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Abstract: Nowadays, the increasing energy prices and associated environmental concerns lead the 

refrigeration systems’ developers and manufacturers to develop more energy efficient and 

sustainable equipment and devices. On the most demanding systems, intense usage results in the fast 

accumulation of ice on the evaporator fins that reduces the efficiency and may even clog the system. 

These systems often have time-controlled defrost cycles, that heat the evaporator, melting the ice and 

allowing the system to keep working normally after the defrost cycle. This cycle consumes extra 

energy and causes a thermal imbalance on the refrigerated space, that may result in a worst 

refrigeration quality. If it was possible to avoid the defrosting cycle passively (without energy 

consumption) its efficiency would greatly increase, and the refrigeration temperature would be more 

stable. Currently defrost cycles cannot be avoided in an economically viable way, although new 

designs, materials and configurations show promising results, and are currently being investigated. 

These studies require experimental tests that may become expensive as several geometries, 

topologies, materials and surface treatment combinations should be evaluated. To access the 

efficiency before these experimental tests, computational models that simulate frost formation could 

predict with some accuracy which of the most promising configurations should be then tested 

experimentally. The present paper aims to review the computational methods to predict frost 

formation and compare them for possible usage in the computational study of evaporators. 

Additionally, the future trends of the simulations are discussed, taking into account physical and 

mathematical models, numerical procedures and the accuracy of the dynamic pattern of the 

predictions. 

Keywords: Demand defrosting, frost measurement, controlling strategy, frost detection, evaporator 

design, finned tube evaporators. 

 

1. INTRODUCTION 

The issue of frost formation in air conditioning and refrigeration systems, more specifically on the fin-and-

tube evaporators, has been studied for several years and yet it still results in significant additional energy 

consumption [1-2]. As they are used in light commercial systems, these fin-and-tube evaporators have a large 

area-to-volume ratio. The demand for subfreezing operating temperatures causes the formation of a frost layer 

on the fin surface [3-4], as shown on Fig. 1. 

 

 
 (a)                                          (b) 

Figure 1: Visualization of fins surface before (a) and after (b) the frost formation process (adapted from [3]). 

 

Being a porous medium comprised of ice crystals and pores filled with moist air, the frost buildup on the 
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evaporators fin surface increases its air-side thermal resistance, decreasing the overall thermal efficiency of 

the system. If the frost is allowed to continue growing, the efficiency keeps decreasing due to not only the 

increment of the heat transfer resistance, but also to the blockage of the air passage between fins. This condition 

can lead to a full blockage if no defrost method is applied [5]. Several parameters can influence frost growth, 

but those with most influence are air relative humidity, velocity and supercooling degree (difference between 

inlet air dew point and fin surface temperature [4-8]. Although, other parameters such as fin shape and spacing 

[3], type of flow (laminar or turbulent) [9], or air cleanliness [10] may influence the frost growth. The lower 

refrigeration efficiency caused by the frost layer on fin surfaces results in a higher energy demand, and in 

extreme cases, system damage. Furthermore, the inability to cool the air to the desired temperatures, and 

sometimes the use of active frost removal methods that heat the evaporator result in an increase in the 

temperature of the refrigerated goods and thus higher product temperatures. Defrost methods are used to reduce 

the problem, although additional energy is usually consumed for their operation [11]. After literature review, 

the defrost methods were classified in two groups: 

Restraint frost methods: methods for the retardation of the frost formation, by either changing the 

characteristics of the inlet air (humidity, velocity and temperature) [3], [12]; changing the features of the cold 

surface (temperature, morphology, position and treatment) [13-18]; and changing the interaction between the 

air, condensed water or frost and the cold surface (electric field [19], magnetic field [20], ultrasound [21]), etc. 

Frost removal methods: methods that act upon the formed frost to remove it and return the working conditions 

to normal, therefore, ideally, are only used after the frost is formed. These defrosting operations usually result 

in undesirable temperature fluctuations on the refrigerated space [22]. There are several defrost methods, such 

as: compressor shutdown [23]; electric resistive heater [24]; reverse cycle[25-26]; hot gas bypass [27]; hot 

water [28]; air jet or air particle jet [29]; and ultrasonic vibration methods [30-32].  

