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Resumo

Uma baixa adesão à terapêutica é um problema real entre os adultos que pode levar a sérias

repercussões nas suas vidas. A adesão à terapêutica é definida pela Organização Mundial de

Saúde como a medida em que o comportamento de uma pessoa coincide com as recomendações

de um prestador de cuidados de saúde. Uma baixa adesão a uma determinada terapêutica pode

comprometer, em muitos casos, os benefícios do tratamento. Além disso, tomar medicação

errada pode levar a efeitos secundários não desejados, condições de saúde adversas e visitas a

hospitais.

Esta dissertação descreve um trabalho focado na concepção, desenvolvimento e investigação de

uma solução para a monitorização de caixas de medicação com caixas de sensores a elas aco-

pladas. As principais contribuições deste trabalho incluem o desenvolvimento de uma aplicação

móvel, um estudo em como classificar dados de gestos de caixas de medicação, uma imple-

mentação do algoritmo que obtém dados das caixas de sensores e a integração do algoritmo

de aprendizagem automática na aplicação móvel. Foi desenvolvida uma prova-de-conceito de

alarmes de medicação no âmbito deste projecto de Mestrado. Os dados dos sensores são rece-

bidos pelo protótipo através de um módulo que integra a ligação e transferência de dados das

caixas de sensores via ligação sem fios. Outro módulo implementa funções de extração de mé-

tricas que serão usadas sobre os dados dos sensores inerciais contidos nas caixas de sensores. As

métricas calculadas, também chamadas de características, são passadas para um algoritmo de

aprendizagem automática, que está integrado no módulo de classificação de dados e extração

de características, para posterior identificação de dados.

No desenvolvimento da solução, foi feito um estudo aprofundado sobre como classificar dados

inerciais de gestos de caixas de medicação. Este estudo incluiu a criação de dois conjuntos de

dados com diferentes características que, depois de serem pré-processados, foram submetidos

a diferentes algoritmos de aprendizagem automática, sendo os seus resultados analisados neste

documento. O processo de coleção de dados foi feito em dois locais distintos, correspondendo

a um ambiente controlado e um ambiente não controlado. Os resultados obtidos mostram que é

possível identificar os gestos considerados no ambiente controlado, tendo os melhores resultados

chegado a 97.9% de taxa de acerto. Os resultados obtidos para o conjunto de dados do ambiente

não controlado (que contou com a participação dos utilizadores alvo da aplicação) demonstraram

que ainda há aspetos a melhorar antes de produzir uma versão final da solução.
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Resumo alargado

Esta secção resume a dissertação de uma forma mais abrangente que a secção Resumo e na

Língua Portuguesa. A sua estrutura segue o encaminhamento do corpo do documento.

Introdução

O primeiro capítulo tem como objetivo enquadrar o trabalho descrito ao longo desta disserta-

ção, definindo o enquadramento, o problema e os objetivos da mesma. Ainda neste capítulo,

é apresentada a abordagem adotada para a resolução do problema proposto e as principais

contribuições do trabalho.

Enquadramento, Descrição do Problema e Objectivos

A adesão a uma determinada terapêutica é definida como a medida em que o comportamento de

uma pessoa coincide com as recomendações de um prestador de cuidados de saúde. Uma baixa

adesão à terapêutica de uma certa prescrição pode comprometer os benefícios do tratamento

em muitos casos. Adicionalmente, tomar medicação errada pode levar a efeitos secundários

indesejados, como agravamento da saúde ou visitas a hospitais. O problema pode ser ainda

mais detalhado, referindo que é estimado que cerca de 30% a 50% das prescrições nunca são

tomadas, como defendido em [HRM+15]. Existem vários fatores diferentes que podem levar à

não adesão de uma determinada terapêutica, sendo alguns deles a falta de lembrança do horário

de toma de medicação, a falha da toma da medicação a horas, a falha em antecipar a toma da

medicação e a falha na preparação da medicação para futuras tomas [AOM+11].

Para além destas, outras causas que agravam a adesão à terapêutica são referidas em [HRM+15],

como a duração do tratamento, o custo da medicação, a frequência da dosagem, a complexi-

dade da prescrição e ainda a má comunicação com o paciente. É também referido que o nível

de conhecimento do paciente, ideias e experiências, bem como as da família e amigos, mos-

tram estar correlacionadas com a adesão à terapêutica. Em [Far99] os métodos de medição de

medicação são categorizados em dois grupos: os métodos diretos, que correspondem à deteção

de drogas em algum dos fluidos biológicos (normalmente urina ou sangue) e observação direta

do paciente a tomar a medicação; e os métodos indiretos, que compreendem a utilização de

dispositivos eletrónicos de monitorização, revisão da prescrição e relato do paciente sobre a sua

medicação.

O trabalho descrito neste documento é focado no estudo de soluções para monitorização de

medicação e na investigação e desenvolvimento de um sistema protótipo para monitorização de

medicação, baseado numa aplicação móvel combinada com caixas de sensores e algoritmos de

aprendizagem automática. A solução consiste na utilização de caixas de sensores acopladas a
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caixas tradicionais de medicação para identificar quando e como um utilizador interage com a

caixa de medicação. Isto permite que a solução seja de baixo custo, uma vez que o utilizador não

tem de comprar uma caixa de medicação nova e pode reutilizar a caixa de sensores em outras

caixas de medicação. Um objetivo importante é perceber como os algoritmos de aprendizagem

automática podem ajudar na identificação das aberturas ou fechos da caixa através de dados

inerciais dos sensores. Outro objetivo importante é desenvolver uma prova-de-conceito que

integre as ferramentas, tecnologias e funcionalidades necessárias para o funcionamento básico

da solução.

Abordagem e Principais Contribuições

Esta secção apresenta a abordagem a ser seguida durante o desenvolvimento da solução descrita

nesta dissertação e as principais contribuições científicas resultantes do trabalho desenvolvido.

A abordagem seguida é descrita da seguinte forma:

• Contextualização com o problema descrito nesta dissertação e investigação de trabalho

relacionado nesta área de conhecimento, que inclui uma revisão de soluções do estado da

arte;

• Contextualização com as ferramentas e tecnologias necessárias na implementação da apli-

cação Android;

• Engenharia de Software, Arquitetura de Sistema e delineação de passos para o desenvol-

vimento do protótipo;

• Desenvolvimento da aplicação protótipo para o sistema operativo Android;

• Recolha de dados junto de dois grupos distintos;

• Testar os conjuntos de dados e o protótipo desenvolvido.

As principais contribuições podem então ser descritas da seguinte forma:

• Uma aplicação para lembretes de medicação para o sistema operativo Android, que esteja

preparada para ligar à caixa de sensores que recolhem dados de caixas de medicação

tradicionais. A engenharia de software e detalhes da implementação da aplicação são os

temas principais dos capítulos 3 e 4, respetivamente;

• Um estudo de como classificar dados das caixas de medicação. Este estudo e os resultados

mais promissores são descritos no capítulo 5;

• Uma implementação do algoritmo que recebe os dados das caixas de medicação;

• A integração do algoritmo de classificação de dados recebidos das caixas de sensores para

a aplicação móvel desenvolvida.
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O código fonte da aplicação foi entregue à Fraunhofer AICOS, no âmbito de um protocolo de

colaboração, onde este trabalho foi feito. A aplicação móvel usa bibliotecas desenvolvidas e

fornecidas pela Fraunhofer.

Estado da Arte

O capítulo 2 faz uma breve introdução à monitorização de medicação, explora as soluções exis-

tentes e explicita as tecnologias e ferramentas utilizadas no desenvolvimento da dissertação.

No tema de sistemas de monitorização de medicação, alguns dos trabalhos mais relevantes

permitem perceber que tipo de soluções já foram exploradas e como o sistema deve ser dese-

nhado. Algumas soluções, como as de Asai et. al., [AOM+11], Pang et. al., [PTC14] e Li et.

al., [LPNF14], são compostas por vários módulos e capazes de monitorizar para além de medi-

cação. Outras mais simples, como a de Morena et. al., [DM14], consistem apenas num frasco

de medicação inteligente capaz de se ligar à cloud, agregando informação em tempo real sobre

o próprio frasco.

Algumas das tecnologias brevemente descritas incluem: uma biblioteca com elementos de de-

sign disponibilizada pela Fraunhofer; o sistema Pandlet – as caixas de sensores – também forne-

cidas pela Fraunhofer, para o desenvolvimento do projeto; o bundle de software Android Studio,

que contém o software necessário para o desenvolvimento de aplicações móveis para o sistema

operativo Android; o formato de dados JavaScript Object Notation (JSON); framework Waikato

Environment for Knowledge Analysis (WEKA), uma ferramenta para análise de conhecimento e

conjuntos de dados.

Este capítulo apresenta a revisão de literatura, bem como o trabalho relacionado com o que é

desenvolvido no âmbito deste projeto, ajudando a perceber quais as soluções já existentes e

possíveis vantagens e desvantagens. Para além disso, as tecnologias e ferramentas utilizadas

são brevemente introduzidas, bem como os motivos para as escolhas destas.

Arquitetura do Sistema

O capítulo 3 da dissertação define o funcionamento do protótipo, os objetivos a serem atingidos

com a sua implementação e fornece uma ideia do funcionamento da aplicação desenvolvida. É

ainda descrita a Análise de Requisitos, uma breve descrição do sistema e da engenharia de soft-

ware. Esta análise tem como objetivo a descrição das funcionalidades que são implementadas

no sistema a ser desenvolvido, e como este se deve, ou não, comportar.

É feita ainda uma breve descrição da solução, onde se pode verificar que esta é composta por

três módulos principais: o módulo de alarmes de medicação, o módulo de obtenção de dados

e o módulo de classificação de dados e extração de características. O módulo de alarmes de

medicação integra o sistema de calendários do sistema operativo Android através de um pro-
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vedor de conteúdos e da classe CalendarContract. O módulo de obtenção de dados integra o

sistema Pandlet, através de uma biblioteca desenvolvida pela Fraunhofer AICOS, na aplicação

protótipo. O módulo de classificação de dados e extração de características integra os algorit-

mos de aprendizagem automática, através das bibliotecas da framework WEKA e implementa

as funções que obtêm as características através dos dados de sensores.

A secção da engenharia de software apresenta e descreve alguns diagramas Unified Modeling

Language (UML) definidos para o sistema e discute ainda, em múltiplas subsecções, os casos

de uso, diagramas de atividades, diagrama de instalação e componentes. Para além disso, são

incluídos alguns mockups para uma ideia visual acerca do que esperar da aplicação.

Os casos de uso definem uma lista de funcionalidades que o sistema deve fornecer quando

interage com os atores do sistema. Estes são descritos, quer na forma de diagrama UML, quer na

forma escrita, para a aplicação desenvolvida no âmbito da dissertação. Para além disso, é ainda

feita uma descrição dos possíveis atores do sistema. Neste caso, os possíveis atores do sistema

são o provedor de cuidados de saúde e o paciente. Os diagramas de atividade apresentam

possíveis fluxos de interação entre o ator do sistema e o próprio sistema a ser desenvolvido. O

diagrama de instalação contém o esquema geral da arquitetura do sistema, mostrando quais os

componentes que nele estão inclusos.

Desenvolvimento do Protótipo

O capítulo 4 foca-se na fase de desenvolvimento do protótipo da solução proposta, descrevendo

a aplicação Android desenvolvida e fazendo um breve resumo do funcionamento da aplicação.

É ainda discutido um teste preliminar ao protótipo, onde apenas algumas das funcionalidades

são experimentadas e a sua forma de operar é explicada.

Para além da aplicação principal, foi desenvolvida uma segunda aplicação Android simples que

integra a biblioteca das caixas de sensores para que a recolha de dados possa ser feita em

separado. Esta não é descrita uma vez que foi utilizada apenas para este propósito.

A aplicação Android de lembretes de medicação é um dos principais resultados deste projeto

de Mestrado. É feita uma pequena introdução a cada módulo, de modo a que alguns detalhes

de implementação sejam descritos neste capítulo. Na descrição dos módulos são explicados

alguns trechos de código que foram considerados importantes. São ainda descritos alguns testes

feitos à aplicação, onde se pode verificar que as funcionalidades principais foram corretamente

implementadas.

Conjuntos de Dados e Análise dos Resultados

O capítulo 5 foca-se na forma como os conjuntos de dados para teste foram gerados e nos

resultados obtidos após teste aos diferentes algoritmos de aprendizagem automática tidos em
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conta neste trabalho.

É feita uma descrição dos gestos considerados para o estudo de como são retirados comprimidos

de caixas de medicação. É ainda descrito o pré-processamento aplicado aos conjuntos de dados

na fase de preparação para os algoritmos de aprendizagem automática e introduzido o conceito

de característica. Para além disso, são ainda apresentadas as características extraídas para

efeitos de classificação de dados.

