underlying implementation of this algorithm does not vary much from solution to solution.

From the main estimator algorithms set, TestH is still missing two important ones: the Abry-

Veitch (AV) and Whittle, whose implementation had to be sacrificed in order to properly docu-

ment the current API. Nonetheless, the objectives for this work were achieved and a significant

step towards the library usability was performed with its website on-line and the API docu-

mented. This does not mean that there is little room for improvement, as there are new algo-

rithms coming out from time to time, new features could be implemented and the algorithms

could always be tested more. There are also minor bugs that need to be fixed in the following

algorithms: AMT, VT, EBP and the Paxson method. This bugs are related the length of the time

series or the configurable parameters, which can be fixed by validating such inputs.

As it was discussed in this dissertation, the description of some algorithms is not explicit enough

on which values should be used at certain points. Taking this lack of information as an advantage,

an empirical fine-tuning effort was made to minimize errors of the estimators, resulting in the

setting up of magical numbers that should be replaced once proper studies are made regarding

the best values to use.

6.2 Future Work
TestH incorporates more generators and estimators than other closely related tools. However, it

does not provide a GUI to interact with the program. To counterbalance this disadvantage, TestH

needs to be the most reliable tool available, such that the users see an added value in using it

on their experiments. In order for this to happen, the missing algorithms should be added to the

library. Besides these algorithms, there are some other interesting functions that related tools

possess, such as the possibility to apply an estimator only to a certain interval of points, that

might be interesting to integrate also. This is something that can be done programmatically on

TestH but the development should be done in view of those who have little programming skills.

One feature that draws a lot of attention on SELFIS and HATTA is the possibility to plot graphs.

This kind feature on TestH is not possible to reproduce as it will require the usage of non ANSI

C libraries. Nonetheless an integration with the GNU Plot could be made by generating specific

52

GNU Plot files and explain its usage in the TestH documentation.

As TestH is an open source project (everyone is invited to collaborate), a way to guarantee that a

future contribution will not jeopardize the already produced code is by having a new module (say

utest.h with a set of unitary tests defined. This could be executed before accepting any merge

request on the master branch to assure that the new additions do not have a negative impact

on the production code. The function result passed or reproved could be simply modulated as

an integer data type. In addition to this suggestion, a detailed report could be printed with the

test results.

Creating more support material such as a tutorial to get the software up and running, docu-

mentation with respect to the integration of more algorithms and more examples should also

be considered.

Last but not least, the final objective of this work (and of TestH) is only fulfilled if the tool

is effectively used. The usage of this tool should be encouraged as a means of obtaining the

approval from the scientific community, which will validate the implementation and make po-

tential contributions to the source code. This will be made by publishing this work on high

quality international venues in the future.

53

54

Bibliography

[AV98] Patrice Abry and Darryl Veitch. Wavelet analysis of long-range-dependent traffic.
IEEE transactions on information theory, 44(1):2--15, 1998. 14

[Bec03] Kent Beck. Test-driven development: by example. Addison-Wesley Professional,
2003. 3

[cap] Capitalization conventions. tps://docs.microsoft.com/en-us/dotnet/standard/
design-guidelines/capitalization-conventions. Accessed: 2017-05-18. 26

[Cle06] Richard G Clegg. A practical guide to measuring the hurst parameter. arXiv preprint
math/0610756, 2006. 1

[CP16] Jean-Francois Coeurjolly and Emilio Porcu. Fast and exact simulation of complex-
valued stationary gaussian processes through embedding circulant matrix. arXiv
preprint arXiv:1604.00362, 2016. 15

[CPB08] Edward A Codling, Michael J Plank, and Simon Benhamou. Random walk models in
biology. Journal of the Royal Society Interface, 5(25):813--834, 2008. 9

[CSZ07] YangQuan Chen, Rongtao Sun, and Anhong Zhou. An improved hurst parameter es-
timator based on fractional fourier transform. In ASME 2007 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, pages 1223--1233. American Society of Mechanical Engineers, 2007. 10