Both restraint frost and frost removal methods can be classified as passive or active: passive if no additional 

energy is required and active if some additional power input is required to remove the accumulated frost [33]. 

This classification is summarized on Fig. 2. 

 

 
Figure 2: Classification of available defrost methods. 

 

Time controlled with on-off defrosting and electric resistive heater or reverse cycle are the most used active 

defrost methods. Apart from these, none of the abovementioned methods has gained significant acceptance 

from the refrigeration industry, due to complex, expensive and unreliable sensing and prediction methods [34], 

[35]. The use of one of these methods can cause a huge impact on energy consumption, as the defrost operations 

are timed for the worst-case scenario (warm air with high relative humidity) and thus, as these air conditions 

vary during the year, the amount of defrosting cycles could vary as well. Tassou et al. [36] studied the frost 

formation and defrost control parameters for open multideck refrigerated display cabinets and concluded that 

the ideal time between defrosts varies greatly with air temperature and humidity. In Fig. 3, the comparison 

between time controlled defrosting operations and demand defrosting operations shows the amount of 

unnecessary defrosting operations for the case studied in [4]. As the ideal operation time between defrosts on 
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this food display cabinet under the studied conditions can range from an average of 4 hours to around 9.5 hours 

at different times of the year. 

 
Figure 3: Time difference between defrosting operations in demand defrosting operations and timed 

defrosting operations in a 24 hour interval (each dot represents a defrosting operation) [4]. 

 

A time-controlled defrosting must have in consideration the worst-case scenario on time between defrosting 

operations. Demand defrost tries to solve this problem by predicting or measuring frost formation. This can be 

done by directly measuring frost on the evaporator coils. Alternatively, the frost formation can be predicted by 

processing the measured factors that influence frost formation (such as surface temperature, and inlet air 

characteristics: relative humidity, temperature and velocity) [37], computing the measurable system changes 

caused by the frost accumulation on the evaporator (temperature difference between the air and evaporator 

surface [38], pressure drop [39], degree of refrigerant superheat [40], fan power sensing [41] or both [42], 

using methods such as artificial intelligence [43-44] or numerical analysis [45-48]. 

2. PREDICTIVE METHODS 

2.1. Artificial Intelligence 

Artificial intelligence computes a large set of pre-obtained reliable data (parameters and results) to learns how 

to predict the desired parameters of frost formation when results are not given [43-44]. These methods can be, 

amongst others: Multiple linear regression (MLR); Artificial neural network (ANN) and Support vector 

machine (SVM). These methods are described in the following sections, while their comparison is performed 

later. 

Multiple linear regression (MLR) method: It is a statistical method that can be used to model the relationship 

between two or more input variables (such as surface temperature, air temperature, relative humidity and time) 

and one output variable (such as frost thickness) by fitting a linear equation to the observed data [49, 44]. Fig. 

4 shows the comparison of measured frost thickness and predicted thickness using the MLR method, this plot 

gives an idea of how accurate this method can be, as a perfect prediction would result in all points coinciding 

with the x=y line. 

 
Figure 4: Comparison of measured frost thickness and predicted thickness using the MLR method [44]. 
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Artificial neural network (ANN): ANN are inspired by biological nervous systems, which can learn and 

identify the correlated patterns by training and then present new values. The general goal of the approach is to 

find solution algorithms to complex problems, such as prediction, pattern recognition, and classification [50] 

Fig. 5 shows the comparison of measured frost thickness and predicted thickness using the ANN method 

performed by Zendehboudi et al. [44]. A Multilayer Perceptron-Artificial Neural Network (MLP-ANN) [43] 

was able to predict frost density on horizontal surfaces, within −7.79% and +5.1%; frost layer thickness on 

parallel surfaces, within 22.95% and −18.2%; and frost density on parallel surfaces, within −5.26% and 

+9.99%. In addition, 99.32% of data points related to the frost thickness on horizontal surfaces are within 

±20%. 

 
Figure 5: Comparison of measured frost thickness and predicted thickness using the ANN method [44]. 