Dois conjuntos de dados (contendo dados inerciais de gestos aplicados a caixas de medicação)

distintos foram criados, tendo um deles sido recolhido em ambiente controlado, nomeadamente

nas instalações da Fraunhofer AICOS, e outro em ambiente não-controlado, nomeadamente no

Centro de Convívio para Idosos do Bonfim. Os dados foram recolhidos com diferentes frequências

de amostragem e as caixas de sensores testadas em mais que uma posição quando acopladas a

caixas de medicação. Quatro algoritmos de aprendizagem automática foram testados no âmbito

deste projeto de Mestrado: J48; Naïve-Bayes (NB); Sequential Minimal Optimisation (SMO); e

k-Nearest Neighbor (kNN). Para além disto, foram utilizadas duas formas de validação dos algo-

ritmos: divisão dos conjuntos de dados em treino (66%) e teste (33%); e k-fold cross-validation

(k = 10).

No total, foram efetuados cerca de 3456 testes para o conjunto de dados criado em ambiente

controlado e cerca de 576 para o conjunto de dados criado em ambiente não-controlado. Foi

possível concluir que os melhores resultados foram atingidos pelo algoritmo SMO para os con-

juntos de dados recolhidos com frequências de amostragem entre 50 Hz e 100 Hz. Quando os

mesmos conjuntos de dados foram submetidos ao algoritmo NB, este mostrou ter o pior desem-

penho entre os algoritmos escolhidos para teste.

Conclusão

O capítulo 6 enumera as principais conclusões que podem ser retiradas do trabalho desenvolvido

durante o projeto de Mestrado. Para além disso, são mencionadas algumas direções para possível

trabalho futuro.

Após a revisão da literatura, foi concluído que seria necessário fazer uma investigação para

perceber como os algoritmos de aprendizagem automática podiam ajudar a identificar os da-

dos provenientes dos sensores. Depois da análise aos resultados dos testes feitos, foi possível

perceber que várias configurações permitiram o reconhecimento de gestos nos conjuntos de

dados.

Foi possível perceber, de uma maneira geral, que o desempenho do algoritmo SMO se destacou

mais que os outros, e que o algoritmo NB teve um pior desempenho. Verificou-se ainda que,

quando se tenta discriminar qual dos compartimentos das caixas de medicação é aberto ou

xi



fechado, os resultados são piores do que no caso em que estes não se discriminam. Os resultados

para o caso em que os gestos de pegar na caixa de medicação e pousar a caixa de medicação

não foram considerados foram, de uma forma geral, altos.

Algumas das possíveis causas para os piores resultados são ainda descritas: a discrepância entre

o contexto dos dois conjuntos de dados recolhidos; as diferenças entre a maneira como cada

sujeito faz os gestos; as diferenças nos tamanhos dos conjuntos de dados; a diferença entre

o tempo em que um sujeito demora a fazer os gestos; e a possível existência de atrasos na

transmissão de dados através da pilha Bluetooth Low Energy (BLE).

A maior parte dos objetivos iniciais do trabalho foi atingida. Contudo, ao longo do caminho

colocaram-se alguns desafios que mereceram maior atenção, levando a que, por exemplo, se

fizesse um estudo mais aprofundado acerca da aplicação de algoritmos de aprendizagem auto-

mática do o inicialmente esperado. Os resultados deste trabalho de mestrado contribuíram para

a solução pretendida, embora ainda haja aspetos a melhorar antes de produzir a versão final do

sistema.
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Abstract

Medication adherence is a real problem among older adults which can lead to serious repercus-

sions on their health and life. Adherence is defined by the World Health Organization as the

extent to which the behavior of a person corresponds with recommendations from a health care

provider. A low medication adherence to a certain prescription can undermine the treatment

benefits in many cases. Moreover, taking wrong medication may lead to unwanted secondary

effects, adverse health conditions, and visits to the hospital.

This dissertation describes the work focused on the design, development, and research of a

solution for monitoring medication boxes using attached sensors. The main contributions of this

work include the development of a mobile application, a study on how to classify data from med-

ication box gestures, an implementation of the algorithm that retrieves data from sensor boxes,

and an integration of the data classification algorithm into the mobile application. A medication

reminder proof-of-concept was developed in the scope of this Master’s project. Sensor data is

received by the prototype through a module that integrates the connection and data transfer-

ence from the sensor boxes via wireless communication. Another module implements metric

extraction functions that are applied to the inertial sensor data retrieved from the sensor box.

The calculated metrics, herein corresponding to features, are passed to a machine learning al-

gorithm, integrated in the data classification and feature extraction module, for posterior data

identification.

An in-depth analysis on how to classify inertial data frommedication box gestures was conducted

during the development of the solution. This in-depth analysis included the creation of two

datasets with different characteristics which were preprocessed and fed to several machine

learning algorithms. The analysis of the results outputted by the algorithms is included in this

document. The dataset collection took place in two different locations, corresponding to a

controlled environment and to a non-controlled environment. The obtained results showed that

it is possible to identify the gestures in the dataset for the controlled environment, with the

best results achieving a true positive rate of 97.9%. The results obtained for the dataset of the

non-controlled environment (which was created with target users) showed that there are still

many aspects that need to be improved before a final version of the solution is released.
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Chapter 1

Introduction

This chapter defines the focus, problem, and objectives addressed by the research work de-

scribed in this dissertation, as well as the steps taken to solve that problem. The next-to-last

section presents the main contributions for the advance of scientific knowledge and the last

section describes the contents of each chapter of this dissertation.

1.1 Focus and Scope
This Master of Science (M.Sc.) project is focused on a new approach to medication monitoring

systems. The project, described in this document, is the result of a collaboration between

Universidade da Beira Interior (UBI) and Fraunhofer Assistive Information and Communication

Solutions (AICOS).

Adherence and compliance are two terms frequently used in the literature to describe medication-

taking behaviours, and also used while measuring the reliability and effectiveness of a certain

medication treatment on a patient. Although they have a similiar meaning, they are slightly

different. The World Health Organisation has defined Adherence as ”the extent to which a

person’s behaviour - taking medication, following a diet, and/or executing lifestyle changes -

corresponds with agreed recommendations from a health care provider” in [Sab03]. A strong

emphasis was placed on the need to differentiate adherence from compliance. This is due to

the fact that the term compliance suggests that a person is passively following orders from a

doctor orders, rather than actively collaborating in the treatment process, while adherence em-

phasizes the need for agreement and that the patient is free to decide whether or not to adhere

to a specific prescription recommended by the prescriber and, as such, failure to do so should

not be a reason to blame the patient.

A low medication adherence to a certain prescription can undermine the treatment benefits in

many cases. Additionally, taking a wrong medication, or a correct one at a wrong time, can lead

to visits to the hospital, adverse health conditions or unwanted secondary effects. There are

many different factors that lead to medication non-adherence, being some of them the failure

to remember correct regimen, the failure to recall taking medication on time, the failure to

antecipate taking medication and the failure to prepare medication for future use, as stated

by [AOM+11]. This is a problem being addressed by many [DM14] [PTC14] [CDF+15], leading to

a wide spectrum of solutions, ranging from simple smartphone applications that spawn alarms
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to take the medication on time, to custom smart medication boxes that will alert the users

via auditory or visible signals. Both solutions represent a great burden to the users. On the

first case, users must dismiss the alerts on the smartphone, even when they remember to take

the medication. If they are not near the medicine at the time of the alarm, they may as well

dismiss it, but, subsequently, they may also forget to take the medicine. On the second case,

the solution ends up being too expensive and requires the user or the caregiver to constantly

refill the device with the correct medication.

The work described herein is focused on the study of existing solutions to medication monitoring,

and on the research and development of a prototype of a medication monitoring system, based

on a mobile application combined with sensor boxes and levering machine learning algorithms.

Its scope falls within the specific research area of assisted living, and signal processing of the

Computer Science discipline. In the Association for Computing Machinery (ACM) Computing

Classification System (CCS), this work would fall in:

• Human-centered computing~User interface programming;

• Human-centered computing~Ubiquitous and mobile devices;

• Computing methodologies~Machine learning.

1.2 Problem Statements and Objectives
The problem addressed in this Master’s project is the one of correctly and efficiently identify

when a patient takes a certain medication. If a patient carefully follows his prescription, it

has a higher chance of improving his health conditions. A prescription is a document written

by a physician, to a pharmacist, containing medication instructions for a specific patient. By

having data on medication intakes, a caregiver can understand whether, given the prescription,

the health of the patient has improved or not, as a result of the adherence to the scheduled

medication.

The problem can be further detailed by referring that is estimated that between 30% to 50%

of drug prescriptions are never taken, as stated by the authors of [HRM+15], and which can

lead to serious repercussions on the health of the patient. Some factors that also lead to a

low adherence prescription are referred in [VHVRD01], such as the duration of the treatment,

the cost of the medication, the frequency of dosing, the complexity of the regimen, and poor

communication with the patient.

Other referred factors contributing to non-compliance include unresolved concerns of the pa-

tient, the diagnosis, the absence of symptoms, the time between taking the drug and its effect,

and the fear of adverse secondary effects. It is also stated that the knowledge of the patients,
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ideas and experiences, as well as those of family members and friends, have been shown to

correlate with the medication adherence.

Starting from that, one can understand that there is a need to improve the adherence of a pa-

tient to its prescription. Another concerning problem is the reliability of the existing methods

of medication adherence measurements. Methods for medication measurement can be cate-

gorized, as stated on [Far99], into two different groups: the direct methods and the indirect

methods. Direct methods provide proof that the medication has been taken by the patient:

detection of the drug in some biological fluid (usually urine or blood), and direct observation

of patient taking the medication are part of this group. Indirect methods are the most com-

monly used, and the respective methods that are part of this group are, e.g., self-report of the

patient, use of electronic monitoring devices and prescription record review.

The main objective of this Master’s project is to create a solution for medication monitoring

imposing a lighter burden on the users. The solution will consist in the usage of wireless sensors

boxes, attached to traditional medication boxes, to identify when and how the user interacts

with the medication box. This allows the solution to be low cost, since the user does not

have to buy a new medication box and can re-use the sensor box in multiple medication boxes.

An important goal is to understand how machine learning can help on the identification of box

openings or closures by using inertial data of the sensor boxes. Another important objective is to

develop a proof-of-concept that integrates the tools, technologies, and functionalities necessary

for the basic functioning of the solution. Another objective is to implement a functionality, in

the system, that allows a caregiver to generate a report on the gestures that were made with

the medication box.

Please note the system will monitor the medication box. The behaviour of the caretaker and

what he or she does with the medication after taking the medicine out of the medication box is

out of the scope of this dissertation.

1.3 Adopted Approach for Solving the Problem
To achieve the objectives described in the previous section, the research work was divided into

the following phases:

1. Contextualization with the problem addressed in this dissertation and with related re-

search work on this field of knowledge, which included a review on state-of-the-art solu-

tions;

2. Contextualization with tools and libraries needed in the implementation of the Android

application;

3. Software Engineering and System Architecture and guidelines to develop the preliminary
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prototype;

4. Development of the prototype application for Android Operating System (OS);

5. Gathering data for datasets, among two different groups;

6. Testing the datasets, and the developed prototype.

1.4 Main Contributions
The main contribution of this dissertation is the proposal of a new solution to medication moni-

toring using a sensor box that is attached to medication boxes and a smartphone. Other impor-

tant contributions can be summarized as follows:

1. A medication reminder application for Android OS that is able to connect to a sensor box

that collects data from a traditional medication box. The software engineering and imple-

mentation of the application are the main subjects of the chapter 3 and 4, respectively;

2. A study on how to classify data from the medication boxes. This study and the most

promising results are described in chapter 5;

3. An implementation of the algorithm that retrieves data from the sensor box;

4. The integration of the algorithm to classify data retrieved from the sensor box into the

developed mobile application.

The source code of the application was delivered to Fraunhofer AICOS, under the umbrella of the

collaboration protocol in which this work was performed. The mobile application uses libraries

developed and provided by Fraunhofer as well.

1.5 Dissertation Overview
The body of the dissertation is composed by five chapters. The contents of each one of the

chapters can be summarized as follows:

• Chapter 1 - Introduction — presents the focus and scope of the work described in this

dissertation, as well as the addressed problem and objectives. It includes subsections

describing the objectives and the main problem, and the adopted approach for solving the

problem and fulfilling the objectives;

• Chapter 2 - State-of-the-Art — contains a discussion on available solutions and techniques

to tackle the problem addressed by this project, along with the enumeration of their re-

spective advantages and disadvantages. It also contains a broader revision of the literature

on this field of knowledge, with focus on some related works;
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• Chapter 3 - System Architecture — describes the architechture of the proposed system,

including the requirement analysis, software engineering, system architechture and use

case diagrams;

• Chapter 4 - Prototype Development — discusses important points concerning the develop-

ment of the prototype, includes a brief description of the involved algorithms, libraries,

technologies, prototype approaches, and describes a preliminary test made to the proto-

type;

• Chapter 5 - Datasets and Analysis of the Results — discusses the creation of the datasets

that were used for the research on how to classify data from sensor boxes attached to

medication boxes. It also describes how the experiments were conducted and presents

their most promising results;

• Chapter 6 - Conclusion — ends this Master’s dissertation by drawing the main conclusions,

with focus on the results, and pointing out directions for future work.