[DH87] Robert B Davies and DS Harte. Tests for hurst effect. Biometrika, 74(1):95--101,
1987. xiv, 16

[Die04] Ton Dieker. Simulation of fractional brownian motion. MSc theses, University of
Twente, Amsterdam, The Netherlands, 2004. 14

[Enr04] Nathanaël Enriquez. A simple construction of the fractional brownian motion.
Stochastic Processes and their Applications, 109(2):203--223, 2004. 9

[fAR] fARMA cran - package. https://cran.r-project.org/web/packages/fArma/index.
html. Accessed: 2017-02-14. 20

[FNS+14] Diogo A. B. Fernandes, Miguel Neto, Liliana F. B. Soares, Mário M. Freire, and Pedro
R. M. Inácio. A tool for estimating the hurst parameter and for generating self-
similar sequences. In Proceedings of the 2014 Summer Simulation Multiconference,
SummerSim '14, pages 40:1--40:8, San Diego, CA, USA, 2014. Society for Computer
Simulation International. Available from: http://dl.acm.org/citation.cfm?id=
2685617.2685657. vii, x, xvii, 2

[git] Git a short story. https://git-scm.com/book/en/v2/
Getting-Started-A-Short-History-of-Git. Accessed: 2017-05-23. 26

[GPH83] John Geweke and Susan Porter-Hudak. The estimation and application of long mem-
ory time series models. Journal of time series analysis, 4(4):221--238, 1983. xiii,
13

55

tps://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions
tps://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/capitalization-conventions
https://cran.r-project.org/web/packages/fArma/index.html
https://cran.r-project.org/web/packages/fArma/index.html
http://dl.acm.org/citation.cfm?id=2685617.2685657
http://dl.acm.org/citation.cfm?id=2685617.2685657
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git

[Hig88] Tomoyuki Higuchi. Approach to an irregular time series on the basis of the fractal
theory. Physica D: Nonlinear Phenomena, 31(2):277--283, 1988. vii, ix, xiii, xvii, 1,
14

[Hos81] Jonathan RM Hosking. Fractional differencing. Biometrika, 68(1):165--176, 1981. 15

[Hos84] Jonathan RM Hosking. Modeling persistence in hydrological time series using frac-
tional differencing. Water resources research, 20(12):1898--1908, 1984. 15

[HPS+12] Richard Hardstone, Simon-Shlomo Poil, Giuseppina Schiavone, Rick Jansen, Vadim V
Nikulin, Huibert D Mansvelder, and Klaus Linkenkaer-Hansen. Detrended fluctuation
analysis: a scale-free view on neuronal oscillations. Scale-free Dynamics and Critical
Phenomena in Cortical Activity, page 75, 2012. vii, ix, xvii, 1

[Hur51] Harold Edwin Hurst. Long-term storage capacity of reservoirs. Trans. Amer. Soc.
Civil Eng., 116:770--808, 1951. vii, ix, xvii, 1, 10

[Ina09] Pedro RM Inacio. Study of the impact of intensive attacks in the self-similarity degree
of the network traffic in intra-domain aggregation points, 2009. 16, 17, 34

[JS04] Owen Dafydd Jones and Yuan Shen. Estimating the hurst index of a self-similar
process via the crossing tree. IEEE Signal Processing Letters, 11(4):416--419, 2004.
12

[Kem03] Julia Kempe. Quantum random walks: an introductory overview. Contemporary
Physics, 44(4):307--327, 2003. 9

[KF02] Thomas Karagiannis and Michalis Faloutsos. Selfis: a tool for self-similarity and long-
range dependence analysis. In 1st Workshop on Fractals and Self-Similarity in Data
Mining: Issues and Approaches (in KDD), Edmonton, Canada, 2002. 19

[KG02] Houssain Kettani and John A Gubner. A novel approach to the estimation of the hurst
parameter in self-similar traffic. In Local Computer Networks, 2002. Proceedings.
LCN 2002. 27th Annual IEEE Conference on, pages 160--165. IEEE, 2002. xiv, 15

