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Resumo alargado

No nosso dia-a-dia as imagens são obtidas, processadas, comprimidas, guardadas, transmitidas
e reproduzidas. Em qualquer destas operações podem ocorrer distorções que prejudicam a sua
qualidade. A qualidade destas imagens pode ser medida de forma subjectiva, o que tem a
desvantagem de serem necessários vários testes, a um número considerável de indivíduos para
ser feita uma análise estatística da qualidade perceptual de uma imagem. Foram desenvolvi-
das várias métricas objectivas, que de alguma forma tentam modelar a percepção humana de
qualidade. Todavia, em muitas aplicações a representação de percepção de qualidade humana
dada por estas métricas fica aquém do desejável, razão porque se propõe neste trabalho usar
modelos de reconhecimento de padrões que permitam uma maior aproximação.
Neste trabalho, são dadas definições para imagem e qualidade e algumas das dificuldades do
estudo da qualidade de imagem são referidas. É referida a importância da qualidade de imagem
como ramo de estudo, e são estudadas diversas métricas de qualidade.
São explicadas três métricas, uma delas que usa a qualidade original como referência (SSIM) e
duas métricas sem referência (BRISQUE e QAC). Uma comparação é feita entre elas, mostrando-
– se uma grande discrepância de valores entre os dois tipos de métricas.
Para os testes feitos é usada a base de dados TID2013, que é muitas vezes considerada para
estudos de qualidade de métricas devido à sua dimensão e ao facto de considerar um grande
número de distorções. Neste trabalho também se fez um estudo dos tipos de distorção incluidos
nesta base de dados e como é que eles são simulados.
São introduzidos também alguns conceitos teóricos de reconhecimento de padrões e alguns
algoritmos relevantes no contexto da dissertação, são descritos como o K-means, KNN e as
SVMs. Algoritmos de agregação de descritores como o “bag of words” e o “fisher-vectors”
também são referidos.
Esta dissertação adiciona métodos de reconhecimento de padrões a métricas objectivas de qua–
lidade de imagem. Uma nova técnica é proposta, baseada na divisão de imagens em células, nas
quais uma métrica será calculada. Esta divisão permite obter descritores locais de qualidade
que serão agregados usando “bag of words”. Uma SVM com kernel RBF é treinada e testada na
mesma base de dados e os resultados do modelo são mostrados usando cross-validation.
Os resultados são analisados usando as correlações de Pearson, Spearman e Kendall e o RMSE
que permitem avaliar a proximidade entre a métrica desenvolvida e os resultados subjectivos.
Este modelo melhora os resultados obtidos com a métrica usada e demonstra uma nova forma
de aplicar modelos de reconhecimento de padrões ao estudo de avaliação de qualidade.
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Abstract

Every day millions of images are obtained, processed, compressed, saved, transmitted and re-
produced. All these operations can cause distortions that affect their quality. The quality of
these images should be measured subjectively. However, that brings the disadvantage of achiev-
ing a considerable number of tests with individuals requested to provide a statistical analysis of
an image’s perceptual quality. Several objective metrics have been developed, that try to model
the human perception of quality. However, in most applications the representation of human
quality perception given by these metrics is far from the desired representation. Therefore,
this work proposes the usage of machine learning models that allow for a better approximation.
In this work, definitions for image and quality are given and some of the difficulties of the study
of image quality are mentioned. Moreover, three metrics are initially explained. One uses the
image’s original quality has a reference (SSIM) while the other two are no reference (BRISQUE
and QAC). A comparison is made, showing a large discrepancy of values between the two kinds
of metrics.
The database that is used for the tests is TID2013. This database was chosen due to its dimension
and by the fact of considering a large number of distortions. A study of each type of distortion
in this database is made.
Furthermore, some concepts of machine learning are introduced along with algorithms relevant
in the context of this dissertation, notably, K-means, KNN and SVM. Description aggregator
algorithms like “bag of words” and “fisher-vectors” are also mentioned.
This dissertation studies a new model that combines machine learning and a quality metric for
quality estimation. This model is based on the division of images in cells, where a specific
metric is computed. With this division, it is possible to obtain local quality descriptors that will
be aggregated using “bag of words”. A SVM with an RBF kernel is trained and tested on the same
database and the results of the model are evaluated using cross-validation.
The results are analysed using Pearson, Spearman and Kendall correlations and the RMSE to
evaluate the representation of the model when compared with the subjective results. The
model improves the results of the metric that was used and shows a new path to apply machine
learning for quality evaluation.
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Chapter 1

Introduction

According to the dictionary1 an image is a representation of a physical likeness or representa-
tion of a person, animal or thing. Digital images are the result of the “acquisition, processing,
compression, storage, transmission and reproduction” [2] of that representation. The repre-
sentations undergo all these forms of processing before they are ultimately displayed to a con-
sumer. Every one of these processing steps alters the appearance of an image resulting in the
need to assess impact on the final visual quality. Quality can be defined as “the perception,
reflection about the perception and the description of an individual’s comparison and judg-
ment process” [3]. There is, however, some misunderstanding and confusion of this term with
“Beauty”.
“Beauty is in the eye of the beholder”. This famous phrase first appeared in the 3rd century
BC in Greece. Famous writers like John Lyly, William Shakespeare, Benjamin Franklin and David
Hume with slight changes have used it several times since. This old phrase couldn’t be more
current and correct today. Its literal meaning is that the perception of beauty is subjective.
However beauty is not quality. An individual could take a picture of a beautiful landscape
with a camera of questionable performance and obtain a sub-par outcome. That photograph
of something arguably pleasant to the human eye might have poor quality. The opposite could
equally happen.
Knowing this, “can Image Quality be usefully quantified?” This line is the title of the first chapter
of a book by Brian Keelan [4]. It summarizes the typical researchers’ struggle for the quality
subjective prediction. That perception and interpretation of image quality can easily change
from any person to another. Trying to predict the quality the average individual will evaluate
an image on is an arduous task. Every one of the processing steps mentioned earlier alter the
appearance of an image resulting in a need to assess the impact of processing on final visual
quality.

1http://www.dictionary.com/
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Chapter 2

Objectives and Scope

These days, with the high amount of handheld devices, social media and other electronic devices
that display visual information it is of the most importance that the end-user has a satisfactory
Quality of Service (QoE). Image quality, has perceived by humans, can be measured in a sub-
jective way through subjective tests. These tests have numerous disadvantages, namely long
time sessions and the number of ratings per person required to achieve a reliable result. To
avoid these disadvantages, objective metrics have been developed to simulate human behav-
ior. These models objectively compute image quality and are later correlated to evaluate their
performance. This dissertation addresses the need to use the knowledge about the human per-
ceived quality. The goal of this work is to improve the typical values provided by metrics using
the application of machine learning to image quality evaluation. A new technique is proposed
based on the division of images into several cells where the mean of the SSIM metric is com-
puted. A sliding window over a grid of cells that divide the image will define a set of image
descriptors that are aggregated using a bag of words.
In Chapter 1 definitions for image and quality were given.
Chapter 3 considers why Image Quality Assessment (IQA) is important and gives a definition for
“image metric” and how they are classified. A general framework for IQA systems is given. A
classifications for Full Reference (FR) image metrics, are defined. Three metrics, SSIM, QAC and
BRISQUE, are explained and a comparison between them is made. The image quality database
that will be used is analyzed. Each distortion of the database is explained.
Chapter 4, introduces machine learning methods in the context of this dissertation and describes
briefly algorithms like K-means clustering, K-Nearest Neighbors (KNN), Support Vector Machine
(SVM)s and BOW.
The proposed approach will be described in the following chapter 5 along with the testing results
using SSIM, and an analysis of the parameters influence.
Finally some conclusions and future research directions will be discussed in chapter 6.
The main conclusions of this work were published in the 2016 Eighth International Conference
on Quality Of Multimedia EXperience (QoMEX) [5].
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Chapter 3

Image Quality

3.1 The pivotal necessity of Image Quality Assessment

IQA has, generally speaking, three kinds of applications [6] namely, to monitor image quality
control systems, benchmarking image processing systems and algorithms and it’s embedding on
image processing systems to optimize the algorithms and parameter settings.
An example of the first application could be an image and video acquisition system using a
quality metric to monitor and automatically adjust itself to get the best image and video data
quality possible. Another possible example would be a network video server. The digital video
transmitted could have its quality examined and control the video streaming.
A second case example can be the continuous evaluation of several image processing systems,
that require a certain image/video quality for a specific task.
Finally the third application can be exemplified by a visual communication system that uses a
quality metric to improve the design of the pre-filtering and bit assignment algorithms at the
encoder, and the post processing algorithms at the decoder.
With the proliferation of network handheld devices which can “capture, store, compress, send
and display a variety of audiovisual stimuli like High Definition Television (HDTV), Internet Proto-
col Television (IPTV) and websites such as Youtube and Facebook, an enormous amount of visual
data is making its way to consumers” [7]. Due to this, there has been a considerable effort to
ensure that the end users will be presented with a satisfactory QoE. According to QUALINET’s
White Paper [3], “Quality of Experience is the degree of delight or annoyance of the user of an
application or service. It results from the fulfillment of his or her expectations with respect to
the utility and or enjoyment of the application or service in the light of the user’s personality
and current state”. Since “the human eyes are the ultimate receivers in most image processing
environments” [8], a subjective quality measurement Mean Opinion Score (MOS) of the system
is the best indicator of how distortions affect perceived quality. The big disadvantage of doing
this is the impracticality and time consumption needed to pool a large number of people to
evaluate one or more images. Hence, models that somehow compute objectively the image
quality and simulate the human behavior are required. Nevertheless, subjective assessment of
visual quality is still used in all Image Quality databases to correlate with image quality metrics
to analise it’s performances.