Apart from the main chapters described above, this dissertation contains two appendices. The

contents from the appendices can be summarized as follows:

• Appendix A - Software Engineering Diagrams — contains some of the diagrams elaborated

during the Software Engineering of the prototype. These diagrams are mentioned in chap-

ter 3;

• Appendix B - Prototype Development Listings — includes a small set of listings containing

relevant code excerpts described in chapter 4 of the dissertation.
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Chapter 2

State-of-the-Art and Technologies

2.1 Introduction
Medication monitoring is a common technique that allows to evaluate the adherence of a patient

to a certain medicine. Knowing, with some degree of certainty, the adherence level to a med-

ication regimen is important in medical research and clinical practise. Results of clinical trials

cannot be interpreted without adherence information. Variations on adherence can distort the

response rate and alter the number of patients required to detect a significant difference be-

tween treatment and placebo. The authors of [Far99] state that when a therapy fails to achieve

a desired clinical outcome, it is often assumed that drug failure has ocurred. Besides, the more

accurate and reliable the information on adherence is, the easier it is to follow and understand

the health state of a patient, and understand whether, given a specific prescription, it improves

or detriorates.

Two types of measures can be used to assess medication adherence, as stated by authors

of [Far99]: direct measures, that provide proof that the drug has been taken by the patient

- including drug assays of blood or urine, use of drug markers with the target medication, and

direct observation of the patient; and indirect measures, which include self-reporting forms

filled by the patient, pill counts, use of electronic monitoring devices, and review of the pre-

scription records and claims.

Low medication adherence can have different origins. Among others, the lack of memory from

the patients on taking the medication, the failure to prepare the next medication taking, the

duration of the treatment, the cost of the medication, the frequency of dosing, and the com-

plexity of the regimen are some of the main origins on what the literature focus on, as stated

by [AOM+11].

This makes medication monitoring a hard task to do because most of the existing solutions are not

able to correct all the different factors that can lead to a low adherence rate. While measuring

the adherence through a form, where the caregiver asks a series of questions to the patient,

the patient can lie to the caregiver and compromise the whole diagnostic. The same applies to

the pill counting method, where the caregiver can not know whether the patient really took a

specific medicine or not.
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According to the adopted approach, one of the initial stages of this work was to get acquainted

with the subject at hands and study related works.

This chapter of the Master’s dissertation presents the literature review on state-of-the-art so-

lutions that are related with the work developed in the scope of this project. As such, on

section 2.1 will briefly elaborate on medication monitoring. Section 2.2 contains the litera-

ture review on available and related solutions. Then, section 2.3 will describe the tools and

technologies used while developing the Master’s project.

2.2 Literature Review
Some of the present solutions described in the next section make use the mHealth concept.

mHealth is defined in [KST11] as the medical and public health practice supported by mobile

devices, such as mobile phones, patient monitoring devices, Personal Digital Assistants (PDAs)

and other wireless devices. mHealth involves the use of the core utility of mobile phones – voice

and short messaging – as well as more complex functionalities and applications including Global

Packet Radio Service (GPRS), Global Positioning System (GPS) and Bluetooth technology.

The authors of [VLvW+12] examined the effectiveness of interventions using electronic re-

minders in improving the adherence of patients to chronic medication. Thirteen different

studies met an inclusion criteria: the intervention was aimed to patients who were prescribed

chronic medication; the intervention involved an electronic reminder system aimed at improv-

ing medication adherence; the reminder was directed to patient; the study design was either

a randomized controlled trial or a controlled clinical trial; the study was published in English.

Personal and active reminders such as telephone calls and emails from healthcare providers

revealed positive effects on adherence rates. However, these reminders can require an exten-

sive time investment from healthcare providers. On the other hand, electronic reminders are

automatically sent to patient without the interference of a healthcare provider. Examples are

reminder messages sent to the mobile phone of the patient via Short Message Service (SMS) or

electronic reminder devices that provides visual and audio alerts. In this study were reviewed

thirteen different ones: seven on electronic reminder devices, four on SMS reminders and two

on pagers. This type of reminders does not require additional effort from professionals and may

be easy to integrate in the daily life of the patients. Although there are evidences of short-term

effectiveness on electronic reminders and SMS reminders, long-term effects remain unclear.

The authors of [DM14] state that USA medication adherence rates average is of 60%, which is

low. The low adherence rates leads to losses of around 300 billion dollars on healthcare in the

USA and near 100 billion dollars to pharmaceutical companies of this country. Wireless and

low-power embedded computing technologies are enabling the design of real-time pill bottles

in order to increase medication adherence. A low-power smart pill bottle is introduced in this
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article. The device is connected to a cloud infrastructure and, by using sensors, it is able to

aggregate infomations (timestamp and content measurement) in real-time so that patients can

be notified later to take their medication at appropriate times. Data is sent from bottles to

servers where it is analysed in real-time. If a dose is missed, the system reminds the patient via

automated phone call or text messages - as well as on-bottle lights and chimes. If the system

notices prolonged non-adherence, it can solicit feedback via text message or call, asking them

why the dose was missed.

Most common medication errors are done by patients and include under or over doses due to

erratic medication consumption or misundertanding of medication posology, as stated by the

authors of [SLBM+13]. It presents an mHealth software-based solution for medication self-

management that can be installed on a smartphone or tablet. SapoMed is capable of preventing

medication errors by tracking and managing all the prescribed medication. It is based on web

services architecture, a feature that is essential to satisfy the m-Health paradigm of healthcare

services. The application uses the device camera to capture the barcode, then it connects

to database to retrieve the medication data. SapoMed is capable of interacting with the user

through visual, sound, and vibration alerts. It also has a calendar view where the user can check

its intakes. Furthermore, there is an emergency center capable of sending text messages or e-

mails to a predefined contact, which can be an healthcare professional or a familiar person.

One of the advantages of this approach is the ability to inform the patient of which is the right

medicine to take at a specific hour, by scanning the medicine box with the device camera. On

the other hand, the lack of a hardware-based device that confirms whether the patient takes the

right medicine or not and the fact that the device always needs Internet connection to retrieve

the medication data are disadvantages of the system.

iMedBox is an Internet-of-Things (IoT) solution presented by the authors of [PTC14] consisting

of a third-party medication box that is able to register, to collect statistics of all medicine util-

ities (by reading Radio-Frequency Identification (RFID) tags on them), to record and to prevent

medication non-compliance. This objective is achieved by reminding patients to take medicine

on time through different alarm types, an electronic pharmaceutical package (iPackage) and an

electronic wearable that contains biomedical sensors (iTag). The box is able to connect to a pub-

lic area (e.g., an hospital, the medicine supply chain and the emergency help center) through

wireless internet, and to the intelligent pharmaceutical package and the electronic wearable

through RFID links and Wireless Biomedical Sensor Network (WBSN). iMedBox comes with a

tablet device with a specific applicaton specially developed to handle data, and to present dif-

ferent data collected from medication and the peripheral devices. The user has the possibility

to customize views. The application has two pre-defined views: (i) Signal View, for real-time

monitoring of biomedical signals, and (ii) Medication View, for medication management. The

system has a backend system for prescription management, case history management and re-
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mote diagnosis. When a new prescription is issued in a hospital, corresponding records are added

in by dispatching one prescription into multiple dose lists. Then, when the user opens iMedBox,

a timely dose list that should be taken in the respective day is retrieved. Finally, medications

records will be updated to the database, no matter if the doses are taken correctly or not.

In terms of monitorization, this solution seems to be very complete, but the fact it has many

different devices can be confusing to the user. Also, if only one of the features is needed, the

specific feature is always dependant on the medication box to interpret data, which can be

another disadvantage.

Article [AOM+11] presents a solution based on four different modules:

1. the sensing module, that collects data from real world either by asking users the name of

the medication and whenever they take them or by using various kinds of sensing tech-

nologies;

2. the inferring module, which translates raw data from the sensors to behaviour data of the

users;

3. the ruling module, that is used to analyse behaviours of the users and activities actions

for users and then to create an action based on this behaviour;

4. the actuating module, consisting of an output to the user, i.e., a notification to mobile

phone of the patient, changing his behaviour;

5. the sensing module consists on a medication table, that is able to weight and identify the

medication, and a mobile phone that is used to know when the user leaves home and when

it is consuming medication outside their home.

The inferring module is used to infer user behaviour by analysing the sensor events from the

sensing module. The ruling module receives user behaviour events from the sensing module and

then sends commands to the actuating module. The actuating module consists of: a mobile

phone - that eases operation by using SMS as medium to remind the user; a computer - that

shows all the information; an information globe - a small device that contains Light Emitting

Diode (LED) lights inside to inform different status to the user with corresponding colours. JBoss

Drools is a framework that provides an open source business rules engine and business rules

management system. This framework is used in both inferring and ruling module. The cited

solution uses multicolor LED lights to inform the patient making it more user friendly, which can

be an advantage. On the other hand, this solution is not portable, which means that it needs to

be set up in a static place.

In paper [CDF+15], a smart pill-dispenser is described. Authors mainly focused on the low-
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cost requirement in order to overcome one of the limitations of currently available devices.

The novelty of this approach is the adoption of a smart device not only for providing a user-

friendly human-machine interface, but also for automatic identification of the patient. This

solution uses features of smart devices such as Near Field Communication (NFC) wireless link,

to exchange data between the pill-dispenser and the smart device, and the fact that these

devices are connected to the Internet. The smart device operating system chosen to this study

was the Android OS, since it allows to use the device either as a NFC reader or as a NFC writer.

Since the pill-dispenser is not significant to demonstrate the applicability of this approach, a

pill-dispenser emulator with an Explorer 16 Development Board and a NFC microchip that is

able to read standard NFC Data Exchange Format (NDEF) messages was developed. The Android

application is used to configure and to interact with the pill-dispenser emulator. When the

smart device is approached to the emulator, the application sends a synchronisation command

with local date and time information. Then, if an event occurs (either scheduled or manually

triggered), the application sends commands to show the user which medication should be taken.

User and medication are represented by LED lights. It is left for future work the usage of

new technologies such as Bluetooth Low Energy (BLE). The dispenser will only work when the

scheduled alarm triggers and the device is tapped on the NFC module. This prevents the patient

from taking pills out of the schedule, which can be an advantage by reducing the human error.

On the other hand, a possible drawback of this solution is the need to be in a static place.

Article [AAG+12] describes a solution based on a smart pillbox and two associated mobile phone

applications (web and native). These components are interconnected through a common online

data source. This data source can be only written by the web application and the smart pillbox.

The web application is designed to be used by an informal caregiver, possibly the patient, to

fill in with information about the medication on the smart pillbox. The smart pillbox is made

of four rows of chambers as most people do not need to take pills more than four times a day.

These chambers were designed to be large enough for elderly patients remove medication with

two fingers. It is powered by an Arduino instrumented with LED backlights, used to notify the

patient when medication is scheduled to be taken, and sensors that record when and whether

the patient takes the medication. Each container chamber, corresponding to each medication,

has five possible states: empty, not taken, take now, taken and missed. The mobile application

is only able to read data from the online data source and to trigger alarms whenever there is

medication to take. When these alarms are triggered, a light is produced on the smart pillbox

so the patient can identify which pill needs to be taken. One of the possible drawbacks of the

implementation of this solution is that the pillbox has a fixed number of containers. If the user

has to take more than four pills per day at different times, this may not be the best solution.

Besides this, the pillbox needs to be refilled when the medication is over.

In aged societies, there are lot of elderly recipients who takemedicines everyday. Elderly people
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frequently forgot to take medicine due to their cognitive detrioration. The authors of [SN14]

state that convencional portable reminders are unable to recognize the presence of medicines in

the storage spaces. Smartphones are regarded as one of the most important personal items along

with a wallet and house keys. As so, the solution developed consists of sensorless smartphone

case that has a pill-organizer embbeded. By using the smartphone camera and image processing,

the medicine case is able to detect medicines in each storage compartment of the pill organiser.

The intelligent pill organiser sends results of the image processing to a database server that can

be acessed through a website for medication monitoring. Furthermore, the smartphone has a

GPS module. This allows the user to be notified when it goes to certain places (geofencing). For

example, if the user goes to a restaurant in a certain time window and needs to take medicine

before meals, the system can send an alert based on the time and place. One of the main

goals of this project, the detection whether a patient takes the right pill or not, is achieved

by this solution. Being portable and having a geofencing mode are a plus that can lead to

medication adherence increase. There are possible drawbacks anyway, e.g., the processing

resources required to the computer vision algorithms, that detect which pill was taken, are

high and may incurr in delayed processing in some smartphones.

Scientists at the University of California developed a solution based in a two-step system for

monitoring the patient adherence that is described in [KALS15]. The first step of the system is

the detection that the medicine bottle has been opened, using force-sensitive resistors. This

information is coupled with the next step: the detection of a pill being swallowed using a

smart necklace, which includes a piezoelectric sensor resting in the lower trachea. The skin

motion during the swallow of a medication has unique pattern that can be used to confirm

that the medication has been ingested after the bottle is opened. Data acquired from the

necklace is transmitted to an Android application via BLE, where classification algorithms are

used to distinguish between swallowed medication and other types of swallows, such as saliva

and water. The novelty of this approach is that, besides creating an alarm to remind the patient

of taking the medicine and detecting the act of opening the bottle, the system is able to detect

whether the pill is consumed or not. This may be a solution that can effectively detect whether

the pill is taken or not, which is a good feature. But, on the other hand, the necklace can

be irritating to the patient and if one takes it off, it can result in bad measurements of the

medication adherence. Besides this, another possible drawback is the need of a third-party

device to retrieve data.