[KRD11] Ludmila Kirichenko, Tamara Radivilova, and Zhanna Deineko. Comparative analysis
for estimating of the hurst exponent for stationary and nonstationary time series.
Information Technologies & Knowledge, 5(1):371--388, 2011. 12

[KTC07] V Kuksenko, N Tomilin, and A Chmel. The rock fracture experiment with a drive
control: A spatial aspect. Tectonophysics, 431(1):123--129, 2007. vii, ix, xvii, 1

[LLLN09] Lucas Lacasa, Bartolo Luque, Jordi Luque, and Juan Carlos Nuno. The visibility graph:
A new method for estimating the hurst exponent of fractional brownian motion. EPL
(Europhysics Letters), 86(3):30001, 2009. 10

[LTWW93] Will E Leland, Murad S Taqqu, Walter Willinger, and Daniel V Wilson. On the self-
similar nature of ethernet traffic. In ACM SIGCOMM Computer Communication Re-
view, volume 23, pages 183--193. ACM, 1993. ix, 1

[Man65] Benoit Mandelbrot. Une classe de processus stochastiques homothetiques a soi-
application a la loi climatologique de he hurst. COMPTES RENDUS HEBDOMADAIRES
DES SEANCES DE L ACADEMIE DES SCIENCES, 260(12):3274--+, 1965. 10

56

[Man67] Benoit B Mandelbrot. How long is the coast of britain. science, 156(3775):636--638,
1967. 7

[MN98] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 8(1):3--30, 1998. 25

[MVN68] Benoit B Mandelbrot and John W Van Ness. Fractional brownian motions, fractional
noises and applications. SIAM review, 10(4):422--437, 1968. 10

[MW69] Benoit B Mandelbrot and James R Wallis. Robustness of the rescaled range r/s in
the measurement of noncyclic long run statistical dependence. Water Resources
Research, 5(5):967--988, 1969. 10

[NNNN67] Edward Nelson, Edward Nelson, Edward Nelson, and Edward Nelson. Dynamical the-
ories of Brownian motion, volume 3. Princeton university press Princeton, 1967.
9

[Øks03] Bernt Øksendal. Fractional brownian motion in finance. Preprint series. Pure math-
ematics http://urn. nb. no/URN: NBN: no-8076, 2003. 9

[Pax97] Vern Paxson. Fast, approximate synthesis of fractional gaussian noise for generat-
ing self-similar network traffic. ACM SIGCOMM Computer Communication Review,
27(5):5--18, 1997. 10, 16

[PBH+94] C-K Peng, Sergey V Buldyrev, Shlomo Havlin, Michael Simons, H Eugene Stanley,
and Ary L Goldberger. Mosaic organization of dna nucleotides. Physical review e,
49(2):1685, 1994. xiv, 13

[PHSG95] C-K Peng, Shlomo Havlin, H Eugene Stanley, and Ary L Goldberger. Quantification of
scaling exponents and crossover phenomena in nonstationary heartbeat time series.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1):82--87, 1995. 13

[PMK14] Al-Sakib Khan Pathan, Muhammad Mostafa Monowar, and Shafiullah Khan. Simulation
Technologies in Networking and Communications: Selecting the Best Tool for the
Test. CRC Press, 2014. 19

[PRV08] Julio César Ramırez Pachecoa, Deni Torres Romána, and Leopoldo Estrada Vargasa.
Software tools for fractal analysis. 2008. 2, 20

[R+02] Peter Robinson et al. Long-range dependence. Encyclopedia of Environmetrics,
2002. 1

[rLa] R what is r? https://www.r-project.org/about.html. Accessed: 2017-02-18. 20

[RPGC06] Karim Mohammed Rezaul, Algirdas Pakstas, Robert Gilchrist, and Thomas M Chen.
Heaf: a novel estimator for long-range dependent self-similar network traffic. In
NEW2AN, pages 34--45. Springer, 2006. vii, ix, xiv, xvii, 1, 15