3.2 Definition of image quality metric

Image quality assessment aims to “use computational models (metrics) to measure the image
quality consistently with subjective evaluations” [9].
Objective image quality metrics can be classified in three ways:

Full Reference - There is the assumption that an entire reference image is known, one of the
inputs is a pristine reference image with respect to which the quality of the distorted
image is assessed;
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No reference or “blind” quality assessment - No reference image is available. The only in-
formation that the algorithm receive before making a prediction is the distorted image
whose quality is being assessed;

Reduced reference - When there is only a partial sample of the reference image or when the
algorithm possesses some information regarding the reference image, but not the actual
reference image itself.

One of the first metrics was the Mean Squared Error (MSE), a full reference quality metric that
consists in calculating the mean of the square root of the luminosity difference between the
pixels of the distorted image and the pixels of the reference image. The MSE allows a comparison
between the “true” pixel values for the original image and the noisy image representing the
average of the squares of the “errors”.

MSE =
1

mn

m−1∑
0

n−1∑
0

∥f(i, j)− g(i, j)∥2 (3.1)

Peak Signal-to-Noise Ratio (PSNR) is an expression for the ratio between the maximum possi-
ble value(power) of a signal and the power of distorting noise that affects the quality of its
representation.

PSNR = 20log10(
MAXf√
MSE

) (3.2)

It is usually expressed in terms of the logarithmic decibel scale due to the wide dynamic range
(ratio between the largest and smallest possible values of a changeable quantity). The higher
the PSNR of an image, the more quality the degraded image has in comparison to the original.

Common models like MSE and PSNR did not provide satisfying results when correlated with sub-
jective results and the image quality researchers were forced to find other mechanisms that
would enhance the outcome when compared to its subjective equivalents [10].

Modern IQA algorithms estimate quality using a variety of image analysis techniques. When a
reference image is available, local differences between the reference and distorted images are
measured in various domains, and such differences are mapped for quality estimation.

3.3 Image Quality Assessment based on Error Sensitivity

Computational models for IQA have been developed by exploring effective features that are
consistent with the characteristics of a Human Visual System (HVS) for visual quality perception.
An image signal that is being subjected to an image metric can be considered as the sum between
an undistorted image signal and an error signal [1]. IQA models are necessary because two
distorted images that have the same MSE can have distinct errors that can be more or less
visible than others. This is due to the fact that the MSE can only quantify the intensity of the
error signal [1]. We can conclude from this that a perceptual loss of image quality isn’t at all
related to the visibility of the error signal. Most IQA approaches are related with error sensitivity
aspects like visibility.

6



A Bag of Words Description Scheme for Image Quality Assessment

3.3.1 Framework

In the image 3.1, adapted from [1], the steps of an IQA system based on error sensitivity can
be seen.

Figure 3.1: Prototype of an Image Quality Assessment System based on Error Sensitivity [1]

The system is comprised of Pre-Processing, Contrast Sensitivity Function (CSF) Filtering, Channel
Decomposition, Error Normalization, Error Pooling and Quality measurement [1]. The CSF fea-
ture may be implemented separately, as displayed in the scheme, or in the Error Normalization
stage.

3.3.2 Pre-Processing

This phase consists in basic operations devised to eliminate known distortions from the images
that will be processed.
Firstly, if the images to be compared don’t have the same size, they are scaled and aligned.
The used signals will, also, be beforehand converted from the RGB colour values to Y CbCr

colour space. This transformation is done because it is perceived that Y CbCr is more appropri-
ate for comparisons related with the HVS. RGB is an additive colour model in which red, green
and blue light are added together to reproduce a broad array of colours. RGB signal are not
efficient as a representation for storage and transmission, since they have a lot of redundancy.
Y CbCr is a practical approximation to colour processing and perceptual uniformity, where the
primary colours (red, green and blue) are processed into perceptually meaningful information.
Y CbCr is used to separate out the luminance component (Y ) and two Chroma components (Cb

and Cr). With this conversion the Y channel is typically used as the metric input, and the
Chroma components are in many cases just ignored.
The quality assessment metrics may need to convert the values of the digital pixels, stored
in the computer memory in luminance values on the display device, using a linear point-wise
transformation.
A low-pass filter simulating a point-spread function can be applied.
Finally, both images can be modified using a nonlinear point operation to simulate light adap-
tation.
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3.3.3 Constrast Sensitivity Filtering

The CSF measures the threshold sensitivity of the HVS over a wide range of different spatial and
temporal frequencies [11]. Some image quality metrics include a stage that analyses the signal
according to this function, playing a central role in image processing techniques like compres-
sion. It is normally performed by applying a linear filter that estimates the response frequency
of the CSF [1]. Nonetheless, other metrics also apply CSF after the channel decomposition as a
base sensitivity normalization factor.

3.3.4 Channel Decomposition

In this stage images are divided into channels depending on their spatial frequencies, temporal
frequencies or their orientation [1]. Whilst some methods of quality assessment implement
sophisticated channel decomposition, others just apply a Discrete Cosine Transform (DCT) or
separate the signal bands using wavelet transforms.

3.3.5 Error Normalization

This stage computes the difference between the reference and the distorted for each channel
that was decomposed in the previous stage, followed by their normalization using a mask. If two
or more image components have similar spatial frequencies, temporal frequencies or orienta-
tions, this process will decrease their visibility [1]. The difference is calculated by subtracting
the intensity of the reference and the distorted coefficients of the same channel within a spatial
neighborhood. Some methods also consider the effect of contrast response saturation.

3.3.6 Error Pooling

This final step is where a single value, that classifies the image quality objectively is obtained.
All the different channels previously obtained, along with the normalized error signals, are
pooled together. On most metrics, the pooling takes the shape of a Minkowsky norm [1],

E({el,k}) =

(∑
l

∑
k

|el,k|β
)1/β

(3.3)

where el,k is the normalized error of theK-th coefficient of the l-th channel and β is a exponen-
tial constant typically chosen between 1 and 4. Minkowsky pooling can be done is space(index
k) and after in frequency (index l) or vice-versa, with some non-linearity between them, or pos-
sibly with different β. A spatial map can indicate the relative importance of different regions
and what can be used to obtain variant spatial weighting.

3.3.7 Evaluation of the Objective Models

To evaluate the performance of a metric, the Pearson correlation coefficient, Spearman rank
order correlation, Kendall rank order correlation and the RMSE, between the subjective MOS
and the quality estimation, are used.
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3.3.7.1 Regression Model

Before using the measures, a logistic function is used as regression model of the estimated
quality to fit the data,

MOSp = b1 +
b2

1 + e(−b3(MR−b4))
(3.4)

The values of the MOS associated an image are normalized according to equation 3.5 where
MR is the result of our methodology and b1, b2, b3 and b4 denote the regression parameters,
initialized with MOSmin, MOSmax, MRmin and MRmax respectively,

MOSn(i) = 5× MOS(i)− MOSmin

MOSmax − MOSmin
(3.5)

3.3.7.2 Pearson Linear Correlation

The Pearson linear correlation coefficients rP measures the model prediction accuracy.

rP =

∑N
j=1(Sj − S̄)(Oj − Ō)√∑N

j=1(Sj − S̄)2(
∑N

j=1 Oj − Ō)2
(3.6)

In this case, Sj denotes the subjective score MOSn and Oj the objective MOSp. S̄ and Ō are
the means of the respective data sets and N represents the total number of image samples
considered in the analysis.

3.3.7.3 Spearman Rank-Order Correlation

The Spearman rank-order correlation coefficient rS evaluates the model prediction monotonic-
ity.

rS = 1− (
6
∑N

j=1 d
2
j

N(N2 − 1)
) (3.7)

where d is the difference between the ranked MOSn and the ranked MOSp. In practice, this
is computed as the Pearson correlation, but instead of the variables the ranked variables are
used. N represents the total number of image samples considered in the analysis.

3.3.7.4 Kendall Rank-Order Correlation

Kendall rank correlation rK is a non-parametric test that measures the strength of dependence
between two variables [12].

rK =
Nc −Nd

1
2N(N − 1)

(3.8)

where Nc is the number of concordant pairs [12], Nd is the number of discordant pairs and N

represents the total number of image samples.

9



A Bag of Words Description Scheme for Image Quality Assessment

3.3.7.5 Root Mean Square Error

RMSE measures the quality prediction error that is maximized when the RMSE is minimized.

RMSE =

√∑N
j=1(Sj −OJ)2

N
(3.9)

where N represents the total number of image samples considered in the analysis.

3.4 Image Metrics

Numerous objective methods for image evaluation have been introduced over the years from
the first ones like MSE and PSNR (previously mentioned) to the more recent metrics. These met-
rics, as it has been previously noted, can be FR, No Reference (NR) or Reduced Reference (RR).
The FR quality assessments can be divided in different categories: difference measures and
statistical-oriented metrics, structural similarity measures, visual information metrics, infor-
mation weighted metrics, HVS-inspired metrics and colour difference metrics.

Difference Measures and Statistical-Oriented Metrics - These metrics are based on pixel val-
ues differences and provide measures between the reference and the distorted image.
Two examples of this category are the MSE and the PSNR.

Structural Similarity Measures- These metrics model the quality based on pixel statistics to
model the luminance (using the mean), the contrast (variance), and the structure (cross-
correlation).

Visual Information Measures - These metrics aim at measuring the image information by mod-
eling the psycho-visual features of the HVS or by measuring the information fidelity. Then,
the models are applied to the reference and distorted image, resulting in a measure of
the difference between them.

Information Weighted Metrics - The metrics in this category are based on the modeling of rel-
ative local importance of the image information. As not all regions of the image have the
same importance in the perception of distortion, the image differences computed by any
metrics have allocated local weights resulting in a more perceptual measure of quality.

HVS Inspired Metrics - These metrics try to model empirically the human perception of images
from real scenes.

Colour Difference Measures - The colour differencemetrics were developed because the CIE1976
colour difference magnitude in different regions of the colour space did not appear cor-
related with perceived colours.