A state-of-the-art solution consisting of ingestible sensors, a skin-worn receiver patch, and a

mobile device based user interface is described in [HRM+15]. The microfabricated sensor is

designed to be incorporated into every ”digital” capsule during pharmaceutical manufacturing.

Upon ingestion and contact with the stomachal fluid, each sensor communicates a unique and

private binary number representing the medication and the corresponding dose of interest. The
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binary number is stored in the non-volatile memory of the Integrated Circuit (IC). To ensure that

the electric signal does not intrefere with common medical instruments, consumer electronics,

the electrophysiological signals of the body, and that cells or tissue are not stimulated, the

electric signal is sent twice per second in a specific frequency. In combination with a wearable

sensor patch and a mobile device based user interface, the sensor provides a system for real-

time and continuous measurement of medication adherence. The solution is able to detect

whether the patient takes the pill or not. In the other hand, the solution can not detect, a

priori, if the patient took the right medicine. Besides, it can raise bioethic questions about the

privacy and security of the data transmitted by the digital pill.

Authors of [LPNF14] have developed an interoperable system combining in three subsystems: a

smart pillbox, a computer, and a wristband. All subsystems are able to wirelessly communicate.

Whenever it is time to take a medicine, the computer will send a signal to the wristband so the

user is notified to take the medicine. The pillbox is equipped with a RFID reader and the wrist-

band is equipped with a RFID tag and different sensors (temperature, gyroscope, accelerometer

and compass). This will allow the pillbox to detect when the user is opening the it. Besides this,

when the user approaches the pillbox, data from sensors is sent to the computer to be analysed

later. Then, when the user takes the pill, a pair of diodes and a photodiode, embedded in each

compartment of the pillbox, detects the empty space in the compartment and the lid closes.

The pillbox updates the status of the compartment and sends a wireless signal to the computer

to remind the user or caregiver to refill it. This system is able to tell if the pill was removed from

the pillbox and to predict if it was taken by collecting data of sensors on a wristband by analising

the data, which can be an advantage. On the other hand, the fact that it uses a third party

system, the computer, making the solution impossible to be portable, may be a disadvantage.

2.3 Brief Introduction on Used Technologies
This section contains a brief introduction to the technologies is used in the scope of this project.

SC-Lib is described in the subsection 2.3.1. Subsection 2.3.2 will briefly describe the Pandlets

system. Then, subsection 2.3.3 will briefly introduce the Android Studio software. The subsec-

tion 2.3.4 introduces the JavaScript Object Notation (JSON) standard. Finally, subsection 2.3.5,

swiftly introduces the Waikato Environment for Knowledge Analysis (WEKA).

2.3.1 SC-Lib

SC-Lib (Smart-Companion Library) is a library, developed at Fraunhofer Portugal AICOS, con-

taining Human-Computer Interaction (HCI) elements specially designed and optimized for senior

population. One of the main purposes of this library is to facilitate the interaction between the

target group and Fraunhofer applications running on Android devices. On the other hand, it

makes it easier for developers to deal with the HCI design and provides a standard (uniform)

visual identity for different applications. Elements such as buttons, text fields, simple icons
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and menus are included in this library.

Since this Master’s project is inserted in a Fraunhofer AICOS project that uses the same library

for the layout elements, this library was used in the development of the Android application

prototype, as well.

2.3.2 Pandlets

Pandlet is a small modular sensor box, developed and manufactured at Fraunhofer AICOS.

The device consists in a microprocessor along with inertial (gyroscope, magnetometer and ac-

celerometer) and pressure sensors, General Purpose Input/Output (GPIO), and an Android li-

brary that allows connection via BLE to an Android device. For nomenclature clarification, in

the remaining part of this document, when inertial sensors are referred, only the gyroscope

and accelerometer will be considered, since magnetometer was not used in the scope of this

Master’s project.

While developing the solution, Pandlets were used in the data collection module of the Android

application prototype. Although there are similiar hardware in the market, Fraunhofer AICOS

provided this hardware for the development.

2.3.3 Android Studio and Android Debug Bridge

Android Studio [Inc11] is the official Integrated Development Environment (IDE) for Android

applications development. It is based on the IntelliJ IDEA IDE, and it often comes bundled with

the Android Software Development Kit (SDK) Manager, which allows the management of Android

OS images, emulator, Java libraries, and all the necessary software for development. One of

the main components that is used while developing Android applications is the Android Debug

Bridge (ADB), a service that allows the communication between the computer and the Android

device, or emulator, via command-line interface.

The solution herein presented in this Master’s dissertation is developed in the scope of a Fraun-

hofer AICOS project that is focused for Android devices. As such, this software was used though-

out the development the Android application prototype.

2.3.4 JSON

JSON [Int13] is a lightweight data-interchange format. It is commonly used as an alternative to

the eXtensible Markup Language (XML). It is able to deal with the basic JavaScript data types

such as number, string, boolean, array, object, and null. A Java library, org.json, was used to

facilitate the use of JSON within the Android development. This library was mostly used in the

medication reminder module of the application.
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2.3.5 WEKA

Waikato Environment for Knowledge Analysis (WEKA) [atUoW11] is a popular machine learning

workbench that contains a collection of algorithms for data mining operations. One of the main

advantages of this framework is it can either be used with a Graphic User Interface (GUI) or be

invoked from Java code. Another characteristic of WEKA is that it is released as a open source

software.

This software was mainly used in the classification module of the application. Although there is

similiar software in the Internet, this was chosen since it is open-source and it offers a relatively

simple implementation in Java programming language.

On the proof-of-concept prototype developed in the scope of this dissertation, an Android re-

duced port of WEKA, developed Institut für Pervasive Computing [fPC12], was used.

2.4 Conclusion
Throughout this chapter, the research on the literature was discussed. A review on state-of-

the-art solutions, related with the work developed in the scope of this project, was presented

as well. This helps to understand what solutions are already available in the community, and to

understand which possible advantages and disadvantages they may have.

Furthermore, in this chapter, the used technologies in the development of the solution were

briefly introduced, as well as some of the reasons for the choices made to them.

According to the adopted approach, System Architecture and guidelines for the development of

the solution will be described and discussed in the next chapter.
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Chapter 3

System Architecture

3.1 Introduction
The intermediate stage of this work was to devise a system comprised of a mobile application

and associated sensor components and communication. This chapter of the dissertation is going

to be focused on the System Architecture of the proposed solution. This is an important part

of the project because it defines the functioning of the system, and some of the goals to be

reached, as well as providing an idea of the working of the application developed. Section 3.2

will elaborate on Requirements Analysis, describing how the solution must behave from the user

and from the system perspective. Then, in section 3.3, there will be a brief description of the

system, while section 3.4 describes the Software Engineering of the solution.

3.2 Requirements Analysis
The Requirements Analysis has the objective of describing functionalities that will be imple-

mented in the system to be developed and how it must or must not behave. There are two

types of requirements that need to be identified: the Functional Requirements, referring to

functionalities the system should provide and be available to the user, and the Non-functional

Requirements, describing system restrictions. Both will be presented in this section of the

chapter.

3.2.1 Functional Requirements

The functional requirements refer to the features that the system should provide. For the

Android application, the functional requirements identified for this system are as follows:

• The application shall allow scheduling of new alarms;

• The application shall allow editing scheduled alarms;

• The application shall allow removing existing alarms;

• The application shall allow seeing the history of medication;

• The application shall allow removing, individually, past alarms;

• The application shall not allow editing past alarms;
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• The application shall not allow adding alarms on past dates and hours;

• The application shall generate an alarm or notification when the medication is almost

over, depending on the pill count of each box;

• The application shall allow adding new pills to an existing box/change the sensor to another

new box;

• The application shall generate an alarm or notification when the scheduled hour for a

medicine is approaching;

• The application shall generate an alarm or notification when the user picks the wrong

medication at a scheduled hour;

• The application shall generate an alarm or notification when the user picks the any medi-

cation out of the scheduled hour.

3.2.2 Non-functional Requirements

Non-functional requirements describes the environment where the system is inserted and what

restrictions it has. Different types of non-functional requirements are described in this subsec-

tion.

• The application will be developed only for the Android OS and it cannot be used in another

system;

• Application data is to be used offline only;

• The application shall allow the access to its data via another calendar application, i.e.,

Google Calendar;

• The application shall be available when the device is available as well;

• The application shall run either in foreground and background;

• The application shall be used only in portrait mode;

• The application shall be allowed to run when a BLE module is detected on the mobile

device;

• The mobile device shall have at least 50 megabytes of free disk space;

• The mobile device shall have a quad-core processor able to run the each modules in dif-

ferent threads.
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3.3 Architecture
The system is composed of several modules, namely: a Classification and Feature Extraction

module, a Data Collection module, and the Medication Reminder itself. The Medication Re-

minder module accesses the calendar data via ContentProvider and CalendarContract classes

of the Android system. Each medication reminder is considered as a generic calendar event of

the Android platform. As such, several methods are implemented to guarantee the main func-

tions of a basic calendar, such as: Insert Calendars, List Events, Insert Events, Update (Edit)

Events, and Delete Events.

Since all tests performed during data collections were made using the WEKA framework, the

Classification functions of the Classification and Feature Extraction module consists on the use

of the Java library implementation of machine learning algorithms that WEKA has available.

On the Feature Extraction functions, several metric calculation methods were implemented

in order to transform the raw data from the sensors into features. The term feature is later

explained in the chapter 5, as well as the discrimination of the calculated metrics.

The Data Collection module consists of the implementation of the Pandlets Android library.

This module implements transparent Bluetooth Low Energy (BLE) stack functions and sensor

integration that enables the application to search and retrieve data from Pandlet devices from

Fraunhofer AICOS. The module will look for events with associated devices, then tries to connect

to those devices, storing the sensor events in a file.

3.4 Software Engineering
This section elaborates further on the software engineering of the system to be developed. It

will resort to Unified Modeling Language (UML) diagrams for that purpose. Several subsections

discuss or provide more detail in use cases, activities and components. Mockups will be also

included, so as to provide a visual idea of what to expect.

3.4.1 Use Cases

This subsection of the chapter presents the Use Cases of the system to be developed. Use Cases

are a list of functionalities that the system must provide when interacting with the actors of the

system. Figure 3.1 identifies the use cases resorting to the UML diagram, along with the Use

Cases, the actors of the system, and their relations. The Use Cases are described with more

detail in the following sections.
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Figure 3.1: Use cases diagram.

3.4.2 Actor Description

The diagram in figure 3.1, identifies two actors that will interact with the application: the

caretaker, and the caregiver. In this application, the caretaker will have three main function-

alities while the caregiver has one. The caretaker will be able to consult, edit and delete future

events, to add new events and to consult the history and delete past events. On the other hand,

the caregiver will only be able to generate and send reports via e-mail.

3.4.3 Use Cases Description

There are two main types of users for the system being designed. The caretaker is the most

important one and, for the sake of the explanation, it will be referred to as the user afterwards.

The medication reminder will be simply referred to as event.

User Functionalities

The functionalities offered to the user can be better described as follows:

• List Future Events - The user opens the application and, if any exist, future events in the

calendar are presented for the time interval of one month. This user is able to navigate

between present and future months;

• Consult Future Event - Once the event list is available, the user can choose one of the

available events and the details of the event will be displayed. From this functionality, a

user can edit or delete future events;

• Edit Future Events - This use case is included in the Consult Future Event functionality.

The user shall be allowed to edit all the future events related to the selected one;
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• Delete Future Events - This use case is included in the Consult Future Event functionality.

The user shall be allowed to delete all the future events related to the selected one;

• Add Event - The user shall be allowed to add new events to the calendar. When adding a

new event to the calendar, the user is able to choose whether it wants to monitorize the

medication or not;

• Consult History - If there are any past events, the user shall be allowed to consult the

history of events that already ocurred;

• Consult Past Event - If there are any past events, the user can choose one of the avail-

able events by tapping on it and the details of the event will be displayed. From this

functionality, a user can delete the chosen past event;

• Delete Past Event - This use case is included in the Consult Past Event functionality. The

user shall be allowed to remove the chosen past event.

Caregiver Functionalities

The functionalities to be provided to the caregiver are as follows:

• Generate Report - The caregiver shall be able to generate a report with the past medica-

tion list and each medication status;

• Send Report - This use case is included in the Generate Report functionality. The caregiver

shall be able to send the generated report via e-mail.

3.4.4 Activity Diagrams

The diagrams in the referenced figures present the possible interaction flow between the user

and the system to be developed. For the sake of the aestetics of the present document, the

diagrams contained on this subsection of the chapter will be presented in the appendix chap-

ter A.1.

On the following figure 3.2, it can be observed the flow for the main application loop flow,

starting on the Presents Event List and Available Options. One can also observe that, when the

chosen functionality ends its execution, the flow will return to the state where the loop started.

Figure 3.3 presents the Add and Edit Event activity flow. In the Add and Edit Event function-

ality, the user is able to define which are the parameters of the alarm that will be triggered.