 

Support vector machine (SVM): The Support Vector Machine learning algorithm is based on statistical 

learning and structural risk minimization concepts. By mapping nonlinear input variables to high-dimensional 

feature spaces, the algorithm finds a hyper plane via nonlinear mapping [51]. A modified version of SVM, the 

least squares support vector machine (LSSVM) has a high generalization capability, lower computational 

complexity, and higher solving speed [44]. Fig. 6 shows the comparison of measured frost thickness and 

predicted thickness using the GA-LSSVM method. 

 

 
Figure 6: Comparison of measured frost thickness and predicted thickness using the GA-LSSVM method 

[44]. 

 

Concluding remarks: These models can be used to predict frost deposition in a wide range of different 

conditions with high accuracy. In addition, because models such as MLP-ANN can give results within 1 

second, with high accuracy, the models can be used to design and enhance the thermal performance of heat 

pumps or heat exchangers in low ambient temperatures for refrigeration packages [43]. These models could 
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also be incorporated in refrigeration systems to compute a prediction of the frost layer in real time using the 

parameters already measured by refrigeration systems, and applying a demand defrost method based on these 

results. 

As shown on Figures 4, 5 and 6, artificial intelligence methods can give different results, depending on the 

method and on the implementation. Less reliable results don’t necessarily mean that these methods are 

unsuitable but may show better results if a different implementation is applied. For example, increasing the 

amount of data samples to train the models is one procedure that may improve model results. 

 

2.2. Numerical analysis 

Semi-empirical models: Semi-empirical models can be considered as numerical models enhanced by 

correlations derived from experimental data, as such derived by Hermes et al. [48]. These authors derived a 

correlation from three different surfaces, to include the surface wettability in a numerical model. Errors bounds 

of ±15%, and an average predictive error of 11.7% were obtained for different surfaces, which reveal how 

practical these models can be, as graphically shown on Fig. 7. 

 

  
(a) Model validation for hydrophilic surfaces. (b) Model validation for hydrophobic surfaces. 

Figure 7: Predicted frost thickness as a function of time versus the experimental data for hydrophilic and 

hydrophobic surfaces under different operating conditions [48]. 

 

Although these correlations can simplify the inclusion of a variable or parameter (such as in the case of [48] 

that includes the surface wettability in a frost prediction model), these incorporations must be carefully 

introduced, as frost formation is a complex phenomenon and these semi-empirical models might end up 

oversimplifying and/or introducing errors into the model [45]. Nevertheless, for complex simulations such as 

frost formation, correlations are usually used to account the huge number of factors that influence frost 

formation, and thus most of the following methods use empirical correlations in their models [46]. 

 

Finite volume method: The finite volume method is a numerical method used for solving partial differential 

equations. This method calculates the values of the preserved variables averaged across the volume. Bartrons 

et al. [46] used a finite volume method to predict the frost growth using dynamic meshes. The dynamic meshes 

change with every iteration to account for the frost layer. Application of the model and comparison with 

experimental data for validation are shown in Fig. 7. The transient numerical prediction provides a trend very 

similar to the experimental results. 
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Figure 8: Comparison of measured frost thickness and predicted thickness using the finite volume method in 

[46] for different conditions. 

 

Other variants of the finite volume method were studied in Negrelli et al. [52] in which experimental data was 

represented within the ±15% thresholds. Armengol et al. [45] obtained model predictions of the frost thickness 

as function of time agree with the experimental data within ±10% deviation for the case of intermediate plate 

temperature. Lee & Yang [53] developed a model that predicted the experimental data of the frost properties 

within a maximum error of 10%. 

 

Euler multi-phase flow method: In a two-dimensional computational domain of a finite volume method, it is 

impossible to express the exact shape and position of the frost surface using a one-dimensional line, because 

the shape and position change in real time. This problem can be solved by using the Euler multi-phase flow 

method [47]. This method allows a two-phase flow in a single computational domain. The two considered 

phases are usually humid-air phase (dry air and water vapor) and a frost phase [47].  

Ma et al. [54] developed a numerical investigation of frost formation on wavy plates using the Euler multi-

phase flow method, leading to average frost thickness and frost weight differences between the simulations 

and experiments within ± 20%, as shown on Figure 9. It should be considered that this model works for wavy 

plates, as opposed to most of the reviewed models that work for flat surfaces. 

 

 
Figure 9: Experimental frost thicknesses versus simulated values using the model developed in [54]. 