[RT05] PJC Ramirez and RD Torres. A tool for analysis of internet metrics. In Electrical and
Electronics Engineering, 2005 2nd International Conference on, pages 60--63. IEEE,
2005. xxiii, 20, 21

57

https://www.r-project.org/about.html

[Sam06] Gennady Samorodnitsky. Long memory and self-similar processes. In ANNALES-
FACULTE DES SCIENCES TOULOUSE MATHEMATIQUES, volume 15, page 107. Univer-
sité Paul Sabatier, 2006. xii, 8

[Spi13] Frank Spitzer. Principles of random walk, volume 34. Springer Science & Business
Media, 2013. 9

[STP+06] Stilian Stoev, Murad S Taqqu, Cheolwoo Park, George Michailidis, and JS Marron.
Lass: a tool for the local analysis of self-similarity. Computational statistics & data
analysis, 50(9):2447--2471, 2006. xiii, 22

[THJ07] Xianhai Tan, Yuanhui Huang, and Weidong Jin. Modeling and performance analysis
of self-similar traffic based on fbm. In Network and Parallel Computing Workshops,
2007. NPC Workshops. IFIP International Conference on, pages 543--548. IEEE, 2007.
9

[TT97] Murad S Taqqu and Vadim Teverovsky. Robustness of whittle-type estimators for
time series with long-range dependence. Communications in statistics. Stochastic
models, 13(4):723--757, 1997. 14

[TTW95] Murad S Taqqu, Vadim Teverovsky, and Walter Willinger. Estimators for long-range
dependence: an empirical study. Fractals, 3(04):785--798, 1995. 32

[VAJ08] Ghazaleh Vaziri, Farshad Almasganj, and Mohammad Sadegh Jenabi. On the fractal
self-similarity of laryngeal pathologies detection: the estimation of hurst parame-
ter. In Information Technology and Applications in Biomedicine, 2008. ITAB 2008.
International Conference on, pages 383--386. IEEE, 2008. vii, ix, xvii, 1

[WTSW97] Walter Willinger, Murad S Taqqu, Robert Sherman, and Daniel V Wilson. Self-
similarity through high-variability: statistical analysis of ethernet lan traffic at the
source level. IEEE/ACM Transactions on Networking (ToN), 5(1):71--86, 1997. 16

58

Appendix A

Full Set of Results Per Estimator and Generator

This appendix contains tables A.1, A.2, A.3, A.4, which shows the results obtained for TestH
estimators when exposed to the TestH Davies and Hart, Paxson, 4SG and fBm-SGA algorithms.
It is also present table A.5, which shows a full set of results obtained for each estimator using
the Hosking method as chapter 5 contains only the average values of the ones presented herein.

59

Table A.1: Average estimations for the algorithms present in TestH resulting from 20 time series of
length 220 produced with the Davies and Hart method.

Expected R/S VT AMT HEAF HIG PER DFA
0,05 0,14272 0,09694 0,09612 0,05115 0,04388 0,01969 0,0487
0,10 0,19198 0,14593 0,14538 0,09989 0,08196 0,01355 0,09823
0,15 0,22571 0,18848 0,18534 0,15124 0,1337 0,08241 0,14181
0,2 0,25988 0,23017 0,22924 0,20046 0,19081 0,15781 0,19767
0,25 0,30361 0,27725 0,27549 0,25088 0,24372 0,22562 0,24562
0,3 0,34281 0,32317 0,31788 0,30353 0,2939 0,28716 0,28764
0,35 0,38376 0,36737 0,36209 0,35098 0,34203 0,33791 0,33515
0,4 0,44036 0,4194 0,41555 0,39844 0,39389 0,39874 0,3869
0,45 0,46533 0,45643 0,45148 0,44754 0,43877 0,43341 0,43267
0,5 0,50665 0,50272 0,49709 0,4988 0,49124 0,49478 0,4819
0,55 0,57582 0,56248 0,55626 0,54914 0,54172 0,54933 0,53049
0,6 0,59748 0,59783 0,59239 0,59818 0,59481 0,61392 0,58188
0,65 0,66458 0,6581 0,65688 0,65162 0,65161 0,6589 0,64796
0,7 0,70086 0,7002 0,69393 0,69953 0,69326 0,70582 0,68071
0,75 0,76488 0,75741 0,75153 0,74994 0,74403 0,75567 0,73229
0,8 0,79767 0,79809 0,79474 0,79851 0,79665 0,8093 0,78846
0,85 0,83909 0,84266 0,83766 0,84623 0,84119 0,85105 0,83123
0,9 0,8793 0,88444 0,88102 0,88959 0,88718 0,89806 0,87933
0,95 0,88742 0,89532 0,90366 0,90321 0,90982 0,88618 0,92825