Parameters that can be modified are the name of the medication and the recurrence of the

alarm. The time of the alarms and respective dosages are allowed to be modified on the Add

and Edit Intakes.
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For each event, the alarm times and the dosages must be saved so the system can trigger the

alarms. The flow for the Add and Edit Intakes Use Case is depicted on figure A.3. Note that

this flow represents a possible scenario of the Add and Edit Event Use Case. It can be noticed

that, after the intake list being presented, a user has to add intakes so the system allows the

insertion of the medication reminder in the calendar. For all cases herein described, fields are

verified for empty data as well.

Figure A.1 presents the flow associated with the Consult History Use Case. The user is allowed to

consult the list of past events of the medication reminder, as well as the details of an individual

past intake. Furthermore, entries from the list are allowed to be deleted while consulting the

past event list.

A possible activity flow for the Consult Future Intake Use Case is depicted in the following

figure A.2. The caretaker is allowed to consult the list of future events of the medication

reminder, as well as the details of an incoming individual intake. The diagram emphasizes that

the caretaker has additional options to edit or delete the medication intake from the medication

reminder.

3.4.5 Installation Diagram

Figure 3.4 contains a scheme of the general architecture by means of an installation diagram.

As it can be seen in the figure, the application of the system does not need connectivity to the
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Internet to operate. The use of an external device, the sensor box, is optional and requires

a connection via bluetooth. The internal library to access the calendars database is also a

component of the system, as well as the WEKA library, that allows the use of the classification

algorithms.
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Figure 3.4: Installation diagram.

3.4.6 Android Application Mockup

For a better understanding of what is intended for the application layout and development of

the prototype, a mockup was designed. The schematics in figure 3.5 represent a preliminary

layout of the main screen, as well as the screen where a future medication intake is detailed.

To keep the size of this chapter manageable, the full set of mockups for the application was

included in the appendix A.
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Figure 3.5: Main screen mockup.

Figure A.4 contains the mockups for the Add Alarm and Add Intake Hours functionalities. Fig-

ure A.5 has the detailed future intake functionality mockup, where one can see the Edit Alarm

and Delete Alarm button. Finally, figure A.6 illustrates how the past intakes list should look like,

as well as the past intake detail. An example of a notification generated by the application is

still presented in this figure, as well as a question dialog.

3.5 Conclusion
This chapter describes the requirements analysis, and contains a brief description of the archi-

tecture of the system and the software engineering process. The Software Engineering subsec-

tion includes the Use Cases and its respective description, Actor Description, Activity Diagrams,

Installation Diagrams and Mockups for the Android application of the system. All components

analysed herein are considered the main pieces supporting the development of a software prod-

uct. The correct identification of the components is fundamental to a enable a well structured

development, allowing all the required features to be implemented in the system. This will

allow, in the end, to assess if the final result matches the initial project.
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Chapter 4

Prototype Development

4.1 Introduction
This chapter of the dissertation is focused on the prototype development phase of the proposed

solution, which followed the conceptual part described in the previous chapter. The system is

composed of an Android application, along with the environment where it runs, and a sensor

bundle, with which the application communicates. Development (and testing) was thus mostly

focused on the mobile application, which is the main subject of the next 3 sections. Section 4.2

describes the development of the Android application prototype. Then, section 4.3 describes

the functioning of the application resorting to screenshots and section 4.4 provides details on

tests made to the preliminary prototype.

4.2 Android Application
The Android application is one of the main outputs of this Master’s project and it is composed

of three main modules, all implemented in the scope of this work. The Data Collection module

will be described in subsection 4.2.1, while subsection 4.2.2 discusses the Classification and

Feature Extraction module. The Medication Reminder is then described in subsection 4.2.3.

A secondary Android application was developed in the scope of this project. Its purpose was

to simply integrate the Pandlet library and obtain values from the sensors. It has a very basic

design, because it was only used by the developer to test communications and gather data. As

such, it is not further discussed herein.

4.2.1 Data Collection Module

The Data Collection module integrates and makes extensive use of the Pandlets library. This

library was designed in a manner that makes the Bluetooth Low Energy (BLE) stack and sensor

integration to be very simple and similar to the Android Sensors framework. On this proof-of-

concept, the Data Collection module is able to retrieve data from the 3-axis accelerometer and

3-axis gyroscope sensors of the Pandlet device.

An accelerometer sensor is a Microelectromechanical System (MEMS) that measures the accel-

eration of the resulting forces applied to the device at a specific moment in time. In other

words, an accelerometer is able to measure the gravitational acceleration and the acceleration
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that is produced by any movement of the device. It can also measure the acceleration imposed

to a structure upon a change in motion. The readings returned by this sensor use the meter

per squared second (m/s2) standard unit. Since the device is part of the sensor box that will

be attached to the medication box, structural stress (e.g., the click of the opening of a com-

partment) imposed to the medication box will be reflected in the measurements of the sensor.

Note that accelerometers are inertial sensors, which means they can be affected by calibration

errors and by external noise also.

On smartphones and digital devices, a gyroscope sensor is a Microelectromechanical System

(MEMS) that measures the angular velocity in respect to its three axis, x, y, and z. By reading

the values of a gyroscope, one can understand the amount of rotational motion that the device

is being subjected to in a given moment in time. When the sensor is static, the reading values

from the three axis of the gyroscope shall be 0. Nonetheless, since a gyroscope is an inertial

sensor, and similarly to the accelerometers, it can be affected by calibration errors and external

background noise. The standard unit of reading from this type of sensors is radian per second

(rad/s). Analogously to the accelerometer, this device is part of the sensor box attached to

the medication box. It is expected that structural stress imposed to the medication box will be

reflected in the sensor readings, allowing one to measure the angular velocity of the sensor box

and, consequently, of the medication box.

Data collected from these sensors is used in the classification module to understand which

gestures are being made with the medication box. Description of the sets of gestures considered

in the scope of the Master’s project are further discussed in chapter 5.

4.2.2 Classification and Feature Extractor Module

The Classification and Feature Extractor module consists mainly of the logic enabling the in-

tegration of the Android application with WEKA libraries and the usage of the algorithms they

provide. All the available algorithms on the desktop framework are also available in this module,

but their usage required the implementation of methods to adapt the output of the sensors to

WEKA. As such, the module contains methods to load the training dataset, whose features were

extracted and whose models were created on the desktop, to classify new instances that were

created with the calculated features, and to convert data retrieved from the inertial sensors of

the sensor box to the features needed in the classification engine.

Listing B.1, included in the appendix due to size limitations, presents the class constructor

and the instance classification method for the Classification and Feature Extractor module.

Several details are highlighted in this excerpt of code, namely that the classifier is instantiated

using SMO() and that the instanceClassification(String) method guarantees that the correct

format of the strings before submitting them to WEKA.
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Once the method instanceClassification(String) is executed, the module will return a string

containing the possible label of the feature vector that was classified with the highest proba-

bility. This output is handed out to the Medication Reminder module. Then, the Medication

Reminder module will write the results of new instance classifications to a file.

4.2.3 Medication Reminder

The Medication Reminder module consists of the implementation of methods that enable the

integration of the CalendarContract library into the application, which will ultimately allow a

user to retrieve, add, and edit calendars and events in the system. To prevent methods from

blocking the User Interface (UI), these methods were implemented using the AsyncTask class

from Android, a class that allows the use of background tasks in different threads of the main

UI thread. The CalendarContract Android library [Inc12] was used for the application serving

as the proof-of-concept, mostly because it allows the solution to be self-contained, in terms of

calendar data.

A class specially devoted to handle the medication details when using the calendars was de-

veloped. Listing B.2, in the appendix, contains an excerpt of code of such class, emphasizing

its most important the variables and methods. It is possible to see that the application stores

the name (medName), a description (medDesc), the dosage (medDosage) and the recurrence of

prescription for each registered medicine, along with other details.

Due to size limitations, the code in the interior of the methods of the listing was removed,

but they can be briefly described as follows. Methods toJSON() and fromJSON() are used to

convert the class to a JSON string and vice-versa, and are specially useful when passing the

medication details between Android activities. As Android events are not designed to handle

all the information associated with a medicine, such as Dosage, or Universally Unique Identifier

(UUID), another two methods were developed to fill this gap: generateDescription(), which

generates a JSON string with the medication details extra fields that will be attributed to the

description of the events; and parseDescription() which, as the name states, parses the JSON

string that is retrieved from the event description. The additional details that need to be

conveyed to the event description are: (i) the pair intakes-dosage, attributed to the medication

reminders; (ii) the medication status, namely if it is taken, not taken, or unknown; (iii) the MAC

Address from the BLE module in the Pandlet device; (iv) the recurrence; and (v), the UUID, a

unique value generated for each medication added to the calendar. Note that each medication

may have multiple intakes and different dosages with the same UUID.

4.3 Application Overview
Apart from the underlying logic, the system is supported by several Android activities, some

of which are shown and briefly described in this section. The main objective of this section
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is to provide a better insight on how the application works by showing the interfaces used to

interact with the user and how the functionalities are structured. The Future Intakes List is

the main activity of the application and it is where the user navigates into automatically when

the application is started. From there, the user is able to access all the functionalities of the

application. Figure 4.1 shows the main activity for the application.

In figure 4.2, one may see the screenshot of the interface for the first step of adding a new

medication reminder. The previous screen is followed by the one shown in figure 4.3, depicting

the second step when adding a new medication reminder. In this activity, the user is able to

choose the date and the timings of the reminder via date pickers and dropdown lists. Finally,

figure 4.4 shows the screen summarizing the setup of a new medication reminder, offering the

option to be added to the calendar, fine-tune the intake hour or cancel the reminder. It is

believed that this compartmentalized flow benefits user-friendliness. Each step of the flow is

identified at the top of each screen (e.g., Step 3/3).

Figure 4.1: Screenshot of the first activity shown
when the user starts the application.

Figure 4.2: Screenshot of the application on the first
step of adding a new medication reminder.
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Figure 4.3: Screenshot of the application on the
second step of adding a new medication reminder.

Figure 4.4: Screenshot of the application on the
third step of adding a new medication reminder,

after the intakes are added.

In the case the user chooses to edit the intake hour for a medication, it is presented with the

screen shown in figure 4.5. As can be seen, the user is able to introduce the hour (and minutes)

and the respective dosage in this screen. Different intakes can be added using this procedure.

If the user wishes to add more intake timings to the list, he may choose the Add Intake Hour

after confirming the current form, as shown in figure 4.6. Additionally, if the user wants to

change one of the intakes, he may select one of the available intakes from the list.
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Figure 4.5: Screenshot of the application when one
is adding hour and dosages to a new medication

reminder.

Figure 4.6: Screenshot of the application listing the
intakes to be added to the medication.

Figure 4.7 presents a screenshot of a question dialog. This dialog is presented to the user when

adding a new medication to the application. If one chooses Yes, the device will present the list

of Pandlet devices that are available to connect, otherwise, the application will jump to the

intake management screen. This is perhaps the best visual clue of the connection between the

developed application and the medication box, as well as of the main objective of this project.

At this point, the application is asking the user if it should monitor the intake via the external

device or not. Additionally, the application will try to interact with the user at the intake times,

by issuing alarms and actively asking if the intake has occurred, as shown in figure 4.8. When

the user chooses one of the answers, the medication status will be updated.
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Figure 4.7: Screenshot of a dialog where the user is
asked if he wants monitor a medication.

Figure 4.8: Screenshot of a dialog where the
caretaker is asked if he took the medication at the

time of the alarm.

4.4 Preliminary Testing of the Prototype
Apart from the unit tests performed along the implementation phase, the developed prototype

was preliminarily tested in a Samsung Galaxy S4 (i9505) running Android OS 5.0.1, connected to

a Pandlet device. They were mainly focused in assessing if the functionalities were functioning

correctly and some possible anomalous scenarios. These tests were not exhaustive, since this

was not the main focus of the work and the system was merely a prototype. Subsection 4.4.1 de-

scribes the test to the Add Medication functionality, while subsection 4.4.2 and subsection 4.4.3

discuss the tests to the Edit Medication and Delete Medication functionalities, respectively. The

discussion that follows complements the previous description of the application in the sense that

it also shows several secondary features that were added to handle anomalous scenarios.

4.4.1 Add Medication

One of the first details to be tested in the Add Medication functionality was the input and the

contents on the field for the name of the medication. The application was implemented in such

a way that, if the field is left empty, an alert is raised, preventing the user from going further

into the procedure. The test showed that this safeguard is working.

Both fields of the date and recurrence type screen were tested also. When both or one of the
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fields were not duly filled in, and the user pressed Next Step, another alert was raised, stopping

the user from going to the next step. When all the fields are correctly filled and the user touches

Next Step, a dialog asking the user to decide whether he or she wants to monitor the medication

is raised. Both behaviors were expected and corroborated by the tests.

Tests also confirmed that the flow concerning the choice of monitoring the medication was

also working properly. In this case, the Pandlet list appears when the user chooses to monitor

the intake. In this list, it was possible to select the particular Pandlet (hence medication box)

that should be monitored. In the case where the user tried to evolve to the next step without

choosing any Pandlet device, an alert dialog prevented the situation, as expected. On the other

hand, if the a Pandlet is chosen and the Confirm button is pressed, the activity with the intake

list is correctly shown. After choosing a Pandlet, the devices becomes one of the options that

may be associated with a given intake.