One of the most impactful FR quality metric SSIM. It is a method that improved upon earlier
metrics such as PSNR and MSE. The 2004 paper in which it is described[1] is one of the most
cited papers in image processing and was even awarded the Institute of Electrical and Electronics
Engineers (IEEE) Signal Processing Society Best Paper Award1. This metric will be used later in
the algorithm proposed in this dissertation.

1http://signalprocessingsociety.org/uploads/awards/Best_Paper.pdf
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Other metrics, this time RR, are QAC, that uses unsupervised Machine Learning (K-Means), and
BRISQUE, that uses supervised Machine Learning (SVM).
In the following sections are described the SSIM metric used in this work and QAC and BRISQUE as
they are metrics that reveal between the most powerful NR metrics based on Machine Learning.

3.4.1 Structural Similarity Index Metric

The SSIM [1] is an objective metric based on the degradation of structural similarity. SSIM is
based on that assumption that the HVS extracts structural information from the analyzed image
textures. The SSIM index incorporates three representative features for luminance, contrast
and structural information that are extracted by the average pixel intensity values, the stan-
dard deviation of the local image regions and the cross correlation values between two local
image regions and the cross correlation values between two local image regions, respectively.
Supposing x and y are two non-negative image signals, with one being the reference image and
the other the distorted image, the luminance of each signal is compared:

µ =
1

N

N∑
i=1

xi (3.10)

The luminance comparison function l(x, y) is a function of µx and µy. The signal contrast is
calculated as described earlier:

σx = (
1

N − 1

N∑
i=1

(xi − µx)
2)1/2 (3.11)

The contrast comparison c(x, y) is then the comparison of σx and σy. The signal comparison is
then normalized(divided) by its own standard deviation. The structure comparison is conducted
on these normalized signals (x− µx)σx and (y − µy)σy.
The three components are combined resulting is an overall similarity measure:

S(x, y) = f(l(x, y), c(x, y), s(x, y)) (3.12)

These three components are relatively independent from each other.
For luminance comparison:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(3.13)

where the constant C1 is included to avoid instability when µ2
x + µ2

y is approximately zero. C1

is defined as

C1 = (K1 ∗ L)2 (3.14)

where L is the dynamic range of the pixel values (255 for 8-bit grayscale images) and K1 << 1 is
a small constant. Weber’s law says that the magnitude of a just-noticeable luminance change δ

I is approximately proportionate to the background luminance I for a wide range of luminance
values. This means that the HVS is sensitive to relative luminance changes and it is not to
absolute luminance change. Applying Weber’s law on the luminance equation,we can rewrite
µy as (1 + R) ∗ µx, where R represents the size of luminance change relative to backgroung
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luminance. Substituting in Eq. :

l(x, y) =
2(1 +R)

1 + (1 +R)2 + C1/µ2
x

(3.15)

The contrast function is similar to the luminance function:

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(3.16)

where C2 = (K2L)
2andK2 << 1. The structural comparison is done after luminance subtraction

and variance normalization.

s(x, y) =
σxy + C3

σxσy + C3
(3.17)

In the discrete form, σxy can be estimated as:

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (3.18)

Combining the three equations:

SSIM(x, y) = [l(x, y)]α × [c(x, y)]β × [s(x, y)]γ (3.19)

where α > 0, β > 0 and γ > 0 are parameters that adjust the relative importance of each
component. To simplify the expression α = β = γ = 1 and C3 = C2/2 resulting in a specific
form of the SSIM index:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.20)

3.4.2 Quality Aware Clustering

QAC [13] is a RR metric for general purpose Blind Image Quality Assessment (BIQA). The metric
is built upon a set of some reference and distorted images (but without human score), divide
the distorted images into overlapped cells and use a percentile pooling strategy to estimate the
local quality level of each patch. Then the QAC method is proposed to learn a set of centroids
on each quality level. These centroids are to obtain the quality of each cell in a given image,
using a nearest neighbor algorithm, and subsequently a perceptual quality score of the whole
image can be obtained.

3.4.2.1 Learning of Quality-Aware Centroids by QAC

First, there is a Random selection of 10 source images from the Berkeley Image Database [14]
due to them having different scenes from the images in the databases. Each image is distorted
to obtain the four of the most common types of distortions: Gaussian noise, Gaussian blur,
JPEG compression and JPEG2000 compression. There are three quality levels for each of the
four distortions to make sure that the quality distribution of the resulted samples that will be
obtained is balanced.
The distortion level is controlled as in the following, standard deviation for Gaussian noise, blur
kernel for Gaussian Blur, compression ratio for JPEG and JPEG2000.
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To control each level of distortion for each of them,

A dataset of 120 distorted images is obtained from the 10 reference images. Each reference and
distorted image is divided into overlapped cells.A cell of one reference image will be denoted by
xi and the corresponding distorted cell will be denoted by di. To assign a perceptual quality to di,
a FR IQA similarity function such as SSIM [1] previously mentioned or Feature SIMilarity (FSIM) [9]
to calculate the similarity between xi and di. This way, there will be no dependency of human
scores. The FSIM’s formula is

si = S(xi, di) =
2PC(xi)PC(di) + t1

PC(xi)2 + PC(di)2 + t1
× 2G(xi)G(di) + t2

G(xi)2 +G(di)2 + t2
(3.21)

where PC(xi) and G(xi) refer to the phase congruency and gradient magnitude at the center
of xi, respectively, and t1 and t2 are positive constants for numerical stability.

Each cell(dy ) will have a similarity score between 0 and 1. The si’s are normalized using a
percentile pooling procedure [13] to obtain an average close to the overall perceptual quality.
In particular, si is divided by a constant C to define an average quality of all patches in an
image will equal to the percentile pooling result. Denoting with Ω as the set of patch indices
of an image, and by Ωp the set of indices of the 10% percentile results with the lowest quality
patches. The normalization factor C is calculated as:

C =

∑
iΩsi

10
∑

iΩpsi
(3.22)

After that, each si is normalized as: ci = si/C.

With the cell quality normalization strategy, we acquire a set of cells di and their normalized
scores ci, on which the quality-aware clustering can be executed. Using ci, di can be grouped
into groups of similar quality obtaining different clusters based on local structures. Because ci

is a real-value number between 0 and 1, firstly ci is uniformly quantized into L levels, denoted
by ql = l/L, l = 1, 2, ..., L. The cells that have the same quality are then grouped into the same
group, denote by Gl.

Gl =

di|ci 6 ql, for l = 1

di|ql−1 < ci < ql, for l = 2, ..., L
(3.23)

The clustering is then applied to each group Gl. To enhance the clustering accuracy, the QAC
within each Gl should be based on some structural feature of di. The following high pass filter
to extract the feature of cell di:

hσ(r) = 1r=0 −
1√
2πσ

exp(− r2

2σ2
) (3.24)

where σ is the scale parameter to control the shape of the filter. By convolving hσ with the
image, the image’s detailed structures will be enhanced. Three hσ are used on different scales
(σ = 0.5, 2.0, 4.0) to extract the feature of di. The filtering outputs of di on the three scales are
concatenated into a feature vector, denoted by fi. The acQAC of diεGl is then performed by
applying the K-mean clustering algorithm to fi:
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minml,k

K∑
k=1

∑
diεGl,k

∥fi −ml,k∥2 (3.25)

where Gl,k is the kth cluster in Group Gl. The Euclidean distance is used as the similarity metric
due to complexity costs.

3.4.2.2 Performing Blind Quality Estimation

To perform blind quality pooling, using the learned quality-aware centroids ml,k, one must go
through the following stages: patch partition and feature extraction, cluster assignment on
multiple levels, patch quality estimation and final pooling with all patches’ quality.

Patch partition and feature extraction- Each test image is partitioned intoN overlapped patches
yi and use high pass filters hσ to extract the feature vector, denoted by fy

i , of each yi,
i = 1, ..., N.

Cluster assignment- Find the nearest centroid to the feature vector fy
i of patch yi by assuming

that patches which have similar structural features will have similar visual quality.

Patch quality estimation- The distance between fy
i andml,ki is δl,i = ∥fy

i −ml,k∥
2. The shorter

the distance σl,k is, the more likely patch yi should have the same quality level as that of
centroid ml,ki. Therefore, we can use the following weighted average rule to determine
the final quality score of yi:

zi =

∑L
l=1 qlexp(−δl,i/λ)∑L
l=1 exp(−δl,i/λ)

(3.26)

where λ is a parameter to control the decay rate of weight exp(−δl,i/λ) with reference to
distance δl,i.

Final pooling Using the estimated quality zi of all patches yi, the final single quality score,
denoted by z of the test image, y is obtained. The pooling is done using the following
equation:

z =
1

N

N∑
i=1

zi (3.27)

3.4.3 Blind/Referenceless Image Spatial QUality Evaluator

BRISQUE [7] is also a RR metric.
The metric starts by computing normalized luminances in a distorted image using local mean
subtraction and divisive normalization.

(i, j) = (I(i, j)− µ(i, j))/(σ(i, j) + C) (3.28)

where, iε1, 2...M, jε1, 2...N are spatial indices, M, N are the image height and width respec-
tively, C = 1 is a constant that prevents divisions by 0 and
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µ(i, j) =

K∑
k=−K

L∑
l=−L

ωk,l(i, j) (3.29)

and

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

ωk,l(Ik,l(i, j)− µ(i, j))2 (3.30)

where ωk,l|k=−K,...,K,l=−L,...,L is a 2D circularly-symmetric Gaussian weighting function sampled
out to 3 standard deviations and rescaled to unit volume. K and L are constants equal to
3. The transformed luminances are refered as Mean Subtracted Contrast Normalized (MSCN)
coefficients.

Also, the statistical relationships between neighboring pixels are modeled according to four
orientation (horizontal (H), vertical (V ), main-diagonal (D1) and secondary diagonal(D2)).