 

Computational fluid dynamics and software: Although Computational Fluid Dynamics (CFD) can use the 

abovementioned numerical analysis methods, a special regard should be given to CFD software, as it is 

nowadays a great tool for simulation. Wu et al. [55] uses FLUENT to simulate frosting on fin-and-tube heat 

exchanger surfaces. This model predicts frost distributions on the heat exchanger surfaces, the temperature 

distributions and the air flow pressure drop. This model is based on the Euler multi-phase flow method and 
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can be used in the development of a system for frost simulation during the design phase of heat exchangers, as 

shown in Figure 10. This method managed to achieve an average relative error between the predicted and 

measured pressure drops of -12.5%. 

 

 
Figure 10: Humid air streamlines on the heat exchanger before and after frost accumulation [18]. 

 

Hu et al. [53] developed and simulated a phase change mass transfer model to predict the frost layer growth 

and densification using FLUENT. The difference between the predicted and measured frost weights is within 

3.2–3.9%, which are good predictions values when considering the average accuracy of the state of the art 

reviewed models. 

3. COMPARISON BETWEEN METHODS 

It is difficult to achieve a comparison between methods as even different implementations of the same method 

may yield different results. Nonetheless, a general comparison between the method category can be developed 

based on the main differences between artificial intelligence and numerical methods, with the aim of 

implementing these methods in the prediction of frost formation in evaporators. This objective can be 

considered as a means of designing the systems for a better passive defrost, and as a means of implementing 

demand defrost systems, using the frost prediction to start defrosting operations, rather than time based. The 

comparison between frost formation prediction methods is shown in Table 1.  

 

Table 1: Comparison between frost formation prediction methods (from ✓ to ✓✓✓ where ✓ is not very 

suitable for the purposed usage and ✓✓✓ is very suitable.) 

Method Artificial Intelligence Numerical analysis 
Required Computational Power ✓✓✓ ✓ 
Accuracy ✓✓ ✓✓✓ 
Implementation for evaporator design ✓✓ ✓✓✓ 
Implementation in demand defrost systems ✓✓✓ ✓ 

Artificial intelligence methods are the most suitable methods to implement in refrigerators for demand defrost 

control, as these are accurate enough for demand defrost control, while being simpler to implement and require 

less computational power (numerical models usually rely on software that is computationally heavy). On the 

other hand, numerical methods are those that can be reliable and accurate and at the same time better developed 

for application in a uniform software to aid the design of fin-and-tube evaporators, by allowing the frost 

formation prediction to dictate if the design will result in an inefficient system, or if it has reached a 

compromise between heat transfer efficiency and frost accumulation damages. 

4. CONCLUSIONS 

Different methods for frost prediction and simulation have been developed and are available on the scientific 

literature. Although, most of these models are for simple applications, mostly for a cold flat plate, with a few 
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methods starting to approach tube fin evaporators and wavy fins. Besides, in the methods for frost formation 

prediction, there is not a single method that has been widely accepted as the most accurate or convenient, and 

thus, when talking about methods for frost formation prediction, several different approaches can be made, 

which causes the problem of not having a uniform solution. If further developed for the purpose, some of these 

methods can be applied in commercial refrigerators with relative ease.  Many of the required sensors are 

already available in most the refrigeration systems.  conditions.  However, extra sensors may be required in 

refrigerator systems that still rely on the timed control method for defrosting operations. Evaporator frost 

prediction can be a solution to this problem, as a relatively accurate measurement with a safety factor would 

be more than likely enough to command defrosting operations. 

During this review, no studies have been found regarding real implementation in commercial refrigerators. 

Having a system working in a laboratory doesn’t mean it is suitable for implementation, therefore 

implementation studies should be carried out in the future. These studies should aim for the development of a 

model that can easily be implemented on an existing refrigeration system without requiring excessive 

personnel and capital costs, and thus having minimal impact on the sale price of the refrigeration system, while 

resulting in large energy savings in refrigeration and extended shelf life of the refrigerated products. Although 

prediction models usually require more than one input (air temperature and humidity, cold surface temperature, 

air velocity, …), some of these characteristics are already usually monitored by the refrigeration systems, and 

thus require no additional sensor installation, as opposed to the direct frost measurement systems that require 

the installation of a frost detection sensor on the system. 
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