In the intake list activity, the user may either edit the intake hours or save the reminder. The

situation where the user tries to save the reminder without properly configuring at least one

intake hour was tested, and the application spawned an alert, as expected. In this case, the

user must dismiss the alert and go into the list of intakes first, which was also tried.

When the Add Intake button is touched, the screen to add an hour and a respective dosage

should come up. An user was asked to test this particular activity at will. For example, he

did try to add the intake without having the fields duly filled up, which led to the spawning

of a dialog, from where the user can only evolve to the very same screen. When the fields

were correctly adjusted, the intake was successfully added to the medication reminder after

pressing the Confirm button, which brings the user back to the intakes list activity. Once the

user touched the Save Reminder button on that screen, the system added the events to the

calendar, and then looked for the Pandlet device and started to retrieve and process data.

The application should spawn a (Android system wide) notification at the time of the intake.

To test this scenario, the intake hour was set up to one of the minutes following the moment in

which the user was trying the prototype. At the time of the alert, the dialog with the question

Did you take it? came up in the screen. The LogCat – the logging module of Android – showed

that the classification instances were reporting the created and classified instances. Although

the classification results were not confirmed on the created file during these tests, all pointed

out to that the main functionality is working.

4.4.2 Edit Medication

The second most important functionality of the application concerns the editing of medications.

In order to perform tests on this feature, previous events were added to the calendar. The

normal flow for such operation presumes that the user selects the medication from the main
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activity, evolving to the view where the details such as timings and name of medication are

shown. From there, the user can press the Edit Reminder to access this specific functionality.

The user tested the reaction to the modification of the name of the medicine. Like before, if

the field was cleared and the form was submitted, an alert was raised as expected.

Modifying a medication follows the same step by step procedure described in the previous sec-

tion. Once the name is modified (i.e., the respective field is non-empty), the application evolves

to step 2/3, where the date and recurrence type can be adjusted. The user tested different

configurations for these values. If one or both fields were set to empty, then the user was not

able to proceed to the next step, obtaining feedback on the problem via text message.

Step 3/3 concerns the choice of whether the user wants to monitor the medication or not.

The user verified that the Pandlet list effectively appears in the affirmative case, and that he

could select the medication box at that point. If no Pandlet device was chosen, a pop-up would

take the foreground, preventing him from going further. Otherwise, the Confirm button was

available, and the application changes focus to the intake list activity.

By pressing the Edit Intake Hours button, the same list of intakes is shown once again, but the

user now has the option to add a new hour and dosage. At this point, the anomalous scenario

where no values were set before pressing the Add Intake button was tested, with the successful

outcome of not being able to proceed. A reminder was effectively added only when the fields

were duly filled up.

When the user returned to the intake list activity, he pressed the Save Reminder button, and

the system added the events to the calendar. Then, the system searched for the Pandlet device

and started to retrieve and process data, as it could be seen via LogCat. Additionally, at the

time of the alert, the dialog with the question Did you took it? came up on the screen. Although

the classification results were not confirmed at this point, there were entries generated in the

logs, and it was concluded that, from the user side, it all seemed to be working according to

the specifications.

4.4.3 Delete Future Medication

The application offers the possibility to delete a future event and, to test the functionality,

it was set up with several events in the calendar a priori. The user was then tasked with

requirement to delete one. This could be achieved via the selection of the medication from the

main activity where all the events are shown. A screen with the specific information is then

showed, with the option to Delete Reminder at the bottom of the screen. As expected, after

pressing that button, a dialog for confirmation was spawn. Pressing the button with the label

No took the user to the underlying screen; pressing Yes led the user to the future events list, on
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which it was possible to verify that the event was deleted.

4.5 Conclusion
This chapter started with a discussion of some important details concerning the modules com-

posing the Android application and their implementation. The means used to integrate func-

tionalities related with the sensors and with WEKA deserved special attention. The developed

prototype was then presented using screenshots and by describing several tests to its main func-

tionalities. Though it can be immediately concluded that the visual aspect of the prototype is

not exactly equal to the mockups, it complies with the requirements identified during software

engineering.

The prototype discussed herein allowed the testing of the solution, by implementing several

classification algorithms, as discussed in the following chapter. Many choices regarding the look

and feel of the prototype, as well as the underlying workflow, were influenced by the target

audience, even though the application is still at a prototyping stage. The compartmentalized

flow for adding or editing a medication is an example of such choices.
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Chapter 5

Datasets and Analysis of the Results

5.1 Introduction
This chapter focuses on the creation of the datasets used to test the approach of using machine

learning to identify gestures and also on the results obtained when trying out different algorithms

on that data. As such, section 5.2 describes the gestures that need to be considered for the

purpose of studying the retrieval of pills from a medication box. The means used to create the

datasets are disscussed in section 5.2, along with their brief analyses. Section 5.3 describes the

preprocessing that was applied to the datasets in preparation to the submission to the machine

learning algorithms. A definition of feature is included as well, preceding the introduction of

the extracted features for the purposes of classification. Section 5.5 contains a discussion on

the results gathered after applying several machine learning algorithms to the datasets.

5.2 Gestures
Although the movement of taking a medicine from a medication box can be understood as a rel-

atively simple gesture, it can be splitted into multiple ones. During the course of this project,

it was decided that, for the generic case where a user just attaches the sensor box to a med-

ication box, the movement should be considered as a combination of five different gestures.

The gestures that were considered are the logical and intuitive steps of successfully taking a

medicine out of a medication box, as follows:

• pick the medication box;

• open a compartment;

• take the medicine out of the compartment;

• close the compartment;

• return the medication box.

One can still consider two different (sub-)gestures for the take(ing) the medicine out of the

compartment case, where the first gesture is described as picking the medication with the

fingers and the second gesture as dropping the medication on the hand. This means that one

should consider that some will try to take the medication with the fingers while others may try
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to tilt the box towards the hand. One of the secondary objectives of this part of the project

was to study if it would be possible to exactly discriminate which compartment was open or

closed during the gesture take the medicine out of the compartment via the inertial sensor

data. As such, data was gathered while taking that into account, by adding the information

on the number of the compartment to metadata, and asking the subjects to open different

compartments.

Datasets

A careful search on the Internet returned no useful results in terms of datasets with the specific

characteristics needed for this work. As such, in order to test the approach of using machine

learning for classification and the prototype, it was required to create datasets with medication

boxes gestures.

Two different datasets were created. A regular medication box with four compartments was

used while recording the inertial data from the sensor box. These boxes are usually cheap and

can be bought at any local pharmacy (see Figure 5.1). The inertial data includes sensor readings

from a 3-axis accelerometer and a 3-axis gyroscope. Two different placements of the sensor

box in the medication box were considered for all tests. To record data from both positions,

two different sensor boxes were used, as emphasized in the photo include in figure 5.1. This

way, it is possible to potentially assess if the placement of the sensor box is influential for the

results, and to identify which place is best to attach the sensors. Since real medication pills can

not be used while retrieving data, small wrinkled papers were used instead of real pills. While

recording the data, labels were used to identify each of the gestures.

Figure 5.1: Medication box and respective sensor boxes used for creating the datasets and for the tests.

For the sake of the explanation, two different names will be given to the devices attached to

the medication box. The position of the sensor on the left side of the medication box will be
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referred to as position CE, while the position of the sensor in the back of the medication box

will be referred to as position FF. These names are given after the Media Access Control (MAC)

Address of the Bluetooth Low Energy (BLE) modules of the sensor boxes.

The first dataset consists of inertial sensor data, collected at Fraunhofer Portugal AICOS office,

with the help of some of its collaborators. The subjects that helped to create this dataset

were five different right-hand dominant persons. The age group of the subjects ranged from

23 to 30 years old. Test subjects were told to reproduce the two different sequences of the

gestures, corresponding to the intuitive order of taking the medication out of the medication

box as described in section 5.2. The first sequence considers the picking the medication with

the fingers gesture, while the second one considers the dropping the medication to the hand

gesture. During these experiments, the test subjects left the pill on a table while the remaining

part of the sequence was not over. The sequence was repeated three times per compartment

of the medication box, for different sampling frequencies of the sensors. This means that each

subject was asked to perform the same tasks at least six times (one per each combination of

sequence of gestures with frequencies). For the sampling frequency, [SSMBC+16] states that

30 Hz is enough for capturing relevant information for human body motion. Since data is being

collected from a object, three different sampling frequencies were used for this dataset: 8

Hz, 50 Hz, and 100 Hz. This way of proceeding will potentially allow to pinpoint the optimal

sampling frequency to be used on the second dataset.

The second dataset consists of inertial sensor data, collected at the Centro de Convívio para

Idosos do Bonfim, with the help of some of its users. This dataset corresponds thus to a real

world scenario. The data recording sessions for this dataset were performed in the scope of

COLABORAR, a Fraunhofer Portugal AICOS project that aims to improve the research and de-

velopment of the solutions developed by the institution, by listening to opinions and challenges

from the target users. Figure 5.2 presents a test subject with the medication box1. The sub-

jects that helped to create this dataset are 15 different, right-hand dominant persons. The age

group of the subjects ranged from 66 to 93 years old. For this test, test subjects were told

to reproduce a single sequence of gestures. Each sequence was equal to one of the sequences

simulated during the collection of the first dataset, with the exception of the step where the

subjects take the medicine from the medication box. Since this subject group is a small sample

of the target users, they were asked to do the gesture sequence in the way they feel to be

natural. The idea was to obtain data accurately representing a real world scenario and also to

test the algorithms against the data. Notice that, at the moment of collection of this dataset,

tests had already been made to the first dataset. Because of that, each sequence was only

reproduced two times: a first one, using the sampling frequency of 50 Hz, and a second one,

using the sampling frequency of 100 Hz.

1This photo was taken and included here with her consent.
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Figure 5.2: Data recording at Centro de Convívio para Idosos do Bonfim.

Notice that the datasets were created in such a way that they allow studying if it is possible

to discriminate which compartment of the medication box is opened or closed, or to simply

identify if one of the compartments was interacted with, without precisely knowing which one.

Furthermore, some of the test subjects of the second dataset were not able to reproduce the

pick the medication box and return the medication box gestures, during the collection of the

inertial data. As such, some of the tests had to be made while considering these two gestures,

while others did not.

5.3 Preprocessing
Data preprocessing is a common step within the scope of the application of machine learning

techniques. It allows converting the original raw data into a representation that the algorithms

are able to handle. Several methods may apply during this stage, depending on the data and

algorithm to be applied. Data Normalisation, Feature Extraction, and Noise Reduction are some

of the preprocessing steps that can be applied to the data samples. Data used in this project

was subdued to Data Normalisation prior to the Feature Extraction step.

Data Normalisation consisted, in this case, on scaling the sensor data, by finding the maximum

values in the datasets and dividing the respective readings by the absolute value of those. This

procedure preserves the waveform of the signal in a different interval, namely [−1; 1].

On machine learning algorithms, the term feature, as stated by [KP98], is the specification of

an attribute and its corresponding value. The main purpose of features is to describe a sample

through categorical features, through a finite number of discrete values, or through continuous

values, which are usually a subset of real numbers. Machine learning algorithms then use sets

of features, called feature vectors, to process and classify data.
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As the specialized literature is not very rich in terms of how to extract features from data

retrieved specifically from sensor boxes attached to objects, it was decided to follow some

of the suggestions in [FDFC10] and [KWM11]. The features used in the scope of this work are

described below. Some of them are exclusive to the accelerometer sensor and, as such, they

were not extracted from the data concerning the gyroscope. Feature vectors were built in

three different ways: (i) the first ones concern the accelerometer data only; (ii) the second

ones concern the gyroscope data exclusively; (iii) and the third one, where the data from both

sensors is combined by joining the feature vectors of the same gesture sample.

The list of features extracted from the data can be listed and described as follows:

• The average (X̄) and standard deviation (σ), which have minimal processing and memory

requirements, were calculated using the sensor data retrieved on the gesture time-window

using the well-known formulas in equations (5.1) and (5.2):

X̄ =

∑n
i=0 xi

n
, and (5.1)

σ =

√∑
(x− x̄)2

n
, (5.2)

where xi represents a sample value;

• The Root Mean Square (RMS) of the signals, is a statistical metric, which is normally as-

sociated with meaningful context information, that can be obtained via the formula in

equation (5.3), where n denotes the number of samples used in the calculation:

xRMS =

√∑n
i=0 x

2
i

n
. (5.3)

• The Pearson’s product-moment coefficient, also known as sample correlation coefficient,

which is calculated as the ratio between the covariance of the signals along the x-axis and

the y-axis to the product of their standard deviations (equation 5.4):

ρx,y =
cov(x, y)

σxσy
; (5.4)

• The Signal Magnitude Area (SMA) metric, also referred to as the energy expenditure in

activities, is usually used to distinguish between a resting state and an active state and

can be calculated using the formula in equation 5.5:

xSMA =
1

t

(∫ t

0

|x(t)|dt+
∫ t

0

|y(t)|dt+
∫ t

0

|z(t)|dt
)
; (5.5)

• The Signal Vector Magnitude (SVM) 5.6, sometimes referred to as Signal Magnitude Vector
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to avoid confusion with the Support Vector Machines (SVM) algorithm, indicates the degree

of the intensity of movements and it is calculated as shown by equation 5.6:

xSVM =
1

n

n∑
i=1

√
x2
i + y2i + z2i ; (5.6)

• The energy and power of the signal for each axis, which are typically defined by equa-

tions 5.7 and 5.8:

xenergy =

n∑
i=0

x2
n, (5.7)

xpower =

∑n
i=0 x

2
n

n
. (5.8)

In addition to these features, the procedure to obtain binned distributions was also applied to

the data. In order to do so, the range of each axis (which was defined as ranging between -1

and 1) was split in ten parts (the bins). This procedure allows obtaining a more precise idea of

the fraction of the values that fell within each bin.