Table A.2: Average estimations for the algorithms present in TestH resulting from 20 time series of
length 220 produced with the Paxson method.

Expected R/S VT AMT HEAF HIG PER DFA
0,05 0,14381 0,09557 0,09644 0,04734 0,04161 0,01544 0,04995
0,10 0,18406 0,14165 0,14066 0,09923 0,09689 0,06544 0,09628
0,15 0,22661 0,18855 0,18806 0,15049 0,15607 0,09799 0,14902
0,2 0,26035 0,11685 0,16962 0,19787 0,19035 0,16708 0,19904
0,25 0,29686 0,18993 0,21433 0,25172 0,24804 0,23004 0,24069
0,3 0,34942 0,25697 0,24172 0,2986 0,30272 0,28467 0,27464
0,35 0,39127 0,36695 0,3783 0,34975 0,35501 0,34452 0,34446
0,4 0,42396 0,37602 0,36092 0,39903 0,39555 0,38809 0,39361
0,45 0,48189 0,44228 0,44432 0,44892 0,45459 0,45737 0,44088
0,5 0,51024 0,5185 0,51351 0,499 0,51395 0,50149 0,48513
0,55 0,56231 0,57054 0,57989 0,54944 0,57652 0,55577 0,53071
0,6 0,60714 0,60011 0,611 0,59919 0,59479 0,61174 0,58142
0,65 0,65783 0,6412 0,63534 0,64891 0,65164 0,65694 0,63735
0,7 0,69659 0,71584 0,71546 0,69794 0,71759 0,70804 0,68767
0,75 0,72709 0,76591 0,77571 0,74963 0,77165 0,75976 0,73799
0,8 0,77098 0,80343 0,79732 0,79809 0,81497 0,79571 0,78005
0,85 0,83563 0,8413 0,83515 0,84697 0,82352 0,86258 0,82854
0,9 0,86347 0,87952 0,88129 0,89557 0,90525 0,90952 0,90087
0,95 0,89254 0,90834 0,90657 0,92414 0,86499 0,95928 0,91884

60

Table A.3: Average estimations for the algorithms present in TestH resulting from 20 time series of
length 220 produced with the 4SG method.

