

Estudo de conservação sob atmosfera controlada na qualidade da cereja cv. Satin

CHRISTOPHE ESPÍRITO SANTO¹, YURAN BELANE², MAFALDA RESENDE¹, CATARINA CASEIRO¹, HELENA BEATO¹, JOÃO REIS¹, INÊS BRANDÃO¹, ANA SILVEIRA¹, ANA RISCADO¹, CÁTIA BAPTISTA¹, CRISTINA MIGUEL PINTADO¹, ABEL VELOSO², DORA FERREIRA², LUÍS P. ANDRADE^{2,3}, JOSÉ NUNES², MARIA P. SIMÕES^{2,3}, DIOGO MORAIS⁴, CRISTINA CANAVARRO^{2,3}, PEDRO D. GASPAR^{4,5} E PEDRO D. SILVA^{4,5}

¹CATAA - Centro de Apoio Tecnológico Agro Alimentar, Zona Industrial, Rua A, 6000-459 Castelo Branco, Portugal. ²IPCB-ESA -Instituto Politécnico de Castelo Branco, Escola Superior Agrária, Qt.ª Sr.ª Mércules, 6001-909 Castelo Branco, Portugal. ³CERNAS - Centro de Estudos de Recursos Naturais, Ambiente e Sociedade, Instituto Politécnico de Castelo Branco, Av. Pedro Álvares Cabral 12, 6000-084 Castelo Branco, Portugal. Vernas ⁴UBI – Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal. ⁵C-MAST – Centre for Mechanical and Aerospace Science and Technologies, Covilhã, Portugal.

Introdução

A cerejeira (Prunus avium L.) é uma espécie pertencente à subfamília das Prunóideas e a produção de cereja apresenta elevada importância económica na região da Beira Interior, que, embora não seja a região com maior área de produção é a principal região de produção de Portugal. A cereja apresenta um elevado teor de compostos bioativos como vitamina C, fibra, antocianinas, quercetina e carotenóides relacionados com a prevenção de doenças cardiovasculares, diabetes e cancro (McCune et al., 2011; Wang et al., 2016). No entanto, este fruto não climatérico deteriora-se rapidamente após a colheita apresentando alterações na cor da pele, acastanhamento do pedúnculo, desidratação, amolecimento da polpa, diminuição da acidez e apodrecimento (Dugan & Roberts, 1997; Wang et al., 2016). A refrigeração, combinada com a utilização de atmosferas controladas, visa o atraso da deterioração e o consequente prolongamento da vida útil alargando o período de oferta. Esta técnica consiste no armazenamento a baixa temperatura num ambiente com uma concentração elevada de CO₂, uma concentração baixa de O₂ e uma humidade relativa elevada (Andrade et al., 2019). Os valores indicados na bibliografia relativos à concentração de CO₂ variam entre 5% e 20% (Gross et al., 2016) e, para a concentração de O₂, encontram-se entre 1% (Gross et al., 2016) e 10% (Ben-Yehoshua et al., 2005).

Objetivo

O objetivo deste trabalho que é parte integrante do projeto

PRUNUSPÓS ***

foi avaliar diferentes modalidades de conservação da cereja, nomeadamente atmosfera refrigerada e atmosfera controlada, utilizando a cv. Satin, a identificando permita que maximizar o tempo de conservação considerando os parâmetros de qualidade de cereja.

Material e Métodos

Modalidades:

Atmosfera refrigerada na Organização de produtores (OP),

Atmosfera refrigerada no Centro de Apoio Tecnológico Agro-alimentar (CATAA);

Atmosfera controlada, $3\% O_2$ - $10\% CO_2$ – 3310,

Atmosfera controlada, 3% O_2 -15% CO_2 – 4315,

Atmosfera controlada, $10\% O_2$ - $10\% CO_2$ -51010,

Atmosfera controlada, $10\% O_2$ - $15\% CO_2$ – 61015.

Tempo: 7, 14, 21 e 28 dias após a instalação nas modalidades de atmosfera refrigerada; 14, 21, 28, 35, 42 e 49 dias após a instalação nas modalidades de atmosfera controlada.

Parâmetros avaliados: diferença de peso (avaliada relativamente ao peso dos frutos no dia de instalação do ensaio), teor de sólidos solúveis totais (SST), textura (correspondente à resistência mecânica da epiderme dos frutos) e acidez.

Resultados

O peso das cerejas diminuiu entre a primeira e a última data de amostragem em todas as modalidades com exceção da modalidade 61015 (Tabela 1).

O teor de SST aumentou entre os 7 e os 21 dias de conservação nas amostras armazenadas na modalidade OP. A modalidade 61015 foi a única onde a perda de peso foi semelhante para todas as datas de amostragem.

Na modalidade OP foi onde se registou a maior diminuição de textura ao longo de todo o período de amostragem.

A acidez não apresenta um padrão de variação muito constante para qualquer das modalidades avaliadas quando consideramos a evolução ao longo do período de armazenamento. Contudo, o coeficiente de Pearson indica correlações negativas significativas para as modalidades OP, 4315, 51010 e 61015 (Tabela 2).

No conjunto das modalidades de Atmosfera Controlada as modalidades 3310 e 61015 foram as que apresentaram menor variação dos parâmetros de qualidade.

Tabela 2. Coeficientes de correlação de Pearson entre os parâmetros analisados e o tempo de armazenamento.