5.4 Classification Algorithms
There is a wide panoply of machine learning algorithms to choose from when considering clas-

sification of data. In 2010, the authors of [ABT10] compared different techniques for classify-

ing different human activities that were performed using body-worn miniature inertial sensors.

Some of the algorithms that were tested in this comparative study were Bayesian Decision Mak-

ing (BDM), Rule Based Algorithm (RBA), Dynamic TimeWarping (DTW), k-Nearest Neighbor (kNN),

Support Vector Machines (SVM), and Artificial Neural Network (ANN). They ended up with the

conclusion that BDM and kNN achieved higher true positive rates.

Another comparative study of classification techniques for human activity using body-worn

miniature inertial sensors and a magnetic sensor is described in [YB11], in which J48 (and other

tree-based algorithms), Naïve-Bayes (NB), Support Vector Machines (SVM), and Artificial Neural

Network (ANN) were tested. It is stated in the study that some of the best results were achieved

by the ANN and SVM algorithms.

The choice of which machine learning algorithms were to be tested in the scope of this project

was mostly influenced by the two aforementioned works and by the knowledge on the area,

since no works focusing specifically on the application of the algorithms on data concerning

gestures of objects was found. All algorithms that were tested were readily available in the

WEKA framework, which basically permitted to abstract from the underlying implementation and

issues. The list of four algorithms is as follows: J48, an open-source implementation of the C4.5
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decision tree classification algorithm; Sequential Minimal Optimisation (SMO), a faster algorithm

for training Support Vector Machines (SVM); Naïve-Bayes (NB), a statistic-based classifier; and

k-Nearest Neighbor (kNN), a Euclidean Distance based classifier.

The algorithms were tested using the different datasets described above and for different com-

binations of the involved variables. For example, different positions of the sensor in the medi-

cation box were tested, as well as different sampling frequencies. The 8 Hz sampling frequency

was exclusively tested for the first dataset, and the results were used to better understand

which was the optimal sampling frequency to be used.

5.5 Results
The results obtained during the testing of the several algorithms applied to the datasets are

presented in this section. As previously mentioned, four algorithms were tested for several ges-

tures and sampling frequencies, generating a large diversity of results. k-Fold Cross-Validation

and Split Percentage were used for each one of the different datasets with the default values

on the WEKA framework. These values correspond to k = 10, for the k-Fold Cross Validation,

and to a Split Percentage of 66% for the training set and 33% for test set.

First Dataset

Some of the gestures from the sensor boxes for the dataset collected at Fraunhofer AICOS had

to be ruled out of the tests. This happened mainly because Pandlets may have lost connection

with the mobile device when data was being collected, consequently corrupting some of the

data samples from the gestures. This led to an unbalanced dataset, where some gestures have

more samples than others. There would always be more samples of the pick the medication

box, take the medicine out of the compartment, and return the medication box gestures, even

if the aforementioned gestures had not been removed. This happens because these gestures

are repeated and recorded each time one of the compartments are opened or closed. E.g.,

collecting two samples from opening the first compartment of the medication box and another

two from the second compartment, corresponds to four samples of the pick the medication

box, take the medicine out of the compartment, and return the medication box gestures. For

this reason, the following tests were made either when trying to discriminate which of the

compartment was opened and closed in the medication box, or when the compartment was not

being discriminated:

• unbalanced dataset, only considering the dropping the medication to the hand;

• unbalanced dataset, only considering the picking the medication with the fingers;

• unbalanced dataset, considering both picking the medication with the fingers and drop-

ping the medication to the hand;
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• balanced dataset, only considering the picking the medication with the fingers;

• balanced dataset, only considering the dropping the medication to the hand;

• balanced dataset, considering both picking the medication with the fingers and dropping

the medication to the hand.

Given the above division of the dataset, twelve different tests were made with the four algo-

rithms: six using Cross-Validation and another six using Split Percentage. These twelve tests

were performed two times. In the first run, all gestures were considered. In the second run,

the gestures pick the medication box and return the medication box were not considered.

To keep the description shorter, the names Drop, Pick, and Both are used to refer to the ges-

tures dropping the medication to the hand, picking the medication with the fingers, and both,

respectively, in the following tables. Due to space limitations, a table containing all results

obtained during this phase of the project is provided by request or as an external annex to the

digital version of the dissertation. The most promising results are presented and discussed in

this section. An explanation over the worst results and the behavior of the algorithms is also

included below.

The first set of tests considered all gestures performed by the subjects, so as to obtain an idea

on how the algorithms behave with all gestures. Table 5.1 presents the best results for the case

where the compartment is being discriminated with the unbalanced dataset.

Table 5.1: Best results when discriminating the compartment with unbalanced dataset and considering
all gestures.

Considered Position Sensors Algorithm Sampling Correct 10 Fold Correct Percent.
Gesture Freq. Inst. Inst. Split
Drop FF Acc. + Gyr. SMO 100 Hz 79 68,70% 32 82,05%
Pick CE Acc. + Gyr. SMO 100 Hz 128 71,11% 43 70,49%
Both CE Acc. + Gyr. SMO 100 Hz 250 70,42% 82 67,77%

While discriminating the compartment, best results were achieved by the SMO algorithm, using

data samples gathered at a sampling frequency of 100 Hz and using the Accelerometer and

Gyroscope data combined.

Table 5.2 presents the best results for the case where the compartment is being discriminated

with the balanced dataset.
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Table 5.2: Best results when discriminating the compartment with balanced dataset and considering all
gestures.

Considered Position Sensors Algorithm Sampling Correct 10 Fold Correct Percent.
Gesture Freq. Inst. Inst. Split
Drop FF Acc. + Gyr. kNN 50 Hz 48 62,34% 16 61,54%
Pick FF Acc. + Gyr. SMO 100 Hz 30 42,25% 13 54,17%
Both FF Acc. + Gyr. kNN 50 Hz 83 57,64% 28 57,14%

In this case, the best results when trying to classify data from the balanced dataset are given

by the Accelerometer and Gyroscope data using kNN, with a sampling frequency of 50 Hz, and

SMO with a sampling frequency of 100 Hz.

The optimal results for the case where the compartments of the medication boxes are not

discriminated and the dataset is unbalanced are presented in table 5.3. One can notice that,

when the Accelerometer and Gyroscope data was combined, the best performance was achieved

by the SMO algorithm with varying sampling frequencies, namely 50 Hz and 100 Hz.

Table 5.3: Best results when non-discriminating the compartment with unbalanced dataset and
considering all gestures.

Considered Position Sensors Algorithm Sampling Correct 10 Fold Correct Percent.
Gesture Freq. Inst. Inst. Split
Drop FF Acc. + Gyr. SMO 50 Hz 200 85,11% 71 88,75%
Pick FF Acc. + Gyr. SMO 100 Hz 158 87,78% 56 91,80%
Both CE Acc. + Gyr. SMO 100 Hz 295 83,10% 101 83,47%

The best results for the case where the dataset is not discriminating the compartment of the

medication box and has a balanced number of samples are presented in table 5.4. The highest

true positive rate was achieved by SMO, with a value of 95, 74%.

Table 5.4: Best results when non-discriminating the compartment with balanced dataset and considering
all gestures.

Considered Position Sensors Algorithm Sampling Correct 10 Fold Correct Percent.
Gesture Freq. Inst. Inst. Split
Drop FF Acc. + Gyr. SMO 50 Hz 95 95,00% 31 91,1%
Pick FF Acc. + Gyr. SMO 50 Hz 92 92% 32 94,12%
Both FF Acc. + Gyr. SMO 50 Hz 128 92,75% 45 95,74%

The Naïve-Bayes (NB) algorithm was the algorithm with the worst behavior in the tests where

all the gestures were being considered, achieving a maximum value of true positives rate of

64.71% and a minimum value of 6.25%. The J48 algorithm behaved slightly better, achieving a

maximum value of 85.51% and a minimum value of 7.69%. k-Nearest Neighbor (kNN) comes next,

achieving a maximum value of 91.5% and a minimum value of 11.5% and, finally, Sequential

Minimal Optimisation (SMO) has the best results, achieving a maximum value of 95, 74% and a

minimum value of 15.38% success rate (not shown).
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On the second run of the tests, the two gestures pick the medication box and return the med-

ication box were not considered, in order to understand if, by removing them, there were any

improvements in the behavior of the algorithms. Table 5.5 presents the best results for the

case where the compartment is being discriminated and the dataset is unbalanced. As can be

concluded from the analysis of the table, best results were given by the SMO algorithm when

using a sampling frequency of 100 Hz and when the sensor box was in the CE position.

Table 5.5: Best results when discriminating the compartment with unbalanced dataset, not considering
all gestures.

Considered Position Sensors Algorithm Sampling Correct 10 Fold Correct Percent.
Gesture Freq. Inst. Inst. Split
Drop CE Acc. + Gyr. SMO 100 Hz 70 66,67% 22 61,11%
Pick CE Acc. + Gyr. SMO 100 Hz 59 54,63% 21 56,76%
Both CE Acc. + Gyr. SMO 100 Hz 129 60,56% 42 58,33%

The best results for the case where the compartment is being discriminated and the dataset

is balanced are presented in table 5.6. Contrarily to the previous case, the best results were

obtained for 50 Hz sampling frequency (and not for the 100 Hz sampling frequency), while the

best position of the sensor box has changed to FF. Nonetheless, the best algorithm was, once

again, SMO.

Table 5.6: Best results when discriminating the compartment with balanced dataset, not considering all
gestures.

Considered Position Sensors Algorithm Sampling Correct 10 Fold Correct Percent.
Gesture Freq. Inst. Inst. Split
Drop FF Acc. + Gyr. SMO 100 Hz 20 37,74% 11 61,11%
Pick FF Acc. + Gyr. SMO 50 Hz 32 50,79% 9 42,86%
Both FF Acc. + Gyr. SMO 50 Hz 61 50,83% 23 56,10%

Table 5.7 presents the best results obtained when the compartments of the medication boxes

were not discriminated and the dataset was unbalanced. The Drop gesture is better classified

than the Pick gesture. The algorithm achieving the best results was SMO.

Table 5.7: Best results when non-discriminating the compartment with unbalanced dataset.

Considered Position Sensors Algorithm Sampling Correct 10 Fold Correct Percent.
Gesture Freq. Inst. Inst. Split
Drop FF Acc. + Gyr. SMO 50 Hz 130 92,20% 47 97,92%
Pick FF Acc. + Gyr. SMO 100 Hz 64 85,33% 22 88,00%
Both FF Acc. + Gyr. SMO 100 Hz 129 89,58% 41 83,67%

Finally, table 5.8 summarizes the best results obtained for when the compartments of the med-

ication box were not being discriminated and the dataset had a balanced number of samples. It

emphasizes that the best classification ratios are obtained when the sampling rate is of 50 Hz

and the algorithm is SMO.
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Table 5.8: Best results when non-discriminating the compartment with balanced dataset.

Considered Position Sensors Algorithm Sampling Correct 10 Fold Correct Percent.
Gesture Freq. Inst. Inst. Split
Drop FF Acc. + Gyr. SMO 50 Hz 58 96,67% 18 90,00%
Pick FF Acc. + Gyr. SMO 50 Hz 55 91,67% 18 90,00%
Both FF Acc. + Gyr. SMO 50 Hz 87 94,57% 29 93,55%

Generally speaking, Naïve-Bayes (NB) is the algorithm with the worst results when the ges-

tures pick the medication box and return the medication box are not considered, achieving

a maximum true positives rate of 70.97%. The J48 algorithm has a slightly better behavior

than Naïve-Bayes (NB), achieving a maximum value of 85.5%. k-Nearest Neighbor (kNN) comes

second, achieving a maximum true positives rate of 91.5% and, finally, Sequential Minimal Op-

timisation (SMO) presents best results by achieving a maximum true positives rate of 97.9%. It

must be said that all four algorithms achieved a minimal true positive rate value of 3.23% in at

least one test during these experiments. This happened mostly on the unbalanced subset when

trying to discriminate the compartments and when only the Pick gesture was considered. For

example, this value was reached in cases where the box was at position CE for the 8 Hz sampling

rate and when using the split percentage for validation.

Second Dataset

At the time the second dataset was collected, problems related with communications with the

sensor box were solved. As such, all samples gathered at Centro de Convívio para Idosos do

Bonfim were considered. This dataset did not have the same problem as the first, where data

might have been lost. Because of that, there is no unbalanced version of the dataset for the

case where the compartment of the medication box is not discriminated. The following tests

were made either when trying to discriminate which of the compartment was opened and closed

in the medication box, or when the compartment was not being discriminated:

• discriminating, unbalanced dataset;

• discriminating, balanced dataset;

• non-discriminating, balanced dataset.