Expected R/S VT AMT HEAF HIG PER DFA
0,05 0,20966 0,13069 0,15683 0,05172 0,12517 0,09757 0,13013
0,10 0,23433 0,16683 0,18501 0,09934 0,14169 0,14179 0,15388
0,15 0,25654 0,2034 0,21476 0,15027 0,17119 0,18114 0,18433
0,2 0,28624 0,24415 0,25293 0,20206 0,23036 0,21491 0,22839
0,25 0,32311 0,28726 0,29339 0,2514 0,29146 0,276 0,26981
0,3 0,35204 0,32633 0,32543 0,30062 0,34013 0,29717 0,29794
0,35 0,39687 0,37237 0,37314 0,34786 0,3352 0,35953 0,35018
0,4 0,42789 0,41232 0,41376 0,39675 0,4144 0,39259 0,40109
0,45 0,47286 0,46126 0,45165 0,44966 0,42715 0,44329 0,42083
0,5 0,51434 0,50814 0,49718 0,50195 0,4539 0,49355 0,46907
0,55 0,57374 0,56266 0,55221 0,55157 0,5632 0,54916 0,52023
0,6 0,59857 0,59833 0,58807 0,59808 0,58258 0,58717 0,56731
0,65 0,64954 0,65027 0,64231 0,651 0,67066 0,63831 0,6271
0,7 0,69829 0,69974 0,6896 0,70118 0,69301 0,7017 0,67077
0,75 0,73172 0,74024 0,73369 0,74877 0,77675 0,73862 0,72912
0,8 0,76926 0,78507 0,78047 0,80088 0,81746 0,7873 0,78708
0,85 0,80447 0,83009 0,82416 0,8557 0,88037 0,81772 0,83792
0,9 0,88563 0,89176 0,89114 0,89788 0,87768 0,86283 0,89602
0,95 0,87048 0,90415 0,928 0,93782 0,99155 0,88367 0,94755

Table A.4: Average estimations for the algorithms present in TestH resulting from 20 time series of
length 220 produced with the fBm-SGA method.

Expected R/S VT AMT HEAF HIG PER DFA
0,5 0,53003 0,51402 0,50941 0,49801 0,4919 0,50163 0,48417
0,55 0,55749 0,54127 0,54169 0,52504 0,55642 0,54804 0,52632
0,6 0,60404 0,58147 0,58626 0,5589 0,59557 0,59651 0,57329
0,65 0,66233 0,62929 0,64471 0,59625 0,69378 0,65054 0,64252
0,7 0,70121 0,67075 0,68067 0,64029 0,74299 0,69919 0,67004
0,75 0,75451 0,72143 0,73518 0,68836 0,74236 0,76042 0,7296
0,8 0,80722 0,77412 0,78737 0,74102 0,77594 0,80491 0,78077
0,85 0,81385 0,80204 0,80877 0,79023 0,83425 0,84898 0,81041
0,9 0,86853 0,86111 0,87492 0,85369 0,8767 0,89668 0,89511
0,95 0,89526 0,9261 0,93205 0,93528 0,96191 0,95418 0,9596

61

Table A.5: Average estimations for the algorithms present in TestH, Herramienta de Análisis de Tráfico Telemático Autosemejante and SELF-similarity analysIS tools resulting
from 20 time series of length 220 (218 for SELF-similarity analysIS) for each expected Hurst value, produced with the Hosking method.