H(i, j) = (i, j)(i, j + 1) (3.31)

V (i, j) = (i, j)(i+ 1, j) (3.32)

D1(i, j) = (i, j)(i+ 1, j + 1) (3.33)

D2(i, j) = (i, j)(i+ 1, j − 1) (3.34)

for i ε 1, 2...M and j ε 1, 2...N

For each of the four orientations, four parameters are computed (shape, mean, left variance
and right variance) using a GGD [7] obtaining 16 values which will be part of the feature.

The feature has now 18 values. The original distorted image is filtered using a low-pass filter
and is downscaled by a factor of 2. Another 18 values are extracted. The final BRISQUE feature
has 36 values.

The metric uses a SVM with a Radial-Basis Function (RBF) kernel that was previously trained
using the LIVE database to obtain a quality evaluation. The input for each image is the feature
previously calculated.

3.4.4 Metrics Comparison

The three detailed metrics of previous section, SSIM, QAC and BRISQUE, were compared to
evaluate the path to follow in this dissertation. The Pearson, Spearman, Kendall correlations,
and also the RMSE between this three metrics and the MOS given in figures 3.2, 3.3, 3.4 and
3.5, reveal that the NR metrics are still far from providing an appropriate representation. The
SSIM reveal always an improved estimation, apart the case of the simple and colour distortions
classes. For this reason, during this work these metrics have been not used, and only SSIM
was considered. Of course, other FR metrics could be used but from our preliminary tests no
different conclusions should be defined.
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Figure 3.2: Comparison of SSIM, QAC and BRISQUE using the Pearson correlation coefficient
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Figure 3.3: Comparison of SSIM, QAC and BRISQUE using the Spearman rank order Correlation

3.5 TID2013 Database

The database used for training and testing is the TID2013 [2]. This database contains images
with 24 different distortion types. Each type has five levels of distortion. For all types of dis-
tortions the corresponding levels of PSNR are of about 33dB, 30dB, 27dB, 24dB and 21dB (Lv1,
Lv2, Lv3, Lv4 and Lv5). According to the creators of the database, this number of distortions for
the 25 reference images is enough to reliably cover the full range of subjective quality. There
were made subjective experiences in five countries to obtain a MOS. All the distorted images
were obtained from the Kodak database2 with the exception of one image (synthetic) that was
artificially created.Each reference image originates 120 distorted images (five levels for each of
twenty four types of distortions). The images have a fixed dimension of 384×512 pixels for unifi-
cation purposes. The distortion types present in the database are Additive White Gaussian Noise

2r0k.us/graphics/kodak/
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Figure 3.4: Comparison of SSIM, QAC and BRISQUE using the Kendall rank order Correlation
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Figure 3.5: Comparison of SSIM, QAC and BRISQUE using the RMSE

applied to the luminance component (#1), Additive White Gaussian Noise applied to the colour
components (#2), Spatially Correlated Additive Gaussian Noise (#3), Masked Noise (#4), High Fre-
quency Noise (#5), Impulse Noise (#6), Quantization Noise (#7), Gaussian Blur (#8), Image Denois-
ing (#9), JPEG Lossy Compression (#10), JPEG2000 Lossy Compression (#11), JPEG Transmission
Errors (#12), JPEG2000 Transmission Errors (#13), Non-Eccentricity Pattern Noise (#14), Local
Block-Wise Distortions of Different Intensity (#15), Mean Shift (#16), Contrast Change (#17),
Change of Colour Saturation (#18), Multiplicative Gaussian Noise (#19), Comfort Noise (#20),
Lossy Compression of Noisy Images (#21), Image Colour Quantization with Dither (#22), Chro-
matic Aberrations (#23), Sparse Sampling and Reconstruction (#24). The distortion types were
divided in subsets, to allow an improved analysis of the data.
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Table 3.1: Distortion subsets

No. Type of Distortion Noise Actual Simple Exotic New Colour Full
1 Additive White Gaussian Noise + + + - - - +
2 Noise in Colour Comp. + - - - - + +
3 Spatially Correl. Noise + + - - - - +
4 Masked Noise + + - - - - +
5 High Frequency Noise + + - - - - +
6 Impulse Noise + + - - - - +
7 Quantization Noise + - - - - + +
8 Gaussian Blur + + + - - - +
9 Image Denoising + + - - - - +
10 JPEG Compression - + + - - + +
11 JPEG2000 Compression - + - - - - +
12 JPEG Transm. Error - - - + - - +
13 JPEG2000 Transm. Errors - - - + - - +
14 Non Ecc. Patt. Noise - - - + - - +
15 Local Block-Wise - - - + - - +
16 Mean Shift - - - + - - +
17 Contrast Change - - - + - - +
18 Change of Colour Saturation - - - - + + +
19 Multiplicative Gaussian Noise + + - - + - +
20 Comfort Noise - - - + + - +
21 Lossy Compression Noisy Images + + - - + - +
22 Image Colour Quantization w/ Dither - - - - + + +
23 Chromatic Aberrations - - - + + + +
24 Sparse Sampling and Reconstruction - - - + - - +

3.6 Types of Image Distortions

This section gives a definition to each distortion, explains how each one is obtained and shows
their effect on a specific reference image 3.31.

3.6.1 Gaussian Noise

In general, noise is an unwanted component in an image. Any degradation, such as a random
variation of brightness or colour information that occurs in an image, can be called noise [15].
The most common form of noise is the so-called Additive noise, can be defined as:

f = g + q (3.35)

where f is an image and g and q are the original image and the noise component, respectively.

Some less common noises are multiplicative, instead of additive, resulting,

f = g × q (3.36)

Multiplicative noise can be changed into an additive model by using the logarithmic function:

ef = eg+q = efeq (3.37)
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Figure 3.6:
Reference Image 1

Figure 3.7:
Reference Image 2

Figure 3.8:
Reference Image 3

Figure 3.9:
Reference Image 4

Figure 3.10:
Reference Image 5

Figure 3.11:
Reference Image 6

Figure 3.12:
Reference Image 7

Figure 3.13:
Reference Image 8

Figure 3.14:
Reference Image 9

Figure 3.15:
Reference Image 10

Figure 3.16:
Reference Image 11

Figure 3.17:
Reference Image 12

Figure 3.18:
Reference Image 13

Figure 3.19:
Reference Image 14

Figure 3.20:
Reference Image 15

Figure 3.21:
Reference Image 16

Figure 3.22:
Reference Image 17

Figure 3.23:
Reference Image 18

Figure 3.24:
Reference Image 19

Figure 3.25:
Reference Image 20

Figure 3.26:
Reference Image 21

Figure 3.27:
Reference Image 22

Figure 3.28:
Reference Image 23

Figure 3.29:
Reference Image 24

Figure 3.30:
Reference Image 25

The opposite can also be done

log(f) = log(g × q) = log(g) + log(q) (3.38)

Some noises can be described in an easier way using additive models, while others are better
described as multiplicative models. Additive White Gaussian Noise (#1) is the most common
occurring noise [15]. This type of noise follows a Gaussian distribution, meaning that it’s prob-
ability density function given by the normal distribution (or Gaussian distribution).

Pq(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 for −∞ < x < ∞ (3.39)

where µ is the mean and σ is the standard deviation. A higher σ gives a bigger level of distortion.
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Figure 3.31: Reference Image for each distortion

Figure 3.32: Additive Gaussian Noise.
PSNR = 30dB.

Figure 3.33: Additive Gaussian Noise.
PSNR = 24dB.

Figure 3.34: Additive White Gaussian
noise added in colour components instead

of in the luminance component.
PSNR = 30dB.

Figure 3.35: Additive White Gaussian
noise added in colour components instead

of in the luminance component.
PSNR = 24dB.

Figures 3.32 and 3.33 and shows how the distortion affects the reference image.
In the second distortion instead of adding the noise to the luminance component Y , the noise is
added to the colour components CbCr using a gaussian distribution [16]. An example with two
different quality levels can be seen in 3.34 and 3.35. This distortion was added to test if quality
metrics perceive brightness (luminance) and colour (chrominance) differently just like the HVS
does.
The third distortion is also additive gaussian noise, but this time being a low-pass spatially
correlated noise [2]. To obtain this distortion, noise is generated and then filtered using a
low-pass filter. The result is added to the reference image.
Multiplicative Gaussian Noise (#19) is Gaussian noise that follows the multiplicative model ex-
plained above, instead of the additive one. In this database, before multiplying the Gaussian
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Figure 3.36: Additive Gaussian Spatially
Correlated Noise. PSNR = 30dB.

Figure 3.37: Additive Gaussian Spatially
Correlated Noise. PSNR = 24dB.

Figure 3.38: Multiplicative Gaussian
Noise. PSNR = 30dB.

Figure 3.39: Multiplicative Gaussian
Noise. PSNR = 24dB.

Figure 3.40: Masked noise. PSNR = 30dB. Figure 3.41: Masked noise. PSNR = 24dB.

noise with the reference image, the noise was simulated separately for each RGB colour with
equal σ2 (variance) [2]. The results can be observed in 3.38 and 3.39.

3.6.2 High Frequency Noise

Noise fluctuations can vary in spatial frequency3. High frequency images have a finer texture,
as can be seen in figures 3.42 and 3.43, while a low frequency image has a coarser texture. High
Frequency Noise(#5) is related to the spatial frequency of HVS [17]. The distorted image can be
obtained by generating white noise followed by a high pass filter.

3http://www.cambridgeincolour.com/tutorials/image-noise-2.htm
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Figure 3.42: High Frequency Noises.
PSNR = 30dB.

Figure 3.43: High Frequency Noises.
PSNR = 24dB.

Figure 3.44: Salt-and-Pepper Noise.
PSNR = 30dB.

Figure 3.45: Salt-and-Pepper Noise.
PSNR = 24dB.