In total, six different tests were made with the four algorithms: three using Cross-Validation

and another three using Split Percentage. As before, and for the sake of the explanation, only

the most promising results are presented in this section.

Table 5.9 presents the best results for the case where all the gestures were considered. Themost

promising results from the case where the compartments were discriminated in the balanced

dataset were given by the gyroscope sensor with a sampling rate of 100 Hz, on the position CE and
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using the SMO algorithm. On the other hand, the best results for the unbalanced dataset were

given by the J48 the algorithm while combining the accelerometer and gyroscope sensors and

with a sampling rate of 50 Hz on position FF. And, by last, when not discriminating which of the

compartments was open or closed, the best result was given by combining the accelerometer

and gyroscope sensors with a sampling rate of 50 Hz, on the position FF and using the SMO

algorithm.

Table 5.9: Best results for the second dataset when considering all gestures.

Position Sensors Sampling Correct 10 Fold Correct Percent.
Freq. Inst. Inst. Split

Unbalanced CE Gyro 100HZ 71 35,50% 29 42,65%
(Discriminating)

Balanced FF AG 50HZ 23 20,91% 3 8,11%
(Discriminating)

Balanced CE AG 50HZ 111 55,50% 29 42,65%
(Non-Discriminating)

Table 5.10 presents the best results for the case where the pick the medication box and return

the medication box gestures were not considered, for both the unbalanced and balanced subsets

and also for when the compartments were discriminated or not. Results from the case where

one is discriminating which of the compartments was open or closed in the balanced dataset was

given by the gyroscope sensor with a sampling rate of 100 Hz, on position CE. On the unbalanced

subset, the best result was obtained when combining the accelerometer and gyroscope sensors

with a sampling rate of 50 Hz, also on position CE. When discrimination of the compartments

was not being considered, the best result was also obtained when combining the accelerometer

and gyroscope sensors with a sampling rate of 50 Hz, though on position FF. The aforementioned

results were all obtained by using the SMO algorithm.

Table 5.10: Best results for the second dataset when the pick the medication box and return the
medication box gestures were not considered.

Position Sensors Sampling Correct 10 Fold Correct Percent.
Freq. Inst. Inst. Split

Unbalanced CE Acc. + Gyr. 50 Hz 69 38,0% 22 36,07%
(Discriminating)

Balanced CE Gyroscope 50 Hz 7 22,58% 11 12,22%
(Discriminating)

Balanced CE Acc. + Gyr. 50 Hz 166 55,33% 44 43%
(Non-Discriminating)

Contrary to the first dataset, all the results given by the algorithms were extremely low and

not useful at all. This may have been caused by several different factors, such as the fact that

the first dataset was collected in a controlled ambient while the second dataset was created

in a ambient with real target users; differences in the way each subject made the gestures;

the differences in the dataset sizes; the possible existence of sensor calibration problems; the
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difference in duration of each sample; and the possible existence of delay on the transmission

of data via the BLE stack.

5.6 Conclusion
A significant slice of the work conducted during the course of this project is described in this

chapter. It presents how the datasets to analyze the application of machine learning algorithms

to classify gestures on medication boxes were collected and used, as well as the respective

experiments and features used in that analysis. This part of the work contributed to one of the

major challenges of this Master’s project.

Four different machine learning algorithms were tested against the datasets, involving different

situations and scenarios. At the end, a total of 3456 different results for the Fraunhofer AICOS

dataset were generated, while for the Centro de Convívio para Idosos do Bonfim dataset, 576

different results were obtained. They enabled drawing some important conclusions regarding

the work at hands. For example, it was clear that Sequential Minimal Optimisation (SMO) was

the best algorithm, and that it should be considered in future embodiments of this work. On the

other hand, the worst algorithm was Naïve-Bayes (NB). It also became clear that the 50 Hz and

100 Hz sampling rates were better than the 8 Hz. Most of all, and specially the ones obtained for

the second dataset, these results revealed the true dimension of the challenge underlying this

work. The results for the second dataset were worst than for the first one, emphasizing that

some work is still necessary before the application is ready for general release. A true positives

rate below 95% is considered not optimal, since one is dealing with medication boxes that may

have critical medication on it.
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Chapter 6

Conclusion and Future Work

This chapter contains the final remarks of the work described in this dissertation (section 6.1).

Potential directions for future work regarding the sensor data classification and the Android

application will also be discussed in section 6.2.

6.1 Main Conclusions
The specialized literature on the area emphasizes that low medication adherence is still a prob-

lem among patients with a prescription. The work presented along this dissertation is an attempt

to minimize that problem, by facilitating the medication intakes monitoring via a smartphone

application that connects to a sensor box attached to medication boxes. The main idea was for

the monitoring to be non-intrusive and for the application to estimate intakes from gestures on

the box. Apart from the development of the application, it was also necessary to conduct re-

search on the means by which such estimation would be possible, namely via machine learning.

The work evolved to the definition of the gestures that could be possibly be associated with

the activity of taking a pill, and to the creation of datasets for analysis of the approach. The

datasets were constituted by data obtained from the sensors attached to a common medication

box. They were collected in two different occasions, in a controlled and in a non-controlled

scenario. The subjects of the non-controlled scenario correspond to the target users. It was

possible to recognize different gestures using machine learning, though there are many different

variables and factors that need to be considered. It can be concluded that this study is still

paving the way for a more complete solution to the problem.

Several positions of the sensors over the medication box and sampling rates were tried out

against four different machine learning algorithms. Generally speaking, one can notice that

the FF position achieved better results than the CE position. The results showed that the SMO

algorithm had a better performance when compared to the remaining ones, and that Naïve-

Bayes (NB) was the worst performing algorithm. The true positive rates were worse when trying

to discriminate the exact compartment of the medication box that was accessed, when com-

pared with the case where that discrimination was not done. Moreover, the true positive rates

were also higher when the pick the medication box and return the medication box were not

considered (i.e., classification improves when only the intermediate gestures are considered).
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The results for the tests performed over the dataset collected at Frauhnofer AICOS were signif-

icantly better than the ones obtained for the dataset collected at the Centro de Convívio para

Idosos do Bonfim. This showed the importance of conducting tests in non-controlled environ-

ments. There are several possible factors that can justify these results, such as:

• differences in the way the subject handles the box (fundamental differences in the ges-

tures);

• the differences in the dataset sizes;

• the possible existence of sensor calibration problems;

• the difference in the duration of each sample;

• the possible existence of delay on the transmission of data via the BLE stack.

The implementation of a proof-of-concept prototype that allows for the identification of ges-

tures on an Android OS device was one of the main objectives of this work. The basic function-

alities and modules of the application were successfully implemented, namely the integration

of the WEKA library in the app. Another objective was the implementation of a functionality

for creating reports of the medication events in the system. While developing the prototype,

special attention was given to the caretaker part and, mostly because of time limitations, this

objective was not entirely achieved. The objective of detecting if a patient took the medica-

tion on time was not fully achieved, though the underlying study conducted with that purpose

in mind fully compensates for that, in the opinion of the author. Although the medication re-

minder has the functionality to identify the gestures, it needs to be improved so that the result

is presented to the user of the prototype. The functionality is nonetheless operational and it is

saving all the results from the identification in the form of a text file on the device. The intake

of a medication can be signaled manually to the application.

6.2 Future Work
Even though a lot of efforts have been applied to pattern recognition and machine learning in

the last few years, there is still plenty of ground to cover on this area. While the objectives of

the dissertation were clearly optimistic (as they should be), experiments in real-world scenar-

ios provided clear indication on the difficulty of the problem at hands. This section contains

potential lines of future work that may be pursued after the end of this project.

The Android application, being a proof-of-concept, can be further polished into a final applica-

tion that includes all the planned features identified in the software engineering. This includes

notifications for when the user is taking a medication on an unscheduled hour, as well as noti-

fications when the user did not take a medication at a given time, and the functionality for a
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caregiver to generate a report. Additionally, the usage of the variables is not optimal and can

be improved.

As the application is a proof-of-concept, there are some implementation details that can be

further optimized. For example, when an Activity is about to change, the MedicationDetails

object, containing the details of the medication at the moment, is converted to JSON and then

passed via an Intent to the new Activity. The new Activity will get and parse the JSON object

from the Intent toMedicationDetails object back again. These steps may affect the performance

of the application, since the Activity classes should merely deal with user inputs and present

information to the user. This may be avoided in the future by using the Application class.

A state machine can be implemented in the Android application during the sensing of data

to improve the identification of the gestures. This may avoid some unwanted or nonsensical

results, by enforcing a certain order of gestures for taking a medication out of the box. E.g., a

compartment can not be closed without being opened before.

The size of the datasets should be increased. Furthermore, the placement of several sensor

boxes at on the medication box during the collection of data, for efficiency and testing purposes.

Larger datasets will most likely lead to better results. Moreover, the datasets should be primarily

obtained using target users as the subjects.

As emphasized by the discussion in chapter 5, the number of variables and conditions considered

in the testing of the algorithms was large. Nonetheless, future works may consider trying other

algorithms and combination of parameters, by building on some of the conclusions of this study.

For example, future iterations should not need to consider the sampling frequency of 8 Hz, which

consistently led to worst results. Additional sensors, such as heat or pressure, may be included

in the equation. Moreover, since many machine learning algorithms allow fine tunning of the

parameters, their optimization should also be considered. Feature engineering is a process that

enables the identification of which of the extracted features will allow the machine learning

algorithm to obtain better results. This process was not applied in the context of this work and

may help improve the result as well.
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Appendix A

Software Engineering Diagrams

This appendix contains some of the Software Engineering diagrams developed along this work.

These diagrams are mentioned in chapter 3, complementing the description therein contained.

The appendix is divided as follows. Section A.1 contains the activity diagrams for the Android

application prototype that was developed within the scope of this project. Section A.2 includes

some of the mockups designed for the Android prototype.

A.1 Activity Diagrams
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Figure A.1: Consult History activity diagram.
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Figure A.2: Consult Future Intake activity diagram.
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Figure A.3: Add and Edit Intake activity diagram.
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A.2 Mockup

Figure A.4: Add Alarm and Add Intake Hours mockup.

60



Figure A.5: Consult Future Intake mockup.
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Figure A.6: Past Intake List, Past Intake and Notifications mockup.
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Appendix B

Prototype Development Listings

This appendix contains listings with excerpts of code concerning the developed prototype. These

excerpts of code are referred in chapter 4, complementing the description therein contained.

This appendix has only one section containing a code excerpt for the Classification and Fea-

ture Extraction module B.1 of the Android application prototype, and a code excerpt for the

MedicationDetails Java object B.2.

B.1 Relevant Listings
Listing B.1: Excerpt of code showing part of the Classification Module class implementation.

1 public class ClassificationModule {

2 private Classifier cClassifier = null;

3 public ClassificationModule() {

4 this.cClassifier = new SMO();

5 setTrainSet();

6 }

7 // instance classification

8 public String instanceClassification(String featureVector) {

9 // the variable header contains the attribute set

10 // in the format of ARFF files , the format that WEKA

11 // is able to process

12 String instanceStr = header + featureVector;

13 // (...)

14 Instances i = new Instances(br);

15 int cIdx = i.numAttributes() - 1;

16 i.setClassIndex(cIdx);

17 double[] prediction = cClassifier.distributionForInstance(i.

firstInstance()); // predict instance

18 String str = "";

19 int max_i = -10;

20 double max = -10;

21 for (int j = 0; j < prediction.length; j++) {

22 if (prediction[j] > max) {

23 max_i = j;
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24 max = prediction[j];

25 }

26 str += "p(\"" + i.classAttribute().value(j) + ")␣=␣" +

Double.toString(prediction[j]) + "␣//␣";

27 }

28 str += "\np(\"" + i.classAttribute().value(max_i) + "\")␣=␣" +

Double.toString(prediction[max_i]) + "\n\n";

29 return str;

30 }

31 }

Listing B.2: Excerpt of code showing some of the data stored in MedicationDetails objects.

1 public class MedicationDetails {

2 private String medName = ""; // Medication Name be here

3 private String medDesc = ""; // This variable will have the

dosage , pandlet ,recurrence , medStatus , Instances , UUID , rrule

(...)

4 private String medDosage = ""; // This variable will have the

dosage

5 private String medRec = ""; // RRULE be here

6 private String medLocation = "SmartMedBoxes -Home"; // Location of the

event

7 private String medPandlet = ""; // MAC address

8 private String medInstances = ""; // instance times

9 private long medStart = -1; // Medication Event Start

10 private long medEnd = -1; // Medication Event End

11 private long eventID = -1; // event id (from calendar)

12 private long instanceID = -1; // event instance id (from calendar

)

13 private int medAlarm = 0; // default value is 0 minutes (when

med starts , it will alarm)

14 private int medStatus = -1; // 0 - not taken | 1 - taken | 2 -

unknown | -1 - default

15 private String medUUID = ""; // UUID

16 // (...) // getters and setters are here

17 public JSONObject toJSON() {}

18 public static MedicationDetails fromJSON(String jsonString){}

19

20 // (...) // more methods here
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21

22 public void parseDescription() {}//(...)

23 public void generateDescription() {}//(...)

24 }
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