TestH HATTA SELFIS
Expected R/S VT AMT HEAF HIG PER DFA R/S VT PER R/S VT PER
0,05 0,13986 0,09503 0,09521 0,0502 0,0617 0,01023 0,05073 0,1555 0,05438 -0,0284 0,162 0,011 0,069
0,10 0,1852 0,14244 0,14218 0,09968 0,16565 0,00629 0,09891 0,1935 0,1238 0,0715 0,202 0,106 0,033
0,15 0,22363 0,18685 0,18781 0,15007 0,1781 0,09611 0,15294 0,2318 0,1472 0,14 0,209 0,098 0,03
0,2 0,26692 0,23337 0,23329 0,19983 0,25505 0,16586 0,19958 0,2758 0,2235 0,2379 0,292 0,218 0,179
0,25 0,30184 0,27645 0,27512 0,25106 0,26513 0,2358 0,24708 0,3141 0,2298 0,244 0,317 0,239 0,237
0,3 0,34636 0,32336 0,3178 0,30036 0,35379 0,29115 0,28368 0,347 0,2857 0,2924 0,359 0,256 0,286
0,35 0,39668 0,37457 0,36946 0,35246 0,37941 0,33387 0,33713 0,3901 0,3458 0,349 0,398 0,348 0,345
0,4 0,39688 0,39858 0,39649 0,40027 0,42375 0,38823 0,39403 0,4425 0,4089 0,4045 0,451 0,411 0,401
0,45 0,48058 0,46507 0,46201 0,44957 0,47432 0,44989 0,4404 0,4851 0,4376 0,4502 0,49 0,428 0,453
0,5 0,52935 0,51481 0,51574 0,50028 0,49873 0,49408 0,50306 0,5461 0,5065 0,502 0,537 0,492 0,503
0,55 0,56792 0,55944 0,55695 0,55096 0,56277 0,54908 0,54348 0,5698 0,5237 0,5532 0,565 0,529 0,552
0,6 0,61019 0,60483 0,59845 0,59946 0,61281 0,60087 0,58032 0,6015 0,5878 0,6001 0,615 0,556 0,596
0,65 0,64613 0,64818 0,63932 0,65023 0,6637 0,65112 0,62365 0,663 0,6296 0,6404 0,655 0,605 0,647
0,7 0,71884 0,70871 0,70581 0,69858 0,68924 0,70774 0,68989 0,6885 0,6739 0,7043 0,693 0,667 0,706
0,75 0,74073 0,74465 0,73885 0,74857 0,75138 0,75547 0,73117 0,7507 0,7383 0,7553 0,739 0,739 0,753
0,8 0,8343 0,82175 0,81902 0,80919 0,80149 0,80956 0,80101 0,7833 0,8031 0,8052 0,779 0,829 0,804
0,85 0,83479 0,84177 0,83959 0,84875 0,86135 0,85957 0,84221 0,8396 0,8421 0,8553 0,828 0,833 0,856
0,9 0,87952 0,88374 0,87792 0,88796 0,8885 0,90811 0,87051 0,8461 0,8291 0,9105 0,821 0,871 0,906
0,95 0,89724 0,91555 0,91874 0,93386 0,95737 0,96275 0,94344 0,9047 0,8987 0,9567 0,866 0,898 0,956

62

	Introduction
	Motivation and Scope
	Problem Statement and Objectives
	Adopted Approach for Solving the Problem
	Main Contributions
	Dissertation Overview

	Preliminaries
	Introduction
	Self-similarity and Hurst Parameter
	Historical Overview and the Hurst Parameter
	Self-similarity
	Random Walk
	Fractional Brownian Motion
	Fractional Gaussian Noise

	Estimators for the Hurst Parameter
	Rescaled Range Statistics
	Variance Time
	Absolut Moments Time
	Embedded Branching Process
	Detrended Fluctuation Analysis
	Periodogram
	Whittle Estimator
	Wavelets-Based Estimator
	Higuchi Method
	Hurst Exponent by Autocorrelation Function

	Self-similar Sequences Generators
	Hosking
	Cholesky
	Davies and Hart
	Aggregation of Processes
	Paxson
	Fractional Brownian Motion Sequential Generation Algorithm
	Simple Self-Similar Sequences Generator

	Conclusion

	Related Work and TestH
	Introduction
	Related Works
	SELFIS
	SELQoS
	HATTA
	Statistical Tools
	State of the Art Wrap-up

	TestH
	Library Overview
	Directory Structure
	Library Architecture
	Additional Features
	Code Management

	Tool Comparison
	Conclusion

	Implemented Estimators and Generators
	Introduction
	Implemented Estimators of the Hurst Parameter
	Detrended Fluctuation Analysis
	Higuchi
	Periodogram
	HEAF

	Implemented Generators of Self-Similar Sequences
	Davies and Hart

	Other Contributions
	API Additions
	Documentation and Website
	Usage Example

	Conclusion

	Evaluation
	Introduction
	Testing Apparatus
	Evaluation of Generators
	Generators Computational Time
	Generators Memory Consumption
	Generators Accuracy

	Evaluation of Estimators
	Estimators Computational Time
	Estimators Memory Consumption
	Estimators Accuracy

	Discussion of the Results
	Conclusion

	Conclusions and Future Work
	Main Conclusions
	Future Work

	Bibliography
	Full Set of Results Per Estimator and Generator