Modalidade	Diferença de peso (%)	SST (°Brix)	Textura (N)	Acidez (mEq/100 g)	
OP	-0,834**	0,272**	-0,465**	0,651**	
CATAA	-0,162*	n.s.	0,168**	n.s.	
3310 (3% O ₂ -10% CO ₂)	-0,244**	-0,207**	n.s.	n.s.	
4315 (3% O ₂ -15% CO ₂)	-0,383**	-0,186**	0,133*	-0,502*	
51010 (10% O ₂ -10% CO ₂)	-0,215**	n.s.	n.s.	-0,516*	
61015 (10% O ₂ -15% CO ₂)	n.s.	-0,270**	0,232**	-0,580*	

Conclusões

Todas as modalidades permitiram prolongar a vida útil dos frutos. As modalidades de atmosfera controlada compostas por 3% O₂-10% CO₂ e 10% O₂-10% CO₂ foram as que estiveram associadas a uma menor variação dos parâmetros de qualidade avaliados.

Referências

Andrade, L.P., Nunes, J., Simões, M.P., Morais, D., Canavarro, C., Espírito Santo, C., Gaspar, P.D., Silva, P. D., Resende, M., Caseiro, C., Beato, H., Belane, Y. & Ferreira, D. (2018). Experimental study of the consequences of controlled atmosphere conservation environment on cherry characteristics. 25th International Congress of Refrigeration, Montreal, Canada. Ben-Yehoshua, S., Beaudry, R.M., Fishman, S., Jayanty, S. & Mir, N. (2005). Modified atmosphere packaging and controlled atmosphere storage. In S. Ben-Yehoshua (Ed.), Environmentally friendly technologies for agricultural produce quality (pp. 61-112). Boca Raton: CRC Press. Dugan, F.M. & Roberts, R.G. (1997). Pre-harvest fungal colonization affects storage life of 'Bing' cherry fruit. Journal of Phytopathology, 145: 225-230.

Gross, K. C., Wang, C. Y. & Saltveit, M. (Ed.) (2016). The commercial storage of fruits, vegetables, and florist and nursery stocks. Boston, MA: Springer. McCune, L.M., Kubota, C., Stendell-Hollis, N.R. & Thomson, C.A. (2011). Cherries and health: a review. Critical Reviews in Food Science and Nutrition, 51: 1-12. Wang, L., Zhang, H., Jin, P., Guo, X., Li, Y., Fan, C., Wang, J. & Zheng Y. (2016). Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion with β -aminobutyric acid. Postharvest Biology and Technology, 118: 71-78.

Agradecimentos

Este trabalho esteve integrado no projeto "PrunusPÓS" (PDR2020-101-031695), promovido pelo PDR 2020 e cofinanciado pelo FEADER no âmbito Portugal 2020. Agradece-se à organização de produtores CERFUNDÃO a cedência das cerejas e a participação no projeto.

Tabela 1. Evolução dos parâmetros de qualidade das cerejas armazenadas em atmosfera refrigerada e atmosfera controlada.

	Modalidade	Tempo (d)	Diferença de peso (%)		SST (°Brix)		Textura (N)		Acidez (mEq/100 g)	
	Colheita	0	(9,36 g/fruto)		16,92		3,17		7,49	
		7	-2,95	a	16,63	b	2,68	a	5,40	b
		14	-4,92	b	17,60	ab	2,39	b	6,56	ab
	OP	21	-7,18	c	17,79	a	2,22	b	6,76	a
		28	-8,83	d	18,56	a	1,92	c	6,47	ab
		p	0,000		0,000		0,000		0,004	
	CATAA	7	-0,664	a	16,27	a	3,420	a	6,773	a
		14	-0,639	a	16,33	a	3,573	a	6,983	a
		21	-0,923	b	16,25	a	3,717	a	6,630	a
		28	-2,245	c	16,70	a	3,752	a	7,010	a
		p	0,033		0,500		0,065		0,924	
\Diamond		14	-1,51	a	16,70	ab	3,35	b	6,44	a
2		21	-1,51	a	16,68	ab	3,94	a	6,72	a
	3310	28	-1,49	a	17,33	a	3,72	ab	6,61	a
1	3% O ₂	35	-1,64	ab	16,16	b	3,58	ab	5,89	a
	10% CO ₂	42	-1,92	b	15,94	b	3,97	a	6,37	a
		49	-1,99	b	15,64	b	3,73	ab	6,17	a
		p	0,000		0,000		0,001		0,609	
		14	-1,22	a	17,06	ab	3,58	a	7,20	a
		21	-1,75	b	17,22	a	3,65	a	7,49	a
	4315	28	-1,52	b	17,09	ab	3,59	a	6,63	a
	3% O ₂	35	-1,79	bc	16,55	ab	3,77	a	6,12	a
	15% CO ₂	42	-2,09	cd	16,40	ab	3,81	a	6,35	a
		49	-2,37	d	15,92	b	3,91	a	6,30	a
		p	0,000		0,011		0,196		0,288	
	51010 10% O ₂ 10% CO ₂	14	-1,76	a	16,90	ab	3,32	ab	6,57	a
		21	-1,77	a	16,57	b	3,66	ab	6,84	a
		28	-2,28	b	16,16	b	3,23	b	6,14	a
		35	-1,95	a	17,72	a	3,76	a	6,35	a
		42	-2,11	b	16,43	b	3,53	ab	6,28	a
		49	-2,39	b	16,06	b	3,48	ab	5,40	a
		p	0,000		0,000		0,004		0,205	
	61015 10% O ₂	14	-2,24	a	17,26	ab	3,15	b	7,06	a
		21	-2,20	a	17,81	ab	3,27	ab	7,00	a
a		28	-2,32	a	17,39	a	3,12	b	6,51	a
n	$15\% \text{ CO}_2$	35	-2,64	a	16,18	bc	3,56	a	5,87	a
	1370 002	42	-2,39	a	16,45	ab	3,57	a	6,35	a
		49	-2,36	a	15,62	c	3,64	a	6,04	a
		p	0,149		0,000		0,000		0,129	

Financiado por