3.6.3 Impulse Noise

The #6 distortion is Impulse Noise. Also called salt-and-pepper noise, images with this type of
noise have dark pixels in brighter regions and bright pixels in darker regions. These distorted
images appear to have black and white “dots” (salt-and-pepper). These outliers can be caused
by bit errors in transmission or errors in analog-to-digital conversion [15]. When each pixel is
quantized into B bits, it’s value X can be written as,

X =

B−1∑
i=0

bi2
i (3.40)

Assuming a binary symmetric channel with a crossover probability PR equal to ε, flipping each
bit with the same probability and defining the received value as Y , the probabilities can be
expressed as:

Pr(|X − Y | = 2i) = ε for i = 0, 1, ..., B − 1 (3.41)

The pixels with the most changed bits should appear as black or white “dots”.

3.6.4 Quantization Noise

Quantization Noise (#7) is caused when quantizing the pixels of a sensed image to a discrete
number or number of discrete levels [15]. A continuous image signal is converted into a dis-
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Figure 3.46: Quantization Noise.
PSNR = 30dB.

Figure 3.47: Quantization Noise.
PSNR = 24dB.

Figure 3.48: Gaussian Blur. PSNR = 30dB. Figure 3.49: Gaussian Blur. PSNR = 24dB.

crete digital representation where a range of input values produces the same output producing
discrete, stepped digital data resulting in a slight error. This distortion has an approximately
uniform distribution and usually occurs in the acquisition process. The image’s previous smooth
gradations become regions separated by noticeable discontinuities.

3.6.5 Gaussian Blur

Gaussian Blur (#8) is a blur effect that occurs when an image is acquired during a motion/shaking
period that smooths the image’s sharpness (edges and boundaries) [18]. The visual effect of this
blurring technique is a smooth blur similar to seeing the image through a translucent screen. It
can be modeled as the result of blurring an image by a Gaussian filter. The MATrix LABoratory
(MATLAB) function “imgaussfilt” can perform this transformation by applying the convolution
kernel to the image:

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3.42)

where x and y are the pixel’s location and σ is the standard deviation of the Gaussian Blur. It
is often used as a pre-processing stage in computer vision algorithms in order to enhance image
structures at different scales. Gaussian smoothing is very frequently used with edge detection.

3.6.6 Image Denoising

The #9th distortion is Image Denoising. There have been some efforts in trying to recover
distorted images using denoising algorithms (filters) [19]. The resulting images may still contain
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Figure 3.50: Image Denoising.
PSNR = 30dB.

Figure 3.51: Image Denoising.
PSNR = 24dB.

residual distortions that eventually look perceptually worse as bad quality [16]. The images
in this database had Gaussian noise that was filtered using a acDCT [20]. The colour channels
of the noisy image are descorrelated. The DCT technique decomposes the image into local
cells of same size. The article [21] arques that a 16 × 16 window leads to the best results. A
DCT transform is calculated for each cell, it’s coefficients and thresholded (with a threshold
equal to 3σ and an inverse DCT tranform is then calculated. Finally, the cells are averaged and
aggregated to reconstruct the denoised image.

3.6.7 Distortions in JPEG and JPEG200

Compression is a data transformation followed by an enconding method [22] used to decrease
the data file’s size. While in lossless image compression, the goal is to represent an image using
the least amount of bits without loss of information, in lossy image compression the goal is to
achieve a faithful representation of the image using the least amount of bits [15]. It is clear
that in lossy image compression there is some loss of information. The advantage of this method
though, is the reduction of the image’s size and bit-rate. The results of coding and decoding the
image with JPEG (#10) and JPEG2000 (#11) with different degrees of compression can be seen
in figures 3.52, 3.53, 3.54 and 3.55, respectively.

Moreover, and in the addition to the CODEC processes, transmission networks can add error to
the streaming data. Distortions 12 and 13 show respectively the result of adding randomly bit
errors to the encoded JPEG and JPEG2000 data stream of the images, resulting in decoding
errors. The results can be observed in 3.56 and 3.57 (#12) and 3.58 and 3.59 (#13).

3.6.8 Non-Eccentricity Pattern Noise

Humans have difficulty in perceiving an image’s distorted fragments if they appear similar to the
original texture or the colour of the surrounding fragments. For this reason, the Non-Eccentricity
Pattern Noise distortion (#14) was created and modeled for this database. Blocks of 15x15
pixels were randomly taken from the reference image and copied to locations of another blocks
nearby. Without having the reference image to compare, it is not easy identifying this distortion
on certain images.
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Figure 3.52: JPEG lossy compression.
PSNR = 30dB.

Figure 3.53: JPEG lossy compression.
PSNR = 24dB.

Figure 3.54: JPEG2000 lossy compression.
PSNR = 30dB.

Figure 3.55: JPEG2000 lossy compression.
PSNR = 24dB.

Figure 3.56: JPEG lossy compression with
transmission errors. PSNR = 30dB.

Figure 3.57: JPEG lossy compression with
transmission errors. PSNR = 24dB.

Figure 3.58: JPEG2000 lossy compression
with transmission errors. PSNR = 30dB.

Figure 3.59: JPEG2000 lossy compression
with transmission errors. PSNR = 24dB.
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Figure 3.60: Non-Eccentricity Pattern
Noise. PSNR = 30dB.

Figure 3.61: Non-Eccentricity Pattern
Noise. PSNR = 24dB.

Figure 3.62: Block-Wise Distortions of
Different Intensity. PSNR = 30dB.

Figure 3.63: Block-Wise Distortions of
Different Intensity. PSNR = 24dB.

3.6.9 Block-Wise Distortions of Different Intensity

Modeled for this database, “Block-Wise Distortions of Different Intensity” (#15) was based on the
supposition that the HVS reacts to an area of pixels and ignores distortions on single pixels [16].
Blocks of 32x32 pixels randomly chosen and with an arbitrary colour are placed in important
areas of an image. Depending on the distortion level 2, 4, 6, 8 and 10 blocks were replaced (for
levels 1, 2, 3, 4 and 5 respectively) The colours and intensity of the blocks were adjusted to fit
the PSNR levels defined earlier for all distortions.

3.6.10 Mean Shift

Mean Shifts (#16) cause lighting changes that may be unperceived by metrics using structural
similarity approaches like SSIM [23]. These shifts can be simulated by replacing each pixel
with the mean of the pixels in a range r neighborhood and whose value is within a distance d.
The distance d is a distance function for measuring distances between pixels (usually Euclidean
distance or Manhattan distance) and r is the radius (measured according the distance function
chosen) that all pixels within it are accounted for the calculation.

g(i, j) = f(i, j) + β (3.43)

The level of distortion is controlled with the PSNR by calculating it on the resulting image.
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Figure 3.64: Mean Shift. PSNR = 30dB. Figure 3.65: Mean Shift. PSNR = 24dB.

Figure 3.66: Contrast Change.
PSNR = 30dB.

Figure 3.67: Contrast Change.
PSNR = 24dB.

3.6.11 Contrast Changes

Contrast can be described as the difference in luminance or colour that makes the content of
an image distinguishable [24]. Just like in mean shift distortions, lighting changes may cause
contrast change distortions [23]. Gamma correction operation, image processing tools or oper-
ators at the visualization stage of an image [24] may also cause it. A common way to simulate
this is with multiplication with a constant,

g(i, j) = f(i, j) (3.44)

where α > 0 is called the gain and f is the source image pixels and g is the output image pixels.
The parameter α controls the contrast.

3.6.12 Masked Noise

Masked Noise (#4) is a distortion related to local contrast sensitivity of the HVS [17]. Contrast
sensitivity is the ability to discern between luminances. Contrast masking is a technique used
to fix images with high contrast changes (like blown out highlights or deep dark shadows)4.
The technique normally consists in changing the colour model from RGB to grayscale using the
acMATLAB function “rgb2gray”, followed by the image’s inverse (also called a B & W negative)
and performing a Gaussian blur. The result is then overlayed with the original image and the level
is opacity of the mask layer is changed (usually to aproximately 20%). The levels of the image

4http://www.photozone.de/contrast-masking
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Figure 3.68: Change in Colour Saturation.
PSNR = 30dB.

Figure 3.69: Change in Colour Saturation.
PSNR = 24dB.

are adjusted to recover deep black and bright white. Sometimes the result still has distortions
striking enough to be visible. This distortion can also occur by lossy image compression or digital
watermarking.

3.6.13 Changes in Colour Saturation

Changes in Colour Saturation (#18) are changes in the intensity of colour of an image. This
distortion may occur on stages of image acquisition and processing or in JPEG based compression
during the colour components quantization [2]. To emulate this distortion, the RGB colour
space of the image is changed to Y CbCr and maintaining the intensity of the Y channel, while
shifting Cb and Cr according to the formulas Cb = 128 + (Cb− 128)×K and Cr = 128 + (Cr −
128)×K where, K is a variable parameter that controls the level of distortion [2].

3.6.14 Comfort Noise

Comfort Noise (#20) is based on the knowledge that humans in general do not pay much attention
to the existence of noise present in a given image. Also, humans sometimes cannot distinguish
texture changes if the texture fragments have the same parameters. These properties are
already exploited in lossy compression of images to simultaneously attain larger compression
ratio and natural appearance of decompressed data. A reference image is converted from RGB
colour space to Y CbCr. The Y channel is compressed lossly by a DCT-based coder Advanced
Discrete Cosine Transform-Based Image Coder (ADCTC) [25] [26] proceeded by decompressing
and deblocking, and the Yr reconstructed image is obtained. A noisy part of the reference image
is estimated as Yn = Yr − Y . The process is repeated for Cb and Cr.

3.6.15 Compression of Noisy Images

Lossy Compression of Noisy Images (#21) usually takes place in compressing images acquired in
nonperfect conditions [2]. To model this, independent additive Gaussian noise with variance
σ2 was added to each colour component. The level of distortion is controlled by σ. The lossy
compression is done by an ADCTC with the quantization step equal to 1.73σ. Decompression
followed by deblocking leads to a distorted image.
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Figure 3.70: Comfort Noise.
PSNR = 30dB.

Figure 3.71: Comfort Noise.
PSNR = 24dB.

Figure 3.72: Lossy Compression of Noisy
Images. PSNR = 30dB.

Figure 3.73: Lossy Compression of Noisy
Images. PSNR = 24dB.

3.6.16 Colour quantization

“Colour quantization is the process of reducing number of colours used in an image while trying
to maintain the visual appearance of the original image”5. Some quantized images have a
problem displaying accurately colour because there might be insufficient bits to represent them,
resulting in abrupt changes between shades of the same colour. This is called colour banding.
To fix this, dither is used. Dither is pseudo-random noise, added before quantization, used
to reduce the statistical dependence between the signal and quantization error [27]. Image
colour quantization with dither correction (#22) is intentionally applied to produce noise that
randomizes quantization error, preventing colour banding. A way to model this is using the
MATLAB function rgb2ind. The image goes from RGB to an indexed image using dither. The
number of quantization levels can be adjusted individually to provide a desired PSNR [2].

3.6.17 Chromatic Aberrations

Chromatic Aberrations (#23) normally take place in the acquisition or transformation stages of
image processing. It can be modeled by shifting the R, G and B colour components of the image
followed by the blur of the resulting image. The shift value and the blurring level control the
distortion level. This distortion is particularly difficult to deal with, in places of high contrast
and if a distortion level is high [2].

5rosettacode.org/wiki/Colour_quantization
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Figure 3.74: Image colour quantization
with dither. PSNR = 30dB.

Figure 3.75: Image colour quantization
with dither. PSNR = 24dB.

Figure 3.76: Chromatic aberrations.
PSNR = 30dB.

Figure 3.77: Chromatic aberrations.
PSNR = 24dB.

3.6.18 Compressive Sensing

Compressive Sensing (#24) is an approach that unifies signal sensing and signal compression. It
consists on the “use of nonadaptive linear projections to acquire an efficient, dimensionally
reduced representation of a sparse signal” [28]. With this approach distorted images are able
to be reconstructed. It consists in separate modeling of the components Y , Cb and Cr of the
image. Each component is subjected to a DCT that reduces the resolution of an image, removing
some of it’s higher frequencies by zeroing parts of them. The distortion level can be controlled
by varying the number of zeroed DCT coefficients. After obtaining the DCT coefficients, the
non-zeroed DCT coefficients are restored, and an inverse DCT transform is done followed by the
BM3d filter [29] where a filtered image is acquired from the reconstructed one. The BM3D filter
is a denoising method that finds image cells similar to a given image cell, groups them in a 3D
block, does a 3D linear transform of that block followed by a shrinkage of the transform spectrum
coefficients and finally computes a inverse 3D transformation [30]. This 3D filter filters all the
2D image cells in the 3D block. To obtain the figures in 3.78 and 3.79, a DCT was performed
again, followed by the redoing of the last step. Ten iterations were done.

30



A Bag of Words Description Scheme for Image Quality Assessment

Figure 3.78: Compressive sensing.
PSNR = 30dB.

Figure 3.79: Compressive sensing.
PSNR = 24dB.
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Chapter 4

Introduction to Machine Learning Concepts

In the context of this thesis some concepts, relevant to this study, are introduced in this chapter.
Machine Learning studies how to automatically make accurate predictions based on knowledge
given by past operations. Some classification problems would be text categorization (like spam
filtering) or machine vision (like optical character recognition, face detection, face recognition).
It classifies data samples into a given set of categories.
Most of the machine learning methods use pre-annotated samples to teach how to define the
classification, in the so-called supervised classification. There are however, methods that do
not use any annotated samples, and only use the statistical distribution of the information to be
classified to separate it into classes. These are the unsupervised classification models, as the
K-Means algorithm that is described in the following.
There are quite a number o supervised machine learning algorithms: decision trees [31], boost-
ing methods [32], SVM [33], neural networks [34], nearest neighbor algorithms [35] and recently
the convolutional networks with deep learning methods [36], among others. Most of these meth-
ods are binary, meaning that only made the classification as one of two classes. Even methods
that do multiple class classification usually perform better when applied for binary classifica-
tion.
Most of the classifiers need to have the information organized with appropriate descriptors.
Descriptors are usually described as vectors with a set of measurements extracted form the
information that is intended to classify. Typically, the classification system performance will
result of a balance between the use of valuable descriptors that represent the information
properly and the appropriate classifier. In practice the ideal classifier does not request any
type of descriptors, while the ideal descriptors will require a basic classification.
In this work, the SVMwill be used. This method is a binary classifier known by its typical robust-
ness in a set of multiple applications [37].

4.1 Descriptors and Aggregation of Descriptors

As previously defined descriptors are low level features that result of direct measures over the
information. In the context of Image technology, descriptors are extracted globally or locally.
Typically, in most of the cases it is better to extract multiple descriptors locally, representing
certain local properties of the image. However, these processes might lead to a large number
of local descriptors, making difficult the decision process defined by the classifiers. An option
is to define descriptor aggregators that somehow represent the information given by the set of
local descriptors. There are two main descriptors aggregators, the bag of words model [38] and
the Fisher vectors [39].
Analyzing the images’ content leads to image classification. It is often useful to reduce it’s size
and summarize the image’s information that is needed to perform an objective evaluation [38].
In machine learning and pattern recognition, a descriptor or feature is “an individual measurable
property of a phenomenon being observed” [40]. A set of numeric features is described as a
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feature vector.

Choosing the right features and the way to extract them is of the most importance to the machine
learning process effectivity.

4.1.1 Bag of Words

One way to do so is by using a BOW model, also known as a bag of features. It is simple to
picture this has a book filled with words where order and syntax do not matter [41]. The only
thing that matters is the number of each word on there (how many times they repeat).

To obtain a bag of words, first, the clustering of the data is performed to obtain the data’s
centroids. The data centroids are it’s representative features [42]. After getting these features,
the local image characteristics can be obtain by using a nearest search method. The local
image characteristic is classified with certain word depending which centroid it is closest to. An
histogram is formed on these words to count their frequency. The result of that histogram will
be the descriptor (the bag of words) that represents the image.

4.1.2 Fisher Vectors

Fisher vectors [39] are image representations obtained by pooling local image features. It is
frequently used as a global image descriptor in visual classification. The similarity between the
local image features is measured using a function called fisher kernel on the basis of sets of
measurements for each feature and a statistical model. A Gaussian Mixture Model [39] is used
for the fitting the distribution of the features.

Fisher vectors result in a compact and dense representation, desirable for image classification.

4.2 Classifiers

4.2.0.1 K-means clustering algorithm

K-means is a unsupervised learning algorithm that classifies a given data set into a certain
number of clusters (K clusters). It begins by randomly selecting a number of cluster centers
(c). Considering X = X1, X2, X3, ..., Xn be the set of data points and V = V1, V2, V3, ..., Vc being
c the number of clusters, are the set of cluster centers, with each Vi, i ∈ 1, 2, ..., c, is a vector
with dimension n. The partitions are calculated using the distance between each data point X
and the cluster centers. The most used distance measures are the squared Euclidean, Cityblock,
Manhattan distance (the sum of absolute differences) and cosine (one minus the cosine of the
included angle between points, treated as vectors).

The squared Euclidean distance is used in this work

d(x, c) = (x− c)(x− c)′ (4.1)

The data points will be assigned to the cluster center whose distance from the cluster center
is the minimum of all the cluster centers distances. The cluster centers are then recalculated
using,
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vi =
1

ci

∑
j = 1cixi (4.2)

where ci represents the number of data points in ith cluster. The distance between each data
point is then recalculated to obtain new cluster centers. If no data point was reassigned the
algorithm is stopped, otherwise the data points are reassigned just like it was previously de-
scribed.

4.2.0.2 K-nearest neighbors

KNN is a supervised method that classifies objects based on the closest training examples in the
feature space. It is a simple machine learning method used to predict labels of any type. An
object is classified by a majority vote of its neighbors, being assigned to the most common class
among its K nearest neighbors. For each data point to be scored, the algorithm uses the closest
data for estimation, taking advantage of local information and making a decision. Closeness
can be defined using any distance metric. The most common are the Euclidean distance, the
Cityblock(or Manhattan) distance, Chebychev distance, cosine distance and Minkowsky distance.

Euclidean distance, √√√√ k∑
i=1

(xi − yi)2 (4.3)

Cityblock or Manhattan,

k∑
i=1

|xi − yi| (4.4)

Minkowsky,

(

k∑
i=1

(|xi − yi|)q)
1
q (4.5)

4.2.1 Support Vector Machines

SVMs are supervised learning models (inferring a function from labeled training data) used for
binary classification and regression analysis. Given a set of training examples, belonging to
one of two categories(also called classes), a SVM builds a model that assigns new examples
to one of the two categories. The similarity functions of the SVM use the so-called kernel
functions for pattern analysis [33]. In practice the training descriptors are mapped by the Kernel
functions in higher dimensions until a hyper-plane manages to separate the two classes. The
same transformations are applied to any descriptor mapping it in the defined space. Then, the
side of the hyper-plane where the descriptor was mapped defines the class. The most common
kernel functions are the following: linear, polynomial, RBF and sigmoid.
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4.3 Machine Learning applied to the Quality Evaluation

Multiple works use Machine Learning for Quality evaluation. Although some works have been
developed on the domain of FR, most of the NR recent methods are included, as they compute
a set of features that are followed by a classification of quality. Using machine learning these
methods try to compensate with the training samples, the lack of a reference image. Objective
quality assessment has had a limited success making accurate quality predictions when it comes
to NR and RR IQA [7].
Algorithms like Blind Image Quality Index (BIQI) [8] and Distortion Identification based Image
Verity and INtegrity Evaluation [43] use SVMs. They both consist in a 2-stage framework where
the distortion type is identified in the first stage and image quality is evaluated in the second
stage. A multiclass SVM with a RBF kernel is used to classify a given image into a distortion
cathegory. After that another SVM computes a quality score. BRISQUE [7], mentioned earlier,
also uses SVMs with a RBF kernel.
QAC, also mentioned earlier, despite not using human scores (it uses SSIM or FSIM as scores),
uses K-means clustering on a training set to obtain centroids that will be used to classify the
image.
BLIINDS is an NR IQA algorithm that uses natural scene statistics models of DCT coefficients that
are applied in a probabilistic model for quality score prediction.
Other methods [44] use edge amplitude, edge length, background activity and background lu-
minance as features to train a Feed-Forward Neural Network (FFNN).
Redi et al. used Color coreograms as image descriptors and Circular Back-Propagation (CBP)
networks for the quality classification [45].
Other works have been presented that use the SSIM metric for in machine learning [46, 47, 48]. A
variation of the SSIM called Complex Wavelet Structural SIMilarity index (CWSSIM) [49] followed
by clustering of the results, is used in a training set to train a SVM [48]. Another version of
SSIM called Wavelet based Structural SIMilarity index (WSSIM) [50] in [47] is used to train a Back
Propagation feed-forward Neural Network (BPNN). In [46], a FFNN and a Principal Component
Regression based algorithm is applied to create a feature vector for each image, concatenating
the SSIM scalar features luminance, contrast and structure.
Convolutional Neural Networks with Deep Learning [51] has been tried, but research have been
facing problems caused by the lack of large annotated database. To compensate this, apart the
use of specific annotated databases, authors generate very large databases with multiple dis-
tortions and annotate them with the traditional FR metrics. However, because of the training
methodology, it is not expected that the metrics used in the training can be overcome. Never-
theless, this kind of classification methodologies define a NR model that can approximate the
traditional FR metrics performance.
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Chapter 5

Bag of Words Model Description Scheme for Image
Quality Assessment

The quality estimation model described in this dissertation is based on the spatial, location and
content factors influence on the perception of quality. Basically the main content of an image is
the area where impairments might have more influence on the definition of quality. Moreover,
the way the impairments are distributed and their global location must have a strong influence.
Hence, our approach divides an image in cells that are used to compute a set of quality de-
scriptors. These quality descriptors are then grouped using a BOW model [52]. Finally this BOW
is used as an identifier of quality and a final quality estimation is obtained using a supervised
classification.

5.1 Local Image Quality Descriptors Computation

In this section the computation of the quality descriptors is described. For that, each image is
divided into square cells with fixed size, with DCell ×DCell pixels. The FR IQA metric result
between each corresponding image cell of the distorted and the original images is computed
(see Fig.5.3). In case of cells completely black or white, the IQA metric result will be set to 0
(avoiding divisions by zero).
Furthermore, the cells are further grouped into square windows of NCell×NCell cells. The set
of metric result values in a window will define a local quality descriptor with size of NCell ×
NCell bins. A set of image descriptors is computed for each image by sliding the window by
IncCell cells until the image limits are reached. Obviously, if the value of IncCell is smaller than
NCell, there will be overlapping windows (see Fig. 5.1). With this local description it is expected
that the model will adapt better to the influence of the local content and to the specific area
of the image that might have a larger influence on the quality perception of observers. After
this we will have a local quality descriptor for each image.

5.2 Local descriptors aggregation using a Bag of Words

Finally, the set of local descriptors of an image computed for each window location will be
grouped using a BOW model [52]. EachBOW quality descriptor is determined for each qual-
ity level classification. As was decided to classify the image quality into 5 levels, 4 decision
steps are needed, and hence, a BOW quality descriptor explicitly defined for each quality level
classification is used, resulting in four quality descriptors for each image.
For the definition of each bag of words, an image training set is selected randomly, according
with the training selection method explained in section 5.4. All the local quality descriptors of
these training images are grouped into K clusters using the K-means clustering algorithm [53].
Then each local quality descriptor of an image is allocated to one of the clusters following the
smaller Euclidean distance to each K-means cluster centroid. A histogram of the local quality
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Figure 5.1: Description Scheme.

Figure 5.2: Image quality classification.

descriptor clusters will be used as a BOW quality descriptor. In practice, each BOW quality
descriptor will have K bins and they count the number of local image quality descriptors that
belong to each cluster previously defined by the K-means algorithm.

5.3 Classification of the quality level of an image

The final quality level assessment of an image is obtained classifying the acBOW quality descrip-
tors. The classification is defined by a set of SVMs with RBF kernel, that classify the BOW quality
descriptors until one of the quality levels is defined. Hence, the initial classification step clas-
sifies between the highest quality level (5) or not. If the classification is not the highest level,
a new step classifies if the image has a quality level of 4, or not. The process is continued until
a final classification of one level results, as it is shown in Fig. 5.2. Each classification step uses
the appropriate BOW quality descriptor, obtained with the appropriate training set.
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5.4 Training Selection

The defined algorithm requires a set of training data that will be used on the definition of the bag
of words model and for training of the used SVM. This data is selected randomly between the 25
images plus impairments of the TID2013 database [2]. However, for the training set candidates
of a given image can not be used the original image and none of the distorted versions. Hence,
the training set is randomly selected between the remaining 24 images and respective versions
with impairments. In the testing of the reported method, the same training set was defined for
both BOW quality descriptor and respective SVM classifier. Initially, the training set subjective
results defined by the MOS are ceiled between 1 and 5. Hence a classification of the quality into
5 different levels: 1 (Lower quality level) to 5 (Higher quality level), is sought by our model.

5.5 Classification of an image bow quality descriptor using a Bi-

nary Support Vector Machine

Since it is desired to have the same number of training images for the two classes in each
SVM classifier, all the available local quality descriptors of the smaller class will be used. The
same number of training samples will be selected randomly between the images of the class
with larger number of available samples. Using this training set selection demands the need
of multiple tests to evaluate the performance of the algorithm, as one of the training sets is
obtained randomly. Hence, the method was tested using a ten fold cross-validation.

5.6 Analysis of Results for SSIM

(a) (b) (c) (d)

Figure 5.3: Example of Reference Image, Distorted Image, SSIM of entire image, and the mean SSIM
outcome for the cell division (DCell = 32).

The IQA metric used here with the algorithm is SSIM. An example is shown in figure 5.3 where
the outcome of the metric in each cell is shown.
To evaluate the reliability of each analyzed combination for the parametersDCell:NCell:IncCell,
the Pearson and Spearman correlations, and RMSE were computed, between the MOSp obtained
for each image and MOSn. The results of the Kendall correlation are also shown, as they were
used for the evaluation of different metrics with TID2013 database [2].
Several combinations of the parameters values DCell: NCell:IncCell have been tested. In
these plots are reported the combinations 16:4:1, 16:8:1, 24:4:1, 24:8:1, 32:4:1, 32:8:1, 48:4:1,
64:4:1, 32:8:2, 32:8:4. The results of the ten fold cross-validation experiment can be visualized
in the graphs of Figs. 5.4, 5.5, 5.6 and 5.7 for the Pearson, Spearman and Kendall correlations,
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Figure 5.4: Pearson correlation coefficient for 2×NCell bins BOW boxplots for the ten fold
cross-validation results. ’×’ marks the mean result.

Table 5.1: Pearson correlation coefficient mean values.

Combination Noise Actual Simple Exotic New Colour Full
SSIM Metric 0.7494 0.7741 0.8219 0.6723 0.6975 0.6925 0.6903

16:4:1 0.7041 0.7296 0.7714 0.6171 0.6556 0.6595 0.6530
16:8:1 0.7619 0.7911 0.8448 0.6260 0.6990 0.6784 0.6750
24:4:1 0.7361 0.7702 0.8100 0.6693 0.7037 0.6922 0.6931
24:8:1 0.7203 0.7549 0.8003 0.7126 0.6756 0.6601 0.6954
32:4:1 0.7251 0.7620 0.8018 0.6989 0.6962 0.6791 0.7012
32:8:1 0.7573 0.7828 0.8482 0.7511 0.6973 0.6707 0.7237
48:4:1 0.7191 0.7547 0.8019 0.7238 0.6868 0.6737 0.7055
48:8:1 0.7047 0.7352 0.7726 0.7250 0.6615 0.6404 0.6917
64:4:1 0.7158 0.7522 0.8029 0.7161 0.6744 0.6681 0.6987
32:8:2 0.7406 0.7733 0.8214 0.7572 0.6756 0.6634 0.7230
32:8:4 0.7344 0.7687 0.8200 0.7456 0.6732 0.6562 0.7160

and for the RMSE, respectively. In these cases, the BOW quality descriptors dimension was
of 2 × NCell bins (value of K in the K-means algorithm). In these plots the ’×’ symbols in
red represent the mean values and the red line represent the median values. ’+’ represents
outlier values. Moreover, the SSIM result was also added to allow a comparison of the method
improvement.

As can be seen the described method improves the SSIM quality estimation. The best result
between the tested parameterization was obtained for values of DCell:NCell:IncCell = 32:8:1.
However, similar results are obtained for DCell: NCell:IncCell = 32:8:2 that corresponds to
less overlapping between the local descriptors, providing a faster implementation.

Tables 5.1, 5.2, 5.3 and 5.4 show a complete analysis for each type of distortion as designated
in the TID2013 database [2]. The subset “Noise” contains different types of noise distortions
common in image processing. The “Actual” subset has the most common types of distortion
in compression among other practices of image processing. The subset “Simple” consists in
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Figure 5.5: Spearman rank order correlation for 2×NCell bins BOW boxplots for the ten fold
cross-validation results. ’×’ marks the mean result.

Table 5.2: Spearman rank order correlation mean values.

Combination Noise Actual Simple Exotic New Colour Full
SSIM Metric 0.7574 0.7877 0.8371 0.6320 0.5801 0.5057 0.6370

16:4:1 0.7105 0.7433 0.7778 0.5765 0.6243 0.6161 0.6363
16:8:1 0.7688 0.8028 0.8517 0.5867 0.6388 0.6297 0.6541
24:4:1 0.7435 0.7833 0.8202 0.6265 0.6741 0.6519 0.6771
24:8:1 0.7266 0.7620 0.8097 0.6935 0.6246 0.6134 0.6820
32:4:1 0.7308 0.7730 0.8112 0.6750 0.6640 0.6351 0.6888
32:8:1 0.7638 0.7946 0.8482 0.7419 0.6445 0.6303 0.7165
48:4:1 0.7271 0.7674 0.8165 0.7175 0.6488 0.6304 0.7010
48:8:1 0.7114 0.7466 0.7869 0.7271 0.6210 0.5933 0.6888
64:4:1 0.7231 0.7644 0.8183 0.7129 0.6368 0.6281 0.6951
32:8:2 0.7454 0.7827 0.8353 0.7456 0.6219 0.6195 0.7131
32:8:4 0.7385 0.7781 0.8353 0.7339 0.6147 0.6134 0.7063

three commonly standard types of distortion. The “Exotic” subset includes the rarest and most
complex distortions in visual quality metrics. The subset “New” contains seven new types of dis-
tortions introduced to TID2013. The “Colour” subset corresponds to distortion types connected
with changes of colour content. Finally, “Full” contains all types of distortions. Every result
displayed in the tables 5.1 to 5.4 is the mean of the ten fold cross-validation results.

The Pearson correlation only shows a slight increase on every distortion with the exception of
“Colour”. For this reason, a further statistical significance analysis is required. For a further
analysis of the results, a Shapiro-Wilk test [54] performed with significance level, α, equal to
0.05 was applied to the Pearson correlation values obtained in the cross-validation. It was con-
cluded that these values are normally distributed, therefore an Analysis of Variance (ANOVA) [55]
can be applied. The Kendall and Spearman correlations though, show a significant increase even
in “Colour”. The algorithm seems particularly effective on “Exotic” distortions. Fig. 5.8 rep-
resents the Pearson correlation boxplots for each distortion in particular. The SSIM result, the
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Figure 5.6: Kendall rank order correlation for 2×NCell bins BOW boxplots for the ten fold
cross-validation results. ’×’ marks the mean result.

Table 5.3: Kendall rank order correlation mean values.

Combination Noise Actual Simple Exotic New Colour Full
SSIM Metric 0.5515 0.5768 0.6286 0.4548 0.4226 0.3823 0.4636

16:4:1 0.5658 0.5940 0.6274 0.4583 0.4914 0.4970 0.5065
16:8:1 0.6230 0.6557 0.7074 0.4590 0.5065 0.5080 0.5211
24:4:1 0.5880 0.6237 0.6569 0.4991 0.5320 0.5243 0.5373
24:8:1 0.5790 0.6099 0.6555 0.5506 0.4920 0.4914 0.5405
32:4:1 0.5762 0.6129 0.6460 0.5377 0.5206 0.5085 0.5452
32:8:1 0.6116 0.6392 0.6956 0.5890 0.5064 0.5056 0.5692
48:4:1 0.5728 0.6081 0.6557 0.5706 0.5061 0.5045 0.5540
48:8:1 0.5576 0.5877 0.6254 0.5765 0.4818 0.4696 0.5411
64:4:1 0.5682 0.6043 0.6566 0.5648 0.4965 0.5027 0.5478
32:8:2 0.5927 0.6254 0.6785 0.5971 0.4869 0.4947 0.5660
32:8:4 0.5862 0.6204 0.6784 0.5870 0.4800 0.4888 0.5600

best general combination 32:8:1, and the best parameter combination for each distortion subset
is presented for each subset type (see Fig. 5.8).

As can be seen, combinations of DCell:NCell:IncCell varies considering the type of distortion.
Obviously, the number of images for each type of distortion is smaller than for the full analysis of
Figs. 5.4 to 5.7, making the cross-validation results less reliable. Although the amount of data
does not allow a reliable conclusion, it can be seen that the best combination for all subsets
(32:8:1) provides a very competing result, and it is the best for the “Simple” distortions subset.
However, in case of the “Colour” subset, the SSIM provides the best result, in opposition to
the other distortion subsets where the developed method always manages to improve the SSIM
estimation.

It was decided to do an analysis of the influence of the bow quality descriptors dimension, that is
equal to the K parameter of the K-Means used in the bag of words determination. For that the
32:4:1 and 32:8:1 combinations were selected. The correlation graphs in Fig. 5.12, Fig. 5.13,
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Figure 5.7: RMSE for 2×NCell bins BOW boxplots for the ten fold cross-validation results. ’×’ marks the
mean result.

Table 5.4: RMSE mean values.

Combination Noise Actual Simple Exotic New Colour Full
SSIM Metric 0.4961 0.5334 0.4852 0.6970 0.6321 0.5981 0.6233

16:4:1 0.5323 0.5763 0.5429 0.7397 0.6650 0.6225 0.6519
16:8:1 0.4857 0.5155 0.4564 0.7327 0.6295 0.6295 0.6352
24:4:1 0.5245 0.5531 0.5193 0.7110 0.6356 0.6120 0.6353
24:8:1 0.5372 0.5686 0.5301 0.6708 0.6593 0.6370 0.6332
32:4:1 0.5337 0.5616 0.5291 0.6841 0.6421 0.6223 0.6282
32:8:1 0.4893 0.5240 0.4725 0.6198 0.6309 0.6149 0.5935
48:4:1 0.5382 0.5688 0.5287 0.6602 0.6502 0.6267 0.6243
48:8:1 0.5493 0.5877 0.5619 0.6578 0.6706 0.6508 0.6361
64:4:1 0.5409 0.5714 0.5278 0.6685 0.6606 0.6309 0.6304
32:8:2 0.5035 0.5339 0.4859 0.6136 0.6492 0.6200 0.5942
32:8:4 0.5086 0.5386 0.4875 0.6260 0.6512 0.6251 0.6000

Fig. 5.14, Fig. 5.15, Fig. 5.16, Fig. 5.17 show that 2 × NCell bins dimension seems to provide
the best value in both combinations due to a slightly better mean and a larger stability from the
test results, defining a more reliable and stable outcome.

43



A Bag of Words Description Scheme for Image Quality Assessment

SSIM 32:8:1 16:8:1 SSIM 32:8:1 16:8:1 SSIM 32:8:1 32:8:1 SSIM 32:8:1 32:8:2 SSIM 32:8:1 16:8:1 SSIM 32:8:1 24:4:1 SSIM 32:8:1
0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

P
ea

rs
on

 c
or

re
la

tio
n 

co
ef

fic
ie

nt
Noise Actual Simple Exotic New Colour Full

Figure 5.8: Pearson correlation coefficient comparing the SSIM, the 32:8:1 and the highest scoring
combination for all distortion subsets for the ten fold cross-validation results (mean result signalized by

the ’×’).
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Figure 5.9: Spearman rank order correlation comparing the SSIM, the 32:8:1 and the highest scoring
combination for all distortion subsets for the ten fold cross-validation results (mean result signalized by

the ’×’).
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Figure 5.10: Kendall rank order correlation comparing the SSIM, the 32:8:1 and the highest scoring
combination for all distortion subsets for the ten fold cross-validation results (mean result signalized by

the ’×’).
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Figure 5.11: RMSE comparing the SSIM, the 32:8:1 and the highest scoring combination for all distortion
subsets for the ten fold cross-validation results (mean result signalized by the ’×’).
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Figure 5.12: Pearson correlation coefficient for different bow dimension (K of K-means) for
combinations 32:4:1 for the ten fold cross-validation results (mean result signalized by the ’×’).
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Figure 5.13: Pearson correlation coefficient for different bow dimension (K of K-means) for
combinations 32:8:1 for the ten fold cross-validation results (mean result signalized by the ’×’).
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Figure 5.14: Spearman correlation rank value for different bow dimension (K of K-means) for
combinations 32:4:1 for the ten fold cross-validation results (mean result signalized by the ’×’).
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Figure 5.15: Spearman correlation rank value for different bow dimension (K of K-means) for
combinations 32:8:1 for the ten fold cross-validation results (mean result signalized by the ’×’).
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Figure 5.16: Kendall correlation rank value for different bow dimension (K of K-means) for
combinations 32:4:1 for the ten fold cross-validation results (mean result signalized by the ’×’).
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Figure 5.17: Kendall correlation rank value for different bow dimension (K of K-means) for
combinations 32:8:1 for the ten fold cross-validation results (mean result signalized by the ’×’).
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Chapter 6

Comments and Future Work

In this work, a scheme for quality estimation using a machine learning method based on the FR
metric SSIM was considered. The method computes the SSIM in a grid of cells that are further
grouped to form a set of local descriptors. Those local descriptors are further aggregated for
each image using BOW. Four BOW are extracted for each image allowing a classification using
a SVM into the 5 different MOS levels.
With this approach it is expected that the different impairments location and also the affected
content is considered in the quality estimation. The developed method was tested against the
quality representation provided by the SSIM metric using the Pearson, Spearman and Kendal
correlations, and also the RMSE. It was shown that the developed method outperforms the
SSIM, and for that reason provides a very interesting path for research using machine learning
methods.
It was observed that similar improvement can be obtained with other metrics, that are not
reported as it would become very repetitive. However, in the future the use of metrics fusion
can be considered. Moreover, the strategy followed can produce new insights to NR and RR
metrics. development. Instead of computing the quality features over the image, might be
interesting to do a similar approach, to enhance the local influence of the impairments.
This is an interesting approach using machine learning models. Using Convolutional Neural Net-
works with Deep Learning [51] has been tried recently, but results are very limited because of
the lack of training samples with appropriate annotation.
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